
Thinking 
in 

Java 
Fourth Edition 

Bruce Eckel 
President, MindView, Inc. 

 
 
 
 
 
 
 
 
 
 

  



Comments from readers: 
Thinking In Java should be read cover to cover by every Java programmer, then kept close at 
hand for frequent reference. The exercises are challenging, and the chapter on Collections is 
superb! Not only did this book help me to pass the Sun Certified Java Programmer exam; it’s 
also the first book I turn to whenever I have a Java question. Jim Pleger, Loudoun 
County (Virginia) Government   

Much better than any other Java book I’ve seen. Make that “by an order of magnitude”... very 
complete, with excellent right-to-the-point examples and intelligent, not dumbed-down, 
explanations ... In contrast to many other Java books I found it to be unusually mature, 
consistent, intellectually honest, well-written and precise. IMHO, an ideal book for studying 
Java. Anatoly Vorobey, Technion University, Haifa, Israel   

One of the absolutely best programming tutorials I’ve seen for any language. Joakim 
Ziegler, FIX sysop   

Thank you for your wonderful, wonderful book on Java. Dr. Gavin Pillay, Registrar, King 
Edward VIII Hospital, South Africa   

Thank you again for your awesome book. I was really floundering (being a non-C 
programmer), but your book has brought me up to speed as fast as I could read it. It’s really 
cool to be able to understand the underlying principles and concepts from the start, rather 
than having to try to build that conceptual model through trial and error. Hopefully I will be 
able to attend your seminar in the not-too-distant future. Randall R. Hawley, 
Automation Technician, Eli Lilly & Co.   

The best computer book writing I have seen. Tom Holland   

This is one of the best books I’ve read about a programming language… The best book ever 
written on Java. Ravindra Pai, Oracle Corporation, SUNOS product line   

This is the best book on Java that I have ever found! You have done a great job. Your depth is 
amazing. I will be purchasing the book when it is published. I have been learning Java since 
October 96. I have read a few books, and consider yours a “MUST READ.” These past few 
months we have been focused on a product written entirely in Java. Your book has helped 
solidify topics I was shaky on and has expanded my knowledge base. I have even used some 
of your explanations as information in interviewing contractors to help our team. I have 
found how much Java knowledge they have by asking them about things I have learned from 
reading your book (e.g., the difference between arrays and Vectors). Your book is great! 
Steve Wilkinson, Senior Staff Specialist, MCI Telecommunications   

Great book. Best book on Java I have seen so far. Jeff Sinclair, Software Engineer, 
Kestral Computing   

Thank you for Thinking in Java. It’s time someone went beyond mere language description 
to a thoughtful, penetrating analytic tutorial that doesn’t kowtow to The Manufacturers. I’ve 
read almost all the others—only yours and Patrick Winston’s have found a place in my heart. 
I’m already recommending it to customers. Thanks again. Richard Brooks, Java 
Consultant, Sun Professional Services, Dallas    

Bruce, your book is wonderful! Your explanations are clear and direct. Through your 
fantastic book I have gained a tremendous amount of Java knowledge. The exercises are also 
FANTASTIC and do an excellent job reinforcing the ideas explained throughout the chapters. 
I look forward to reading more books written by you. Thank you for the tremendous service 
that you are providing by writing such great books. My code will be much better after reading 



Thinking in Java. I thank you and I’m sure any programmers who will have to maintain my 
code are also grateful to you. Yvonne Watkins, Java Artisan, Discover Technologies, 
Inc.   

Other books cover the WHAT of Java (describing the syntax and the libraries) or the HOW of 
Java (practical programming examples). Thinking in Java is the only book I know that 
explains the WHY of Java; why it was designed the way it was, why it works the way it does, 
why it sometimes doesn’t work, why it’s better than C++, why it’s not. Although it also does a 
good job of teaching the what and how of the language, Thinking in Java is definitely the 
thinking person’s choice in a Java book. Robert S. Stephenson   

Thanks for writing a great book. The more I read it the better I like it. My students like it, too. 
Chuck Iverson   

I just want to commend you for your work on Thinking in Java. It is people like you that 
dignify the future of the Internet and I just want to thank you for your effort. It is very much 
appreciated. Patrick Barrell, Network Officer Mamco, QAF Mfg. Inc.   

I really, really appreciate your enthusiasm and your work. I download every revision of your 
online books and am looking into languages and exploring what I would never have dared 
(C#, C++, Python, and Ruby, as a side effect). I have at least 15 other Java books (I needed 3 
to make both JavaScript and PHP viable!) and subscriptions to Dr. Dobbs, JavaPro, JDJ, 
JavaWorld, etc., as a result of my pursuit of Java (and Enterprise Java) and certification but I 
still keep your book in higher esteem. It truly is a thinking man’s book. I subscribe to your 
newsletter and hope to one day sit down and solve some of the problems you extend for the 
solutions guides for you (I’ll buy the guides!) in appreciation. But in the meantime, thanks a 
lot. Joshua Long, www.starbuxman.com   

Most of the Java books out there are fine for a start, and most just have beginning stuff and a 
lot of the same examples. Yours is by far the best advanced thinking book I’ve seen. Please 
publish it soon! ... I also bought Thinking in C++ just because I was so impressed with 
Thinking in Java. George Laframboise, LightWorx Technology Consulting, Inc.   

I wrote to you earlier about my favorable impressions regarding your Thinking in C++ (a 
book that stands prominently on my shelf here at work). And today I’ve been able to delve 
into Java with your e-book in my virtual hand, and I must say (in my best Chevy Chase from 
Modern Problems), “I like it!” Very informative and explanatory, without reading like a dry 
textbook. You cover the most important yet the least covered concepts of Java development: 
the whys. Sean Brady   

I develop in both Java and C++, and both of your books have been lifesavers for me. If I am 
stumped about a particular concept, I know that I can count on your books to a) explain the 
thought to me clearly and b) have solid examples that pertain to what I am trying to 
accomplish. I have yet to find another author that I continually whole-heartedly recommend 
to anyone who is willing to listen. Josh Asbury, A^3 Software Consulting, Cincinnati, 
Ohio   

Your examples are clear and easy to understand. You took care of many important details of 
Java that can’t be found easily in the weak Java documentation. And you don’t waste the 
reader’s time with the basic facts a programmer already knows. Kai Engert, Innovative 
Software, Germany   

I’m a great fan of your Thinking in C++ and have recommended it to associates. As I go 
through the electronic version of your Java book, I’m finding that you’ve retained the same 
high level of writing. Thank you! Peter R. Neuwald  

VERY well-written Java book...I think you’ve done a GREAT job on it. As the leader of a 
Chicagoarea Java special interest group, I’ve favorably mentioned your book and Web site 



several times at our recent meetings. I would like to use Thinking in Java as the basis for a 
part of each monthly SIG meeting, in which we review and discuss each chapter in 
succession. Mark Ertes   

By the way, printed TIJ2 in Russian is still selling great, and remains bestseller. Learning 
Java became synonym of reading TIJ2, isn’t that nice? Ivan Porty, translator and 
publisher of Thinking in Java 2nd Edition in Russian   

I really appreciate your work and your book is good. I recommend it here to our users and 
Ph.D. students. Hugues Leroy // Irisa-Inria Rennes France, Head of Scientific 
Computing and Industrial Tranfert   

OK, I’ve only read about 40 pages of Thinking in Java, but I’ve already found it to be the 
most clearly written and presented programming book I’ve come across...and I’m a writer, 
myself, so I am probably a little critical. I have Thinking in C++ on order and can’t wait to 
crack it—I’m fairly new to programming and am hitting learning curves head-on everywhere. 
So this is just a quick note to say thanks for your excellent work. I had begun to burn a little 
low on enthusiasm from slogging through the mucky, murky prose of most computer books—
even ones that came with glowing recommendations. I feel a whole lot better now. Glenn 
Becker, Educational Theatre Association   

Thank you for making your wonderful book available. I have found it immensely useful in 
finally understanding what I experienced as confusing in Java and C++. Reading your book 
has been very satisfying. Felix Bizaoui, Twin Oaks Industries, Louisa, Va.   

I must congratulate you on an excellent book. I decided to have a look at Thinking in Java 
based on my experience with Thinking in C++, and I was not disappointed. Jaco van der 
Merwe, Software Specialist, DataFusion Systems Ltd, Stellenbosch, South Africa   

This has to be one of the best Java books I’ve seen. E.F. Pritchard, Senior Software 
Engineer, Cambridge Animation Systems Ltd., United Kingdom   

Your book makes all the other Java books I’ve read or flipped through seem doubly useless 
and insulting. Brett Porter, Senior Programmer, Art & Logic   

I have been reading your book for a week or two and compared to the books I have read 
earlier on Java, your book seems to have given me a great start. I have recommended this 
book to a lot of my friends and they have rated it excellent. Please accept my congratulations 
for coming out with an excellent book. Rama Krishna Bhupathi, Software Engineer, 
TCSI Corporation, San Jose   

Just wanted to say what a “brilliant” piece of work your book is. I’ve been using it as a major 
reference for in-house Java work. I find that the table of contents is just right for quickly 
locating the section that is required. It’s also nice to see a book that is not just a rehash of the 
API nor treats the programmer like a dummy. Grant Sayer, Java Components Group 
Leader, Ceedata Systems Pty Ltd, Australia   

Wow! A readable, in-depth Java book. There are a lot of poor (and admittedly a couple of 
good) Java books out there, but from what I’ve seen yours is definitely one of the best. John 
Root, Web Developer, Department of Social Security, London   

I’ve just started Thinking in Java. I expect it to be very good because I really liked Thinking 
in C++ (which I read as an experienced C++ programmer, trying to stay ahead of the curve) 
… You are a wonderful author. Kevin K. Lewis, Technologist, ObjectSpace, Inc.   

I think it’s a great book. I learned all I know about Java from this book. Thank you for 
making it available for free over the Internet. If you wouldn’t have I’d know nothing about 



Java at all. But the best thing is that your book isn’t a commercial brochure for Java. It also 
shows the bad sides of Java. YOU have done a great job here. Frederik Fix, Belgium   

I have been hooked to your books all the time. A couple of years ago, when I wanted to start 
with C++, it was C++ Inside & Out which took me around the fascinating world of C++. It 
helped me in getting better opportunities in life. Now, in pursuit of more knowledge and 
when I wanted to learn Java, I bumped into Thinking in Java—no doubts in my mind as to 
whether I need some other book. Just fantastic. It is more like rediscovering myself as I get 
along with the book. It is just a month since I started with Java, and heartfelt thanks to you, I 
am understanding it better now. Anand Kumar S., Software Engineer, 
Computervision, India   

Your book stands out as an excellent general introduction. Peter Robinson, University of 
Cambridge Computer Laboratory   

It’s by far the best material I have come across to help me learn Java and I just want you to 
know how lucky I feel to have found it. THANKS! Chuck Peterson, Product Leader, 
Internet Product Line, IVIS International   

The book is great. It’s the third book on Java I’ve started and I’m about two-thirds of the way 
through it now. I plan to finish this one. I found out about it because it is used in some 
internal classes at Lucent Technologies and a friend told me the book was on the Net. Good 
work. Jerry Nowlin, MTS, Lucent Technologies   

Of the six or so Java books I’ve accumulated to date, your Thinking in Java is by far the best 
and clearest. Michael Van Waas, Ph.D., President, TMR Associates   

I just want to say thanks for Thinking in Java. What a wonderful book you’ve made here! Not 
to mention downloadable for free! As a student I find your books invaluable (I have a copy of 
C++ Inside Out, another great book about C++), because they not only teach me the how-to, 
but also the whys, which are of course very important in building a strong foundation in 
languages such as C++ or Java. I have quite a lot of friends here who love programming just 
as I do, and I’ve told them about your books. They think it’s great! Thanks again! By the way, 
I’m Indonesian and I live in Java. Ray Frederick Djajadinata, Student at Trisakti 
University, Jakarta   

The mere fact that you have made this work free over the Net puts me into shock. I thought 
I’d let you know how much I appreciate and respect what you’re doing. Shane 
LeBouthillier, Computer Engineering student, University of Alberta, Canada   

I have to tell you how much I look forward to reading your monthly column. As a newbie to 
the world of object oriented programming, I appreciate the time and thoughtfulness that you 
give to even the most elementary topic. I have downloaded your book, but you can bet that I 
will purchase the hard copy when it is published. Thanks for all of your help. Dan Cashmer, 
B. C. Ziegler & Co.   

Just want to congratulate you on a job well done. First I stumbled upon the PDF version of 
Thinking in Java. Even before I finished reading it, I ran to the store and found Thinking in 
C++. Now, I have been in the computer business for over eight years, as a consultant, 
software engineer, teacher/trainer, and recently as self-employed, so I’d like to think that I 
have seen enough (not “have seen it all,” mind you, but enough). However, these books cause 
my girlfriend to call me a ”geek.” Not that I have anything against the concept—it is just that I 
thought this phase was well beyond me. But I find myself truly enjoying both books, like no 
other computer book I have touched or bought so far. Excellent writing style, very nice 
introduction of every new topic, and lots of wisdom in the books. Well done. Simon 
Goland, simonsez@smartt.com, Simon Says Consulting, Inc.   



I must say that your Thinking in Java is great! That is exactly the kind of documentation I 
was looking for. Especially the sections about good and poor software design using Java. 
Dirk Duehr, Lexikon Verlag, Bertelsmann AG, Germany   

Thank you for writing two great books (Thinking in C++, Thinking in Java). You have helped 
me immensely in my progression to object oriented programming. Donald Lawson, DCL 
Enterprises   

Thank you for taking the time to write a really helpful book on Java. If teaching makes you 
understand something, by now you must be pretty pleased with yourself. Dominic Turner, 
GEAC Support   

It’s the best Java book I have ever read—and I read some. Jean-Yves MENGANT, Chief 
Software Architect NAT-SYSTEM, Paris, France   

Thinking in Java gives the best coverage and explanation. Very easy to read, and I mean the 
code fragments as well. Ron Chan, Ph.D., Expert Choice, Inc., Pittsburgh, Pa.   

Your book is great. I have read lots of programming books and your book still adds insights 
to programming in my mind. Ningjian Wang, Information System Engineer, The 
Vanguard Group   

Thinking in Java is an excellent and readable book. I recommend it to all my students. Dr. 
Paul Gorman, Department of Computer Science, University of Otago, Dunedin, 
New Zealand   

With your book, I have now understood what object oriented programming means. ... I 
believe that Java is much more straightforward and often even easier than Perl. Torsten 
Römer, Orange Denmark   

You make it possible for the proverbial free lunch to exist, not just a soup kitchen type of 
lunch but a gourmet delight for those who appreciate good software and books about it. Jose 
Suriol, Scylax Corporation   

Thanks for the opportunity of watching this book grow into a masterpiece! IT IS THE BEST 
book on the subject that I’ve read or browsed. Jeff Lapchinsky, Programmer, Net 
Results Technologies   

Your book is concise, accessible and a joy to read. Keith Ritchie, Java Research & 
Development Team, KL Group Inc.   

It truly is the best book I’ve read on Java! Daniel Eng   

The best book I have seen on Java! Rich Hoffarth, Senior Architect, West Group   

Thank you for a wonderful book. I’m having a lot of fun going through the chapters. Fred 
Trimble, Actium Corporation   

You have mastered the art of slowly and successfully making us grasp the details. You make 
learning VERY easy and satisfying. Thank you for a truly wonderful tutorial. Rajesh Rau, 
Software Consultant   

Thinking in Java rocks the free world! Miko O’Sullivan, President, Idocs Inc.  

  



About Thinking in C++: 
 
Winner of the 1995 Software Development Magazine Jolt Award for Best Book of 
the Year 
 
“This book is a tremendous achievement. You owe it to yourself to have a copy on your 
shelf. The chapter on iostreams is the most comprehensive and understandable 
treatment of that subject I’ve seen to date.” 

Al Stevens 
Contributing Editor, Doctor Dobbs Journal 

 
“Eckel’s book is the only one to so clearly explain how to rethink program construction 
for object orientation. That the book is also an excellent tutorial on the ins and outs of 
C++ is an added bonus.” 

Andrew Binstock 
Editor, Unix Review 

 
“Bruce continues to amaze me with his insight into C++, and Thinking in C++ is his best 
collection of ideas yet. If you want clear answers to difficult questions about C++, buy 
this outstanding book.” 

Gary Entsminger 
Author, The Tao of Objects 

 
“Thinking in C++ patiently and methodically explores the issues of when and how to use 
inlines, references, operator overloading, inheritance, and dynamic objects, as well as 
advanced topics such as the proper use of templates, exceptions and multiple 
inheritance. The entire effort is woven in a fabric that includes Eckel’s own philosophy of 
object and program design. A must for every C++ developer’s bookshelf, Thinking in 
C++ is the one C++ book you must have if you’re doing serious development with C++.” 

Richard Hale Shaw 
Contributing Editor, PC Magazine 

 
 
 
 
 

 
 
 
 
   



Thinking 
in 

Java 
Fourth Edition 

Bruce Eckel 
President, MindView, Inc. 

 

 

 
 

 
Upper Saddle River, NJ ● Boston ● Indianapolis ● San Francisco 

New York ● Toronto ● Montreal ● London ● Munich ● Paris 
Madrid ● Capetown ● Sydney ● Tokyo ● Singapore ● Mexico City 

   



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. 
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have 
been printed with initial capital letters or in all capitals. 
 
Java is a trademark of Sun Microsystems, Inc. Windows 95, Windows NT, Windows 2000, and Windows XP are 
trademarks of Microsoft Corporation. All other product names and company names mentioned herein are the property 
of their respective owners. 
 
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of 
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential 
damages in connection with or arising out of the use of the information or programs contained herein. 
 
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, 
which may include custom covers and/or content particular to your business, training goals, marketing focus, and 
branding interests. For more information, please contact: 
 

U.S. Corporate and Government Sales 
(800) 382-3419 
corpsales@pearsontechgroup.com 

 
For sales outside the U.S., please contact: 
 

International Sales 
international@pearsoned.com 

 
Visit us on the Web: www.prenhallprofessional.com 
 
Cover design and interior design by Daniel Will-Harris, www.Will-Harris.com 
 
Library of Congress Cataloging-in-Publication Data: 
 
Eckel, Bruce. 
 Thinking in Java / Bruce Eckel.—4th ed. 
      p. cm. 
Includes bibliographical references and index. 
ISBN 0-13-187248-6 (pbk. : alk. paper) 
     1. Java (Computer program language) I. Title. 
QA76.73.J38E25 2006 
005.13’3—dc22 
                                                           2005036339 
Copyright © 2006 by Bruce Eckel, President, MindView, Inc. 
 
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission 
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission 
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding 
permissions, write to: 
 

Pearson Education, Inc. 
Rights and Contracts Department 
One Lake Street 
Upper Saddle River, NJ 07458 
Fax: (201) 236-3290 

 
ISBN 0-13-187248-6 
 
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts. 
 
First printing, January 2006 
  



 

 



   
 



 
 
 

Dedication 
 

To Dawn 
   



Overview 
Preface  1 
Introduction  9 

Introduction to Objects  15 
Everything Is an Object  41 
Operators  63 

Controlling Execution  93 

Initialization & Cleanup  107 
Access Control  145 
Reusing Classes  165 
Polymorphism  193 

Interfaces  219 

Inner Classes  243 

Holding Your Objects  275 
Error Handling with Exceptions 313 

Strings  355 
Type Information  393 

Generics  439 

Arrays  535 
Containers in Depth  567 
I/O  647 
Enumerated Types  725 
Annotations  761 
Concurrency  797 
Graphical User Interfaces  933 

A: Supplements  1035 
B: Resources  1039 

Index  1045 

  



What’s Inside
Preface 1 

Java SE5 and SE6 .................. 2 
Java SE6 ......................................... 2 

The 4  edition........................ 2 th

Changes .......................................... 3 
Note on the cover design ....... 4 
Acknowledgements ................ 4 

Introduction 9 
Prerequisites .......................... 9 
Learning Java ....................... 10 
Goals ..................................... 10 
Teaching from this book ....... 11 
JDK HTML  

documentation ...................... 11 
Exercises ............................... 12 
Foundations for Java ............ 12 
Source code ........................... 12 

Coding standards ......................... 14 
Errors .................................... 14 

Introduction to Objects 15 
The progress  

of abstraction ........................ 15 
An object has  

an interface ........................... 17 
An object  

provides services ................... 18 
The hidden  

implementation .................... 19 
Reusing the  

implementation ................... 20 
Inheritance............................ 21 

Is-a vs. is-like-a relationships ......24 
Interchangeable objects  

with polymorphism ............. 25 
The singly rooted  

hierarchy .............................. 28 
Containers ............................ 28 

Parameterized types (Generics) ..29 
Object creation & lifetime ... 30 
Exception handling:  

dealing with errors ............... 31 
Concurrent programming ... 32 
Java and the Internet .......... 33 

What is the Web? ......................... 33 

Client-side programming ............ 34 
Server-side programming ............ 38 

Summary .............................. 38 

Everything Is an Object 41 
You manipulate objects  

with references ..................... 41 
You must create  

all the objects ....................... 42 
Where storage lives ...................... 42 
Special case: primitive types ....... 43 
Arrays in Java .............................. 44 

You never need to  

destroy an object .................. 45 
Scoping ........................................ 45 
Scope of objects ........................... 46 

Creating new data types:  

class ..................................... 46 
Fields and methods ..................... 47 

Methods, arguments,  

and return values ................. 48 
The argument list ......................... 49 

Building a Java program ...... 50 
Name visibility ............................. 50 
Using other components ............. 50 
The static keyword ..................... 51 

Your first Java program ....... 52 
Compiling and running ............... 54 

Comments and embedded  

documentation ..................... 55 
Comment documentation ............ 55 
Syntax .......................................... 56 
Embedded HTML ........................ 56 
Some example tags ...................... 57 
Documentation example ............. 59 

Coding style .......................... 60 
Summary .............................. 60 
Exercises .............................. 60 

Operators 63 
Simpler print statements ..... 63 
Using Java operators ........... 64 
Precedence ........................... 64 
Assignment .......................... 65 

Aliasing during method calls ....... 66 
Mathematical operators....... 67 

Unary minus  

and plus operators ....................... 68 
 



Auto increment and  

decrement ............................ 69 
Relational operators ............ 70 

Testing object equivalence ........... 70 
Logical operators .................. 71 

Short-circuiting ............................ 72 
Literals .................................. 73 

Exponential notation ................... 74 
Bitwise operators .................. 75 
Shift operators ......................76 
Ternary if-else operator ......79 
String operator  

+ and += .............................. 80 
Common pitfalls  

when using operators ........... 81 
Casting operators .................. 81 

Truncation and rounding ........... 82 
Promotion ................................... 83 

Java has no “sizeof” ............. 83 
A compendium  

of operators .......................... 84 
Summary ............................... 91 

Controlling Execution 93 
true and false..................... 93 
if-else .................................. 93 
Iteration ............................... 94 

do-while ..................................... 95 
for ................................................ 95 
The comma operator................... 96 

Foreach syntax ......................97 
return ................................. 99 
break and continue .......... 99 
The infamous “goto” ........... 101 
switch ................................104 
Summary ............................ 106 

Initialization & Cleanup 107 
Guaranteed initialization  

with the constructor ........... 107 
Method overloading .......... 109 

Distinguishing  

overloaded methods .................. 110 
Overloading with primitives ....... 111 
Overloading on return values .... 114 

Default constructors ........... 114 
The this keyword ............... 116 

Calling constructors  

from constructors ...................... 118 
The meaning of static ............... 119 

Cleanup: finalization  

and garbage collection ........ 119 

What is finalize() for? ............. 120 
You must perform cleanup ......... 121 
The termination condition ......... 121 
How a garbage collector works .. 122 

Member initialization ......... 125 
Specifying initialization ............. 126 

Constructor initialization ... 127 
Order of initialization ................ 127 
static data initialization ........... 128 
Explicit static initialization ...... 130 
Non-static  

instance initialization ................ 132 
Array initialization ............. 133 

Variable argument lists ............. 137 
Enumerated types ............... 141 
Summary ............................ 143 

Access Control 145 
package:  

the library unit ................... 146 
Code organization ...................... 147 
Creating unique  

package names ........................... 148 
A custom tool library .................. 151 
Using imports  

to change behavior ..................... 152 
Package caveat ........................... 153 

Java access specifiers .......... 153 
Package access ........................... 153 
public: interface access ............ 154 
private: you can’t touch that! .. 155 
protected: inheritance access . 156 

Interface  

and implementation .......... 158 
Class access ........................ 159 
Summary ............................ 162 

Reusing Classes 165 
Composition syntax ........... 165 
Inheritance syntax ............. 168 

Initializing the base class ........... 169 
Delegation ........................... 171 
Combining composition  

and inheritance ................... 173 
Guaranteeing proper cleanup .... 174 
Name hiding ............................... 177 

Choosing composition  

vs. inheritance .................... 178 
protected ......................... 180 
Upcasting ............................ 181 

Why “upcasting”? ...................... 181 
Composition vs. inheritance  

revisited ..................................... 182 
The final keyword ............. 182 

final data ................................... 183 



final methods ............................ 186 
final classes ............................... 187 
final caution .............................. 188 

Initialization  

and class loading ................ 189 
Initialization with inheritance ... 189 

Summary ............................. 191 

Polymorphism 193 
Upcasting revisited ............. 193 

Forgetting the object type .......... 194 
The twist ............................. 196 

Method-call binding .................. 196 
Producing the right behavior ..... 196 
Extensibility ............................... 199 
Pitfall: “overriding”  

private methods ...................... 202 
Pitfall: fields  

and static methods .................. 203 
Constructors and  

polymorphism ................... 204 
Order of constructor calls ......... 204 
Inheritance and cleanup ........... 206 
Behavior of polymorphic  

methods  inside constructors .... 210 
Covariant return types ........ 211 
Designing  

with inheritance .................. 212 
Substitution vs. extension ......... 213 
Downcasting and  

runtime  type information ......... 215 
Summary ............................. 217 

Interfaces 219 
Abstract classes  

and methods ....................... 219 
Interfaces ........................... 222 
Complete decoupling ......... 225 
“Multiple inheritance”  

in Java ................................ 230 
Extending an interface with 
inheritance .......................... 231 

Name collisions when  

combining Interfaces  ................233 
Adapting to an interface .... 234 
Fields in interfaces ............ 235 

Initializing fields in interfaces .. 236 
Nesting interfaces .............. 237 
Interfaces and factories ..... 239 
Summary ............................. 241 

Inner Classes 243 
Creating inner classes ........ 243 
 

The link to  

the outer class .................... 244 
Using .this and .new ........ 246 
Inner classes  

and upcasting ..................... 247 
Inner classes in  

methods and scopes ........... 249 
Anonymous  

inner classes ........................ 251 
Factory Method revisited .......... 254 

Nested classes .................... 256 
Classes inside interfaces ............ 257 
Reaching outward from  

a multiplynested class  ............... 259 
Why inner classes? ............. 259 

Closures & callbacks .................. 261 
Inner classes &  

control frameworks ................... 263 
Inheriting from  

inner classes ....................... 269 
Can inner classes  

be overridden? ................... 269 
Local inner classes .............. 271 
Inner-class identifiers ........ 272 
Summary ............................ 273 

Holding Your Objects 275 
Generics and  

type-safe containers ........... 276 
Basic concepts .................... 278 
Adding groups  

of elements ......................... 279 
Printing containers ............ 281 
List ..................................... 283 
Iterator ............................. 286 

ListIterator ............................ 288 
LinkedList ....................... 289 
Stack ................................. 291 
Set ...................................... 292 
Map ................................... 295 
Queue ................................ 298 

PriorityQueue ........................ 299 
Collection vs. Iterator ... 301 
Foreach and iterators ......... 304 

The Adapter Method idiom ...... 306 
Summary ............................ 308 

Error Handling  
with Exceptions 313 

Concepts ............................. 313 
 



Basic exceptions.................. 314 
Exception arguments ................. 315 

Catching an exception ........ 315 
The try block ............................. 316 
Exception handlers .................... 316 

Creating your  

own exceptions ................... 317 
Exceptions and logging .............. 319 

The exception  

specification ....................... 322 
Catching any exception ..... 323 

The stack trace .......................... 324 
Rethrowing an exception ........... 325 
Exception chaining .................... 327 

Standard Java  

exceptions .......................... 330 
Special case:  

RuntimeException ............... 330 
Performing cleanup  

with finally ....................... 332 
What’s finally for? .................... 333 
Using finally during return .... 335 
Pitfall: the lost exception .......... 336 

Exception restrictions ....... 338 
Constructors ...................... 340 
Exception matching ........... 344 
Alternative approaches ...... 345 

History ...................................... 346 
Perspectives ............................... 347 
Passing exceptions  

to the console ............................ 349 
Converting checked  

to unchecked exceptions ........... 350 
Exception guidelines ......... 352 
Summary ............................ 352 

Strings 355 
Immutable Strings ............355 
Overloading ‘+’ vs.  

StringBuilder ................. 356 
Unintended recursion ....... 359 
Operations on Strings ....... 361 
Formatting output ............. 362 

printf() .................................... 363 
System.out.format() ............ 363 
The Formatter class ............... 363 
Format specifiers ...................... 364 
Formatter conversions ........... 366 
String.format() ..................... 368 

Regular expressions ........... 370 
Basics .........................................370 
Creating regular expressions ..... 372 
Quantifiers ................................. 374 
Pattern and Matcher ............. 375 

split() ........................................382 
Replace operations .................... 383 
reset() .......................................384 
Regular expressions  

and Java I/O .............................. 385 
Scanning input ................... 386 

Scanner delimiters ................. 388 
Scanning with  

regular expressions ................... 389 
StringTokenizer ............. 389 
Summary ............................ 391 

Type Information 393 
The need for RTTI .............. 393 
The Class object ................ 395 

Class literals ............................... 399 
Generic class references ............ 401 
New cast syntax ........................ 403 

Checking before a cast ....... 404 
Using class literals .................... 409 
A dynamic instanceof .............. 411 
Counting recursively .................. 412 

Registered factories ........... 413 
instanceof vs. Class  

equivalence......................... 416 
Reflection: runtime  

class information ................ 417 
A class method extractor ........... 418 

Dynamic proxies ................ 420 
Null Objects ........................ 424 

Mock Objects & Stubs ................ 429 
Interfaces and  

type information ................ 430 
Summary ............................ 436 

Generics 439 
Comparison with C++ ........ 440 
Simple generics .................. 440 

A tuple library ............................ 442 
A stack class ............................... 444 
RandomList ............................ 445 

Generic interfaces .............. 446 
Generic methods ................ 449 

Leveraging type  

argument inference ...................450 
Varargs and generic methods .... 452 
A generic method  

to use with Generators............ 453 
A general-purpose Generator . 453 
Simplifying tuple use ................. 455 
A Set utility................................ 456 

Anonymous  

inner classes ....................... 459 
 



Building  

complex models ................. 460 
The mystery of erasure ...... 462 

The C++ approach .................... 464 
Migration compatibility ............ 466 
The problem with erasure ......... 467 
The action at the boundaries .... 468 

Compensating  

for erasure ........................... 471 
Creating instances of types ........ 472 
Arrays of generics ...................... 475 

Bounds ............................... 479 
Wildcards ........................... 482 

How smart is the compiler? ...... 484 
Contravariance .......................... 485 
Unbounded wildcards ............... 488 
Capture conversion ................... 492 

Issues ................................. 493 
No primitives  

as type parameters .................... 493 
Implementing  

parameterized interfaces ........... 495 
Casting and warnings ............... 496 
Overloading ............................... 498 
Base class hijacks an interface .. 498 

Self-bounded types ............ 500 
Curiously recurring generics .... 500 
Self-bounding ............................ 501 
Argument covariance ................ 503 

Dynamic type safety .......... 506 
Exceptions ......................... 507 
Mixins ................................ 509 

Mixins in C++ ........................... 509 
Mixing with interfaces ............... 510 
Using the Decorator pattern ....... 511 
Mixins with dynamic proxies .... 512 

Latent typing ....................... 514 
Compensating for  

the lack of latent typing ...... 518 
Reflection ................................... 518 
Applying a method  

to a sequence .............................. 519 
When you don’t happen  

to have the right interface .......... 521 
Simulating latent typing  

with adapters ............................. 523 
Using function objects  

as strategies ....................... 526 
Summary: Is casting  

really so bad? ...................... 531 
Further reading .......................... 533 

Arrays 535 
Why arrays are special ........535 

Arrays are  

first-class objects ............... 536 
Returning an array ............. 539 
Multidimensional  

arrays .................................. 540 
Arrays and generics ........... 543 
Creating test data ............... 546 

Arrays.fill() ............................. 546 
Data Generators ...................... 547 
Creating arrays  

from Generators ..................... 551 
Arrays utilities .................. 555 

Copying an array ........................ 555 
Comparing arrays ...................... 556 
Array element comparisons ...... 557 
Sorting an array .........................560 
Searching a sorted array ............ 561 

Summary ............................ 564 

Containers in Depth 567 
Full container taxonomy .... 567 
Filling containers ............... 568 

A Generator solution .............. 569 
Map generators ......................... 570 
Using Abstract classes ............. 573 

Collection  

functionality ....................... 580 
Optional operations ........... 582 

Unsupported operations............ 583 
List functionality ............... 586 
Sets and storage order ...... 589 

SortedSet ................................. 591 
Queues ................................ 594 

Priority queues ........................... 594 
Deques ....................................... 595 

Understanding Maps ........ 598 
Performance .............................. 599 
SortedMap ............................. 602 
LinkedHashMap ................... 603 

Hashing and hash codes .... 605 
Understanding hashCodeQ .... 607 
Hashing for speed ...................... 610 
Overriding hashCode() ........... 613 

Choosing  

an implementation .............. 617 
A performance  

test framework ........................... 618 
Choosing between Lists ............ 621 
Microbenchmarking dangers .... 626 
Choosing between Sets ............. 627 
Choosing between Maps ........... 629 

Utilities ............................... 632 
Sorting and searching Lists ...... 635 
 



Making a Collection  

or Map unmodifiable ............... 636 
Synchronizing a  

Collection or Map ................... 637 
Holding references ............ 639 

The WeakHashMap .............. 640 
Java 1.0/1.1 containers ...... 642 

Vector & Enumeration ........ 642 
Hashtable ............................... 643 
Stack ........................................ 643 
BitSet ....................................... 644 

Summary ............................ 646 

I/O 647 
The File class .................... 647 

A directory lister ........................ 647 
Directory utilities ...................... 650 
Checking for  

and creating directories ............. 654 
Input and output ............... 656 

Types of InputStream ............. 657 
Types of OutputStream ......... 658 

Adding attributes  

and useful interfaces .......... 659 
Reading from an InputStream  

with FilterlnputStream ........ 660 
Writing to an OutputStream  

with FilterOutputStream ...... 661 
Readers & Writers ......... 662 

Sources and sinks of data ......... 662 
Modifying stream behavior ...... 663 
Unchanged classes .................... 664 

Off by itself:  

RandomAccessFile ....... 665 
Typical uses  

of I/O streams .................... 665 
Buffered input file ...................... 665 
Input from memory .................. 666 
Formatted memory input .......... 667 
Basic file output ........................ 668 
Storing and recovering data ..... 669 
Reading and writing  

random-access files .................. 670 
Piped streams ............................ 672 

File reading  

& writing utilities ............... 672 
Reading binary files ................... 674 

Standard I/O ....................... 675 
Reading from standard input .... 675 
Changing System.out  

to a PrintWriter ...................... 676 
Redirecting standard I/O .......... 676 

Process control ................... 677 
New I/O ............................. 679 

Converting data.......................... 681 

Fetching primitives ................... 684 
View buffers ............................... 685 
Data manipulation  

with buffers ............................... 688 
Buffer details ............................. 689 
Memory-mapped files ............... 692 
File locking ................................. 695 

Compression ...................... 698 
Simple compression  

with GZIP .................................. 698 
Multifile storage with Zip .......... 699 
Java ARchives (JARs) ................ 701 

Object serialization ............ 703 
Finding the class ........................ 706 
Controlling serialization ............ 707 
Using persistence ....................... 713 

XML .................................... 718 
Preferences .......................... 721 
Summary ............................ 722 

Enumerated Types 725 
Basic enum features ......... 725 

Using static imports  

with enums ............................... 726 
Adding methods  

to an enum ........................ 727 
Overriding enum methods ....... 728 

enums in  

switch statements ............. 728 
The mystery  

of values() ........................ 729 
Implements,  

not inherits ......................... 732 
Random selection .............. 732 
Using interfaces  

for organization .................. 734 
Using EnumSet  

instead of flags ................... 737 
Using EnumMap ............. 739 
Constant-specific  

methods .............................. 740 
Chain of Responsibility  

with enums ............................... 743 
State machines with enums ..... 746 

Multiple dispatching ........... 751 
Dispatching with enums .......... 753 
Using  

constant-specific methods ......... 755 
Dispatching  

with EnumMaps ...................... 756 
Using a 2-D array ....................... 757 

Summary ............................ 759 

 



Annotations 761 
Basic syntax ....................... 762 

Defining annotations ................. 762 
Meta-annotations ...................... 763 

Writing  

annotation processors ........ 765 
Annotation elements ................. 765 
Default value constraints ........... 766 
Generating external files............ 766 
Annotations don’t  

support inheritance ................... 769 
Implementing the processor...... 769 

Using apt to  

process annotations ............ 772 
Using the Visitor pattern  

with apt .............................. 775 
Annotation-based  

unit testing .......................... 778 
Using @Unit with generics ....... 785 
No “suites” necessary .................786 
Implementing @Unit ............... 787 
Removing test code .................... 792 

Summary ............................. 795 

Concurrency 797 
The many faces of  

concurrency ....................... 798 
Faster execution .........................798 
Improving code design ............. 800 

Basic threading .................. 801 
Defining tasks ............................ 801 
The Thread class ..................... 802 
Using Executors ..................... 804 
Producing return values  

from tasks ................................. 806 
Sleeping ..................................... 808 
Priority ...................................... 809 
Yielding ...................................... 810 
Daemon threads ......................... 810 
Coding variations ....................... 814 
Terminology ............................... 819 
Joining a thread ......................... 819 
Creating responsive  

user interfaces ............................ 821 
Thread groups ........................... 822 
Catching exceptions .................. 822 

Sharing resources .............. 824 
Improperly  

accessing resources ................... 825 
Resolving shared  

resource contention ................... 827 
Atomicity and volatility ............. 831 
Atomic classes ........................... 836 
Critical sections .......................... 837 
 

Synchronizing on  

other objects .............................. 841 
Thread local storage ..................843 

Terminating tasks .............. 844 
The ornamental garden ............ 844 
Terminating when blocked ........ 847 
Interruption .............................. 848 
Checking for an interrupt .......... 854 

Cooperation  

between tasks ..................... 856 
wait() and notifyAll() ............ 857 
notify() vs. notifyAll() ........... 861 
Producers and consumers ........ 863 
Producer-consumers  

and queues ................................ 868 
Using pipes for I/O  

between tasks ............................. 872 
Deadlock ............................. 874 
New library  

components ........................ 879 
CountDownLatch .................. 879 
CyclicBarrier .......................... 881 
DelayQueue ........................... 883 
PriorityBlockingQueue....... 885 
The greenhouse controller  

with ScheduledExecutor ...... 887 
Semaphore ............................. 890 
Exchanger .............................. 893 

Simulation .......................... 896 
Bank teller simulation .............. 896 
The restaurant simulation ........ 900 
Distributing work ..................... 904 

Performance tuning ........... 909 
Comparing  

mutex technologies ................... 909 
Lock-free containers .................. 916 
Optimistic locking...................... 922 
ReadWriteLocks .................... 923 

Active objects ..................... 925 
Summary ............................ 929 

Further reading .......................... 931 

Graphical  
User Interfaces 933 

Applets ............................... 935 
Swing basics ....................... 935 

A display framework .................. 937 
Making a button ................. 938 
Capturing an event ............. 939 
Text areas ........................... 941 
Controlling layout .............. 942 

BorderLayout ......................... 942 
FlowLayout ............................. 943 
GridLayout .............................. 944 
GridBagLayout....................... 944 



Absolute positioning .................. 945 
BoxLayout ............................... 945 
The best approach? .................... 945 

The Swing event model ..... 945 
Event and listener types ........... 946 
Tracking multiple events ........... 951 

A selection of  

Swing components ............ 953 
Buttons ....................................... 953 
Icons .......................................... 955 
Tool tips ..................................... 957 
Text fields ................................... 957 
Borders ....................................... 959 
A mini-editor.............................. 959 
Check boxes .............................. 960 
Radio buttons ............................. 961 
Combo boxes  

(drop-down lists) ...................... 962 
List boxes .................................. 963 
Tabbed panes ............................. 965 
Message boxes ........................... 965 
Menus ......................................... 967 
Pop-up menus ............................ 972 
Drawing ...................................... 973 
Dialog boxes ............................... 975 
File dialogs .................................978 
HTML on  

Swing components .................... 980 
Sliders and progress bars ......... 980 
Selecting look & feel ................... 981 
Trees, tables & clipboard .......... 983 

JNLP and  

Java Web Start ................... 983 
Concurrency & Swing ........ 988 

Long-running tasks ................... 988 
Visual threading ........................ 994 

Visual programming  

and JavaBeans ................... 996 
What is a JavaBean? ................. 996 
Extracting Beanlnfo  

with the Introspector ............ 998 
A more sophisticated Bean ..... 1002 
JavaBeans and  

synchronization ....................... 1005 
Packaging a Bean .................... 1008 
More complex Bean support .. 1009 
More to Beans .......................... 1010 

Alternatives to Swing ........ 1010 
Building Flash Web  

clients with Flex ................ 1011 
Hello, Flex ................................. 1011 
Compiling MXML .................... 1012 
MXML and ActionScript.......... 1013 
Containers and controls........... 1013 
Effects and styles ..................... 1015 
Events ....................................... 1016 

Connecting to Java .................. 1016 
Data models  

and data binding ...................... 1018 
Building and deploying............ 1019 

Creating SWT  

applications ...................... 1020 
Installing SWT ......................... 1020 
Hello, SWT ............................... 1021 
Eliminating redundant code.... 1023 
Menus ...................................... 1024 
Tabbed panes, buttons,  

and events ................................ 1025 
Graphics ................................... 1028 
Concurrency in SWT ................ 1030 
SWT vs. Swing? ........................ 1032 

Summary .......................... 1033 
Resources ................................. 1033 

A: Supplements 1035 
Downloadable  

supplements ..................... 1035 
Thinking in C:  

Foundations for Java ....... 1035 
Thinking in Java  

seminar ............................. 1035 
Hands-On Java  

seminar-on-CD ................ 1036 
Thinking in Objects  

seminar ............................. 1036 
Thinking in  

Enterprise Java ................ 1036 
Thinking in Patterns  

(with Java) ....................... 1037 
Thinking in Patterns  

seminar ............................. 1037 
Design consulting  

and reviews ...................... 1038 

B: Resources 1039 
Software ........................... 1039 
Editors & IDEs ................. 1039 
Books ................................ 1039 

Analysis & design ..................... 1040 
Python ...................................... 1042 
My own list of books ................ 1042 

Index 1045 

 





Preface  
I originally approached Java as “just another programming 
language,” which in many senses it is.  

But as time passed and I studied it more deeply, I began to see that the fundamental intent of 
this language was different from other languages I had seen up to that point.  

Programming is about managing complexity: the complexity of the problem you want to 
solve, laid upon the complexity of the machine in which it is solved. Because of this 
complexity, most of our programming projects fail. And yet, of all the programming 
languages of which I am aware, almost none have gone all out and decided that their main 
design goal would be to conquer the complexity of developing and maintaining programs.1 Of 
course, many language design decisions were made with complexity in mind, but at some 
point there were always other issues that were considered essential to be added into the mix. 
Inevitably, those other issues are what cause programmers to eventually “hit the wall” with 
that language. For example, C++ had to be backwards-compatible with C (to allow easy 
migration for C programmers), as well as efficient. Those are both very useful goals and 
account for much of the success of C++, but they also expose extra complexity that prevents 
some projects from being finished (certainly, you can blame programmers and management, 
but if a language can help by catching your mistakes, why shouldn’t it?). As another example, 
Visual BASIC (VB) was tied to BASIC, which wasn’t really designed to be an extensible 
language, so all the extensions piled upon VB have produced some truly unmaintainable 
syntax. Perl is backwards-compatible with awk, sed, grep, and other Unix tools it was meant 
to replace, and as a result it is often accused of producing “write-only code” (that is, after a 
while you can’t read it). On the other hand, C++, VB, Perl, and other languages like Smalltalk 
had some of their design efforts focused on the issue of complexity and as a result are 
remarkably successful in solving certain types of problems.  

What has impressed me most as I have come to understand Java is that somewhere in the 
mix of Sun’s design objectives, it seems that there was a goal of reducing complexity for the 
programmer. As if to say, “We care about reducing the time and difficulty of producing 
robust code.” In the early days, this goal resulted in code that didn’t run very fast (although 
this has improved over time), but it has indeed produced amazing reductions in development 
time—half or less of the time that it takes to create an equivalent C++ program. This result 
alone can save incredible amounts of time and money, but Java doesn’t stop there. It goes on 
to wrap many of the complex tasks that have become important, such as multithreading and 
network programming, in language features or libraries that can at times make those tasks 
easy. And finally, it tackles some really big complexity problems: cross-platform programs, 
dynamic code changes, and even security, each of which can fit on your complexity spectrum 
anywhere from “impediment” to “show-stopper.” So despite the performance problems that 
we’ve seen, the promise of Java is tremendous: It can make us significantly more productive 
programmers.  

In all ways—creating the programs, working in teams, building user interfaces to 
communicate with the user, running the programs on different types of machines, and easily 
writing programs that communicate across the Internet—Java increases the communication 
bandwidth between people.  

I think that the results of the communication revolution may not be seen from the effects of 
moving large quantities of bits around. We shall see the true revolution because we will all 
communicate with each other more easily: one-on-one, but also in groups and as a planet. 

                                                            
1 However, I believe that the Python language comes closest to doing exactly that. See www.Python.org. 

 



I’ve heard it suggested that the next revolution is the formation of a kind of global mind that 
results from enough people and enough interconnectedness. Java may or may not be the tool 
that foments that revolution, but at least the possibility has made me feel like I’m doing 
something meaningful by attempting to teach the language.  

Java SE5 and SE6  
This edition of the book benefits greatly from the improvements made to the Java language 
in what Sun originally called JDK 1.5, and then later changed to JDK5 or J2SE5, then finally 
they dropped the outdated “2” and changed it to Java SE5. Many of the Java SE5 language 
changes were designed to improve the experience of the programmer. As you shall see, the 
Java language designers did not completely succeed at this task, but in general they made 
large steps in the right direction.  

One of the important goals of this edition is to completely absorb the improvements of Java 
SE5/6, and to introduce and use them throughout this book. This means that this edition 
takes the somewhat bold step of being “Java SE5/6-only,” and much of the code in the book 
will not compile with earlier versions of Java; the build system will complain and stop if you 
try. However, I think the benefits are worth the risk.  

If you are somehow fettered to earlier versions of Java, I have covered the bases by providing 
free downloads of previous editions of this book via www.MindView.net. For various 
reasons, I have decided not to provide the current edition of the book in free electronic form, 
but only the prior editions.  

Java SE6  

This book was a monumental, time-consuming project, and before it was published, Java 
SE6 (code-named mustang) appeared in beta form. Although there were a few minor 
changes in Java SE6 that improved some of the examples in the book, for the most part the 
focus of Java SE6 did not affect the content of this book; the features were primarily speed 
improvements and library features that were outside the purview of this text.  

The code in this book was successfully tested with a release candidate of Java SE6, so I do not 
expect any changes that will affect the content of this book. If there are any important 
changes by the time Java SE6 is officially released, these will be reflected in the book’s source 
code, which is downloadable from www.MindView.net.  

The cover indicates that this book is for “Java SE5/6,” which means “written for Java SE5 
and the very significant changes that version introduced into the language, but is equally 
applicable to Java SE6.”  

The 4th edition  
The satisfaction of doing a new edition of a book is in getting things “right,” according to 
what I have learned since the last edition came out. Often these insights are in the nature of 
the saying “A learning experience is what you get when you don’t get what you want,” and my 
opportunity is to fix something embarrassing or simply tedious. Just as often, creating the 
next edition produces fascinating new ideas, and the embarrassment is far outweighed by the 
delight of discovery and the ability to express ideas in a better form than what I have 
previously achieved.  

There is also the challenge that whispers in the back of my brain, that of making the book 
something that owners of previous editions will want to buy. This presses me to improve, 

2 Thinking in Java Bruce Eckel 



rewrite and reorganize everything that I can, to make the book a new and valuable experience 
for dedicated readers.  

Changes  

The CD-ROM that has traditionally been packaged as part of this book is not part of this 
edition. The essential part of that CD, the Thinking in C multimedia seminar (created for 
MindView by Chuck Allison), is now available as a downloadable Flash presentation. The 
goal of that seminar is to prepare those who are not familiar enough with C syntax to 
understand the material presented in this book. Although two of the chapters in this book 
give decent introductory syntax coverage, they may not be enough for people without an 
adequate background, and Thinking in C is intended to help those people get to the necessary 
level.  

The Concurrency chapter (formerly called “Multithreading”) has been completely rewritten 
to match the major changes in the Java SE5 concurrency libraries, but it still gives you a basic 
foundation in the core ideas of concurrency. Without that core, it’s hard to understand more 
complex issues of threading. I spent many months working on this, immersed in that 
netherworld called “concurrency,” and in the end the chapter is something that not only 
provides a basic foundation but also ventures into more advanced territory.  

There is a new chapter on every significant new Java SE5 language feature, and the other new 
features have been woven into modifications made to the existing material. Because of my 
continuing study of design patterns, more patterns have been introduced throughout the 
book as well.  

The book has undergone significant reorganization. Much of this has come from the teaching 
process together with a realization that, perhaps, my perception of what a “chapter” was 
could stand some rethought. I have tended towards an unconsidered belief that a topic had to 
be “big enough” to justify being a chapter. But especially while teaching design patterns, I 
find that seminar attendees do best if I introduce a single pattern and then we immediately 
do an exercise, even if it means I only speak for a brief time (I discovered that this pace was 
also more enjoyable for me as a teacher). So in this version of the book I’ve tried to break 
chapters up by topic, and not worry about the resulting length of the chapters. I think it has 
been an improvement.  

I have also come to realize the importance of code testing. Without a built-in test framework 
with tests that are run every time you do a build of your system, you have no way of knowing 
if your code is reliable or not. To accomplish this in the book, I created a test framework to 
display and validate the output of each program. (The framework was written in Python; you 
can find it in the downloadable code for this book at www.MindView.net.) Testing in general 
is covered in the supplement you will find at http://MindView.net/Books/BetterJava, which 
introduces what I now believe are fundamental skills that all programmers should have in 
their basic toolkit.  

In addition, I’ve gone over every single example in the book and asked myself, “Why did I do 
it this way?” In most cases I have done some modification and improvement, both to make 
the examples more consistent within themselves and also to demonstrate what I consider to 
be best practices in Java coding (at least, within the limitations of an introductory text). 
Many of the existing examples have had very significant redesign and reimplementation. 
Examples that no longer made sense to me were removed, and new examples have been 
added.  

Readers have made many, many wonderful comments about the first three editions of this 
book, which has naturally been very pleasant for me. However, every now and then, someone 
will have complaints, and for some reason one complaint that comes up periodically is “The 
book is too big.” In my mind it is faint damnation indeed if “too many pages” is your only 

Preface 3 



gripe. (One is reminded of the Emperor of Austria’s complaint about Mozart’s work: “Too 
many notes!” Not that I am in any way trying to compare myself to Mozart.) In addition, I 
can only assume that such a complaint comes from someone who is yet to be acquainted with 
the vastness of the Java language itself and has not seen the rest of the books on the subject. 
Despite this, one of the things I have attempted to do in this edition is trim out the portions 
that have become obsolete, or at least nonessential. In general, I’ve tried to go over 
everything, remove what is no longer necessary, include changes, and improve everything I 
could. I feel comfortable removing portions because the original material remains on the 
Web site (www.MindView.net), in the form of the freely downloadable 1st through 3rd 
editions of the book, and in the downloadable supplements for this book.  

For those of you who still can’t stand the size of the book, I do apologize. Believe it or not, I 
have worked hard to keep the size down.  

Note on the cover design  
The cover of Thinking in Java is inspired by the American Arts & Crafts Movement that 
began near the turn of the century and reached its zenith between 1900 and 1920. It began in 
England as a reaction to both the machine production of the Industrial Revolution and the 
highly ornamental style of the Victorian era. Arts & Crafts emphasized spare design, the 
forms of nature as seen in the art nouveau movement, hand-crafting, and the importance of 
the individual craftsperson, and yet it did not eschew the use of modern tools. There are 
many echoes with the situation we have today: the turn of the century, the evolution from the 
raw beginnings of the computer revolution to something more refined and meaningful, and 
the emphasis on software craftsmanship rather than just manufacturing code.  
I see Java in this same way: as an attempt to elevate the programmer away from an operating 
system mechanic and toward being a “software craftsman.”  

Both the author and the book/cover designer (who have been friends since childhood) find 
inspiration in this movement, and both own furniture, lamps, and other pieces that are either 
original or inspired by this period.  

The other theme in this cover suggests a collection box that a naturalist might use to display 
the insect specimens that he or she has preserved. These insects are objects that are placed 
within the box objects. The box objects are themselves placed within the “cover object,” 
which illustrates the fundamental concept of aggregation in object-oriented programming. Of 
course, a programmer cannot help but make the association with “bugs,” and here the bugs 
have been captured and presumably killed in a specimen jar, and finally confined within a 
small display box, as if to imply Java’s ability to find, display, and subdue bugs (which is truly 
one of its most powerful attributes).  

In this edition, I created the watercolor painting that you see as the cover background.  

Acknowledgements  
First, thanks to associates who have worked with me to give seminars, provide consulting, 
and develop teaching projects: Dave Bartlett, Bill Venners, Chuck Allison, Jeremy Meyer, and 
Jamie King. I appreciate your patience as I continue to try to develop the best model for 
independent folks like us to work together.  

Recently, no doubt because of the Internet, I have become associated with a surprisingly 
large number of people who assist me in my endeavors, usually working from their own 
home offices. In the past, I would have had to pay for a pretty big office space to 
accommodate all these folks, but because of the Net, FedEx, and the telephone, I’m able to 
benefit from their help without the extra costs. In my attempts to learn to “play well with 

4 Thinking in Java Bruce Eckel 



others,” you have all been very helpful, and I hope to continue learning how to make my own 
work better through the efforts of others. Paula Steuer has been invaluable in taking over my 
haphazard business practices and making them sane (thanks for prodding me when I don’t 
want to do something, Paula). Jonathan Wilcox, Esq., has sifted through my corporate 
structure and turned over every possible rock that might hide scorpions, and frog-marched 
us through the process of putting everything straight, legally. Thanks for your care and 
persistence. Sharlynn Cobaugh has made herself an expert in sound processing and an 
essential part of creating the multimedia training experiences, as well as tackling other 
problems. Thanks for your perseverance when faced with intractable computer problems. 
The folks at Amaio in Prague have helped me out with several projects. Daniel Will-Harris 
was the original work-by-Internet inspiration, and he is of course fundamental to all my 
graphic design solutions.  

Over the years, through his conferences and workshops, Gerald Weinberg has become my 
unofficial coach and mentor, for which I thank him.  

Ervin Varga was exceptionally helpful with technical corrections on the 4th edition—although 
other people helped on various chapters and examples, Ervin was my primary technical 
reviewer for the book, and he also took on the task of rewriting the solution guide for the 4th 
edition. Ervin found errors and made improvements to the book that were invaluable 
additions to this text. His thoroughness and attention to detail are amazing, and he’s far and 
away the best technical reader I’ve ever had. Thanks, Ervin.  

My weblog on Bill Venners’ www.Artima.com has been a source of assistance when I’ve 
needed to bounce ideas around. Thanks to the readers that have helped me clarify concepts 
by submitting comments, including James Watson, Howard Lovatt, Michael Barker, and 
others, in particular those who helped with generics.  

Thanks to Mark Welsh for his continuing assistance.  

Evan Cofsky continues to be very supportive by knowing off the top of his head all the arcane 
details of setting up and maintaining Linux-based Web servers, and keeping the MindView 
server tuned and secure.  

A special thanks to my new friend, coffee, who generated nearly boundless enthusiasm for 
this project. Camp4 Coffee in Crested Butte, Colorado, has become the standard hangout 
when people have come up to take MindView seminars, and during seminar breaks it is the 
best catering I’ve ever had. Thanks to my buddy Al Smith for creating it and making it such a 
great place, and for being such an interesting and entertaining part of the Crested Butte 
experience. And to all the Camp4 barristas who so cheerfully dole out beverages.  

Thanks to the folks at Prentice Hall for continuing to give me what I want, putting up with all 
my special requirements, and for going out of their way to make things run smoothly for me.  

Certain tools have proved invaluable during my development process and I am very grateful 
to the creators every time I use these. Cygwin (www.cygwin.com) has solved innumerable 
problems for me that Windows can’t/won’t and I become more attached to it each day (if I 
only had this 15 years ago when my brain was still hard-wired with Gnu Emacs). IBM’s 
Eclipse (www.eclipse.org) is a truly wonderful contribution to the development community, 
and I expect  

to see great things from it as it continues to evolve (how did IBM become hip? I must have 
missed a memo). JetBrains IntelliJ Idea continues to forge creative new paths in 
development tools.  

I began using Enterprise Architect from Sparxsystems on this book, and it has rapidly 
become my UML tool of choice. Marco Hunsicker’s Jalopy code formatter 
(www.triemax.com) came in handy on numerous occasions, and Marco was very helpful in 

Preface 5 



configuring it to my particular needs. I’ve also found Slava Pestov’s JEdit and plug-ins to be 
helpful at times (www.jedit.org) and it’s quite a reasonable beginner’s editor for seminars.  

And of course, if I don’t say it enough everywhere else, I use Python (www.Python.org) 
constantly to solve problems, the brainchild of my buddy Guido Van Rossum and the gang of 
goofy geniuses with whom I spent a few great days sprinting (Tim Peters, I’ve now framed 
that mouse you borrowed, officially named the “TimBotMouse”). You guys need to find 
healthier places to eat lunch. (Also, thanks to the entire Python community, an amazing 
bunch of people.)  

Lots of people sent in corrections and I am indebted to them all, but particular thanks go to 
(for the 1st edition): Kevin Raulerson (found tons of great bugs), Bob Resendes (simply 
incredible), John Pinto, Joe Dante, Joe Sharp (all three were fabulous), David Combs (many 
grammar and clarification corrections), Dr. Robert Stephenson, John Cook, Franklin Chen, 
Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles A. Lee, Austin Maher, 
Dennis P. Roth, Roque Oliveira, Douglas Dunn, Dejan Ristic, Neil Galarneau, David B. 
Malkovsky, Steve Wilkinson, and a host of others. Prof. Ir. Marc Meurrens put in a great deal 
of effort to publicize and make the electronic version of the 1st edition of the book available in 
Europe.  

Thanks to those who helped me rewrite the examples to use the Swing library (for the 2nd 
edition), and for other assistance: Jon Shvarts, Thomas Kirsch, Rahim Adatia, Rajesh Jain, 
Ravi Manthena, Banu Rajamani, Jens Brandt, Nitin Shivaram, Malcolm Davis, and everyone 
who expressed support.  

In the 4th edition, Chris Grindstaff was very helpful during the development of the SWT 
section, and Sean Neville wrote the first draft of the Flex section for me.  

Kraig Brockschmidt and Gen Kiyooka have been some of the smart technical people in my 
life who have become friends and have also been both influential and unusual in that they do 
yoga and practice other forms of spiritual enhancement, which I find quite inspirational and 
instructional.  

It’s not that much of a surprise to me that understanding Delphi helped me understand Java, 
since there are many concepts and language design decisions in common. My Delphi friends 
provided assistance by helping me gain insight into that marvelous programming 
environment. They are Marco Cantu (another Italian—perhaps being steeped in Latin gives 
one aptitude for programming languages?), Neil Rubenking (who used to do the 
yoga/vegetarian/Zen thing until he discovered computers), and of course Zack Urlocker (the 
original Delphi product manager), a long-time pal whom I’ve traveled the world with. We’re 
all indebted to the brilliance of Anders Hejlsberg, who continues to toil away at C# (which, as 
you’ll learn in this book, was a major inspiration for Java SE5).  

My friend Richard Hale Shaw’s insights and support have been very helpful (and Kim’s, too). 
Richard and I spent many months giving seminars together and trying to work out the 
perfect learning experience for the attendees.  

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer (www.Will-Harris.com), who used to play with rub-on 
letters in  

junior high school while he awaited the invention of computers and desktop publishing, and 
complained of me mumbling over my algebra problems. However, I produced the camera-

ready pages myself, so the typesetting errors are mine. Microsoft® Word XP for Windows 
was used to write the book and to create camera-ready pages in Adobe Acrobat; the book was 
created directly from the Acrobat PDF files. As a tribute to the electronic age, I happened to 
be overseas when I produced the final versions of the 1st and 2nd editions of the book—the 1st 
edition was sent from Cape Town, South Africa, and the 2nd edition was posted from Prague. 

6 Thinking in Java Bruce Eckel 



Preface 7 

The 3rd and 4th came from Crested Butte, Colorado. The body typeface is Georgia and the 
headlines are in Verdana. The cover typeface is ITC Rennie Mackintosh.  

A special thanks to all my teachers and all my students (who are my teachers as well).  

Molly the cat often sat in my lap while I worked on this edition, and thus offered her own 
kind of warm, furry support.  

The supporting cast of friends includes, but is not limited to: Patty Gast (Masseuse 
extraordinaire), Andrew Binstock, Steve Sinofsky, JD Hildebrandt, Tom Keffer, Brian 
McElhinney, Brinkley Barr, Bill Gates at Midnight Engineering Magazine, Larry Constantine 
and Lucy Lockwood, Gene Wang, Dave Mayer, David Intersimone, Chris and Laura Strand, 
the Almquists, Brad Jerbic, Marilyn Cvitanic, Mark Mabry, the Robbins families, the Moelter 
families (and the McMillans), Michael Wilk, Dave Stoner, the Cranstons, Larry Fogg, Mike 
Sequeira, Gary Entsminger, Kevin and Sonda Donovan, Joe Lordi, Dave and Brenda Bartlett, 
Patti Gast, Blake, Annette & Jade, the Rentschlers, the Sudeks, Dick, Patty, and Lee Eckel, 
Lynn and Todd, and their families. And of course, Mom and Dad.  

 





Introduction  
“He gave man speech, and speech created thought, Which is the 
measure of the Universe”—Prometheus Unbound, Shelley  

Human beings ... are very much at the mercy of the particular language which has 
become the medium of expression for their society. It is quite an illusion to imagine 
that one adjusts to reality essentially without the use of language and that language 
is merely an incidental means of solving specific problems of communication and 
reflection. The fact of the matter is that the “real world” is to a large extent 
unconsciously built up on the language habits of the group.  

The Status of Linguistics as a Science, 1929, Edward Sapir  

Like any human language, Java provides a way to express concepts. If successful, this 
medium of expression will be significantly easier and more flexible than the alternatives as 
problems grow larger and more complex.  

You can’t look at Java as just a collection of features—some of the features make no sense in 
isolation. You can use the sum of the parts only if you are thinking about design, not simply 
coding. And to understand Java in this way, you must understand the problems with the 
language and with programming in general. This book discusses programming problems, 
why they are problems, and the approach Java has taken to solve them. Thus, the set of 
features that I explain in each chapter are based on the way I see a particular type of problem 
being solved with the language. In this way I hope to move you, a little at a time, to the point 
where the Java mindset becomes your native tongue.  

Throughout, I’ll be taking the attitude that you want to build a model in your head that allows 
you to develop a deep understanding of the language; if you encounter a puzzle, you’ll feed it 
to your model and deduce the answer.  

Prerequisites  
This book assumes that you have some programming familiarity: You understand that a 
program is a collection of statements, the idea of a subroutine/function/macro, control 
statements such as “if” and looping constructs such as “while,” etc. However, you might have 
learned this in many places, such as programming with a macro language or working with a 
tool like Perl. As long as you’ve programmed to the point where you feel comfortable with the 
basic ideas of programming, you’ll be able to work through this book. Of course, the book will 
be easier for C programmers and more so for C++ programmers, but don’t count yourself out 
if you’re not experienced with those languages—however, come willing to work hard. Also, 
the Thinking in C multimedia seminar that you can download from www.MindView.net will 
bring you up to speed in the fundamentals necessary to learn Java. However, I will be 
introducing the concepts of object-oriented programming (OOP) and Java’s basic control 
mechanisms.  

Although references may be made to C and C++ language features, these are not intended to 
be insider comments, but instead to help all programmers put Java in perspective with those 
languages, from which, after all, Java is descended. I will attempt to make these references 
simple and to explain anything that I think a non-C/C++ programmer would not be familiar 
with.  

 



Learning Java  
At about the same time that my first book, Using C++ (Osborne/McGraw-Hill, 1989), came 
out, I began teaching that language. Teaching programming ideas has become my profession; 
I’ve seen nodding heads, blank faces, and puzzled expressions in audiences all over the world 
since 1987. As I began giving in-house training with smaller groups of people, I discovered 
something during the exercises. Even those people who were smiling and nodding were 
confused about many issues. I found out, by creating and chairing the C++ track at the 
Software Development Conference for a number of years (and later creating and chairing the 
Java track), that I and other speakers tended to give the typical audience too many topics too 
quickly. So eventually, through both variety in the audience level and the way that I 
presented the material, I would end up losing some portion of the audience. Maybe it’s 
asking too much, but because I am one of those people resistant to traditional lecturing (and 
for most people, I believe, such resistance results from boredom), I wanted to try to keep 
everyone up to speed.  

For a time, I was creating a number of different presentations in fairly short order. Thus, I 
ended up learning by experiment and iteration (a technique that also works well in program 
design). Eventually, I developed a course using everything I had learned from my teaching 
experience. My company, MindView, Inc., now gives this as the public and in-house Thinking 
in Java seminar; this is our main introductory seminar that provides the foundation for our 
more advanced seminars. You can find details at www.MindView.net. (The introductory 
seminar is also available as the Hands-On Java CD ROM. Information is available at the 
same Web site.)  

The feedback that I get from each seminar helps me change and refocus the material until I 
think it works well as a teaching medium. But this book isn’t just seminar notes; I tried to 
pack as much information as I could within these pages, and structured it to draw you 
through into the next subject. More than anything, the book is designed to serve the solitary 
reader who is struggling with a new programming language.  

Goals  
Like my previous book, Thinking in C++, this book was designed with one thing in mind: the 
way people learn a language. When I think of a chapter in the book, I think in terms of what 
makes a good lesson during a seminar. Seminar audience feedback helped me understand the 
difficult parts that needed illumination. In the areas where I got ambitious and included too 
many features all at once, I came to know—through the process of presenting the material—
that if you include a lot of new features, you need to explain them all, and this easily 
compounds the student’s confusion.  

Each chapter tries to teach a single feature, or a small group of associated features, without 
relying on concepts that haven’t been introduced yet. That way you can digest each piece in 
the context of your current knowledge before moving on.  

My goals in this book are to:  

1. Present the material one simple step at a time so that you can easily digest each idea     
before moving on. Carefully sequence the presentation of features so that you’re 
exposed to a topic before you see it in use. Of course, this isn’t always possible; in 
those situations, a brief introductory description is given. 
 

2. Use examples that are as simple and short as possible. This sometimes prevents me 
from tackling “real world” problems, but I’ve found that beginners are usually happier 
when they can understand every detail of an example rather than being impressed by 

10 Thinking in Java Bruce Eckel 



the scope of the problem it solves. Also, there’s a severe limit to the amount of code 
that can be absorbed in a classroom situation. For this I will no doubt receive criticism 
for using “toy examples,” but I’m willing to accept that in favor of producing 
something pedagogically useful.  

 
3. Give you what I think is important for you to understand about the language, rather 

than everything that I know. I believe there is an information importance hierarchy, 
and that there are some facts that 95 percent of programmers will never need to 
know—details that just confuse people and increase their perception of the complexity 
of the language. To take an example from C, if you memorize the operator precedence 
table (I never did), you can write clever code. But if you need to think about it, it will 
also confuse the reader/maintainer of that code. So forget about precedence, and use 
parentheses when things aren’t clear.  

 
4. Keep each section focused enough so that the lecture time—and the time between 

exercise periods—is small. Not only does this keep the audience’s minds more active 
and involved during a hands-on seminar, but it gives the reader a greater sense of 
accomplishment.  

 
5. Provide you with a solid foundation so that you can understand the issues well enough 

to move on to more difficult coursework and books.  

Teaching from this book  
The original edition of this book evolved from a one-week seminar which was, when Java was 
in its infancy, enough time to cover the language. As Java grew and continued to encompass 
more and more features and libraries, I stubbornly tried to teach it all in one week. At one 
point, a customer asked me to teach “just the fundamentals,” and in doing so I discovered 
that trying to cram everything into a single week had become painful for both myself and for 
seminarians. Java was no longer a “simple” language that could be taught in a week.  

That experience and realization drove much of the reorganization of this book, which is now 
designed to support a two-week seminar or a two-term college course. The introductory 
portion ends with the Error Handling with Exceptions chapter, but you may also want to 
supplement this with an introduction to JDBC, Servlets and JSPs. This provides a foundation 
course, and is the core of the Hands-On Java CD ROM. The remainder of the book comprises 
an intermediatelevel course, and is the material covered in the Intermediate Thinking in 
Java CD ROM. Both of these CD ROMs are for sale at www.MindView.net.  

Contact Prentice-Hall at www.prenhallprofessional.com for information about professor 
support materials for this book.  

JDK HTML documentation  
The Java language and libraries from Sun Microsystems (a free download from 
http://java.sun.com) come with documentation in electronic form, readable using a Web 
browser. Many books published on Java have duplicated this documentation. So you either 
already have it or you can download it, and unless necessary, this book will not repeat that 
documentation, because it’s usually much faster if you find the class descriptions with your 
Web browser than if you look them up in a book (and the online documentation is probably 
more upto-date). You’ll simply be referred to “the JDK documentation.” This book will 
provide extra descriptions of the classes only when it’s necessary to supplement that 
documentation so you can understand a particular example.  

Introduction 11 



Exercises  
I’ve discovered that simple exercises are exceptionally useful to complete a student’s 
understanding during a seminar, so you’ll find a set at the end of each chapter.  

Most exercises are designed to be easy enough that they can be finished in a reasonable 
amount of time in a classroom situation while the instructor observes, making sure that all 
the students are absorbing the material. Some are more challenging, but none present major 
challenges.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java 
Annotated Solution Guide, available for sale from www.MindView.net.  

Foundations for Java  
Another bonus with this edition is the free multimedia seminar that you can download from 
www.MindView.net. This is the Thinking in C seminar that gives you an introduction to the 
C syntax, operators, and functions that Java syntax is based upon. In previous editions of the 
book this was in the Foundations for Java CD that was packaged with the book, but now the 
seminar may be freely downloaded.  

I originally commissioned Chuck Allison to create Thinking in C as a standalone product, but 
decided to include it with the 2nd edition of Thinking in C++ and 2nd and 3rd editions of 
Thinking in Java because of the consistent experience of having people come to seminars 
without an adequate background in basic C syntax. The thinking apparently goes “I’m a 
smart programmer and I don’t want to learn C, but rather C++ or Java, so I’ll just skip C and 
go directly to C++/Java.” After arriving at the seminar, it slowly dawns on folks that the 
prerequisite of understanding C syntax is there for a very good reason.  

Technologies have changed, and it made more sense to rework Thinking in C as a 
downloadable Flash presentation rather than including it as a CD. By providing this seminar 
online, I can ensure that everyone can begin with adequate preparation.  

The Thinking in C seminar also allows the book to appeal to a wider audience. Even though 
the Operators and Controlling Execution chapters do cover the fundamental parts of Java 
that come from C, the online seminar is a gentler introduction, and assumes even less about 
the student’s programming background than does the book.  

Source code  
All the source code for this book is available as copyrighted freeware, distributed as a single 
package, by visiting the Web site www.MindView.net. To make sure that you get the most 
current version, this is the official code distribution site. You may distribute the code in 
classroom and other educational situations.  

The primary goal of the copyright is to ensure that the source of the code is properly cited, 
and to prevent you from republishing the code in print media without permission. (As long as 
the source is cited, using examples from the book in most media is generally not a problem.)  

In each source-code file you will find a reference to the following copyright notice:  

//:! Copyright.txt This computer source code is Copyright ©2006 
MindView, Inc. All Rights Reserved.  

12 Thinking in Java Bruce Eckel 



Permission to use, copy, modify, and distribute this computer source 
code (Source Code) and its documentation without fee and without a 
written agreement for the purposes set forth below is hereby granted, 
provided that the above copyright notice, this paragraph and the 
following five numbered paragraphs appear in all copies.  
 
1. Permission is granted to compile the Source Code and to include the 
compiled code, in executable format only, in personal and commercial 
software programs.  
 
2. Permission is granted to use the Source Code without modification in 
classroom situations, including in presentation materials, provided that 
the book "Thinking in Java" is cited as the origin.  
3. Permission to incorporate the Source Code into printed media may be 
obtained by contacting:  
 
MindView, Inc. 5343 Valle Vista La Mesa, California 91941 
Wayne@MindView.net  
 
4. The Source Code and documentation are copyrighted by MindView, Inc. 
The Source code is provided without express or implied warranty of any 
kind, including any implied warranty of merchantability, fitness for a 
particular purpose or non-infringement. MindView, Inc. does not warrant 
that the operation of any program that includes the Source Code will be 
uninterrupted or error-free. MindView, Inc. makes no representation 
about the suitability of the Source Code or of any software that 
includes the Source Code for any purpose. The entire risk as to the 
quality and performance of any program that includes the Source Code is 
with the user of the Source Code. The user understands that the Source 
Code was developed for research and instructional purposes and is 
advised not to rely exclusively for any reason on the Source Code or any 
program that includes the Source Code. Should the Source Code or any 
resulting software prove defective, the user assumes the cost of all 
necessary servicing, repair, or correction.  
 
5. IN NO EVENT SHALL MINDVIEW, INC., OR ITS PUBLISHER BE LIABLE TO ANY 
PARTY UNDER ANY LEGAL THEORY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, 
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, 
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR 
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE CODE AND ITS 
DOCUMENTATION, OR ARISING OUT OF THE INABILITY TO USE ANY RESULTING 
PROGRAM, EVEN IF MINDVIEW, INC., OR ITS PUBLISHER HAS BEEN ADVISED OF 
THE POSSIBILITY OF SUCH DAMAGE. MINDVIEW, INC. SPECIFICALLY DISCLAIMS 
ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOURCE CODE 
AND DOCUMENTATION PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY 
ACCOMPANYING SERVICES FROM MINDVIEW, INC., AND MINDVIEW, INC. HAS NO  
 
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR 
MODIFICATIONS.  
Please note that MindView, Inc. maintains a Web site which is the sole 
distribution point for electronic copies of the Source Code, 
http://www.MindView.net (and official mirror sites), where it is freely 
available under the terms stated above.  
 
If you think you’ve found an error in the Source Code, please submit a 
correction using the feedback system that you will find at 
http://www.MindView.net. ///:~  

You may use the code in your projects and in the classroom (including your presentation 
materials) as long as the copyright notice that appears in each source file is retained.  

Introduction 13 



14 Thinking in Java Bruce Eckel 

Coding standards  

In the text of this book, identifiers (methods, variables, and class names) are set in bold. 
Most keywords are also set in bold, except for those keywords that are used so much that the 
bolding can become tedious, such as “class.”  

I use a particular coding style for the examples in this book. As much as possible, this follows 
the style that Sun itself uses in virtually all of the code you will find at its site (see 
http://java.sun.com/docs/codeconv/index.html), and seems to be supported by most Java 
development environments. If you’ve read my other works, you’ll also notice that Sun’s 
coding style coincides with mine—this pleases me, although I had nothing (that I know of) to 
do with it. The subject of formatting style is good for hours of hot debate, so I’ll just say I’m 
not trying to dictate correct style via my examples; I have my own motivation for using the 
style that I do. Because Java is a free-form programming language, you can continue to use 
whatever style you’re comfortable with. One solution to the coding style issue is to use a tool 
like Jalopy (www.triemax.com), which assisted me in developing this book, to change 
formatting to that which suits you.  

The code files printed in the book are tested with an automated system, and should all work 
without compiler errors.  

This book focuses on and is tested with Java SE5/6. If you need to learn about earlier 
releases of the language that are not covered in this edition, the 1st through 3rd editions of the 
book are freely downloadable at www.MindView.net.  

Errors  
No matter how many tools a writer uses to detect errors, some always creep in and these 
often leap off the page for a fresh reader. If you discover anything you believe to be an error, 
please use the link you will find for this book at www.MindView.net to submit the error 
along with your suggested correction. Your help is appreciated.  

 



Introduction  
    to Objects  

“We cut nature up, organize it into concepts, and ascribe significances 
as we do, largely because we are parties to an agreement that holds 
throughout our speech community and is codified in the patterns of 
our language … we cannot talk at all except by subscribing to the 
organization and classification of data which the agreement decrees.” 
Benjamin Lee Whorf (1897-1941)  

The genesis of the computer revolution was in a machine. The genesis of our programming 
languages thus tends to look like that machine.  

But computers are not so much machines as they are mind amplification tools (“bicycles for 
the mind,” as Steve Jobs is fond of saying) and a different kind of expressive medium. As a 
result, the tools are beginning to look less like machines and more like parts of our minds, 
and also like other forms of expression such as writing, painting, sculpture, animation, and 
filmmaking. Object-oriented programming (OOP) is part of this movement toward using the 
computer as an expressive medium.  

This chapter will introduce you to the basic concepts of OOP, including an overview of 
development methods. This chapter, and this book, assumes that you have some 
programming experience, although not necessarily in C. If you think you need more 
preparation in programming before tackling this book, you should work through the 
Thinking in C multimedia seminar, downloadable from www.MindView.net.  

This chapter is background and supplementary material. Many people do not feel 
comfortable wading into object-oriented programming without understanding the big picture 
first. Thus, there are many concepts that are introduced here to give you a solid overview of 
OOP. However, other people may not get the big picture concepts until they’ve seen some of 
the mechanics first; these people may become bogged down and lost without some code to 
get their hands on. If you’re part of this latter group and are eager to get to the specifics of the 
language, feel free to jump past this chapter—skipping it at this point will not prevent you 
from writing programs or learning the language. However, you will want to come back here 
eventually to fill in your knowledge so you can understand why objects are important and 
how to design with them.  

The progress of abstraction 
All programming languages provide abstractions. It can be argued that the complexity of the 
problems you’re able to solve is directly related to the kind and quality of abstraction. By 
“kind” I mean, “What is it that you are abstracting?” Assembly language is a small abstraction 
of the underlying machine. Many so-called “imperative” languages that followed (such as 
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big 
improvements over assembly language, but their primary abstraction still requires you to 
think in terms of the structure of the computer rather than the structure of the problem you 
are trying to solve. The programmer must establish the association between the machine 
model (in the “solution space,” which is the place where you’re implementing that solution, 
such as a computer) and the model of the problem that is actually being solved (in the 

 



16 Thinking in Java Bruce Eckel 

“problem space,” which is the place where the problem exists, such as a business). The effort 
required to perform this mapping, and the fact that it is extrinsic to the programming 
language, produces programs that are difficult to write and expensive to maintain, and as a 
side effect created the entire “programming methods” industry.  

The alternative to modeling the machine is to model the problem you’re trying to solve. Early 
languages such as LISP and APL chose particular views of the world (“All problems are 
ultimately lists” or “All problems are algorithmic,” respectively). Prolog casts all problems 
into chains of decisions. Languages have been created for constraint-based programming and 
for programming exclusively by manipulating graphical symbols. (The latter proved to be too 
restrictive.) Each of these approaches may be a good solution to the particular class of 
problem they’re designed to solve, but when you step outside of that domain they become 
awkward.  

The object-oriented approach goes a step further by providing tools for the programmer to 
represent elements in the problem space. This representation is general enough that the 
programmer is not constrained to any particular type of problem. We refer to the elements in 
the problem space and their representations in the solution space as “objects.” (You will also 
need other objects that don’t have problem-space analogs.) The idea is that the program is 
allowed to adapt itself to the lingo of the problem by adding new types of objects, so when 
you read the code describing the solution, you’re reading words that also express the 
problem. This is a more flexible and powerful language abstraction than what we’ve had 
before.1 Thus, OOP allows you to describe the problem in terms of the problem, rather than 
in terms of the computer where the solution will run. There’s still a connection back to the 
computer: Each object looks quite a bit like a little computer—it has a state, and it has 
operations that you can ask it to perform. However, this doesn’t seem like such a bad analogy 
to objects in the real world—they all have characteristics and behaviors.  

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These characteristics 
represent a pure approach to object-oriented programming:  

1. Everything is an object. Think of an object as a fancy variable; it stores data, 
but you can “make requests” to that object, asking it to perform operations on itself. In 
theory, you can take any conceptual component in the problem you’re trying to solve 
(dogs, buildings, services, etc.) and represent it as an object in your program.  
 

2. A program is a bunch of objects telling each other what to do by 
sending messages. To make a request of an object, you “send a message” to that 
object. More concretely, you can think of a message as a request to call a method that 
belongs to a particular object.  

 
3. Each object has its own memory made up of other objects. Put 

another way, you create a new kind of object by making a package containing existing 
objects. Thus, you can build complexity into a program while hiding it behind the 
simplicity of objects.  

 
4. Every object has a type. Using the parlance, each object is an instance of a 

class, in which “class” is synonymous with “type.” The most important distinguishing 
characteristic of a class is “What messages can you send to it?”  

 
5. All objects of a particular type can receive the same messages. This 

is actually a loaded statement, as you will see later. Because an object of type “circle” is 
also an object of type “shape,” a circle is guaranteed to accept shape messages. This 

                                                            
1 Some language designers have decided that object-oriented programming by itself is not adequate to easily solve all 
programming problems, and advocate the combination of various approaches into multiparadigm programming 
languages. See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley, 1995). 



Introduction to Objects 17 

means you can write code that talks to shapes and automatically handle anything that 
fits the description of a shape. This substitutability is one of the powerful concepts in 
OOP.  

 
Booch offers an even more succinct description of an object:  

An object has state, behavior and identity.  

This means that an object can have internal data (which gives it state), methods (to produce 
behavior), and each object can be uniquely distinguished from every other object—to put this 
in a concrete sense, each object has a unique address in memory.2 

An object has an interface  
Aristotle was probably the first to begin a careful study of the concept of type; he spoke of 
“the class of fishes and the class of birds.” The idea that all objects, while being unique, are 
also part of a class of objects that have characteristics and behaviors in common was used 
directly in the first object-oriented language, Simula-67, with its fundamental keyword class 
that introduces a new type into a program.  

Simula, as its name implies, was created for developing simulations such as the classic “bank 
teller problem.” In this, you have numerous tellers, customers, accounts, transactions, and 
units of money—a lot of “objects.” Objects that are identical except for their state during a 
program’s execution are grouped together into “classes of objects,” and that’s where the 
keyword class came from. Creating abstract data types (classes) is a fundamental concept in 
object-oriented programming. Abstract data types work almost exactly like built-in types: 
You can create variables of a type (called objects or instances in object-oriented parlance) 
and manipulate those variables (called sending messages or requests; you send a message 
and the object figures out what to do with it). The members (elements) of each class share 
some commonality: Every account has a balance, every teller can accept a deposit, etc. At the 
same time, each member has its own state: Each account has a different balance, each teller 
has a name. Thus, the tellers, customers, accounts, transactions, etc., can each be 
represented with a unique entity in the computer program. This entity is the object, and each 
object belongs to a particular class that defines its characteristics and behaviors.  

So, although what we really do in object-oriented programming is create new data types, 
virtually all object-oriented programming languages use the “class” keyword. When you see 
the word “type” think “class” and vice versa.3 

Since a class describes a set of objects that have identical characteristics (data elements) and 
behaviors (functionality), a class is really a data type because a floating point number, for 
example, also has a set of characteristics and behaviors. The difference is that a programmer 
defines a class to fit a problem rather than being forced to use an existing data type that was 
designed to represent a unit of storage in a machine. You extend the programming language 
by adding new data types specific to your needs. The programming system welcomes the new 
classes and gives them all the care and type checking that it gives to built-in types.  

The object-oriented approach is not limited to building simulations. Whether or not you 
agree that any program is a simulation of the system you’re designing, the use of OOP 
techniques can easily reduce a large set of problems to a simple solution.  

                                                            
2 This is actually a bit restrictive, since objects can conceivably exist in different machines and address 
spaces, and they can also be stored on disk. In these cases, the identity of the object must be determined by 
something other than memory address. 
 
3 Some people make a distinction, stating that type determines the interface while class is a particular 
implementation of that interface.  



Once a class is established, you can make as many objects of that class as you like, and then 
manipulate those objects as if they are the elements that exist in the problem you are trying 
to solve. Indeed, one of the challenges of object-oriented programming is to create a one-to-
one mapping between the elements in the problem space and objects in the solution space.  

But how do you get an object to do useful work for you? There needs to be a way to make a 
request of the object so that it will do something, such as complete a transaction, draw 
something on the screen, or turn on a switch. And each object can satisfy only certain 
requests. The requests you can make of an object are defined by its interface, and the type is 
what determines the interface. A simple example might be a representation of a light bulb:  

 

Light lt = new Light(); 
lt.on(); 

The interface determines the requests that you can make for a particular object. However, 
there must be code somewhere to satisfy that request. This, along with the hidden data, 
comprises the implementation. From a procedural programming standpoint, it’s not that 
complicated. A type has a method associated with each possible request, and when you make 
a particular request to an object, that method is called. This process is usually summarized by 
saying that you “send a message” (make a request) to an object, and the object figures out 
what to do with that message (it executes code).  

Here, the name of the type/class is Light, the name of this particular Light object is lt, and 
the requests that you can make of a Light object are to turn it on, turn it off, make it 
brighter, or make it dimmer. You create a Light object by defining a “reference” (lt) for that 
object and calling new to request a new object of that type. To send a message to the object, 
you state the name of the object and connect it to the message request with a period (dot). 
From the standpoint of the user of a predefined class, that’s pretty much all there is to 
programming with objects.  

The preceding diagram follows the format of the Unified Modeling Language (UML). Each 
class is represented by a box, with the type name in the top portion of the box, any data 
members that you care to describe in the middle portion of the box, and the methods (the 
functions that belong to this object, which receive any messages you send to that object) in 
the bottom portion of the box. Often, only the name of the class and the public methods are 
shown in UML design diagrams, so the middle portion is not shown, as in this case. If you’re 
interested only in the class name, then the bottom portion doesn’t need to be shown, either.  

An object provides services  
While you’re trying to develop or understand a program design, one of the best ways to think 
about objects is as “service providers.” Your program itself will provide services to the user, 
and it will accomplish this by using the services offered by other objects. Your goal is to 

18 Thinking in Java Bruce Eckel 



Introduction to Objects 19 

produce (or even better, locate in existing code libraries) a set of objects that provide the 
ideal services to solve your problem.  

A way to start doing this is to ask, “If I could magically pull them out of a hat, what objects 
would solve my problem right away?” For example, suppose you are creating a bookkeeping 
program. You might imagine some objects that contain pre-defined bookkeeping input 
screens, another set of objects that perform bookkeeping calculations, and an object that 
handles printing of checks and invoices on all different kinds of printers. Maybe some of 
these objects already exist, and for the ones that don’t, what would they look like? What 
services would those objects provide, and what objects would they need to fulfill their 
obligations? If you keep doing this, you will eventually reach a point where you can say 
either, “That object seems simple enough to sit down and write” or “I’m sure that object must 
exist already.” This is a reasonable way to decompose a problem into a set of objects.  

Thinking of an object as a service provider has an additional benefit: It helps to improve the 
cohesiveness of the object. High cohesion is a fundamental quality of software design: It 
means that the various aspects of a software component (such as an object, although this 
could also apply to a method or a library of objects) “fit together” well. One problem people 
have when designing objects is cramming too much functionality into one object. For 
example, in your check printing module, you may decide you need an object that knows all 
about formatting and printing. You’ll probably discover that this is too much for one object, 
and that what you need is three or more objects. One object might be a catalog of all the 
possible check layouts, which can be queried for information about how to print a check. One 
object or set of objects can be a generic printing interface that knows all about different kinds 
of printers (but nothing about bookkeeping—this one is a candidate for buying rather than 
writing yourself). And a third object could use the services of the other two to accomplish the 
task. Thus, each object has a cohesive set of services it offers. In a good object-oriented 
design, each object does one thing well, but doesn’t try to do too much. This not only allows 
the discovery of objects that might be purchased (the printer interface object), but it also 
produces new objects that might be reused somewhere else (the catalog of check layouts).  

Treating objects as service providers is a great simplifying tool. This is useful not only during 
the design process, but also when someone else is trying to understand your code or reuse an 
object. If they can see the value of the object based on what service it provides, it makes it 
much easier to fit it into the design.  

The hidden implementation  
It is helpful to break up the playing field into class creators (those who create new data types) 
and client programmers4 (the class consumers who use the data types in their applications). 
The goal of the client programmer is to collect a toolbox full of classes to use for rapid 
application development. The goal of the class creator is to build a class that exposes only 
what’s necessary to the client programmer and keeps everything else hidden. Why? Because 
if it’s hidden, the client programmer can’t access it, which means that the class creator can 
change the hidden portion at will without worrying about the impact on anyone else. The 
hidden portion usually represents the tender insides of an object that could easily be 
corrupted by a careless or uninformed client programmer, so hiding the implementation 
reduces program bugs.  

In any relationship it’s important to have boundaries that are respected by all parties 
involved. When you create a library, you establish a relationship with the client programmer, 
who is also a programmer, but one who is putting together an application by using your 
library, possibly to build a bigger library. If all the members of a class are available to 
everyone, then the client programmer can do anything with that class and there’s no way to 
enforce rules. Even though you might really prefer that the client programmer not directly 

                                                            
4 I’m indebted to my friend Scott Meyers for this term. 



manipulate some of the members of your class, without access control there’s no way to 
prevent it. Everything’s naked to the world.  

So the first reason for access control is to keep client programmers’ hands off portions they 
shouldn’t touch—parts that are necessary for the internal operation of the data type but not 
part of the interface that users need in order to solve their particular problems. This is 
actually a service to client programmers because they can easily see what’s important to them 
and what they can ignore.  

The second reason for access control is to allow the library designer to change the internal 
workings of the class without worrying about how it will affect the client programmer. For 
example, you might implement a particular class in a simple fashion to ease development, 
and then later discover that you need to rewrite it in order to make it run faster. If the 
interface and implementation are clearly separated and protected, you can accomplish this 
easily.  

Java uses three explicit keywords to set the boundaries in a class: public, private, and 
protected. These access specifiers determine who can use the definitions that follow. 
public means the following element is available to everyone. The private keyword, on the 
other hand, means that no one can access that element except you, the creator of the type, 
inside methods of that type. private is a brick wall between you and the client programmer. 
Someone who tries to access a private member will get a compile-time error. The 
protected keyword acts like private, with the exception that an inheriting class has access 
to protected members, but not private members. Inheritance will be introduced shortly.  

Java also has a “default” access, which comes into play if you don’t use one of the 
aforementioned specifiers. This is usually called package access because classes can access 
the members of other classes in the same package (library component), but outside of the 
package those same members appear to be private.  

Reusing the implementation  
Once a class has been created and tested, it should (ideally) represent a useful unit of code. It 
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes 
experience and insight to produce a reusable object design. But once you have such a design, 
it begs to be reused. Code reuse is one of the greatest advantages that object-oriented 
programming languages provide.  

The simplest way to reuse a class is to just use an object of that class directly, but you can also 
place an object of that class inside a new class. We call this “creating a member object.” Your 
new class can be made up of any number and type of other objects, in any combination that 
you need to achieve the functionality desired in your new class. Because you are composing a 
new class from existing classes, this concept is called composition (if the composition 
happens dynamically, it’s usually called aggregation). Composition is often referred to as a 
“has-a” relationship, as in “A car has an engine.” 

 

20 Thinking in Java Bruce Eckel 



Introduction to Objects 21 

(This UML diagram indicates composition with the filled diamond, which states there is one 
car. I will typically use a simpler form: just a line, without the diamond, to indicate an 
association.5)  

Composition comes with a great deal of flexibility. The member objects of your new class are 
typically private, making them inaccessible to the client programmers who are using the 
class. This allows you to change those members without disturbing existing client code. You 
can also change the member objects at run time, to dynamically change the behavior of your 
program. Inheritance, which is described next, does not have this flexibility since the 
compiler must place compile-time restrictions on classes created with inheritance.  

Because inheritance is so important in object-oriented programming, it is often highly 
emphasized, and the new programmer can get the idea that inheritance should be used 
everywhere. This can result in awkward and overly complicated designs. Instead, you should 
first look to composition when creating new classes, since it is simpler and more flexible. If 
you take this approach, your designs will be cleaner. Once you’ve had some experience, it will 
be reasonably obvious when you need inheritance.  

Inheritance  
By itself, the idea of an object is a convenient tool. It allows you to package data and 
functionality together by concept, so you can represent an appropriate problem-space idea 
rather than being forced to use the idioms of the underlying machine. These concepts are 
expressed as fundamental units in the programming language by using the class keyword.  

It seems a pity, however, to go to all the trouble to create a class and then be forced to create 
a brand new one that might have similar functionality. It’s nicer if we can take the existing 
class, clone it, and then make additions and modifications to the clone. This is effectively 
what you get with inheritance, with the exception that if the original class (called the base 
class or superclass or parent class) is changed, the modified “clone” (called the derived class 
or inherited class or subclass or child class) also reflects those changes.  

 

(The arrow in this UML diagram points from the derived class to the base class. As you will 
see, there is commonly more than one derived class.)  

A type does more than describe the constraints on a set of objects; it also has a relationship 
with other types. Two types can have characteristics and behaviors in common, but one type 
may contain more characteristics than another and may also handle more messages (or 
handle them differently). Inheritance expresses this similarity between types by using the 
concept of base types and derived types. A base type contains all of the characteristics and 
behaviors that are shared among the types derived from it. You create a base type to 

                                                            
5 This is usually enough detail for most diagrams, and you don’t need to get specific about whether you’re using 
aggregation or composition.  



represent the core of your ideas about some objects in your system. From the base type, you 
derive other types to express the different ways that this core can be realized.  

For example, a trash-recycling machine sorts pieces of trash. The base type is “trash”, and 
each piece of trash has a weight, a value, and so on, and can be shredded, melted, or 
decomposed. From this, more specific types of trash are derived that may have additional 
characteristics (a bottle has a color) or behaviors (an aluminum can may be crushed, a steel 
can is magnetic). In addition, some behaviors may be different (the value of paper depends 
on its type and condition). Using inheritance, you can build a type hierarchy that expresses 
the problem you’re trying to solve in terms of its types.  

A second example is the classic “shape” example, perhaps used in a computer-aided design 
system or game simulation. The base type is “shape,” and each shape has a size, a color, a 
position, and so on. Each shape can be drawn, erased, moved, colored, etc. From this, specific 
types of shapes are derived (inherited)—circle, square, triangle, and so on—each of which 
may have additional characteristics and behaviors. Certain shapes can be flipped, for 
example. Some behaviors may be different, such as when you want to calculate the area of a 
shape. The type hierarchy embodies both the similarities and differences between the shapes.  

 

Casting the solution in the same terms as the problem is very useful because you don’t need a 
lot of intermediate models to get from a description of the problem to a description of the 
solution. With objects, the type hierarchy is the primary model, so you go directly from the 
description of the system in the real world to the description of the system in code. Indeed, 
one of the difficulties people have with object-oriented design is that it’s too simple to get 
from the beginning to the end. A mind trained to look for complex solutions can initially be 
stumped by this simplicity.  

When you inherit from an existing type, you create a new type. This new type contains not 
only all the members of the existing type (although the private ones are hidden away and 
inaccessible), but more importantly it duplicates the interface of the base class. That is, all 
the messages you can send to objects of the base class you can also send to objects of the 
derived class. Since we know the type of a class by the messages we can send to it, this means 
that the derived class is the same type as the base class. In the previous example, “A circle is 
a shape.” This type equivalence via inheritance is one of the fundamental gateways in 
understanding the meaning of object-oriented programming.  

Since both the base class and derived class have the same fundamental interface, there must 
be some implementation to go along with that interface. That is, there must be some code to 
execute when an object receives a particular message. If you simply inherit a class and don’t 

22 Thinking in Java Bruce Eckel 



do anything else, the methods from the base-class interface come right along into the derived 
class. That means objects of the derived class have not only the same type, they also have the 
same behavior, which isn’t particularly interesting.  

You have two ways to differentiate your new derived class from the original base class. The 
first is quite straightforward: You simply add brand new methods to the derived class. These 
new methods are not part of the base-class interface. This means that the base class simply 
didn’t do as much as you wanted it to, so you added more methods. This simple and primitive 
use for inheritance is, at times, the perfect solution to your problem. However, you should 
look closely for the possibility that your base class might also need these additional methods. 
This process of discovery and iteration of your design happens regularly in object-oriented 
programming.  

 

Although inheritance may sometimes imply (especially in Java, where the keyword for 
inheritance is extends) that you are going to add new methods to the interface, that’s not 
necessarily true. The second and more important way to differentiate your new class is to 
change the behavior of an existing base-class method. This is referred to as overriding that 
method.  

Introduction to Objects 23 



 

To override a method, you simply create a new definition for the method in the derived class. 
You’re saying, “I’m using the same interface method here, but I want it to do something 
different for my new type.”  

Is-a vs. is-like-a relationships  

There’s a certain debate that can occur about inheritance: Should inheritance override only 
baseclass methods (and not add new methods that aren’t in the base class)? This would mean 
that the derived class is exactly the same type as the base class since it has exactly the same 
interface. As a result, you can exactly substitute an object of the derived class for an object of 
the base class. This can be thought of as pure substitution, and it’s often referred to as the 
substitution principle. In a sense, this is the ideal way to treat inheritance. We often refer to 
the relationship between the base class and derived classes in this case as an is-a 
relationship, because you can say, “A circle is a shape.” A test for inheritance is to determine 
whether you can state the is-a relationship about the classes and have it make sense.  

There are times when you must add new interface elements to a derived type, thus extending 
the interface. The new type can still be substituted for the base type, but the substitution isn’t 
perfect because your new methods are not accessible from the base type. This can be 
described as an islike-a relationship (my term). The new type has the interface of the old type 
but it also contains other methods, so you can’t really say it’s exactly the same. For example, 
consider an air conditioner. Suppose your house is wired with all the controls for cooling; 
that is, it has an interface that allows you to control cooling. Imagine that the air conditioner 
breaks down and you replace it with a heat pump, which can both heat and cool. The heat 
pump is-like-an air conditioner, but it can do more. Because the control system of your house 
is designed only to control cooling, it is restricted to communication with the cooling part of 
the new object. The interface of the new object has been extended, and the existing system 
doesn’t know about anything except the original interface.  

24 Thinking in Java Bruce Eckel 



 

Of course, once you see this design it becomes clear that the base class “cooling system” is not 
general enough, and should be renamed to “temperature control system” so that it can also 
include heating—at which point the substitution principle will work. However, this diagram 
is an example of what can happen with design in the real world.  

When you see the substitution principle it’s easy to feel like this approach (pure substitution) 
is the only way to do things, and in fact it is nice if your design works out that way. But you’ll 
find that there are times when it’s equally clear that you must add new methods to the 
interface of a derived class. With inspection both cases should be reasonably obvious.  

Interchangeable objects  
     with polymorphism  

When dealing with type hierarchies, you often want to treat an object not as the specific type 
that it is, but instead as its base type. This allows you to write code that doesn’t depend on 
specific types. In the shape example, methods manipulate generic shapes, unconcerned about 
whether they’re circles, squares, triangles, or some shape that hasn’t even been defined yet. 
All shapes can be drawn, erased, and moved, so these methods simply send a message to a 
shape object; they don’t worry about how the object copes with the message.  

Such code is unaffected by the addition of new types, and adding new types is the most 
common way to extend an object-oriented program to handle new situations. For example, 
you can derive a new subtype of shape called pentagon without modifying the methods that 
deal only with generic shapes. This ability to easily extend a design by deriving new subtypes 
is one of the essential ways to encapsulate change. This greatly improves designs while 
reducing the cost of software maintenance.  

There’s a problem, however, with attempting to treat derived-type objects as their generic 
base types (circles as shapes, bicycles as vehicles, cormorants as birds, etc.). If a method is 
going to tell a generic shape to draw itself, or a generic vehicle to steer, or a generic bird to 
move, the compiler cannot know at compile time precisely what piece of code will be 
executed. That’s the whole point—when the message is sent, the programmer doesn’t want to 
know what piece of code will be executed; the draw method can be applied equally to a circle, 
a square, or a triangle, and the object will execute the proper code depending on its specific 
type.  

If you don’t have to know what piece of code will be executed, then when you add a new 
subtype, the code it executes can be different without requiring changes to the method that 

Introduction to Objects 25 



calls it. Therefore, the compiler cannot know precisely what piece of code is executed, so what 
does it do?  

For example, in the following diagram the BirdController object just works with generic 
Bird objects and does not know what exact type they are. This is convenient from 
BirdController’s perspective because it doesn’t have to write special code to determine the 
exact type of Bird it’s working with or that Bird’s behavior. So how does it happen that, 
when move( ) is called while ignoring the specific type of Bird, the right behavior will occur 
(a Goose walks, flies, or swims, and a Penguin walks or swims)?  

 

The answer is the primary twist in object-oriented programming: The compiler cannot make 
a function call in the traditional sense. The function call generated by a non-OOP compiler 
causes what is called early binding, a term you may not have heard before because you’ve 
never thought about it any other way. It means the compiler generates a call to a specific 
function name, and the runtime system resolves this call to the absolute address of the code 
to be executed. In OOP, the program cannot determine the address of the code until run 
time, so some other scheme is necessary when a message is sent to a generic object.  

To solve the problem, object-oriented languages use the concept of late binding. When you 
send a message to an object, the code being called isn’t determined until run time. The 
compiler does ensure that the method exists and performs type checking on the arguments 
and return value, but it doesn’t know the exact code to execute.  

To perform late binding, Java uses a special bit of code in lieu of the absolute call. This code 
calculates the address of the method body, using information stored in the object (this 
process is covered in great detail in the Polymorphism chapter). Thus, each object can 
behave differently according to the contents of that special bit of code. When you send a 
message to an object, the object actually does figure out what to do with that message.  

In some languages you must explicitly state that you want a method to have the flexibility of 
latebinding properties (C++ uses the virtual keyword to do this). In these languages, by 
default, methods are not dynamically bound. In Java, dynamic binding is the default 
behavior and you don’t need to remember to add any extra keywords in order to get 
polymorphism.  

Consider the shape example. The family of classes (all based on the same uniform interface) 
was diagrammed earlier in this chapter. To demonstrate polymorphism, we want to write a 
single piece of code that ignores the specific details of type and talks only to the base class. 
That code is decoupled from type-specific information and thus is simpler to write and easier 
to understand. And, if a new type—a Hexagon, for example—is added through inheritance, 
the code you write will work just as well for the new type of Shape as it did on the existing 
types. Thus, the program is extensible.  

26 Thinking in Java Bruce Eckel 



If you write a method in Java (as you will soon learn how to do):  

void doSomething(Shape shape) { 
  shape.erase(); 
  // ... 
  shape.draw(); 
} 

This method speaks to any Shape, so it is independent of the specific type of object that it’s 
drawing and erasing. If some other part of the program uses the doSomething( ) method:  

Circle circle = new Circle();  
Triangle triangle = new Triangle();  
Line line= new Line();  
doSomething(circle);  
doSomething(triangle);  
doSomething(line);  

The calls to doSomething( ) automatically work correctly, regardless of the exact type of 
the object.  

This is a rather amazing trick. Consider the line:  

doSomething(circle);  

What’s happening here is that a Circle is being passed into a method that’s expecting a 
Shape. Since a Circle is a Shape it can be treated as one by doSomething( ). That is, any 
message that doSomething( ) can send to a Shape, a Circle can accept. So it is a 
completely safe and logical thing to do.  

We call this process of treating a derived type as though it were its base type upcasting. The 
name cast is used in the sense of casting into a mold and the up comes from the way the 
inheritance diagram is typically arranged, with the base type at the top and the derived 
classes fanning out downward. Thus, casting to a base type is moving up the inheritance 
diagram: “upcasting.” 

 

An object-oriented program contains some upcasting somewhere, because that’s how you 
decouple yourself from knowing about the exact type you’re working with. Look at the code 
in doSomething( ):  

shape.erase();  
// ...  
shape.draw();  

Introduction to Objects 27 



Notice that it doesn’t say, “If you’re a Circle, do this, if you’re a Square, do that, etc.” If you 
write that kind of code, which checks for all the possible types that a Shape can actually be, 
it’s messy and you need to change it every time you add a new kind of Shape. Here, you just 
say, “You’re a shape, I know you can erase( ) and draw( ) yourself, do it, and take care of 
the details correctly.”  

What’s impressive about the code in doSomething( ) is that, somehow, the right thing 
happens. Calling draw( ) for Circle causes different code to be executed than when calling 
draw( ) for a Square or a Line, but when the draw( ) message is sent to an anonymous 
Shape, the correct behavior occurs based on the actual type of the Shape. This is amazing 
because, as mentioned earlier, when the Java compiler is compiling the code for 
doSomething( ), it cannot know exactly what types it is dealing with. So ordinarily, you’d 
expect it to end up calling the version of erase( ) and draw( ) for the base class Shape, and 
not for the specific Circle, Square, or Line. And yet the right thing happens because of 
polymorphism. The compiler and runtime system handle the details; all you need to know 
right now is that it does happen, and more importantly, how to design with it. When you 
send a message to an object, the object will do the right thing, even when upcasting is 
involved.  

The singly rooted hierarchy  
One of the issues in OOP that has become especially prominent since the introduction of C++ 
is whether all classes should ultimately be inherited from a single base class. In Java (as with 
virtually all other OOP languages except for C++) the answer is yes, and the name of this 
ultimate base class is simply Object. It turns out that the benefits of the singly rooted 
hierarchy are many.  

All objects in a singly rooted hierarchy have an interface in common, so they are all 
ultimately the same fundamental type. The alternative (provided by C++) is that you don’t 
know that everything is the same basic type. From a backward-compatibility standpoint this 
fits the model of C better and can be thought of as less restrictive, but when you want to do 
full-on objectoriented programming you must then build your own hierarchy to provide the 
same convenience that’s built into other OOP languages. And in any new class library you 
acquire, some other incompatible interface will be used. It requires effort (and possibly 
multiple inheritance) to work the new interface into your design. Is the extra “flexibility” of 
C++ worth it? If you need it—if you have a large investment in C—it’s quite valuable. If you’re 
starting from scratch, other alternatives such as Java can often be more productive.  

All objects in a singly rooted hierarchy can be guaranteed to have certain functionality. You 
know you can perform certain basic operations on every object in your system. All objects can 
easily be created on the heap, and argument passing is greatly simplified.  

A singly rooted hierarchy makes it much easier to implement a garbage collector, which is 
one of the fundamental improvements of Java over C++. And since information about the 
type of an object is guaranteed to be in all objects, you’ll never end up with an object whose 
type you cannot determine. This is especially important with system-level operations, such as 
exception handling, and to allow greater flexibility in programming.  

Containers  
In general, you don’t know how many objects you’re going to need to solve a particular 
problem, or how long they will last. You also don’t know how to store those objects. How can 
you know how much space to create if that information isn’t known until run time?  

28 Thinking in Java Bruce Eckel 



Introduction to Objects 29 

The solution to most problems in object-oriented design seems flippant: You create another 
type of object. The new type of object that solves this particular problem holds references to 
other objects. Of course, you can do the same thing with an array, which is available in most 
languages. But this new object, generally called a container (also called a collection, but the 
Java library uses that term in a different sense so this book will use “container”), will expand 
itself whenever necessary to accommodate everything you place inside it. So you don’t need 
to know how many objects you’re going to hold in a container. Just create a container object 
and let it take care of the details.  

Fortunately, a good OOP language comes with a set of containers as part of the package. In 
C++, it’s part of the Standard C++ Library and is often called the Standard Template Library 
(STL). Smalltalk has a very complete set of containers. Java also has numerous containers in 
its standard library. In some libraries, one or two generic containers is considered good 
enough for all needs, and in others (Java, for example) the library has different types of 
containers for different needs: several different kinds of List classes (to hold sequences), 
Maps (also known as associative arrays, to associate objects with other objects), Sets (to 
hold one of each type of object), and more components such as queues, trees, stacks, etc.  

From a design standpoint, all you really want is a container that can be manipulated to solve 
your problem. If a single type of container satisfied all of your needs, there’d be no reason to 
have different kinds. There are two reasons that you need a choice of containers. First, 
containers provide different types of interfaces and external behavior. A stack has a different 
interface and behavior than a queue, which is different from a set or a list. One of these might 
provide a more flexible solution to your problem than the other. Second, different containers 
have different efficiencies for certain operations. For example, there are two basic types of 
List: ArrayList and LinkedList. Both are simple sequences that can have identical 
interfaces and external behaviors. But certain operations can have significantly different 
costs. Randomly accessing elements in an ArrayList is a constant-time operation; it takes 
the same amount of time regardless of the element you select. However, in a LinkedList it is 
expensive to move through the list to randomly select an element, and it takes longer to find 
an element that is farther down the list. On the other hand, if you want to insert an element 
in the middle of a sequence, it’s cheaper in a LinkedList than in an ArrayList. These and 
other operations have different efficiencies depending on the underlying structure of the 
sequence. You might start building your program with a LinkedList and, when tuning for 
performance, change to an ArrayList. Because of the abstraction via the interface List, you 
can change from one to the other with minimal impact on your code.  

Parameterized types (generics)  

Before Java SE5, containers held the one universal type in Java: Object. The singly rooted 
hierarchy means that everything is an Object, so a container that holds Objects can hold 
anything.6 This made containers easy to reuse.  

To use such a container, you simply add object references to it and later ask for them back. 
But, since the container held only Objects, when you added an object reference into the 
container it was upcast to Object, thus losing its character. When fetching it back, you got an 
Object reference, and not a reference to the type that you put in. So how do you turn it back 
into something that has the specific type of the object that you put into the container?  

Here, the cast is used again, but this time you’re not casting up the inheritance hierarchy to a 
more general type. Instead, you cast down the hierarchy to a more specific type. This manner 
of casting is called downcasting. With upcasting, you know, for example, that a Circle is a 
type of Shape so it’s safe to upcast, but you don’t know that an Object is necessarily a 

                                                            
6 They do not hold primitives, but Java SE5 autoboxing makes this restriction almost a non-issue. This is discussed in 
detail later in the book. 



Circle or a Shape so it’s hardly safe to downcast unless you know exactly what you’re 
dealing with.  

It’s not completely dangerous, however, because if you downcast to the wrong thing you’ll get 
a runtime error called an exception, which will be described shortly. When you fetch object 
references from a container, though, you must have some way to remember exactly what they 
are so you can perform a proper downcast.  

Downcasting and the runtime checks require extra time for the running program and extra 
effort from the programmer. Wouldn’t it make sense to somehow create the container so that 
it knows the types that it holds, eliminating the need for the downcast and a possible 
mistake? The solution is called a parameterized type mechanism. A parameterized type is a 
class that the compiler can automatically customize to work with particular types. For 
example, with a parameterized container, the compiler could customize that container so that 
it would accept only Shapes and fetch only Shapes.  

One of the big changes in Java SE5 is the addition of parameterized types, called generics in 
Java. You’ll recognize the use of generics by the angle brackets with types inside; for example, 
an ArrayList that holds Shape can be created like this:  

ArrayList<Shape> shapes = new ArrayList<Shape>();  

There have also been changes to many of the standard library components in order to take 
advantage of generics. As you will see, generics have an impact on much of the code in this 
book.  

Object creation & lifetime  
One critical issue when working with objects is the way they are created and destroyed. Each 
object requires resources, most notably memory, in order to exist. When an object is no 
longer needed it must be cleaned up so that these resources are released for reuse. In simple 
programming situations the question of how an object is cleaned up doesn’t seem too 
challenging: You create the object, use it for as long as it’s needed, and then it should be 
destroyed. However, it’s not hard to encounter situations that are more complex.  

Suppose, for example, you are designing a system to manage air traffic for an airport. (The 
same model might also work for managing crates in a warehouse, or a video rental system, or 
a kennel for boarding pets.) At first it seems simple: Make a container to hold airplanes, then 
create a new airplane and place it in the container for each airplane that enters the air-traffic-
control zone. For cleanup, simply clean up the appropriate airplane object when a plane 
leaves the zone.  

But perhaps you have some other system to record data about the planes; perhaps data that 
doesn’t require such immediate attention as the main controller function. Maybe it’s a record 
of the flight plans of all the small planes that leave the airport. So you have a second 
container of small planes, and whenever you create a plane object you also put it in this 
second container if it’s a small plane. Then some background process performs operations on 
the objects in this container during idle moments.  

Now the problem is more difficult: How can you possibly know when to destroy the objects? 
When you’re done with the object, some other part of the system might not be. This same 
problem can arise in a number of other situations, and in programming systems (such as 
C++) in which you must explicitly delete an object when you’re done with it this can become 
quite complex.  

30 Thinking in Java Bruce Eckel 



Introduction to Objects 31 

Where is the data for an object and how is the lifetime of the object controlled? C++ takes the 
approach that control of efficiency is the most important issue, so it gives the programmer a 
choice. For maximum runtime speed, the storage and lifetime can be determined while the 
program is being written, by placing the objects on the stack (these are sometimes called 
automatic or scoped variables) or in the static storage area. This places a priority on the 
speed of storage allocation and release, and this control can be very valuable in some 
situations. However, you sacrifice flexibility because you must know the exact quantity, 
lifetime, and type of objects while you’re writing the program. If you are trying to solve a 
more general problem such as computer-aided design, warehouse management, or air-traffic 
control, this is too restrictive.  

The second approach is to create objects dynamically in a pool of memory called the heap. In 
this approach, you don’t know until run time how many objects you need, what their lifetime 
is, or what their exact type is. Those are determined at the spur of the moment while the 
program is running. If you need a new object, you simply make it on the heap at the point 
that you need it. Because the storage is managed dynamically, at run time, the amount of 
time required to allocate storage on the heap can be noticeably longer than the time to create 
storage on the stack. Creating storage on the stack is often a single assembly instruction to 
move the stack pointer down and another to move it back up. The time to create heap storage 
depends on the design of the storage mechanism.  

The dynamic approach makes the generally logical assumption that objects tend to be 
complicated, so the extra overhead of finding storage and releasing that storage will not have 
an important impact on the creation of an object. In addition, the greater flexibility is 
essential to solve the general programming problem.  

Java uses dynamic memory allocation, exclusively.7 Every time you want to create an object, 
you use the new operator to build a dynamic instance of that object.  

There’s another issue, however, and that’s the lifetime of an object. With languages that allow 
objects to be created on the stack, the compiler determines how long the object lasts and can 
automatically destroy it. However, if you create it on the heap the compiler has no knowledge 
of its lifetime. In a language like C++, you must determine programmatically when to destroy 
the object, which can lead to memory leaks if you don’t do it correctly (and this is a common 
problem in C++ programs). Java provides a feature called a garbage collector that 
automatically discovers when an object is no longer in use and destroys it. A garbage 
collector is much more convenient because it reduces the number of issues that you must 
track and the code you must write. More importantly, the garbage collector provides a much 
higher level of insurance against the insidious problem of memory leaks, which has brought 
many a C++ project to its knees.  

With Java, the garbage collector is designed to take care of the problem of releasing the 
memory (although this doesn’t include other aspects of cleaning up an object). The garbage 
collector “knows” when an object is no longer in use, and it then automatically releases the 
memory for that object. This, combined with the fact that all objects are inherited from the 
single root class Object and that you can create objects only one way—on the heap—makes 
the process of programming in Java much simpler than programming in C++. You have far 
fewer decisions to make and hurdles to overcome. 

Exception handling: dealing with errors  
Ever since the beginning of programming languages, error handling has been a particularly 
difficult issue. Because it’s so hard to design a good error-handling scheme, many languages 
simply ignore the issue, passing the problem on to library designers who come up with 

                                                            
7 Primitive types, which you’ll learn about later, are a special case. 



halfway measures that work in many situations but that can easily be circumvented, generally 
by just ignoring them. A major problem with most error-handling schemes is that they rely 
on programmer vigilance in following an agreed-upon convention that is not enforced by the 
language. If the programmer is not vigilant—often the case if they are in a hurry—these 
schemes can easily be forgotten.  

Exception handling wires error handling directly into the programming language and 
sometimes even the operating system. An exception is an object that is “thrown” from the site 
of the error and can be “caught” by an appropriate exception handler designed to handle that 
particular type of error. It’s as if exception handling is a different, parallel path of execution 
that can be taken when things go wrong. And because it uses a separate execution path, it 
doesn’t need to interfere with your normally executing code. This tends to make that code 
simpler to write because you aren’t constantly forced to check for errors. In addition, a 
thrown exception is unlike an error value that’s returned from a method or a flag that’s set by 
a method in order to indicate an error condition—these can be ignored. An exception cannot 
be ignored, so it’s guaranteed to be dealt with at some point. Finally, exceptions provide a 
way to reliably recover from a bad situation. Instead of just exiting the program, you are 
often able to set things right and restore execution, which produces much more robust 
programs.  

Java’s exception handling stands out among programming languages, because in Java, 
exception handling was wired in from the beginning and you’re forced to use it. It is the 
single acceptable way to report errors. If you don’t write your code to properly handle 
exceptions, you’ll get a compile-time error message. This guaranteed consistency can 
sometimes make error handling much easier.  

It’s worth noting that exception handling isn’t an object-oriented feature, although in object-
oriented languages the exception is normally represented by an object. Exception handling 
existed before object-oriented languages.  

Concurrent programming  
A fundamental concept in computer programming is the idea of handling more than one task 
at a time. Many programming problems require that the program stop what it’s doing, deal 
with some other problem, and then return to the main process. The solution has been 
approached in many ways. Initially, programmers with low-level knowledge of the machine 
wrote interrupt service routines, and the suspension of the main process was initiated 
through a hardware interrupt. Although this worked well, it was difficult and non-portable, 
so it made moving a program to a new type of machine slow and expensive.  

Sometimes, interrupts are necessary for handling time-critical tasks, but there’s a large class 
of problems in which you’re simply trying to partition the problem into separately running 
pieces (tasks) so that the whole program can be more responsive. Within a program, these 
separately running pieces are called threads, and the general concept is called concurrency. 
A common example of concurrency is the user interface. By using tasks, a user can press a 
button and get a quick response rather than being forced to wait until the program finishes 
its current task.  

Ordinarily, tasks are just a way to allocate the time of a single processor. But if the operating 
system supports multiple processors, each task can be assigned to a different processor, and 
they can truly run in parallel. One of the convenient features of concurrency at the language 
level is that the programmer doesn’t need to worry about whether there are many processors 
or just one. The program is logically divided into tasks, and if the machine has more than one 
processor, then the program runs faster, without any special adjustments.  

All this makes concurrency sound pretty simple. There is a catch: shared resources. If you 
have more than one task running that’s expecting to access the same resource, you have a 

32 Thinking in Java Bruce Eckel 



problem. For example, two processes can’t simultaneously send information to a printer. To 
solve the problem, resources that can be shared, such as the printer, must be locked while 
they are being used. So a task locks a resource, completes its task, and then releases the lock 
so that someone else can use the resource.  

Java’s concurrency is built into the language, and Java SE5 has added significant additional 
library support.  

Java and the Internet  
If Java is, in fact, yet another computer programming language, you may question why it is 
so important and why it is being promoted as a revolutionary step in computer 
programming. The answer isn’t immediately obvious if you’re coming from a traditional 
programming perspective. Although Java is very useful for solving traditional standalone 
programming problems, it is also important because it solves programming problems for the 
World Wide Web.  

What is the Web?  

The Web can seem a bit of a mystery at first, with all this talk of “surfing,” “presence,” and 
“home pages.” It’s helpful to step back and see what it really is, but to do this you must 
understand client/server systems, another aspect of computing that’s full of confusing issues.  

Client/server computing  

The primary idea of a client/server system is that you have a central repository of 
information— some kind of data, usually in a database—that you want to distribute on 
demand to some set of people or machines. A key to the client/server concept is that the 
repository of information is centrally located so that it can be changed and so that those 
changes will propagate out to the information consumers. Taken together, the information 
repository, the software that distributes the information, and the machine(s) where the 
information and software reside are called “the server.” The software that resides on the 
consumer machine, communicates with the server, fetches the information, processes it, and 
then displays it on the consumer machine is called the client.  

The basic concept of client/server computing, then, is not so complicated. The problems arise 
because you have a single server trying to serve many clients at once. Generally, a database 
management system is involved, so the designer “balances” the layout of data into tables for 
optimal use. In addition, systems often allow a client to insert new information into a server. 
This means you must ensure that one client’s new data doesn’t walk over another client’s new 
data, or that data isn’t lost in the process of adding it to the database (this is called 
transaction processing). As client software changes, it must be built, debugged, and installed 
on the client machines, which turns out to be more complicated and expensive than you 
might think. It’s especially problematic to support multiple types of computers and operating 
systems. Finally, there’s the all-important performance issue: You might have hundreds of 
clients making requests of your server at any moment, so a small delay can be critical. To 
minimize latency, programmers work hard to offload processing tasks, often to the client 
machine, but sometimes to other machines at the server site, using so-called middleware. 
(Middleware is also used to improve maintainability.)  

The simple idea of distributing information has so many layers of complexity that the whole 
problem can seem hopelessly enigmatic. And yet it’s crucial: Client/server computing 
accounts for roughly half of all programming activities. It’s responsible for everything from 
taking orders and credit-card transactions to the distribution of any kind of data—stock 
market, scientific, government, you name it. What we’ve come up with in the past is 

Introduction to Objects 33 



individual solutions to individual problems, inventing a new solution each time. These were 
hard to create and hard to use, and the user had to learn a new interface for each one. The 
entire client/server problem needed to be solved in a big way.  

The Web as a giant server  

The Web is actually one giant client/server system. It’s a bit worse than that, since you have 
all the servers and clients coexisting on a single network at once. You don’t need to know 
that, because all you care about is connecting to and interacting with one server at a time 
(even though you might be hopping around the world in your search for the correct server).  

Initially it was a simple one-way process. You made a request of a server and it handed you a 
file, which your machine’s browser software (i.e., the client) would interpret by formatting 
onto your local machine. But in short order people began wanting to do more than just 
deliver pages from a server. They wanted full client/server capability so that the client could 
feed information back to the server, for example, to do database lookups on the server, to add 
new information to the server, or to place an order (which requires special security 
measures). These are the changes we’ve been seeing in the development of the Web.  

The Web browser was a big step forward: the concept that one piece of information can be 
displayed on any type of computer without change. However, the original browsers were still 
rather primitive and rapidly bogged down by the demands placed on them. They weren’t 
particularly interactive, and tended to clog up both the server and the Internet because 
whenever you needed to do something that required programming you had to send 
information back to the server to be processed. It could take many seconds or minutes to find 
out you had misspelled something in your request. Since the browser was just a viewer it 
couldn’t perform even the simplest computing tasks. (On the other hand, it was safe, because 
it couldn’t execute any programs on your local machine that might contain bugs or viruses.)  

To solve this problem, different approaches have been taken. To begin with, graphics 
standards have been enhanced to allow better animation and video within browsers. The 
remainder of the problem can be solved only by incorporating the ability to run programs on 
the client end, under the browser. This is called client-side programming.  

Client-side programming  

The Web’s initial server-browser design provided for interactive content, but the interactivity 
was completely provided by the server. The server produced static pages for the client 
browser, which would simply interpret and display them. Basic HyperText Markup 
Language (HTML) contains simple mechanisms for data gathering: text-entry boxes, check 
boxes, radio boxes, lists and dropdown lists, as well as a button that could only be 
programmed to reset the data on the form or “submit” the data on the form back to the 
server. This submission passes through the Common Gateway Interface (CGI) provided on 
all Web servers. The text within the submission tells CGI what to do with it. The most 
common action is to run a program located on the server in a directory that’s typically called 
“cgi-bin.” (If you watch the address window at the top of your browser when you push a 
button on a Web page, you can sometimes see “cgi-bin” within all the gobbledygook there.) 
These programs can be written in most languages. Perl has been a common choice because it 
is designed for text manipulation and is interpreted, so it can be installed on any server 
regardless of processor or operating system. However, Python (www.Python.org) has been 
making inroads because of its greater power and simplicity.  

Many powerful Web sites today are built strictly on CGI, and you can in fact do nearly 
anything with CGI. However, Web sites built on CGI programs can rapidly become overly 
complicated to maintain, and there is also the problem of response time. The response of a 
CGI program depends on how much data must be sent, as well as the load on both the server 
and the Internet. (On top of this, starting a CGI program tends to be slow.) The initial 

34 Thinking in Java Bruce Eckel 



designers of the Web did not foresee how rapidly this bandwidth would be exhausted for the 
kinds of applications people developed. For example, any sort of dynamic graphing is nearly 
impossible to perform with consistency because a Graphics Interchange Format (GIF) file 
must be created and moved from the server to the client for each version of the graph. In 
addition, you’ve no doubt experienced the process of data validation for a Web input form. 
You press the submit button on a page; the data is shipped back to the server; the server 
starts a CGI program that discovers an error, formats an HTML page informing you of the 
error, and then sends the page back to you; you must then back up a page and try again. Not 
only is this slow, it’s inelegant.  

The solution is client-side programming. Most desktop computers that run Web browsers are 
powerful engines capable of doing vast work, and with the original static HTML approach 
they are sitting there, just idly waiting for the server to dish up the next page. Client-side 
programming means that the Web browser is harnessed to do whatever work it can, and the 
result for the user is a much speedier and more interactive experience at your Web site.  

The problem with discussions of client-side programming is that they aren’t very different 
from discussions of programming in general. The parameters are almost the same, but the 
platform is different; a Web browser is like a limited operating system. In the end, you must 
still program, and this accounts for the dizzying array of problems and solutions produced by 
client-side programming. The rest of this section provides an overview of the issues and 
approaches in client-side programming.  

Plug-ins  

One of the most significant steps forward in client-side programming is the development of 
the plug-in. This is a way for a programmer to add new functionality to the browser by 
downloading a piece of code that plugs itself into the appropriate spot in the browser. It tells 
the browser, “From now on you can perform this new activity.” (You need to download the 
plug-in only once.) Some fast and powerful behavior is added to browsers via plug-ins, but 
writing a plug-in is not a trivial task, and isn’t something you’d want to do as part of the 
process of building a particular site. The value of the plug-in for client-side programming is 
that it allows an expert programmer to develop extensions and add those extensions to a 
browser without the permission of the browser manufacturer. Thus, plug-ins provide a “back 
door” that allows the creation of new client-side programming languages (although not all 
languages are implemented as plug-ins).  

Scripting languages  

Plug-ins resulted in the development of browser scripting languages. With a scripting 
language, you embed the source code for your client-side program directly into the HTML 
page, and the plug-in that interprets that language is automatically activated while the HTML 
page is being displayed. Scripting languages tend to be reasonably easy to understand and, 
because they are simply text that is part of an HTML page, they load very quickly as part of 
the single server hit required to procure that page. The trade-off is that your code is exposed 
for everyone to see (and steal). Generally, however, you aren’t doing amazingly sophisticated 
things with scripting languages, so this is not too much of a hardship.  

One scripting language that you can expect a Web browser to support without a plug-in is 
JavaScript (this has only a passing resemblance to Java and you’ll have to climb an additional 
learning curve to use it. It was named that way just to grab some of Java’s marketing 
momentum). Unfortunately, most Web browsers originally implemented JavaScript in a 
different way from the other Web browsers, and even from other versions of themselves. The 
standardization of JavaScript in the form of ECMAScript has helped, but it has taken a long 
time for the various browsers to catch up (and it didn’t help that Microsoft was pushing its 
own agenda in the form of VBScript, which also had vague similarities to JavaScript). In 
general, you must program in a kind of least-common-denominator form of JavaScript in 

Introduction to Objects 35 



order to be able to run on all browsers. Dealing with errors and debugging JavaScript can 
only be described as a mess. As proof of its difficulty, only recently has anyone created a truly 
complex piece of JavaScript (Google, in GMail), and that required excessive dedication and 
expertise.  

This points out that the scripting languages used inside Web browsers are really intended to 
solve specific types of problems, primarily the creation of richer and more interactive 
graphical user interfaces (GUIs). However, a scripting language might solve 80 percent of the 
problems encountered in client-side programming. Your problems might very well fit 
completely within that 80 percent, and since scripting languages can allow easier and faster 
development, you should probably consider a scripting language before looking at a more 
involved solution such as Java programming.  

Java  

If a scripting language can solve 80 percent of the client-side programming problems, what 
about the other 20 percent—the “really hard stuff”? Java is a popular solution for this. Not 
only is it a powerful programming language built to be secure, cross-platform, and 
international, but Java is being continually extended to provide language features and 
libraries that elegantly handle problems that are difficult in traditional programming 
languages, such as concurrency, database access, network programming, and distributed 
computing. Java allows client-side programming via the applet and with Java Web Start.  

An applet is a mini-program that will run only under a Web browser. The applet is 
downloaded automatically as part of a Web page (just as, for example, a graphic is 
automatically downloaded). When the applet is activated, it executes a program. This is part 
of its beauty—it provides you with a way to automatically distribute the client software from 
the server at the time the user needs the client software, and no sooner. The user gets the 
latest version of the client software without fail and without difficult reinstallation. Because 
of the way Java is designed, the programmer needs to create only a single program, and that 
program automatically works with all computers that have browsers with built-in Java 
interpreters. (This safely includes the vast majority of machines.) Since Java is a full-fledged 
programming language, you can do as much work as possible on the client before and after 
making requests of the server. For example, you won’t need to send a request form across the 
Internet to discover that you’ve gotten a date or some other parameter wrong, and your client 
computer can quickly do the work of plotting data instead of waiting for the server to make a 
plot and ship a graphic image back to you. Not only do you get the immediate win of speed 
and responsiveness, but the general network traffic and load on servers can be reduced, 
preventing the entire Internet from slowing down.  

Alternatives  

To be honest, Java applets have not particularly lived up to their initial fanfare. When Java 
first appeared, what everyone seemed most excited about was applets, because these would 
finally allow serious client-side programmability, to increase responsiveness and decrease 
bandwidth requirements for Internet-based applications. People envisioned vast 
possibilities.  

Indeed, you can find some very clever applets on the Web. But the overwhelming move to 
applets never happened. The biggest problem was probably that the 10 MB download 
necessary to install the Java Runtime Environment (JRE) was too scary for the average user. 
The fact that Microsoft chose not to include the JRE with Internet Explorer may have sealed 
its fate. In any event, Java applets didn’t happen on a large scale.  

Nonetheless, applets and Java Web Start applications are still valuable in some situations. 
Anytime you have control over user machines, for example within a corporation, it is 

36 Thinking in Java Bruce Eckel 



reasonable to distribute and update client applications using these technologies, and this can 
save considerable time, effort, and money, especially if you need to do frequent updates.  

In the Graphical User Interfaces chapter, we will look at one promising new technology, 
Macromedia’s Flex, which allows you to create Flash-based applet-equivalents. Because the 
Flash Player is available on upwards of 98 percent of all Web browsers (including Windows, 
Linux and the Mac) it can be considered an accepted standard. Installing or upgrading the 
Flash Player is quick and easy. The ActionScript language is based on ECMAScript so it is 
reasonably familiar, but Flex allows you to program without worrying about browser 
specifics—thus it is far more attractive than JavaScript. For client-side programming, this is 
an alternative worth considering.  

.NET and C#  

For a while, the main competitor to Java applets was Microsoft’s ActiveX, although that 
required that the client be running Windows. Since then, Microsoft has produced a full 
competitor to Java in the form of the .NET platform and the C# programming language. The 
.NET platform is roughly the same as the Java Virtual Machine (JVM; the software platform 
on which Java programs execute) and Java libraries, and C# bears unmistakable similarities 
to Java. This is certainly the best work that Microsoft has done in the arena of programming 
languages and programming environments. Of course, they had the considerable advantage 
of being able to see what worked well and what didn’t work so well in Java, and build upon 
that, but build they have. This is the first time since its inception that Java has had any real 
competition. As a result, the Java designers at Sun have taken a hard look at C# and why 
programmers might want to move to it, and have responded by making fundamental 
improvements to Java in Java SE5.  

Currently, the main vulnerability and important question concerning .NET is whether 
Microsoft will allow it to be completely ported to other platforms. They claim there’s no 
problem doing this, and the Mono project (www.go-mono.com) has a partial 
implementation of .NET working on Linux, but until the implementation is complete and 
Microsoft has not decided to squash any part of it, .NET as a cross-platform solution is still a 
risky bet.  

Internet vs. intranet  

The Web is the most general solution to the client/server problem, so it makes sense to use 
the same technology to solve a subset of the problem, in particular the classic client/server 
problem within a company. With traditional client/server approaches you have the problem 
of multiple types of client computers, as well as the difficulty of installing new client software, 
both of which are handily solved with Web browsers and client-side programming. When 
Web technology is used for an information network that is restricted to a particular company, 
it is referred to as an intranet. Intranets provide much greater security than the Internet, 
since you can physically control access to the servers within your company. In terms of 
training, it seems that once people understand the general concept of a browser it’s much 
easier for them to deal with differences in the way pages and applets look, so the learning 
curve for new kinds of systems seems to be reduced.  

The security problem brings us to one of the divisions that seems to be automatically forming 
in the world of client-side programming. If your program is running on the Internet, you 
don’t know what platform it will be working under, and you want to be extra careful that you 
don’t disseminate buggy code. You need something cross-platform and secure, like a 
scripting language or Java.  

If you’re running on an intranet, you might have a different set of constraints. It’s not 
uncommon that your machines could all be Intel/Windows platforms. On an intranet, you’re 
responsible for the quality of your own code and can repair bugs when they’re discovered. In 

Introduction to Objects 37 



addition, you might already have a body of legacy code that you’ve been using in a more 
traditional client/server approach, whereby you must physically install client programs every 
time you do an upgrade. The time wasted in installing upgrades is the most compelling 
reason to move to browsers, because upgrades are invisible and automatic (Java Web Start is 
also a solution to this problem). If you are involved in such an intranet, the most sensible 
approach to take is the shortest path that allows you to use your existing code base, rather 
than trying to recode your programs in a new language.  

When faced with this bewildering array of solutions to the client-side programming problem, 
the best plan of attack is a cost-benefit analysis. Consider the constraints of your problem 
and what would be the shortest path to your solution. Since client-side programming is still 
programming, it’s always a good idea to take the fastest development approach for your 
particular situation. This is an aggressive stance to prepare for inevitable encounters with the 
problems of program development.  

Server-side programming  

This whole discussion has ignored the issue of server-side programming, which is arguably 
where Java has had its greatest success. What happens when you make a request of a server? 
Most of the time the request is simply “Send me this file.” Your browser then interprets the 
file in some appropriate fashion: as an HTML page, a graphic image, a Java applet, a script 
program, etc.  

A more complicated request to a server generally involves a database transaction. A common 
scenario involves a request for a complex database search, which the server then formats into 
an HTML page and sends to you as the result. (Of course, if the client has more intelligence 
via Java or a scripting language, the raw data can be sent and formatted at the client end, 
which will be faster and less load on the server.) Or you might want to register your name in a 
database when you join a group or place an order, which will involve changes to that 
database. These database requests must be processed via some code on the server side, which 
is generally referred to as server-side programming. Traditionally, server-side programming 
has been performed using Perl, Python, C++, or some other language to create CGI 
programs, but more sophisticated systems have since appeared. These include Java-based 
Web servers that allow you to perform all your server-side programming in Java by writing 
what are called servlets. Servlets and their offspring, JSPs, are two of the most compelling 
reasons that companies that develop Web sites are moving to Java, especially because they 
eliminate the problems of dealing with differently abled browsers. Server-side programming 
topics are covered in Thinking in Enterprise Java at www.MindView.net.  

Despite all this talk about Java on the Internet, it is a general-purpose programming 
language that can solve the kinds of problems that you can solve with other languages. Here, 
Java’s strength is not only in its portability, but also its programmability, its robustness, its 
large, standard library and the numerous third-party libraries that are available and that 
continue to be developed.  

Summary  
You know what a procedural program looks like: data definitions and function calls. To find 
the meaning of such a program, you must work at it, looking through the function calls and 
low-level concepts to create a model in your mind. This is the reason we need intermediate 
representations when designing procedural programs—by themselves, these programs tend 
to be confusing because the terms of expression are oriented more toward the computer than 
to the problem you’re solving.  

Because OOP adds many new concepts on top of what you find in a procedural language, 
your natural assumption may be that the resulting Java program will be far more 

38 Thinking in Java Bruce Eckel 



Introduction to Objects 39 

complicated than the equivalent procedural program. Here, you’ll be pleasantly surprised: A 
well-written Java program is generally far simpler and much easier to understand than a 
procedural program. What you’ll see are the definitions of the objects that represent concepts 
in your problem space (rather than the issues of the computer representation) and messages 
sent to those objects to represent the activities in that space. One of the delights of object-
oriented programming is that, with a well-designed program, it’s easy to understand the code 
by reading it. Usually, there’s a lot less code as well, because many of your problems will be 
solved by reusing existing library code.  

OOP and Java may not be for everyone. It’s important to evaluate your own needs and decide 
whether Java will optimally satisfy those needs, or if you might be better off with another 
programming system (including the one you’re currently using). If you know that your needs 
will be very specialized for the foreseeable future and if you have specific constraints that 
may not be satisfied by Java, then you owe it to yourself to investigate the alternatives (in 
particular, I recommend looking at Python; see www.Python.org). If you still choose Java as 
your language, you’ll at least understand what the options were and have a clear vision of 
why you took that direction.  





Everything  
Is an Object  

“If we spoke a different language, we would perceive a somewhat  
different world.”  

Ludwig Wittgenstein (1889-1951)  
 
Although it is based on C++, Java is more of a “pure” object-oriented 
language.  
 
Both C++ and Java are hybrid languages, but in Java the designers felt that the hybridization 
was not as important as it was in C++. A hybrid language allows multiple programming 
styles; the reason C++ is hybrid is to support backward compatibility with the C language. 
Because C++ is a superset of the C language, it includes many of that language’s undesirable 
features, which can make some aspects of C++ overly complicated.  
 
The Java language assumes that you want to do only object-oriented programming. This 
means that before you can begin you must shift your mindset into an object-oriented world 
(unless it’s already there). The benefit of this initial effort is the ability to program in a 
language that is simpler to learn and to use than many other OOP languages. In this chapter 
you’ll see the basic components of a Java program and learn that (almost) everything in Java 
is an object.  

You manipulate objects  
with references  

Each programming language has its own means of manipulating elements in memory. 
Sometimes the programmer must be constantly aware of what type of manipulation is going 
on. Are you manipulating the element directly, or are you dealing with some kind of indirect 
representation (a pointer in C or C++) that must be treated with a special syntax?  

All this is simplified in Java. You treat everything as an object, using a single consistent 
syntax. Although you treat everything as an object, the identifier you manipulate is actually a 
“reference” to an object.1 You might imagine a television (the object) and a remote control 
(the reference). As long as you’re holding this reference, you have a connection to the 
television, but when someone says, “Change the channel” or “Lower the volume,” what you’re 
manipulating is the reference, which in turn modifies the object. If you want to move around 

                                                            

1 This can be a flashpoint. There are those who say, “Clearly, it’s a pointer,” but this presumes an underlying 
implementation. Also, Java references are much more akin to C++ references than to pointers in their syntax. In the 1st 
edition of this book, I chose to invent a new term, “handle,” because C++ references and Java references have some 
important differences. I was coming out of C++ and did not want to confuse the C++ programmers whom I assumed 
would be the largest audience for Java. In the 2nd edition, I decided that “reference” was the more commonly used term, 
and that anyone changing from C++ would have a lot more to cope with than the terminology of references, so they might 
as well jump in with both feet. However, there are people who disagree even with the term “reference.” I read in one book 
where it was “completely wrong to say that Java supports pass by reference,” because Java object identifiers (according to 
that author) are actually “object references.” And (he goes on) everything is actually pass by value. So you’re not passing 
by reference, you’re “passing an object reference by value.” One could argue for the precision of such convoluted 
explanations, but I think my approach simplifies the understanding of the concept without hurting anything (well, the 
language lawyers may claim that I’m lying to you, but I’ll say that I’m providing an appropriate abstraction). 

 



the room and still control the television, you take the remote/reference with you, not the 
television.  

Also, the remote control can stand on its own, with no television. That is, just because you 
have a reference doesn’t mean there’s necessarily an object connected to it. So if you want to 
hold a word or sentence, you create a String reference:  

String s;  

But here you’ve created only the reference, not an object. If you decided to send a message to 
s at this point, you’ll get an error because s isn’t actually attached to anything (there’s no 
television). A safer practice, then, is always to initialize a reference when you create it:  

String s = "asdf";  

However, this uses a special Java feature: Strings can be initialized with quoted text. 
Normally, you must use a more general type of initialization for objects.  

You must create  
     all the objects  

When you create a reference, you want to connect it with a new object. You do so, in general, 
with the new operator. The keyword new says, “Make me a new one of these objects.” So in 
the preceding example, you can say:  

String s = new String("asdf");  

Not only does this mean “Make me a new String,” but it also gives information about how to 
make the String by supplying an initial character string.  

Of course, Java comes with a plethora of ready-made types in addition to String. What’s 
more important is that you can create your own types. In fact, creating new types is the 
fundamental activity in Java programming, and it’s what you’ll be learning about in the rest 
of this book.  

Where storage lives  
It’s useful to visualize some aspects of how things are laid out while the program is running—
in particular how memory is arranged. There are five different places to store data:  

1. Registers. This is the fastest storage because it exists in a place different from that of 
other storage: inside the processor. However, the number of registers is severely 
limited, so registers are allocated as they are needed. You don’t have direct control, 
nor do you see any evidence in your programs that registers even exist (C & C++, on 
the other hand, allow you to suggest register allocation to the compiler).  
 

2. The stack. This lives in the general random-access memory (RAM) area, but has 
direct support from the processor via its stack pointer. The stack pointer is moved 
down to create new memory and moved up to release that memory. This is an 
extremely fast and efficient way to allocate storage, second only to registers. The Java 
system must know, while it is creating the program, the exact lifetime of all the items 
that are stored on the stack. This constraint places limits on the flexibility of your 
programs, so while some Java storage exists on the stack—in particular, object 
references—Java objects themselves are not placed on the stack.  

 

42 Thinking in Java Bruce Eckel 



Everything Is an Object 43 

3. The heap. This is a general-purpose pool of memory (also in the RAM area) where all 
Java objects live. The nice thing about the heap is that, unlike the stack, the compiler 
doesn’t need to know how long that storage must stay on the heap. Thus, there’s a 
great deal of flexibility in using storage on the heap. Whenever you need an object, you 
simply write the code to create it by using new, and the storage is allocated on the 
heap when that code is executed. Of course there’s a price you pay for this flexibility: It 
may take more time to allocate and clean up heap storage than stack storage (if you 
even could create objects on the stack in Java, as you can in C++).  

 
4. Constant storage. Constant values are often placed directly in the program code, 

which is safe since they can never change. Sometimes constants are cordoned off by 
themselves so that they can be optionally placed in read-only memory (ROM), in 
embedded systems.2 

 
5. Non-RAM storage. If data lives completely outside a program, it can exist while the 

program is not running, outside the control of the program. The two primary 
examples of this are streamed objects, in which objects are turned into streams of 
bytes, generally to be sent to another machine, and persistent objects, in which the 
objects are placed on disk so they will hold their state even when the program is 
terminated. The trick with these types of storage is turning the objects into something 
that can exist on the other medium, and yet can be resurrected into a regular RAM-
based object when necessary. Java provides support for lightweight persistence, and 
mechanisms such as JDBC and Hibernate provide more sophisticated support for 
storing and retrieving object information in databases.  

Special case: primitive types  

One group of types, which you’ll use quite often in your programming, gets special treatment. 
You can think of these as “primitive” types. The reason for the special treatment is that to 
create an object with new—especially a small, simple variable—isn’t very efficient, because 
new places objects on the heap. For these types Java falls back on the approach taken by C 
and C++. That is, instead of creating the variable by using new, an “automatic” variable is 
created that is not a reference. The variable holds the value directly, and it’s placed on the 
stack, so it’s much more efficient.  

Java determines the size of each primitive type. These sizes don’t change from one machine 
architecture to another as they do in most languages. This size invariance is one reason Java 
programs are more portable than programs in most other languages.  

Primitive 
type  

Size  Minimum  Maximum  Wrapper type  

boolean  —  —  —  Boolean  

char  16 bits  Unicode 0  Unicode 216- 1  Character  

byte  8 bits  -128  +127  Byte  

short  16 bits  -215
  +215-1  Short  

int  32 bits  -231
  +231-1  Integer  

long  64 bits  -263
  +263-1  Long  

float  32 bits  IEEE754  IEEE754  Float  

double  64 bits  IEEE754  IEEE754  Double  

void  —  —  —  Void  

                                                            
2 An example of this is the string pool. All literal strings and string-valued constant expressions are interned automatically 
and put into special static storage.  



All numeric types are signed, so don’t look for unsigned types.  

The size of the boolean type is not explicitly specified; it is only defined to be able to take 
the literal values true or false.  

The “wrapper” classes for the primitive data types allow you to make a non-primitive object 
on the heap to represent that primitive type. For example:  

char c = ‘x’;  
Character ch = new Character(c);  

Or you could also use:  

Character ch = new Character(‘x’);  

Java SE5 autoboxing will automatically convert from a primitive to a wrapper type:  

Character ch = ‘x’;  

and back:  

char c = ch;  

The reasons for wrapping primitives will be shown in a later chapter.  

High-precision numbers  

Java includes two classes for performing high-precision arithmetic: BigInteger and 
BigDecimal. Although these approximately fit into the same category as the “wrapper” 
classes, neither one has a primitive analogue.  

Both classes have methods that provide analogues for the operations that you perform on 
primitive types. That is, you can do anything with a BigInteger or BigDecimal that you 
can with an int or float, it’s just that you must use method calls instead of operators. Also, 
since there’s more involved, the operations will be slower. You’re exchanging speed for 
accuracy.  

BigInteger supports arbitrary-precision integers. This means that you can accurately 
represent integral values of any size without losing any information during operations.  

BigDecimal is for arbitrary-precision fixed-point numbers; you can use these for accurate 
monetary calculations, for example.  

Consult the JDK documentation for details about the constructors and methods you can call 
for these two classes.  

Arrays in Java  

Virtually all programming languages support some kind of arrays. Using arrays in C and C++ 
is perilous because those arrays are only blocks of memory. If a program accesses the array 
outside of its memory block or uses the memory before initialization (common programming 
errors), there will be unpredictable results.  

One of the primary goals of Java is safety, so many of the problems that plague programmers 
in C and C++ are not repeated in Java. A Java array is guaranteed to be initialized and cannot 

44 Thinking in Java Bruce Eckel 



be accessed outside of its range. The range checking comes at the price of having a small 
amount of memory overhead on each array as well as verifying the index at run time, but the 
assumption is that the safety and increased productivity are worth the expense (and Java can 
sometimes optimize these operations).  

When you create an array of objects, you are really creating an array of references, and each 
of those references is automatically initialized to a special value with its own keyword: null. 
When Java sees null, it recognizes that the reference in question isn’t pointing to an object. 
You must assign an object to each reference before you use it, and if you try to use a reference 
that’s still null, the problem will be reported at run time. Thus, typical array errors are 
prevented in Java.  

You can also create an array of primitives. Again, the compiler guarantees initialization 
because it zeroes the memory for that array.  

Arrays will be covered in detail in later chapters.  

You never need to  
     destroy an object  

In most programming languages, the concept of the lifetime of a variable occupies a 
significant portion of the programming effort. How long does the variable last? If you are 
supposed to destroy it, when should you? Confusion over variable lifetimes can lead to a lot 
of bugs, and this section shows how Java greatly simplifies the issue by doing all the cleanup 
work for you.  

Scoping  

Most procedural languages have the concept of scope. This determines both the visibility and 
lifetime of the names defined within that scope. In C, C++, and Java, scope is determined by 
the placement of curly braces {}. So for example:  

{  
  int x = 12;  
  // Only x available  
{  
  int q = 96;  
  // Both x & q available  
}  
  // Only x available  
  // q is "out of scope"  
}  

A variable defined within a scope is available only to the end of that scope.  

Any text after a ‘//’ to the end of a line is a comment.  

Indentation makes Java code easier to read. Since Java is a free-form language, the extra 
spaces, tabs, and carriage returns do not affect the resulting program.  

You cannot do the following, even though it is legal in C and C++:  

{  
  int x = 12;  
  {  

Everything Is an Object 45 



    int x = 96; // Illegal  
  }  
}  

The compiler will announce that the variable x has already been defined. Thus the C and C++ 
ability to “hide” a variable in a larger scope is not allowed, because the Java designers 
thought that it led to confusing programs.  

Scope of objects  

Java objects do not have the same lifetimes as primitives. When you create a Java object 
using new, it hangs around past the end of the scope. Thus if you use:  

{  
  String s = new String("a string");  
} // End of scope  

the reference s vanishes at the end of the scope. However, the String object that s was 
pointing to is still occupying memory. In this bit of code, there is no way to access the object 
after the end of the scope, because the only reference to it is out of scope. In later chapters 
you’ll see how the reference to the object can be passed around and duplicated during the 
course of a program.  

It turns out that because objects created with new stay around for as long as you want them, 
a whole slew of C++ programming problems simply vanish in Java. In C++ you must not only 
make sure that the objects stay around for as long as you need them, you must also destroy 
the objects when you’re done with them.  

That brings up an interesting question. If Java leaves the objects lying around, what keeps 
them from filling up memory and halting your program? This is exactly the kind of problem 
that would occur in C++. This is where a bit of magic happens. Java has a garbage collector, 
which looks at all the objects that were created with new and figures out which ones are not 
being referenced anymore. Then it releases the memory for those objects, so the memory can 
be used for new objects. This means that you never need to worry about reclaiming memory 
yourself. You simply create objects, and when you no longer need them, they will go away by 
themselves. This eliminates a certain class of programming problem: the so-called “memory 
leak,” in which a programmer forgets to release memory.  

Creating new data types: class  
If everything is an object, what determines how a particular class of object looks and 
behaves? Put another way, what establishes the type of an object? You might expect there to 
be a keyword called “type,” and that certainly would have made sense. Historically, however, 
most objectoriented languages have used the keyword class to mean “I’m about to tell you 
what a new type of object looks like.” The class keyword (which is so common that it will not 
usually be boldfaced throughout this book) is followed by the name of the new type. For 
example:  

class ATypeName { /* Class body goes here */ }  

This introduces a new type, although the class body consists only of a comment (the stars and 
slashes and what is inside, which will be discussed later in this chapter), so there is not too 
much that you can do with it. However, you can create an object of this type using new:  

ATypeName a = new ATypeName();  

46 Thinking in Java Bruce Eckel 



But you cannot tell it to do much of anything (that is, you cannot send it any interesting 
messages) until you define some methods for it.  

Fields and methods  

When you define a class (and all you do in Java is define classes, make objects of those 
classes, and send messages to those objects), you can put two types of elements in your class: 
fields (sometimes called data members), and methods (sometimes called member functions). 
A field is an object of any type that you can talk to via its reference, or a primitive type. If it is 
a reference to an object, you must initialize that reference to connect it to an actual object 
(using new, as seen earlier).  

Each object keeps its own storage for its fields; ordinary fields are not shared among objects. 
Here is an example of a class with some fields:  

class DataOnly {  
  int i;  
  double d;  
  boolean b;  
}  

This class doesn’t do anything except hold data. But you can create an object like this:  

DataOnly data = new DataOnly();  

You can assign values to the fields, but you must first know how to refer to a member of an 
object. This is accomplished by stating the name of the object reference, followed by a period 
(dot), followed by the name of the member inside the object:  

objectReference.member  

For example:  

data.i = 47;  
data.d = 1.1;  
data.b = false;  

It is also possible that your object might contain other objects that contain data you’d like to 
modify. For this, you just keep “connecting the dots.” For example:  

myPlane.leftTank.capacity = 100;  

The DataOnly class cannot do much of anything except hold data, because it has no 
methods. To understand how those work, you must first understand arguments and return 
values, which will be described shortly.  

Default values for primitive members  

When a primitive data type is a member of a class, it is guaranteed to get a default value if 
you do not initialize it:  

Primitive type  Default  

boolean  false  

char  ‘\u0000’ (null)  

Everything Is an Object 47 



48 Thinking in Java Bruce Eckel 

Primitive type  Default  

byte  (byte)0  

short  (short)0  

int  0  

long  0L  

float 0.0f 

double 0.0d 

The default values are only what Java guarantees when the variable is used as a member of a 
class. This ensures that member variables of primitive types will always be initialized 
(something C++ doesn’t do), reducing a source of bugs. However, this initial value may not 
be correct or even legal for the program you are writing. It’s best to always explicitly initialize 
your variables.  

This guarantee doesn’t apply to local variables—those that are not fields of a class. Thus, if 
within a method definition you have: 

int x; 

Then x will get some arbitrary value (as in C and C++); it will not automatically be initialized 
to zero. You are responsible for assigning an appropriate value before you use x. If you forget, 
Java definitely improves on C++: You get a compile-time error telling you the variable might 
not have been initialized. (Many C++ compilers will warn you about uninitialized variables, 
but in Java these are errors.) 

Methods, arguments,  
     and return values 

In many languages (like C and C++), the term function is used to describe a named 
subroutine. The term that is more commonly used in Java is method, as in “a way to do 
something.” If you want, you can continue thinking in terms of functions. It’s really only a 
syntactic difference, but this book follows the common Java usage of the term “method.”  

Methods in Java determine the messages an object can receive. The fundamental parts of a 
method are the name, the arguments, the return type, and the body. Here is the basic form: 

ReturnType methodName( /* Argument list */ ) { 
  /* Method body */  
}  

The return type describes the value that comes back from the method after you call it. The 
argument list gives the types and names for the information that you want to pass into the 
method. The method name and argument list (which is called the signature of the method) 
uniquely identify that method.  

Methods in Java can be created only as part of a class. A method can be called only for an 
object,3 and that object must be able to perform that method call. If you try to call the wrong 
method for an object, you’ll get an error message at compile time. You call a method for an 
object by naming the object followed by a period (dot), followed by the name of the method 
and its argument list, like this:  

                                                            
3 static methods, which you’ll learn about soon, can be called for the class, without an object. 



objectName.methodName(arg1, arg2, arg3);  

For example, suppose you have a method f( ) that takes no arguments and returns a value of 
type int. Then, if you have an object called a for which f( ) can be called, you can say this:  

int x = a.f(); 

The type of the return value must be compatible with the type of x. This act of calling a 
method is commonly referred to as sending a message to an object. In the preceding 
example, the message is f( ) and the object is a. Object-oriented programming is often 
summarized as simply “sending messages to objects.”  

The argument list 

The method argument list specifies what information you pass into the method. As you might 
guess, this information—like everything else in Java—takes the form of objects. So, what you 
must specify in the argument list are the types of the objects to pass in and the name to use 
for each one. As in any situation in Java where you seem to be handing objects around, you 
are actually passing references.4 The type of the reference must be correct, however. If the 
argument is supposed to be a String, you must pass in a String or the compiler will give an 
error. Consider a method that takes a String as its argument. Here is the definition, which 
must be placed within a class definition for it to be compiled:  

int storage(String s) { 
  return s.length() * 2; 
} 

 

This method tells you how many bytes are required to hold the information in a particular 
String. (The size of each char in a String is 16 bits, or two bytes, to support Unicode 
characters.) The argument is of type String and is called s. Once s is passed into the method, 
you can treat it just like any other object. (You can send messages to it.) Here, the length( ) 
method is called, which is one of the methods for Strings; it returns the number of 
characters in a string.  

You can also see the use of the return keyword, which does two things. First, it means 
“Leave the method, I’m done.” Second, if the method produces a value, that value is placed 
right after the return statement. In this case, the return value is produced by evaluating the 
expression s.length( ) * 2.  

You can return any type you want, but if you don’t want to return anything at all, you do so by 
indicating that the method returns void. Here are some examples: 

boolean flag() { return true; } 
double naturalLogBase() { return 2.718; } 
void nothing() { return; } 
void nothing2() {} 

When the return type is void, then the return keyword is used only to exit the method, and 
is therefore unnecessary when you reach the end of the method. You can return from a 
method at any point, but if you’ve given a non-void return type, then the compiler will force 
you (with error messages) to return the appropriate type of value regardless of where you 
return.  

At this point, it can look like a program is just a bunch of objects with methods that take 
other objects as arguments and send messages to those other objects. That is indeed much of 

Everything Is an Object 49 



what goes on, but in the following chapter you’ll learn how to do the detailed low-level work 
by making decisions within a method. For this chapter, sending messages will suffice. 

Building a Java program 
There are several other issues you must understand before seeing your first Java program. 

Name visibility 

A problem in any programming language is the control of names. If you use a name in one 
module of the program, and another programmer uses the same name in another module, 
how do you distinguish one name from another and prevent the two names from “clashing”? 
In C this is a particular problem because a program is often an unmanageable sea of names. 
C++ classes (on which Java classes are based) nest functions within classes so they cannot 
clash with function names nested within other classes. However, C++ still allows global data 
and global functions, so clashing is still possible. To solve this problem, C++ introduced 
namespaces using additional keywords.  

Java was able to avoid all of this by taking a fresh approach. To produce an unambiguous 
name for a library, the Java creators want you to use your Internet domain name in reverse 
since domain names are guaranteed to be unique. Since my domain name is 
MindView.net, my utility library of foibles would be named 
net.mindview.utility.foibles. After your reversed domain name, the dots are intended to 
represent subdirectories.  

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc., were capitalized by 
convention, so the library would appear: NET.mindview.utility.foibles. Partway through 
the development of Java 2, however, it was discovered that this caused problems, so now the 
entire package name is lowercase.  

This mechanism means that all of your files automatically live in their own namespaces, and 
each class within a file must have a unique identifier—the language prevents name clashes for 
you.  

Using other components 

Whenever you want to use a predefined class in your program, the compiler must know how 
to locate it. Of course, the class might already exist in the same source-code file that it’s being 
called from. In that case, you simply use the class—even if the class doesn’t get defined until 
later in the file (Java eliminates the so-called “forward referencing” problem).  

What about a class that exists in some other file? You might think that the compiler should 
be smart enough to simply go and find it, but there is a problem. Imagine that you want to 
use a class with a particular name, but more than one definition for that class exists 
(presumably these are different definitions). Or worse, imagine that you’re writing a 
program, and as you’re building it you add a new class to your library that conflicts with the 
name of an existing class.  

To solve this problem, you must eliminate all potential ambiguities. This is accomplished by 
telling the Java compiler exactly what classes you want by using the import keyword. 
import tells the compiler to bring in a package, which is a library of classes. (In other 
languages, a library could consist of functions and data as well as classes, but remember that 
all code in Java must be written inside a class.)  

50 Thinking in Java Bruce Eckel 



Everything Is an Object 51 

Most of the time you’ll be using components from the standard Java libraries that come with 
your compiler. With these, you don’t need to worry about long, reversed domain names; you 
just say, for example:  

import java.util.ArrayList; 

to tell the compiler that you want to use Java’s ArrayList class. However, util contains a 
number of classes, and you might want to use several of them without declaring them all 
explicitly. This is easily accomplished by using ‘*’ to indicate a wild card:  

import java.util.*;  

It is more common to import a collection of classes in this manner than to import classes 
individually.  

The static keyword 

Ordinarily, when you create a class you are describing how objects of that class look and how 
they will behave. You don’t actually get an object until you create one using new, and at that 
point storage is allocated and methods become available.  

There are two situations in which this approach is not sufficient. One is if you want to have 
only a single piece of storage for a particular field, regardless of how many objects of that 
class are created, or even if no objects are created. The other is if you need a method that isn’t 
associated with any particular object of this class. That is, you need a method that you can 
call even if no objects are created.  

You can achieve both of these effects with the static keyword. When you say something is 
static, it means that particular field or method is not tied to any particular object instance of 
that class. So even if you’ve never created an object of that class you can call a static method 
or access a static field. With ordinary, non-static fields and methods, you must create an 
object and use that object to access the field or method, since non-static fields and methods 
must know the particular object they are working with.4 

Some object-oriented languages use the terms class data and class methods, meaning that 
the data and methods exist only for the class as a whole, and not for any particular objects of 
the class. Sometimes the Java literature uses these terms too.  

To make a field or method static, you simply place the keyword before the definition. For 
example, the following produces a static field and initializes it:  

class StaticTest { 
  static int i = 47; 
} 

Now even if you make two StaticTest objects, there will still be only one piece of storage for 
StaticTest.i. Both objects will share the same i. Consider: 

StaticTest st1 = new StaticTest(); 
StaticTest st2 = new StaticTest(); 

                                                            
4 Of course, since static methods don’t need any objects to be created before they are used, they cannot directly access 
non-static members or methods by simply calling those other members without referring to a named object (since non-
static members and methods must be tied to a particular object). 



At this point, both st1.i and st2.i have the same value of 47 since they refer to the same piece 
of memory. 

There are two ways to refer to a static variable. As the preceding example indicates, you can 
name it via an object, by saying, for example, st2.i. You can also refer to it directly through 
its class name, something you cannot do with a non-static member.  

StaticTest.i++; 

The ++ operator adds one to the variable. At this point, both st1.i and st2.i will have the 
value 48.  

Using the class name is the preferred way to refer to a static variable. Not only does it 
emphasize that variable’s static nature, but in some cases it gives the compiler better 
opportunities for optimization.  

Similar logic applies to static methods. You can refer to a static method either through an 
object as you can with any method, or with the special additional syntax 
ClassName.method( ). You define a static method in a similar way:  

class Incrementable { 
  static void increment() { StaticTest.i++; } 
} 

You can see that the Incrementable method increment( ) increments the static data i 
using the ++ operator. You can call increment( ) in the typical way, through an object: 

Incrementable sf = new Incrementable(); 
sf.increment(); 

Or, because increment( ) is a static method, you can call it directly through its class: 

Incrementable.increment(); 

Although static, when applied to a field, definitely changes the way the data is created (one 
for each class versus the non-static one for each object), when applied to a method it’s not so 
dramatic. An important use of static for methods is to allow you to call that method without 
creating an object. This is essential, as you will see, in defining the main( ) method that is 
the entry point for running an application.  

Your first Java program 
Finally, here’s the first complete program. It starts by printing a string, and then the date, 
using the Date class from the Java standard library. 

 
// HelloDate.java 
import java.util.*; 
public class HelloDate { 
  public static void main(String[] args) { 
    System.out.println("Hello, it’s: "); 
    System.out.println(new Date()); 
  } 
} 

52 Thinking in Java Bruce Eckel 



Everything Is an Object 53 

At the beginning of each program file, you must place any necessary import statements to 
bring in extra classes you’ll need for the code in that file. Note that I say “extra”. That’s 
because there’s a certain library of classes that are automatically brought into every Java file: 
java.lang. Start up your Web browser and look at the documentation from Sun. (If you 
haven’t downloaded the JDK documentation from http://java.sun.com, do so now.5 Note 
that this documentation doesn’t come packed with the JDK; you must do a separate 
download to get it.) If you look at the list of the packages, you’ll see all the different class 
libraries that come with Java. Select java.lang. This will bring up a list of all the classes that 
are part of that library. Since java.lang is implicitly included in every Java code file, these 
classes are automatically available. There’s no Date class listed in java.lang, which means 
you must import another library to use that. If you don’t know the library where a particular 
class is, or if you want to see all of the classes, you can select “Tree” in the Java 
documentation. Now you can find every single class that comes with Java. Then you can use 
the browser’s “find” function to find Date. When you do you’ll see it listed as 
java.util.Date, which lets you know that it’s in the util library and that you must import 
java.util.* in order to use Date.  

If you go back to the beginning, select java.lang and then System, you’ll see that the 
System class has several fields, and if you select out, you’ll discover that it’s a static 
PrintStream object. Since it’s static, you don’t need to create anything with new. The out 
object is always there, and you can just use it. What you can do with this out object is 
determined by its type: PrintStream. Conveniently, PrintStream is shown in the 
description as a hyperlink, so if you click on that, you’ll see a list of all the methods you can 
call for PrintStream. There are quite a few, and these will be covered later in the book. For 
now all we’re interested in is println( ), which in effect means “Print what I’m giving you 
out to the console and end with a newline.” Thus, in any Java program you write you can 
write something like this:  

System.out.println("A String of things"); 

whenever you want to display information to the console.  

The name of the class is the same as the name of the file. When you’re creating a standalone 
program such as this one, one of the classes in the file must have the same name as the file. 
(The compiler complains if you don’t do this.) That class must contain a method called 
main( ) with this signature and return type:  

public static void main(String[] args) { 

The public keyword means that the method is available to the outside world (described in 
detail in the Access Control chapter). The argument to main( ) is an array of String objects. 
The args won’t be used in this program, but the Java compiler insists that they be there 
because they hold the arguments from the command line.  

The line that prints the date is quite interesting:  

System.out.println(new Date()); 

The argument is a Date object that is being created just to send its value (which is 
automatically converted to a String) to println( ). As soon as this statement is finished, 
that Date is unnecessary, and the garbage collector can come along and get it anytime. We 
don’t need to worry about cleaning it up.  

                                                            
5 The Java compiler and documentation from Sun tend to change regularly, and the best place to get them is directly from 
Sun. By downloading it yourself, you will get the most recent version. 



54 Thinking in Java Bruce Eckel 

When you look at the JDK documentation from http://java.sun.com, you will see that 
System has many other methods that allow you to produce interesting effects (one of Java’s 
most powerful assets is its large set of standard libraries). For example:  

//: object/ShowProperties.java 
 
public class ShowProperties { 
  public static void main(String[] args) { 
    System.getProperties().list(System.out); 
    System.out.println(System.getProperty("user.name")); 
    System.out.println( 
    System.getProperty("java.library.path")); 
  } 
} ///:~ 

The first line in main( ) displays all of the “properties” from the system where you are 
running the program, so it gives you environment information. The list( ) method sends the 
results to its argument, System.out. You will see later in the book that you can send the 
results elsewhere, to a file, for example. You can also ask for a specific property—in this case, 
the user name and java.library.path. (The unusual comments at the beginning and end 
will be explained a little later.)  

Compiling and running 

To compile and run this program, and all the other programs in this book, you must first 
have a Java programming environment. There are a number of third-party development 
environments, but in this book I will assume that you are using the Java Developer’s Kit 
(JDK) from Sun, which is free. If you are using another development system,6 you will need 
to look in the documentation for that system to determine how to compile and run programs.  

Get on the Internet and go to http://java.sun.com. There you will find information and links 
that will lead you through the process of downloading and installing the JDK for your 
particular platform.  

Once the JDK is installed, and you’ve set up your computer’s path information so that it will 
find javac and java, download and unpack the source code for this book (you can find it at 
www.MindView.net). This will create a subdirectory for each chapter in this book. Move to 
the subdirectory named objects and type:  

javac HelloDate.java 

This command should produce no response. If you get any kind of an error message, it means 
you haven’t installed the JDK properly and you need to investigate those problems.  

On the other hand, if you just get your command prompt back, you can type:  

java HelloDate 

and you’ll get the message and the date as output.  

This is the process you can use to compile and run each of the programs in this book. 
However, you will see that the source code for this book also has a file called build.xml in 
each chapter, and this contains “Ant” commands for automatically building the files for that 

                                                            
6 IBM’s “jikes” compiler is a common alternative, as it is significantly faster than Sun’s javac (although if you’re building 
groups of files using Ant, there’s not too much of a difference). There are also open-source projects to create Java 
compilers, runtime environments, and libraries. 



chapter. Buildfiles and Ant (including where to download it) are described more fully in the 
supplement you will find at http://MindView.net/Books/BetterJava, but once you have Ant 
installed (from http://jakarta.apache.org/ant) you can just type ‘ant’ at the command 
prompt to compile and run the programs in each chapter. If you haven’t installed Ant yet, you 
can just type the javac and java commands by hand.  

Comments and embedded 
documentation 

There are two types of comments in Java. The first is the traditional C-style comment that 
was inherited by C++. These comments begin with a /* and continue, possibly across many 
lines, until a */. Note that many programmers will begin each line of a continued comment 
with a *, so you’ll often see:  

/* This is a comment 
 * that continues 
 * across lines 
 */ 

Remember, however, that everything inside the /* and */ is ignored, so there’s no difference 
in saying: 

/* This is a comment that 
continues across lines */ 

The second form of comment comes from C++. It is the single-line comment, which starts 
with a // and continues until the end of the line. This type of comment is convenient and 
commonly used because it’s easy. You don’t need to hunt on the keyboard to find / and then * 
(instead, you just press the same key twice), and you don’t need to close the comment. So you 
will often see:  

// This is a one-line comment 

Comment documentation 

Possibly the biggest problem with documenting code has been maintaining that 
documentation. If the documentation and the code are separate, it becomes tedious to 
change the documentation every time you change the code. The solution seems simple: Link 
the code to the documentation. The easiest way to do this is to put everything in the same file. 
To complete the picture, however, you need a special comment syntax to mark the 
documentation and a tool to extract those comments and put them in a useful form. This is 
what Java has done.  

The tool to extract the comments is called Javadoc, and it is part of the JDK installation. It 
uses some of the technology from the Java compiler to look for special comment tags that you 
put in your programs. It not only extracts the information marked by these tags, but it also 
pulls out the class name or method name that adjoins the comment. This way you can get 
away with the minimal amount of work to generate decent program documentation.  

The output of Javadoc is an HTML file that you can view with your Web browser. Thus, 
Javadoc allows you to create and maintain a single source file and automatically generate 
useful documentation. Because of Javadoc, you have a straightforward standard for creating 
documentation, so you can expect or even demand documentation with all Java libraries.  

Everything Is an Object 55 



In addition, you can write your own Javadoc handlers, called doclets, if you want to perform 
special operations on the information processed by Javadoc (to produce output in a different 
format, for example). Doclets are introduced in the supplement at 
http://MindView.net/Books/BetterJava.  

What follows is only an introduction and overview of the basics of Javadoc. A thorough 
description can be found in the JDK documentation. When you unpack the documentation, 
look in the “tooldocs” subdirectory (or follow the “tooldocs” link).  

Syntax 

All of the Javadoc commands occur only within /** comments. The comments end with */ as 
usual. There are two primary ways to use Javadoc: Embed HTML or use “doc tags.” 
Standalone doc tags are commands that start with an ‘@’ and are placed at the beginning of 
a comment line. (A leading ‘*’, however, is ignored.) Inline doc tags can appear anywhere 
within a Javadoc comment and also start with an ‘@’ but are surrounded by curly braces.  

There are three “types” of comment documentation, which correspond to the element the 
comment precedes: class, field, or method. That is, a class comment appears right before the 
definition of a class, a field comment appears right in front of the definition of a field, and a 
method comment appears right in front of the definition of a method. As a simple example:  

//: object/Documentation1.java 
/** A class comment */ 
public class Documentation1 { 
  /** A field comment */ 
  public int i; 
  /** A method comment */ 
  public void f() {} 
} ///:~ 

Note that Javadoc will process comment documentation for only public and protected 
members. Comments for private and package-access members (see the Access Control 
chapter) are ignored, and you’ll see no output. (However, you can use the -private flag to 
include private members as well.) This makes sense, since only public and protected 
members are available outside the file, which is the client programmer’s perspective.  

The output for the preceding code is an HTML file that has the same standard format as all 
the rest of the Java documentation, so users will be comfortable with the format and can 
easily navigate your classes. It’s worth entering the preceding code, sending it through 
Javadoc, and viewing the resulting HTML file to see the results.  

Embedded HTML 

Javadoc passes HTML commands through to the generated HTML document. This allows 
you full use of HTML; however, the primary motive is to let you format code, such as: 

//: object/Documentation2.java 
/** 
* <pre> 
* System.out.println(new Date()); 
* </pre> 
*/ 
///:~ 

You can also use HTML just as you would in any other Web document to format the regular 
text in your descriptions: 

56 Thinking in Java Bruce Eckel 



//: object/Documentation3.java 
/** 
* You can <em>even</em> insert a list: 
* <ol> 
* <li> Item one 
* <li> Item two 
* <li> Item three 
* </ol> 
*/ 
///:~ 

Note that within the documentation comment, asterisks at the beginning of a line are thrown 
away by Javadoc, along with leading spaces. Javadoc reformats everything so that it 
conforms to the standard documentation appearance. Don’t use headings such as <h1> or 
<hr> as embedded HTML, because Javadoc inserts its own headings and yours will interfere 
with them.  

All types of comment documentation—class, field, and method—can support embedded 
HTML.  

Some example tags 

Here are some of the Javadoc tags available for code documentation. Before trying to do 
anything serious using Javadoc, you should consult the Javadoc reference in the JDK 
documentation to learn all the different ways that you can use Javadoc.  

@see 

This tag allows you to refer to the documentation in other classes. Javadoc will generate 
HTML with the @see tags hyperlinked to the other documentation. The forms are:  

@see classname 
@see fully-qualified-classname 
@see fully-qualified-classname#method-name 

Each one adds a hyperlinked “See Also” entry to the generated documentation. Javadoc will 
not check the hyperlinks you give it to make sure they are valid.  

{@link package.class#member label} 

Very similar to @see, except that it can be used inline and uses the label as the hyperlink text 
rather than “See Also.” 

{@docRoot} 

Produces the relative path to the documentation root directory. Useful for explicit 
hyperlinking to pages in the documentation tree. 

{@inheritDoc} 

Inherits the documentation from the nearest base class of this class into the current doc 
comment. 

 

Everything Is an Object 57 



@version 

This is of the form: 

@version version-information 

in which version-information is any significant information you see fit to include. When 
the - version flag is placed on the Javadoc command line, the version information will be 
called out specially in the generated HTML documentation. 

@author 

This is of the form: 

@author author-information 

in which author-information is, presumably, your name, but it could also include your 
email address or any other appropriate information. When the -author flag is placed on the 
Javadoc command line, the author information will be called out specially in the generated 
HTML documentation.  

You can have multiple author tags for a list of authors, but they must be placed consecutively. 
All the author information will be lumped together into a single paragraph in the generated 
HTML.  

@since 

This tag allows you to indicate the version of this code that began using a particular feature. 
You’ll see it appearing in the HTML Java documentation to indicate what version of the JDK 
is used.  

@param 

This is used for method documentation, and is of the form: 

@param parameter-name description 

in which parameter-name is the identifier in the method parameter list, and description 
is text that can continue on subsequent lines. The description is considered finished when a 
new documentation tag is encountered. You can have any number of these, presumably one 
for each parameter.  

@return 

This is used for method documentation, and looks like this: 

@return description 

in which description gives you the meaning of the return value. It can continue on 
subsequent lines. 

 

58 Thinking in Java Bruce Eckel 



@throws 

Exceptions will be demonstrated in the Error Handling with Exceptions chapter. Briefly, 
they are objects that can be “thrown” out of a method if that method fails. Although only one 
exception object can emerge when you call a method, a particular method might produce any 
number of different types of exceptions, all of which need descriptions. So the form for the 
exception tag is:  

@throws fully-qualified-class-name description 

in which fully-qualified-class-name gives an unambiguous name of an exception class that’s 
defined somewhere, and description (which can continue on subsequent lines) tells you why 
this particular type of exception can emerge from the method call.  

@deprecated 

This is used to indicate features that were superseded by an improved feature. The 
deprecated tag is a suggestion that you no longer use this particular feature, since sometime 
in the future it is likely to be removed. A method that is marked @deprecated causes the 
compiler to issue a warning if it is used. In Java SE5, the @deprecated Javadoc tag has 
been superseded by the @Deprecated annotation (you’ll learn about these in the 
Annotations chapter).  

Documentation example 

Here is the first Java program again, this time with documentation comments added: 

//: object/HelloDate.java 
import java.util.*; 
 
/** The first Thinking in Java example program. 
 * Displays a string and today’s date. 
 * @author Bruce Eckel 
 * @author www.MindView.net 
 * @version 4.0 
*/ 
public class HelloDate { 
  /** Entry point to class & application. 
   * @param args array of string arguments 
   * @throws exceptions No exceptions thrown 
  */ 
  public static void main(String[] args) { 
    System.out.println("Hello, it’s: "); 
    System.out.println(new Date()); 
  } 
} /* Output: (55% match) 
Hello, it’s: 
Wed Oct 05 14:39:36 MDT 2005 
*///:~ 

The first line of the file uses my own technique of putting a ‘//:’ as a special marker for the 
comment line containing the source file name. That line contains the path information to the 
file (object indicates this chapter) followed by the file name. The last line also finishes with a 
comment, and this one (‘///:~’) indicates the end of the source code listing, which allows it to 
be automatically updated into the text of this book after being checked with a compiler and 
executed.  

Everything Is an Object 59 



60 Thinking in Java Bruce Eckel 

The /* Output: tag indicates the beginning of the output that will be generated by this file. 
In this form, it can be automatically tested to verify its accuracy. In this case, the (55% 
match) indicates to the testing system that the output will be fairly different from one run to 
the next so it should only expect a 55 percent correlation with the output shown here. Most 
examples in this book that produce output will contain the output in this commented form, 
so you can see the output and know that it is correct.  

Coding style 
The style described in the Code Conventions for the Java Programming Language7 is to 
capitalize the first letter of a class name. If the class name consists of several words, they are 
run together (that is, you don’t use underscores to separate the names), and the first letter of 
each embedded word is capitalized, such as:  

class AllTheColorsOfTheRainbow { // ... 

This is sometimes called “camel-casing.” For almost everything else—methods, fields 
(member variables), and object reference names—the accepted style is just as it is for classes 
except that the first letter of the identifier is lowercase. For example:  

class AllTheColorsOfTheRainbow { 
  int anIntegerRepresentingColors; 
  void changeTheHueOfTheColor(int newHue) { 
    // ... 
  } 
    // ... 
} 

The user must also type all these long names, so be merciful. 

The Java code you will see in the Sun libraries also follows the placement of open-and-close 
curly braces that you see used in this book. 

Summary 
The goal of this chapter is just enough Java to understand how to write a simple program. 
You’ve also gotten an overview of the language and some of its basic ideas. However, the 
examples so far have all been of the form “Do this, then do that, then do something else.” The 
next two chapters will introduce the basic operators used in Java programming, and then 
show you how to control the flow of your program.  

Exercises 
Normally, exercises will be distributed throughout the chapters, but in this chapter you were 
learning how to write basic programs so all the exercises were delayed until the end.  

The number in parentheses after each exercise number is an indicator of how difficult the 
exercise is, in a ranking from 1-10.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

                                                            
7 http://java.sun.com/docs/codeconv/index.html. To preserve space in this book and seminar presentations, not all of 
these guidelines could be followed, but you’ll see that the style I use here matches the Java standard as much as possible. 



Exercise 1:   (2) Create a class containing an int and a char that are not initialized, and 
print their values to verify that Java performs default initialization.  

Exercise 2:   (1) Following the HelloDate.java example in this chapter, create a “hello, 
world” program that simply displays that statement. You need only a single method in your 
class (the “main” one that gets executed when the program starts). Remember to make it 
static and to include the argument list, even though you don’t use the argument list. Compile 
the program with javac and run it using java. If you are using a different development 
environment than the JDK, learn how to compile and run programs in that environment.  

Exercise 3:   (1) Find the code fragments involving ATypeName and turn them into a 
program that compiles and runs.  

Exercise 4:   (1) Turn the DataOnly code fragments into a program that compiles and 
runs.  

Exercise 5:   (1) Modify the previous exercise so that the values of the data in DataOnly 
are assigned to and printed in main( ).  

Exercise 6:   (2) Write a program that includes and calls the storage( ) method defined 
as a code fragment in this chapter.  

Exercise 7:   (1) Turn the Incrementable code fragments into a working program.  

Exercise 8:   (3) Write a program that demonstrates that, no matter how many objects 
you create of a particular class, there is only one instance of a particular static field in that 
class.  

Exercise 9:   (2) Write a program that demonstrates that autoboxing works for all the 
primitive types and their wrappers.  

Exercise 10:   (2) Write a program that prints three arguments taken from the command 
line. To do this, you’ll need to index into the command-line array of Strings.  

Exercise 11:   (1) Turn the AllTheColorsOfTheRainbow example into a program that 
compiles and runs.  

Exercise 12:   (2) Find the code for the second version of HelloDate.java, which is the 
simple comment documentation example. Execute Javadoc on the file and view the results 
with your Web browser.  

Exercise 13:   (1) Run Documentation1.java, Documentation2.java, and 
Documentation3.java through Javadoc. Verify the resulting documentation with your 
Web browser.  

Exercise 14:   (1) Add an HTML list of items to the documentation in the previous 
exercise.  

Exercise 15:   (1) Take the program in Exercise 2 and add comment documentation to it. 
Extract this comment documentation into an HTML file using Javadoc and view it with 
your Web browser.  

Everything Is an Object 61 



62 Thinking in Java Bruce Eckel 

Exercise 16:   (1) In the Initialization & Cleanup chapter, locate the Overloading.java 
example and add Javadoc documentation. Extract this comment documentation into an 
HTML file using Javadoc and view it with your Web browser.  

 



Operators 
At the lowest level, data in Java is manipulated using operators. 

Because Java was inherited from C++, most of these operators will be familiar to C and C++ 
programmers. Java has also added some improvements and simplifications.  

If you’re familiar with C or C++ syntax, you can skim through this chapter and the next, 
looking for places where Java is different from those languages. However, if you find yourself 
floundering a bit in these two chapters, make sure you go through the multimedia seminar 
Thinking in C, freely downloadable from www.MindView.net. It contains audio lectures, 
slides, exercises, and solutions specifically designed to bring you up to speed with the 
fundamentals necessary to learn Java.  

Simpler print statements 
In the previous chapter, you were introduced to the Java print statement: 

System.out.println("Rather a lot to type"); 

You may observe that this is not only a lot to type (and thus many redundant tendon hits), 
but also rather noisy to read. Most languages before and after Java have taken a much 
simpler approach to such a commonly used statement.  

The Access Control chapter introduces the concept of the static import that was added to 
Java SE5, and creates a tiny library to simplify writing print statements. However, you don’t 
need to know those details in order to begin using that library. We can rewrite the program 
from the last chapter using this new library:  

//: operators/HelloDate.java 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class HelloDate { 
  public static void main(String[] args) { 
    print("Hello, it’s: "); 
    print(new Date()); 
  } 
} /* Output: (55% match) 
Hello, it’s: 
Wed Oct 05 14:39:05 MDT 2005 
*///:~ 

The results are much cleaner. Notice the insertion of the static keyword in the second 
import statement.  

In order to use this library, you must download this book’s code package from 
www.MindView.net or one of its mirrors. Unzip the code tree and add the root directory of 
that code tree to your computer’s CLASSPATH environment variable. (You’ll eventually get a 
full introduction to the classpath, but you might as well get used to struggling with it early. 
Alas, it is one of the more common battles you will have with Java.)  

 



Although the use of net.mindview.util.Print nicely simplifies most code, it is not 
justifiable everywhere. If there are only a small number of print statements in a program, I 
forego the import and write out the full System.out.println( ).  

Exercise 1:   (1) Write a program that uses the “short” and normal form of print 
statement. 

Using Java operators 
An operator takes one or more arguments and produces a new value. The arguments are in a 
different form than ordinary method calls, but the effect is the same. Addition and unary plus 
(+), subtraction and unary minus (-), multiplication (*), division (/), and assignment (=) all 
work much the same in any programming language.  

All operators produce a value from their operands. In addition, some operators change the 
value of an operand. This is called a side effect. The most common use for operators that 
modify their operands is to generate the side effect, but you should keep in mind that the 
value produced is available for your use, just as in operators without side effects.  

Almost all operators work only with primitives. The exceptions are ‘=‘, ‘==‘ and ‘!=‘, which 
work with all objects (and are a point of confusion for objects). In addition, the String class 
supports ‘+’ and ‘+=‘.  

Precedence 
Operator precedence defines how an expression evaluates when several operators are 
present. Java has specific rules that determine the order of evaluation. The easiest one to 
remember is that multiplication and division happen before addition and subtraction. 
Programmers often forget the other precedence rules, so you should use parentheses to make 
the order of evaluation explicit. For example, look at statements (1) and (2):  

//: operators/Precedence.java 
 
public class Precedence { 
  public static void main(String[] args) { 
    int x = 1, y = 2, z = 3; 
    int a = x + y - 2/2 + z;           // (1) 
    int b = x + (y - 2)/(2 + z);       // (2) 
    System.out.println("a = " + a + " b = " + b); 
  } 
} /* Output: 
a = 5 b = 1 
*///:~ 

These statements look roughly the same, but from the output you can see that they have very 
different meanings which depend on the use of parentheses.  

Notice that the System.out.println( ) statement involves the ‘+’ operator. In this context, 
‘+’ means “string concatenation” and, if necessary, “string conversion.” When the compiler 
sees a String followed by a ‘+’ followed by a non-String, it attempts to convert the non-
String into a String. As you can see from the output, it successfully converts from int into 
String for a and b.  

64 Thinking in Java Bruce Eckel 



Assignment 
Assignment is performed with the operator =. It means “Take the value of the right-hand side 
(often called the rvalue) and copy it into the left-hand side (often called the lvalue)”. An 
rvalue is any constant, variable, or expression that produces a value, but an lvalue must be a 
distinct, named variable. (That is, there must be a physical space to store the value.) For 
instance, you can assign a constant value to a variable:  

a = 4; 

but you cannot assign anything to a constant value—it cannot be an lvalue. (You can’t say 4 = 
a;.)  

Assignment of primitives is quite straightforward. Since the primitive holds the actual value 
and not a reference to an object, when you assign primitives, you copy the contents from one 
place to another. For example, if you say a = b for primitives, then the contents of b are 
copied into a. If you then go on to modify a, b is naturally unaffected by this modification. As 
a programmer, this is what you can expect for most situations.  

When you assign objects, however, things change. Whenever you manipulate an object, what 
you’re manipulating is the reference, so when you assign “from one object to another,” you’re 
actually copying a reference from one place to another. This means that if you say c = d for 
objects, you end up with both c and d pointing to the object that, originally, only d pointed 
to. Here’s an example that demonstrates this behavior:  

//: operators/Assignment.java 
// Assignment with objects is a bit tricky. 
import static net.mindview.util.Print.*; 
 
class Tank { 
  int level; 
}  
 
public class Assignment { 
  public static void main(String[] args) { 
    Tank t1 = new Tank(); 
    Tank t2 = new Tank(); 
    t1.level = 9; 
    t2.level = 47; 
    print("1: t1.level: " + t1.level + 
          ", t2.level: " + t2.level); 
    t1 = t2; 
    print("2: t1.level: " + t1.level + 
          ", t2.level: " + t2.level); 
    t1.level = 27; 
    print("3: t1.level: " + t1.level + 
          ", t2.level: " + t2.level); 
  } 
} /* Output: 
1: t1.level: 9, t2.level: 47 
2: t1.level: 47, t2.level: 47 
3: t1.level: 27, t2.level: 27 
*///:~ 

The Tank class is simple, and two instances (t1 and t2) are created within main( ). The 
level field within each Tank is given a different value, and then t2 is assigned to t1, and t1 is 
changed. In many programming languages you expect t1 and t2 to be independent at all 
times, but because you’ve assigned a reference, changing the t1 object appears to change the 
t2 object as well! This is because both t1 and t2 contain the same reference, which is 

Operators 65 



pointing to the same object. (The original reference that was in t1, that pointed to the object 
holding a value of 9, was overwritten during the assignment and effectively lost; its object 
will be cleaned up by the garbage collector.)  

This phenomenon is often called aliasing, and it’s a fundamental way that Java works with 
objects. But what if you don’t want aliasing to occur in this case? You could forego the 
assignment and say:  

t1.level = t2.level; 

This retains the two separate objects instead of discarding one and tying t1 and t2 to the 
same object. You’ll soon realize that manipulating the fields within objects is messy and goes 
against good object-oriented design principles. This is a nontrivial topic, so you should keep 
in mind that assignment for objects can add surprises.  

Exercise 2:   (1) Create a class containing a float and use it to demonstrate aliasing. 

Aliasing during method calls 

Aliasing will also occur when you pass an object into a method: 

//: operators/PassObject.java 
// Passing objects to methods may not be 
// what you’re used to. 
import static net.mindview.util.Print.*; 
 
class Letter { 
  char c; 
} 
 
public class PassObject { 
  static void f(Letter y) { 
    y.c = ‘z’; 
  } 
  public static void main(String[] args) { 
    Letter x = new Letter(); 
    x.c = ‘a’; 
    print("1: x.c: " + x.c); 
    f(x); 
    print("2: x.c: " + x.c); 
  } 
} /* Output: 
1: x.c: a 
2: x.c: z 
*///:~ 

In many programming languages, the method f( ) would appear to be making a copy of its 
argument Letter y inside the scope of the method. But once again a reference is being 
passed, so the line  

y.c = ‘z’; 

is actually changing the object outside of f( ). 

Aliasing and its solution is a complex issue which is covered in one of the online supplements 
for this book. However, you should be aware of it at this point so you can watch for pitfalls.  

66 Thinking in Java Bruce Eckel 



Exercise 3:   (1) Create a class containing a float and use it to demonstrate aliasing 
during method calls. 

Mathematical operators 
The basic mathematical operators are the same as the ones available in most programming 
languages: addition (+), subtraction (-), division (/), multiplication (*) and modulus (%, 
which produces the remainder from integer division). Integer division truncates, rather than 
rounds, the result.  

Java also uses the shorthand notation from C/C++ that performs an operation and an 
assignment at the same time. This is denoted by an operator followed by an equal sign, and is 
consistent with all the operators in the language (whenever it makes sense). For example, to 
add 4 to the variable x and assign the result to x, use: x += 4.  

This example shows the use of the mathematical operators:  

//: operators/MathOps.java 
// Demonstrates the mathematical operators. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class MathOps { 
  public static void main(String[] args) { 
    // Create a seeded random number generator: 
    Random rand = new Random(47); 
    int i, j, k; 
    // Choose value from 1 to 100: 
    j = rand.nextInt(100) + 1; 
    print("j : " + j); 
    k = rand.nextInt(100) + 1; 
    print("k : " + k); 
    i = j + k; 
    print("j + k : " + i); 
    i = j - k; 
    print("j - k : " + i); 
    i = k / j; 
    print("k / j : " + i); 
    i = k * j; 
    print("k * j : " + i); 
    i = k % j; 
    print("k % j : " + i); 
    j %= k; 
    print("j %= k : " + j); 
    // Floating-point number tests: 
    float u, v, w; // Applies to doubles, too 
    v = rand.nextFloat(); 
    print("v : " + v); 
    w = rand.nextFloat(); 
    print("w : " + w); 
    u = v + w; 
    print("v + w : " + u); 
    u = v - w; 
    print("v - w : " + u); 
    u = v * w; 
    print("v * w : " + u); 
    u = v / w; 
    print("v / w : " + u); 
    // The following also works for char, 
    // byte, short, int, long, and double: 

Operators 67 



68 Thinking in Java Bruce Eckel 

    u += v; 
    print("u += v : " + u); 
    u -= v; 
    print("u -= v : " + u); 
    u *= v; 
    print("u *= v : " + u); 
    u /= v; 
    print("u /= v : " + u); 
  } 
} /* Output: 
j : 59 
k : 56 
j + k : 115 
j - k : 3 
k / j : 0 
k * j : 3304 
k % j : 56 
j %= k : 3 
v : 0.5309454 
w : 0.0534122 
v + w : 0.5843576 
v - w : 0.47753322 
v * w : 0.028358962 
v / w : 9.940527 
u += v : 10.471473 
u -= v : 9.940527 
u *= v : 5.2778773 
u /= v : 9.940527 
*///:~ 

To generate numbers, the program first creates a Random object. If you create a Random 
object with no arguments, Java uses the current time as a seed for the random number 
generator, and will thus produce different output for each execution of the program. 
However, in the examples in this book, it is important that the output shown at the end of the 
examples be as consistent as possible, so that this output can be verified with external tools. 
By providing a seed (an initialization value for the random number generator that will always 
produce the same sequence for a particular seed value) when creating the Random object, 
the same random numbers will be generated each time the program is executed, so the 
output is verifiable.1 To generate more varying output, feel free to remove the seed in the 
examples in the book.  

The program generates a number of different types of random numbers with the Random 
object simply by calling the methods nextInt( ) and nextFloat( ) (you can also call 
nextLong( ) or nextDouble( )). The argument to nextInt( ) sets the upper bound on the 
generated number. The lower bound is zero, which we don’t want because of the possibility of 
a divide-by-zero, so the result is offset by one.  

Exercise 4:   (2) Write a program that calculates velocity using a constant distance and a 
constant time.  

Unary minus and plus operators 

The unary minus (-) and unary plus (+) are the same operators as binary minus and plus. 
The compiler figures out which use is intended by the way you write the expression. For 
instance, the statement  

                                                            
1 The number 47 was considered a “magic number” at a college I attended, and it stuck. 



x = -a; 

has an obvious meaning. The compiler is able to figure out: 

x = a * -b; 

but the reader might get confused, so it is sometimes clearer to say: 

x = a * (-b); 

Unary minus inverts the sign on the data. Unary plus provides symmetry with unary minus, 
although it doesn’t have any effect. 

Auto increment and decrement 
Java, like C, has a number of shortcuts. Shortcuts can make code much easier to type, and 
either easier or harder to read.  

Two of the nicer shortcuts are the increment and decrement operators (often referred to as 
the auto-increment and auto-decrement operators). The decrement operator is -- and means 
“decrease by one unit.” The increment operator is ++ and means “increase by one unit.” If a 
is an int, for example, the expression ++a is equivalent to (a = a + 1). Increment and 
decrement operators not only modify the variable, but also produce the value of the variable 
as a result.  

There are two versions of each type of operator, often called the prefix and postfix versions. 
Preincrement means the ++ operator appears before the variable, and post-increment 
means the ++ operator appears after the variable. Similarly, pre-decrement means the -- 
operator appears before the variable, and post-decrement means the -- operator appears 
after the variable. For pre-increment and pre-decrement (i.e., ++a or --a), the operation is 
performed and the value is produced. For post-increment and post-decrement (i.e., a++ or 
a--), the value is produced, then the operation is performed. As an example:  

//: operators/AutoInc.java 
// Demonstrates the ++ and -- operators. 
import static net.mindview.util.Print.*; 
 
public class AutoInc { 
  public static void main(String[] args) { 
    int i = 1; 
    print("i : " + i); 
    print("++i : " + ++i); // Pre-increment 
    print("i++ : " + i++); // Post-increment 
    print("i : " + i); 
    print("--i : " + --i); // Pre-decrement 
    print("i-- : " + i--); // Post-decrement 
    print("i : " + i); 
  } 
} /* Output: 
i : 1 
++i : 2 
i++ : 2 
i : 3 
--i : 2 
i-- : 2 
i : 1 
*///:~ 

Operators 69 



You can see that for the prefix form, you get the value after the operation has been 
performed, but with the postfix form, you get the value before the operation is performed. 
These are the only operators, other than those involving assignment, that have side effects—
they change the operand rather than using just its value.  

The increment operator is one explanation for the name C++, implying “one step beyond C.” 
In an early Java speech, Bill Joy (one of the Java creators), said that “Java=C++--” (C plus 
plus minus minus), suggesting that Java is C++ with the unnecessary hard parts removed, 
and therefore a much simpler language. As you progress in this book, you’ll see that many 
parts are simpler, and yet in other ways Java isn’t much easier than C++.  

Relational operators 
Relational operators generate a boolean result. They evaluate the relationship between the 
values of the operands. A relational expression produces true if the relationship is true, and 
false if the relationship is untrue. The relational operators are less than (<), greater than 
(>), less than or equal to (<=), greater than or equal to (>=), equivalent (==) and not 
equivalent (!=). Equivalence and nonequivalence work with all primitives, but the other 
comparisons won’t work with type boolean. Because boolean values can only be true or 
false, “greater than” and “less than” doesn’t make sense.  

Testing object equivalence 

The relational operators == and != also work with all objects, but their meaning often 
confuses the first-time Java programmer. Here’s an example: 

//: operators/Equivalence.java 
 
public class Equivalence { 
  public static void main(String[] args) { 
    Integer n1 = new Integer(47); 
    Integer n2 = new Integer(47); 
    System.out.println(n1 == n2); 
    System.out.println(n1 != n2); 
  } 
} /* Output: 
false 
true 
*///:~ 

The statement System.out.println(n1 == n2) will print the result of the boolean 
comparison within it. Surely the output should be “true” and then “false,” since both Integer 
objects are the same. But while the contents of the objects are the same, the references are 
not the same. The operators == and != compare object references, so the output is actually 
“false” and then “true.” Naturally, this surprises people at first.  

What if you want to compare the actual contents of an object for equivalence? You must use 
the special method equals( ) that exists for all objects (not primitives, which work fine with 
== and !=). Here’s how it’s used:  

//: operators/EqualsMethod.java 
 
public class EqualsMethod { 
  public static void main(String[] args) { 
    Integer n1 = new Integer(47); 
    Integer n2 = new Integer(47); 
    System.out.println(n1.equals(n2)); 

70 Thinking in Java Bruce Eckel 



  } 
} /* Output: 
true 
*///:~ 

The result is now what you expect. Ah, but it’s not as simple as that. If you create your own 
class, like this: 

//: operators/EqualsMethod2.java 
// Default equals() does not compare contents. 
 
class Value { 
  int i; 
} 
 
public class EqualsMethod2 { 
  public static void main(String[] args) { 
    Value v1 = new Value(); 
    Value v2 = new Value(); 
    v1.i = v2.i = 100; 
    System.out.println(v1.equals(v2)); 
  } 
} /* Output: 
false 
*///:~ 

things are confusing again: The result is false. This is because the default behavior of 
equals( ) is to compare references. So unless you override equals( ) in your new class you 
won’t get the desired behavior. Unfortunately, you won’t learn about overriding until the 
Reusing Classes chapter and about the proper way to define equals( ) until the Containers 
in Depth chapter, but being aware of the way equals( ) behaves might save you some grief in 
the meantime.  

Most of the Java library classes implement equals( ) so that it compares the contents of 
objects instead of their references.  

Exercise 5:   (2) Create a class called Dog containing two Strings: name and says. In 
main( ), create two dog objects with names “spot” (who says, “Ruff!”) and “scruffy” (who 
says, “Wurf!”). Then display their names and what they say.  

Exercise 6:   (3) Following Exercise 5, create a new Dog reference and assign it to spot’s 
object. Test for comparison using == and equals( ) for all references.  

Logical operators 
Each of the logical operators AND (&&), OR (||) and NOT (!) produces a boolean value of 
true or false based on the logical relationship of its arguments. This example uses the 
relational and logical operators:  

//: operators/Bool.java 
// Relational and logical operators. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Bool { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    int i = rand.nextInt(100); 

Operators 71 



    int j = rand.nextInt(100); 
    print("i = " + i); 
    print("j = " + j); 
    print("i > j is " + (i > j)); 
    print("i < j is " + (i < j)); 
    print("i >= j is " + (i >= j)); 
    print("i <= j is " + (i <= j)); 
    print("i == j is " + (i == j)); 
    print("i != j is " + (i != j)); 
    // Treating an int as a boolean is not legal Java: 
//! print("i && j is " + (i && j)); 
//! print("i || j is " + (i || j)); 
//! print("!i is " + !i); 
    print("(i < 10) && (j < 10) is " 
       + ((i < 10) && (j < 10)) ); 
    print("(i < 10) || (j < 10) is " 
       + ((i < 10) || (j < 10)) ); 
  } 
} /* Output: 
i = 58 
j = 55 
i > j is true 
i < j is false 
i >= j is true 
i <= j is false 
i == j is false 
i != j is true 
(i < 10) && (j < 10) is false 
(i < 10) || (j < 10) is false 
*///:~ 

You can apply AND, OR, or NOT to boolean values only. You can’t use a non-boolean as if 
it were a boolean in a logical expression as you can in C and C++. You can see the failed 
attempts at doing this commented out with a ‘//!’ (this comment syntax enables automatic 
removal of comments to facilitate testing). The subsequent expressions, however, produce 
boolean values using relational comparisons, then use logical operations on the results.  

Note that a boolean value is automatically converted to an appropriate text form if it is used 
where a String is expected.  

You can replace the definition for int in the preceding program with any other primitive data 
type except boolean. Be aware, however, that the comparison of floating point numbers is 
very strict. A number that is the tiniest fraction different from another number is still “not 
equal.” A number that is the tiniest bit above zero is still nonzero.  

Exercise 7:   (3) Write a program that simulates coin-flipping.  

Short-circuiting 

When dealing with logical operators, you run into a phenomenon called “short-circuiting.” 
This means that the expression will be evaluated only until the truth or falsehood of the 
entire expression can be unambiguously determined. As a result, the latter parts of a logical 
expression might not be evaluated. Here’s an example that demonstrates short-circuiting:  

//: operators/ShortCircuit.java 
// Demonstrates short-circuiting behavior 
// with logical operators. 
import static net.mindview.util.Print.*; 
 

72 Thinking in Java Bruce Eckel 



public class ShortCircuit { 
  static boolean test1(int val) { 
    print("test1(" + val + ")"); 
    print("result: " + (val < 1)); 
    return val < 1; 
  } 
  static boolean test2(int val) { 
    print("test2(" + val + ")"); 
    print("result: " + (val < 2)); 
    return val < 2; 
  } 
  static boolean test3(int val) { 
    print("test3(" + val + ")"); 
    print("result: " + (val < 3)); 
    return val < 3; 
  } 
  public static void main(String[] args) { 
    boolean b = test1(0) && test2(2) && test3(2); 
    print("expression is " + b); 
  } 
} /* Output: 
test1(0) 
result: true 
test2(2) 
result: false 
expression is false 
*///:~ 

Each test performs a comparison against the argument and returns true or false. It also 
prints information to show you that it’s being called. The tests are used in the expression: 

test1(0) && test2(2) && test3(2) 

You might naturally think that all three tests would be executed, but the output shows 
otherwise. The first test produced a true result, so the expression evaluation continues. 
However, the second test produced a false result. Since this means that the whole expression 
must be false, why continue evaluating the rest of the expression? It might be expensive. The 
reason for shortcircuiting, in fact, is that you can get a potential performance increase if all 
the parts of a logical expression do not need to be evaluated.  

Literals 
Ordinarily, when you insert a literal value into a program, the compiler knows exactly what 
type to make it. Sometimes, however, the type is ambiguous. When this happens, you must 
guide the compiler by adding some extra information in the form of characters associated 
with the literal value. The following code shows these characters:  

//: operators/Literals.java 
import static net.mindview.util.Print.*; 
 
public class Literals { 
  public static void main(String[] args) { 
    int i1 = 0x2f; // Hexadecimal (lowercase) 
    print("i1: " + Integer.toBinaryString(i1)); 
    int i2 = 0X2F; // Hexadecimal (uppercase) 
    print("i2: " + Integer.toBinaryString(i2)); 
    int i3 = 0177; // Octal (leading zero) 
    print("i3: " + Integer.toBinaryString(i3)); 
    char c = 0xffff; // max char hex value 

Operators 73 



    print("c: " + Integer.toBinaryString(c)); 
    byte b = 0x7f; // max byte hex value 
    print("b: " + Integer.toBinaryString(b)); 
    short s = 0x7fff; // max short hex value 
    print("s: " + Integer.toBinaryString(s)); 
    long n1 = 200L; // long suffix 
    long n2 = 200l; // long suffix (but can be confusing) 
    long n3 = 200; 
    float f1 = 1; 
    float f2 = 1F; // float suffix 
    float f3 = 1f; // float suffix 
    double d1 = 1d; // double suffix 
    double d2 = 1D; // double suffix 
    // (Hex and Octal also work with long) 
  } 
} /* Output: 
i1: 101111 
i2: 101111 
i3: 1111111 
c: 1111111111111111 
b: 1111111 
s: 111111111111111 
*///:~ 

A trailing character after a literal value establishes its type. Uppercase or lowercase L means 
long (however, using a lowercase l is confusing because it can look like the number one). 
Uppercase or lowercase F means float. Uppercase or lowercase D means double.  

Hexadecimal (base 16), which works with all the integral data types, is denoted by a leading 
0x or 0X followed by 0-9 or a-f either in uppercase or lowercase. If you try to initialize a 
variable with a value bigger than it can hold (regardless of the numerical form of the value), 
the compiler will give you an error message. Notice in the preceding code the maximum 
possible hexadecimal values for char, byte, and short. If you exceed these, the compiler will 
automatically make the value an int and tell you that you need a narrowing cast for the 
assignment (casts are defined later in this chapter). You’ll know you’ve stepped over the line.  

Octal (base 8) is denoted by a leading zero in the number and digits from 0-7.  

There is no literal representation for binary numbers in C, C++, or Java. However, when 
working with hexadecimal and octal notation, it’s useful to display the binary form of the 
results. This is easily accomplished with the static toBinaryString( ) methods from the 
Integer and Long classes. Notice that when passing smaller types to 
Integer.toBinaryString( ), the type is automatically converted to an int.  

Exercise 8:   (2) Show that hex and octal notations work with long values. Use 
Long.toBinaryString( ) to display the results.  

Exponential notation 

Exponents use a notation that I’ve always found rather dismaying: 

//: operators/Exponents.java 
// "e" means "10 to the power." 
 
public class Exponents { 
  public static void main(String[] args) { 
    // Uppercase and lowercase ‘e’ are the same: 
    float expFloat = 1.39e-43f; 
    expFloat = 1.39E-43f; 

74 Thinking in Java Bruce Eckel 



Operators 75 

    System.out.println(expFloat); 
    double expDouble = 47e47d; // ‘d’ is optional 
    double expDouble2 = 47e47; // Automatically double 
    System.out.println(expDouble); 
  } 
} /* Output: 
1.39E-43 
4.7E48 
*///:~ 

In science and engineering, ‘e’ refers to the base of natural logarithms, approximately 2.718. 
(A more precise double value is available in Java as Math.E.) This is used in exponentiation 
expressions such as 1.39 x e-43, which means 1.39 x 2.718-43. However, when the FORTRAN 
programming language was invented, they decided that e would mean “ten to the power”, 
which is an odd decision because FORTRAN was designed for science and engineering, and 
one would think its designers would be sensitive about introducing such an ambiguity.2 At 
any rate, this custom was followed in C, C++ and now Java. So if you’re used to thinking in 
terms of e as the base of natural logarithms, you must do a mental translation when you see 
an expression such as 1.39 e-43f in Java; it means 1.39 x 10-43.  

Note that you don’t need to use the trailing character when the compiler can figure out the 
appropriate type. With  

long n3 = 200;  

there’s no ambiguity, so an L after the 200 would be superfluous. However, with  

float f4 = 1e-43f; // 10 to the power  

the compiler normally takes exponential numbers as doubles, so without the trailing f, it will 
give you an error telling you that you must use a cast to convert double to float.  

Exercise 9:   (1) Display the largest and smallest numbers for both float and double 
exponential notation.  

Bitwise operators 
The bitwise operators allow you to manipulate individual bits in an integral primitive data 
type. Bitwise operators perform Boolean algebra on the corresponding bits in the two 
arguments to produce the result.  

The bitwise operators come from C’s low-level orientation, where you often manipulate 
hardware directly and must set the bits in hardware registers. Java was originally designed to 
be embedded in TV set-top boxes, so this low-level orientation still made sense. However, 
you probably won’t use the bitwise operators much.  

                                                            
2 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620. At that time, and throughout 
the 1960s and into the 1970s, FORTRAN was an all uppercase language. This probably started because many of the early 
input devices were old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’ in the 
exponential notation was also always uppercase and was never confused with the natural logarithm base ‘e’, which is 
always lowercase. The ‘E’ simply stood for exponential, which was for the base of the number system used—usually 10. At 
the time octal was also widely used by programmers. Although I never saw it used, if I had seen an octal number in 
exponential notation I would have considered it to be base 8. The first time I remember seeing an exponential using a 
lowercase ‘e’ was in the late 1970s and I also found it confusing. The problem arose as lowercase crept into FORTRAN, not 
at its beginning. We actually had functions to use if you really wanted to use the natural logarithm base, but they were all 
uppercase.” 



The bitwise AND operator (&) produces a one in the output bit if both input bits are one; 
otherwise, it produces a zero. The bitwise OR operator (|) produces a one in the output bit if 
either input bit is a one and produces a zero only if both input bits are zero. The bitwise 
EXCLUSIVE OR, or XOR (^), produces a one in the output bit if one or the other input bit is 
a one, but not both. The bitwise NOT (~, also called the ones complement operator) is a 
unary operator; it takes only one argument. (All other bitwise operators are binary 
operators.) Bitwise NOT produces the opposite of the input bit—a one if the input bit is zero, 
a zero if the input bit is one.  

The bitwise operators and logical operators use the same characters, so it is helpful to have a 
mnemonic device to help you remember the meanings: Because bits are “small”, there is only 
one character in the bitwise operators.  

Bitwise operators can be combined with the = sign to unite the operation and assignment: 
&=, |= and ^= are all legitimate. (Since ~ is a unary operator, it cannot be combined with 
the = sign.)  

The boolean type is treated as a one-bit value, so it is somewhat different. You can perform 
a bitwise AND, OR, and XOR, but you can’t perform a bitwise NOT (presumably to prevent 
confusion with the logical NOT). For booleans, the bitwise operators have the same effect as 
the logical operators except that they do not short circuit. Also, bitwise operations on 
booleans include an XOR logical operator that is not included under the list of “logical” 
operators. You cannot use booleans in shift expressions, which are described next.  

Exercise 10:   (3) Write a program with two constant values, one with alternating binary 
ones and zeroes, with a zero in the least-significant digit, and the second, also alternating, 
with a one in the least-significant digit (hint: It’s easiest to use hexadecimal constants for 
this). Take these two values and combine them in all possible ways using the bitwise 
operators, and display the results using Integer.toBinaryString( ).  

Shift operators 
The shift operators also manipulate bits. They can be used solely with primitive, integral 
types. The left-shift operator (<<) produces the operand to the left of the operator after it has 
been shifted to the left by the number of bits specified to the right of the operator (inserting 
zeroes at the lower-order bits). The signed right-shift operator (>>) produces the operand to 
the left of the operator after it has been shifted to the right by the number of bits specified to 
the right of the operator. The signed right shift >> uses sign extension: If the value is 
positive, zeroes are inserted at the higher-order bits; if the value is negative, ones are inserted 
at the higher-order bits. Java has also added the unsigned right shift >>>, which uses zero 
extension: Regardless of the sign, zeroes are inserted at the higher-order bits. This operator 
does not exist in C or C++.  

If you shift a char, byte, or short, it will be promoted to int before the shift takes place, and 
the result will be an int. Only the five low-order bits of the right-hand side will be used. This 
prevents you from shifting more than the number of bits in an int. If you’re operating on a 
long, you’ll get a long result. Only the six low-order bits of the right-hand side will be used, 
so you can’t shift more than the number of bits in a long.  

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The lvalue is replaced by 
the lvalue shifted by the rvalue. There is a problem, however, with the unsigned right shift 
combined with assignment. If you use it with byte or short, you don’t get the correct results. 
Instead, these are promoted to int and right shifted, but then truncated as they are assigned 
back into their variables, so you get -1 in those cases. The following example demonstrates 
this:  

76 Thinking in Java Bruce Eckel 



//: operators/URShift.java 
// Test of unsigned right shift. 
import static net.mindview.util.Print.*; 
 
public class URShift { 
  public static void main(String[] args) { 
    int i = -1; 
    print(Integer.toBinaryString(i)); 
    i >>>= 10; 
    print(Integer.toBinaryString(i)); 
    long l = -1; 
    print(Long.toBinaryString(l)); 
    l >>>= 10; 
    print(Long.toBinaryString(l)); 
    short s = -1; 
    print(Integer.toBinaryString(s)); 
    s >>>= 10; 
    print(Integer.toBinaryString(s)); 
    byte b = -1; 
    print(Integer.toBinaryString(b)); 
    b >>>= 10; 
    print(Integer.toBinaryString(b)); 
    b = -1; 
    print(Integer.toBinaryString(b)); 
    print(Integer.toBinaryString(b>>>10)); 
  } 
} /* Output: 
11111111111111111111111111111111 
1111111111111111111111 
1111111111111111111111111111111111111111111111111111111111111111 
111111111111111111111111111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
11111111111111111111111111111111 
1111111111111111111111 
*///:~ 

In the last shift, the resulting value is not assigned back into b, but is printed directly, so the 
correct behavior occurs. 

Here’s an example that demonstrates the use of all the operators involving bits: 

//: operators/BitManipulation.java 
// Using the bitwise operators. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class BitManipulation { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    int i = rand.nextInt(); 
    int j = rand.nextInt(); 
    printBinaryInt("-1", -1); 
    printBinaryInt("+1", +1); 
    int maxpos = 2147483647; 
    printBinaryInt("maxpos", maxpos); 
    int maxneg = -2147483648; 
    printBinaryInt("maxneg", maxneg); 
    printBinaryInt("i", i); 
    printBinaryInt("~i", ~i); 

Operators 77 



    printBinaryInt("-i", -i); 
    printBinaryInt("j", j); 
    printBinaryInt("i & j", i & j); 
    printBinaryInt("i | j", i | j); 
    printBinaryInt("i ^ j", i ^ j); 
    printBinaryInt("i << 5", i << 5); 
    printBinaryInt("i >> 5", i >> 5); 
    printBinaryInt("(~i) >> 5", (~i) >> 5); 
    printBinaryInt("i >>> 5", i >>> 5); 
    printBinaryInt("(~i) >>> 5", (~i) >>> 5); 
 
    long l = rand.nextLong(); 
    long m = rand.nextLong(); 
    printBinaryLong("-1L", -1L); 
    printBinaryLong("+1L", +1L); 
    long ll = 9223372036854775807L; 
    printBinaryLong("maxpos", ll); 
    long lln = -9223372036854775808L; 
    printBinaryLong("maxneg", lln); 
    printBinaryLong("l", l); 
    printBinaryLong("~l", ~l); 
    printBinaryLong("-l", -l); 
    printBinaryLong("m", m); 
    printBinaryLong("l & m", l & m); 
    printBinaryLong("l | m", l | m); 
    printBinaryLong("l ^ m", l ^ m); 
    printBinaryLong("l << 5", l << 5); 
    printBinaryLong("l >> 5", l >> 5); 
    printBinaryLong("(~l) >> 5", (~l) >> 5); 
    printBinaryLong("l >>> 5", l >>> 5); 
    printBinaryLong("(~l) >>> 5", (~l) >>> 5); 
  } 
  static void printBinaryInt(String s, int i) { 
    print(s + ", int: " + i + ", binary:\n   " + 
      Integer.toBinaryString(i)); 
  } 
  static void printBinaryLong(String s, long l) { 
    print(s + ", long: " + l + ", binary:\n    " + 
      Long.toBinaryString(l)); 
  } 
} /* Output: 
-1, int: -1, binary: 
   11111111111111111111111111111111 
+1, int: 1, binary: 
   1 
maxpos, int: 2147483647, binary: 
   1111111111111111111111111111111 
maxneg, int: -2147483648, binary: 
   10000000000000000000000000000000 
i, int: -1172028779, binary: 
   10111010001001000100001010010101 
~i, int: 1172028778, binary: 
   1000101110110111011110101101010 
-i, int: 1172028779, binary: 
   1000101110110111011110101101011 
j, int: 1717241110, binary: 
   1100110010110110000010100010110 
i & j, int: 570425364, binary: 
   100010000000000000000000010100 
i | j, int: -25213033, binary: 
   11111110011111110100011110010111 
i ^ j, int: -595638397, binary: 
   11011100011111110100011110000011 

78 Thinking in Java Bruce Eckel 



i << 5, int: 1149784736, binary: 
   1000100100010000101001010100000 
i >> 5, int: -36625900, binary: 
   11111101110100010010001000010100 
(~i) >> 5, int: 36625899, binary: 
   10001011101101110111101011 
i >>> 5, int: 97591828, binary: 
   101110100010010001000010100 
(~i) >>> 5, int: 36625899, binary: 
   10001011101101110111101011 
... 
*///:~ 

The two methods at the end, printBinaryInt( ) and printBinaryLong( ), take an int or a 
long, respectively, and print it out in binary format along with a descriptive string. As well as 
demonstrating the effect of all the bitwise operators for int and long, this example also 
shows the minimum, maximum, +1, and -1 values for int and long so you can see what they 
look like. Note that the high bit represents the sign: 0 means positive and 1 means negative. 
The output for the int portion is displayed above.  

The binary representation of the numbers is referred to as signed twos complement.  

Exercise 11:   (3) Start with a number that has a binary one in the most significant 
position (hint: Use a hexadecimal constant). Using the signed right-shift operator, right shift 
it all the way through all of its binary positions, each time displaying the result using 
Integer.toBinaryString( ).  

Exercise 12:   (3) Start with a number that is all binary ones. Left shift it, then use the 
unsigned right-shift operator to right shift through all of its binary positions, each time 
displaying the result using Integer.toBinaryString( ).  

Exercise 13:   (1) Write a method that displays char values in binary form. Demonstrate 
it using several different characters.  

Ternary if-else operator 
The ternary operator, also called the conditional operator, is unusual because it has three 
operands. It is truly an operator because it produces a value, unlike the ordinary if-else 
statement that you’ll see in the next section of this chapter. The expression is of the form: 

boolean-exp ? value0 : value1 

If boolean-exp evaluates to true, value0 is evaluated, and its result becomes the value 
produced by the operator. If boolean-exp is false, value1 is evaluated and its result becomes 
the value produced by the operator.  

Of course, you could use an ordinary if-else statement (described later), but the ternary 
operator is much terser. Although C (where this operator originated) prides itself on being a 
terse language, and the ternary operator might have been introduced partly for efficiency, 
you should be somewhat wary of using it on an everyday basis—it’s easy to produce 
unreadable code.  

The conditional operator is different from if-else because it produces a value. Here’s an 
example comparing the two:  

//: operators/TernaryIfElse.java 

Operators 79 



import static net.mindview.util.Print.*; 
 
public class TernaryIfElse { 
  static int ternary(int i) { 
    return i < 10 ? i * 100 : i * 10; 
  } 
  static int standardIfElse(int i) { 
    if(i < 10) 
      return i * 100; 
    else 
      return i * 10; 
  } 
  public static void main(String[] args) { 
    print(ternary(9)); 
    print(ternary(10)); 
    print(standardIfElse(9)); 
    print(standardIfElse(10)); 
  } 
} /* Output: 
900 
100 
900 
100 
*///:~ 

You can see that this code in ternary( ) is more compact than what you’d need to write 
without the ternary operator, in standardIfElse( ). However, standardIfElse( ) is easier 
to understand, and doesn’t require a lot more typing. So be sure to ponder your reasons when 
choosing the ternary operator—it’s generally warranted when you’re setting a variable to one 
of two values.  

String operator + and += 
There’s one special usage of an operator in Java: The + and += operators can be used to 
concatenate strings, as you’ve already seen. It seems a natural use of these operators even 
though it doesn’t fit with the traditional way that they are used.  

This capability seemed like a good idea in C++, so operator overloading was added to C++ to 
allow the C++ programmer to add meanings to almost any operator. Unfortunately, operator 
overloading combined with some of the other restrictions in C++ turns out to be a fairly 
complicated feature for programmers to design into their classes. Although operator 
overloading would have been much simpler to implement in Java than it was in C++ (as has 
been demonstrated in the C# language, which does have straightforward operator 
overloading), this feature was still considered too complex, so Java programmers cannot 
implement their own overloaded operators like C++ and C# programmers can.  

The use of the String operators has some interesting behavior. If an expression begins with a 
String, then all operands that follow must be Strings (remember that the compiler 
automatically turns a double-quoted sequence of characters into a String):  

//: operators/StringOperators.java 
import static net.mindview.util.Print.*; 
 
public class StringOperators { 
  public static void main(String[] args) { 
    int x = 0, y = 1, z = 2; 
    String s = "x, y, z "; 
    print(s + x + y + z); 
    print(x + " " + s); // Converts x to a String 

80 Thinking in Java Bruce Eckel 



    s += "(summed) = "; // Concatenation operator 
    print(s + (x + y + z)); 
    print("" + x); // Shorthand for Integer.toString() 
  } 
} /* Output: 
x, y, z 012 
0 x, y, z 
x, y, z (summed) = 3 
0 
*///:~ 

Note that the output from the first print statement is ‘o12’ instead of just ‘3’, which is what 
you’d get if it was summing the integers. This is because the Java compiler converts x, y, and 
z into their String representations and concatenates those strings, instead of adding them 
together first. The second print statement converts the leading variable into a String, so the 
string conversion does not depend on what comes first. Finally, you see the use of the += 
operator to append a string to s, and the use of parentheses to control the order of evaluation 
of the expression so that the ints are actually summed before they are displayed.  

Notice the last example in main( ): you will sometimes see an empty String followed by a + 
and a primitive as a way to perform the conversion without calling the more cumbersome 
explicit method (Integer.toString( ), in this case).  

Common pitfalls when using operators 
One of the pitfalls when using operators is attempting to leave out the parentheses when you 
are even the least bit uncertain about how an expression will evaluate. This is still true in 
Java. 

An extremely common error in C and C++ looks like this: 

while(x = y) { 
  // .... 
} 

The programmer was clearly trying to test for equivalence (==) rather than do an 
assignment. In C and C++ the result of this assignment will always be true if y is nonzero, 
and you’ll probably get an infinite loop. In Java, the result of this expression is not a 
boolean, but the compiler expects a boolean and won’t convert from an int, so it will 
conveniently give you a compile-time error and catch the problem before you ever try to run 
the program. So the pitfall never happens in Java. (The only time you won’t get a compile-
time error is when x and y are boolean, in which case x = y is a legal expression, and in the 
preceding example, probably an error.)  

A similar problem in C and C++ is using bitwise AND and OR instead of the logical versions. 
Bitwise AND and OR use one of the characters (& or |) while logical AND and OR use two 
(&& and ||). Just as with = and ==, it’s easy to type just one character instead of two. In 
Java, the compiler again prevents this, because it won’t let you cavalierly use one type where 
it doesn’t belong.  

Casting operators 
The word cast is used in the sense of “casting into a mold.” Java will automatically change 
one type of data into another when appropriate. For instance, if you assign an integral value 
to a floating point variable, the compiler will automatically convert the int to a float. Casting 

Operators 81 



allows you to make this type conversion explicit, or to force it when it wouldn’t normally 
happen.  

To perform a cast, put the desired data type inside parentheses to the left of any value. You 
can see this in the following example:  

//: operators/Casting.java 
 
public class Casting { 
  public static void main(String[] args) { 
    int i = 200; 
    long lng = (long)i; 
    lng = i; // "Widening," so cast not really required 
    long lng2 = (long)200; 
    lng2 = 200; 
    // A "narrowing conversion": 
    i = (int)lng2; // Cast required 
  } 
} ///:~ 

As you can see, it’s possible to perform a cast on a numeric value as well as on a variable. 
Notice that you can introduce superfluous casts; for example, the compiler will automatically 
promote an int value to a long when necessary. However, you are allowed to use superfluous 
casts to make a point or to clarify your code. In other situations, a cast may be essential just 
to get the code to compile.  

In C and C++, casting can cause some headaches. In Java, casting is safe, with the exception 
that when you perform a so-called narrowing conversion (that is, when you go from a data 
type that can hold more information to one that doesn’t hold as much), you run the risk of 
losing information. Here the compiler forces you to use a cast, in effect saying, “This can be a 
dangerous thing to do—if you want me to do it anyway you must make the cast explicit.” With 
a widening conversion an explicit cast is not needed, because the new type will more than 
hold the information from the old type so that no information is ever lost.  

Java allows you to cast any primitive type to any other primitive type, except for boolean, 
which doesn’t allow any casting at all. Class types do not allow casting. To convert one to the 
other, there must be special methods. (You’ll find out later in this book that objects can be 
cast within a family of types; an Oak can be cast to a Tree and vice versa, but not to a 
foreign type such as a Rock.)  

Truncation and rounding 

When you are performing narrowing conversions, you must pay attention to issues of 
truncation and rounding. For example, if you cast from a floating point value to an integral 
value, what does Java do? For example, if you have the value 29.7 and you cast it to an int, is 
the resulting value 30 or 29? The answer to this can be seen in this example:  

//: operators/CastingNumbers.java 
// What happens when you cast a float 
// or double to an integral value? 
import static net.mindview.util.Print.*; 
 
public class CastingNumbers { 
  public static void main(String[] args) { 
    double above = 0.7, below = 0.4; 
    float fabove = 0.7f, fbelow = 0.4f; 
    print("(int)above: " + (int)above); 
    print("(int)below: " + (int)below); 
    print("(int)fabove: " + (int)fabove); 

82 Thinking in Java Bruce Eckel 



    print("(int)fbelow: " + (int)fbelow); 
  } 
} /* Output: 
(int)above: 0 
(int)below: 0 
(int)fabove: 0 
(int)fbelow: 0 
*///:~ 

So the answer is that casting from a float or double to an integral value always truncates 
the number. If instead you want the result to be rounded, use the round( ) methods in 
java.lang.Math:  

//: operators/RoundingNumbers.java 
// Rounding floats and doubles. 
import static net.mindview.util.Print.*; 
 
public class RoundingNumbers { 
  public static void main(String[] args) { 
    double above = 0.7, below = 0.4; 
    float fabove = 0.7f, fbelow = 0.4f; 
    print("Math.round(above): " + Math.round(above)); 
    print("Math.round(below): " + Math.round(below)); 
    print("Math.round(fabove): " + Math.round(fabove)); 
    print("Math.round(fbelow): " + Math.round(fbelow)); 
  } 
} /* Output: 
Math.round(above): 1 
Math.round(below): 0 
Math.round(fabove): 1 
Math.round(fbelow): 0 
*///:~ 

Since the round( ) is part of java.lang, you don’t need an extra import to use it. 

Promotion 

You’ll discover that if you perform any mathematical or bitwise operations on primitive data 
types that are smaller than an int (that is, char, byte, or short), those values will be 
promoted to int before performing the operations, and the resulting value will be of type int. 
So if you want to assign back into the smaller type, you must use a cast. (And, since you’re 
assigning back into a smaller type, you might be losing information.) In general, the largest 
data type in an expression is the one that determines the size of the result of that expression; 
if you multiply a float and a double, the result will be double; if you add an int and a 
long, the result will be long.  

Java has no “sizeof” 
In C and C++, the sizeof( ) operator tells you the number of bytes allocated for data items. 
The most compelling reason for sizeof( ) in C and C++ is for portability. Different data types 
might be different sizes on different machines, so the programmer must discover how big 
those types are when performing operations that are sensitive to size. For example, one 
computer might store integers in 32 bits, whereas another might store integers as 16 bits. 
Programs could store larger values in integers on the first machine. As you might imagine, 
portability is a huge headache for C and C++ programmers.  

Operators 83 



Java does not need a sizeof( ) operator for this purpose, because all the data types are the 
same size on all machines. You do not need to think about portability on this level—it is 
designed into the language.  

A compendium of operators 
The following example shows which primitive data types can be used with particular 
operators. Basically, it is the same example repeated over and over, but using different 
primitive data types. The file will compile without error because the lines that fail are 
commented out with a //!.  

//: operators/AllOps.java 
// Tests all the operators on all the primitive data types 
// to show which ones are accepted by the Java compiler. 
 
public class AllOps { 
  // To accept the results of a boolean test: 
  void f(boolean b) {} 
  void boolTest(boolean x, boolean y) { 
    // Arithmetic operators: 
    //! x = x * y; 
    //! x = x / y; 
    //! x = x % y; 
    //! x = x + y; 
    //! x = x - y; 
    //! x++; 
    //! x--; 
    //! x = +y; 
    //! x = -y; 
    // Relational and logical: 
    //! f(x > y); 
    //! f(x >= y); 
    //! f(x < y); 
    //! f(x <= y); 
    f(x == y); 
    f(x != y); 
    f(!y); 
    x = x && y; 
    x = x || y; 
    // Bitwise operators: 
    //! x = ~y; 
    x = x & y; 
    x = x | y; 
    x = x ^ y; 
    //! x = x << 1; 
    //! x = x >> 1; 
    //! x = x >>> 1; 
    // Compound assignment: 
    //! x += y; 
    //! x -= y; 
    //! x *= y; 
    //! x /= y; 
    //! x %= y; 
    //! x <<= 1; 
    //! x >>= 1; 
    //! x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 

84 Thinking in Java Bruce Eckel 



    //! char c = (char)x; 
    //! byte b = (byte)x; 
    //! short s = (short)x; 
    //! int i = (int)x; 
    //! long l = (long)x; 
    //! float f = (float)x; 
    //! double d = (double)x; 
  } 
  void charTest(char x, char y) { 
    // Arithmetic operators: 
    x = (char)(x * y); 
    x = (char)(x / y); 
    x = (char)(x % y); 
    x = (char)(x + y); 
    x = (char)(x - y); 
    x++; 
    x--; 
    x = (char)+y; 
    x = (char)-y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    x= (char)~y; 
    x = (char)(x & y); 
    x  = (char)(x | y); 
    x = (char)(x ^ y); 
    x = (char)(x << 1); 
    x = (char)(x >> 1); 
    x = (char)(x >>> 1); 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    x <<= 1; 
    x >>= 1; 
    x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    byte b = (byte)x; 
    short s = (short)x; 
    int i = (int)x; 
    long l = (long)x; 
    float f = (float)x; 
    double d = (double)x; 
  } 
  void byteTest(byte x, byte y) { 
    // Arithmetic operators: 
    x = (byte)(x* y); 
    x = (byte)(x / y); 
    x = (byte)(x % y); 

Operators 85 



    x = (byte)(x + y); 
    x = (byte)(x - y); 
    x++; 
    x--; 
    x = (byte)+ y; 
    x = (byte)- y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    x = (byte)~y; 
    x = (byte)(x & y); 
    x = (byte)(x | y); 
    x = (byte)(x ^ y); 
    x = (byte)(x << 1); 
    x = (byte)(x >> 1); 
    x = (byte)(x >>> 1); 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    x <<= 1; 
    x >>= 1; 
    x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 
    short s = (short)x; 
    int i = (int)x; 
    long l = (long)x; 
    float f = (float)x; 
    double d = (double)x; 
  } 
  void shortTest(short x, short y) { 
    // Arithmetic operators: 
    x = (short)(x * y); 
    x = (short)(x / y); 
    x = (short)(x % y); 
    x = (short)(x + y); 
    x = (short)(x - y); 
    x++; 
    x--; 
    x = (short)+y; 
    x = (short)-y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 

86 Thinking in Java Bruce Eckel 



    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    x = (short)~y; 
    x = (short)(x & y); 
    x = (short)(x | y); 
    x = (short)(x ^ y); 
    x = (short)(x << 1); 
    x = (short)(x >> 1); 
    x = (short)(x >>> 1); 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    x <<= 1; 
    x >>= 1; 
    x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 
    byte b = (byte)x; 
    int i = (int)x; 
    long l = (long)x; 
    float f = (float)x; 
    double d = (double)x; 
  } 
  void intTest(int x, int y) { 
    // Arithmetic operators: 
    x = x * y; 
    x = x / y; 
    x = x % y; 
    x = x + y; 
    x = x - y; 
    x++; 
    x--; 
    x = +y; 
    x = -y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    x = ~y; 
    x = x & y; 
    x = x | y; 
    x = x ^ y; 
    x = x << 1; 
    x = x >> 1; 
    x = x >>> 1; 
    // Compound assignment: 
    x += y; 

Operators 87 



    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    x <<= 1; 
    x >>= 1; 
    x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 
    byte b = (byte)x; 
    short s = (short)x; 
    long l = (long)x; 
    float f = (float)x; 
    double d = (double)x; 
  } 
  void longTest(long x, long y) { 
    // Arithmetic operators: 
    x = x * y; 
    x = x / y; 
    x = x % y; 
    x = x + y; 
    x = x - y; 
    x++; 
    x--; 
    x = +y; 
    x = -y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    x = ~y; 
    x = x & y; 
    x = x | y; 
    x = x ^ y; 
    x = x << 1; 
    x = x >> 1; 
    x = x >>> 1; 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    x <<= 1; 
    x >>= 1; 
    x >>>= 1; 
    x &= y; 
    x ^= y; 
    x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 

88 Thinking in Java Bruce Eckel 



    byte b = (byte)x; 
    short s = (short)x; 
    int i = (int)x; 
    float f = (float)x; 
    double d = (double)x; 
  } 
  void floatTest(float x, float y) { 
    // Arithmetic operators: 
    x = x * y; 
    x = x / y; 
    x = x % y; 
    x = x + y; 
    x = x - y; 
    x++; 
    x--; 
    x = +y; 
    x = -y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    //! x = ~y; 
    //! x = x & y; 
    //! x = x | y; 
    //! x = x ^ y; 
    //! x = x << 1; 
    //! x = x >> 1; 
    //! x = x >>> 1; 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    //! x <<= 1; 
    //! x >>= 1; 
    //! x >>>= 1; 
    //! x &= y; 
    //! x ^= y; 
    //! x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 
    byte b = (byte)x; 
    short s = (short)x; 
    int i = (int)x; 
    long l = (long)x; 
    double d = (double)x; 
  } 
  void doubleTest(double x, double y) { 
    // Arithmetic operators: 
    x = x * y; 
    x = x / y; 
    x = x % y; 
    x = x + y; 
    x = x - y; 

Operators 89 



    x++; 
    x--; 
    x = +y; 
    x = -y; 
    // Relational and logical: 
    f(x > y); 
    f(x >= y); 
    f(x < y); 
    f(x <= y); 
    f(x == y); 
    f(x != y); 
    //! f(!x); 
    //! f(x && y); 
    //! f(x || y); 
    // Bitwise operators: 
    //! x = ~y; 
    //! x = x & y; 
    //! x = x | y; 
    //! x = x ^ y; 
    //! x = x << 1; 
    //! x = x >> 1; 
    //! x = x >>> 1; 
    // Compound assignment: 
    x += y; 
    x -= y; 
    x *= y; 
    x /= y; 
    x %= y; 
    //! x <<= 1; 
    //! x >>= 1; 
    //! x >>>= 1; 
    //! x &= y; 
    //! x ^= y; 
    //! x |= y; 
    // Casting: 
    //! boolean bl = (boolean)x; 
    char c = (char)x; 
    byte b = (byte)x; 
    short s = (short)x; 
    int i = (int)x; 
    long l = (long)x; 
    float f = (float)x; 
  } 
} ///:~ 

Note that boolean is quite limited. You can assign to it the values true and false, and you 
can test it for truth or falsehood, but you cannot add booleans or perform any other type of 
operation on them.  

In char, byte, and short, you can see the effect of promotion with the arithmetic operators. 
Each arithmetic operation on any of those types produces an int result, which must be 
explicitly cast back to the original type (a narrowing conversion that might lose information) 
to assign back to that type. With int values, however, you do not need to cast, because 
everything is already an int. Don’t be lulled into thinking everything is safe, though. If you 
multiply two ints that are big enough, you’ll overflow the result. The following example 
demonstrates this:  

//: operators/Overflow.java 
// Surprise! Java lets you overflow. 
 
public class Overflow { 
  public static void main(String[] args) { 

90 Thinking in Java Bruce Eckel 



Operators 91 

    int big = Integer.MAX_VALUE; 
    System.out.println("big = " + big); 
    int bigger = big * 4; 
    System.out.println("bigger = " + bigger); 
  } 
} /* Output: 
big = 2147483647 
bigger = -4 
*///:~ 

You get no errors or warnings from the compiler, and no exceptions at run time. Java is good, 
but it’s not that good.  

Compound assignments do not require casts for char, byte, or short, even though they are 
performing promotions that have the same results as the direct arithmetic operations. On the 
other hand, the lack of the cast certainly simplifies the code.  

You can see that, with the exception of boolean, any primitive type can be cast to any other 
primitive type. Again, you must be aware of the effect of a narrowing conversion when 
casting to a smaller type; otherwise, you might unknowingly lose information during the cast.  

Exercise 14:   (3) Write a method that takes two String arguments and uses all the 
boolean comparisons to compare the two Strings and print the results. For the == and !=, 
also perform the equals( ) test. In main( ), call your method with some different String 
objects.  

Summary 
If you’ve had experience with any languages that use C-like syntax, you can see that the 
operators in Java are so similar that there is virtually no learning curve. If you found this 
chapter challenging, make sure you view the multimedia presentation Thinking in C, 
available at www.MindView.net.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.   





Controlling Execution  
Like a sentient creature, a program must manipulate its world and 
make choices during execution. In Java you make choices with 
execution control statements.  

Java uses all of C’s execution control statements, so if you’ve programmed with C or C++, 
then most of what you see will be familiar. Most procedural programming languages have 
some kind of control statements, and there is often overlap among languages. In Java, the 
keywords include if-else, while, do-while, for, return, break, and a selection statement 
called switch. Java does not, however, support the much-maligned goto (which can still be 
the most expedient way to solve certain types of problems). You can still do a goto-like jump, 
but it is much more constrained than a typical goto.  

true and false  
All conditional statements use the truth or falsehood of a conditional expression to determine 
the execution path. An example of a conditional expression is a == b. This uses the 
conditional operator == to see if the value of a is equivalent to the value of b. The expression 
returns true or false. Any of the relational operators you’ve seen in the previous chapter can 
be used to produce a conditional statement. Note that Java doesn’t allow you to use a number 
as a boolean, even though it’s allowed in C and C++ (where truth is nonzero and falsehood 
is zero). If you want to use a non-boolean in a boolean test, such as if(a), you must first 
convert it to a boolean value by using a conditional expression, such as if(a != 0).  

if-else  
The if-else statement is the most basic way to control program flow. The else is optional, so 
you can use if in two forms:  

if(Boolean-expression)  
  statement  

or  

if(Boolean-expression)  
  statement  
else  
  statement  

The Boolean-expression must produce a boolean result. The statement is either a simple 
statement terminated by a semicolon, or a compound statement, which is a group of simple 
statements enclosed in braces. Whenever the word “statement” is used, it always implies that 
the statement can be simple or compound.  

As an example of if-else, here is a test( ) method that will tell you whether a guess is above, 
below, or equivalent to a target number:  

//: control/IfElse.java  
import static net.mindview.util.Print.*;  
 
public class IfElse {  

 



  static int result = 0;  
  static void test(int testval, int target) {  
    if(testval > target)  
      result = +1;  
    else if(testval < target)  
      result = -1;  
    else  
      result = 0; // Match  
  }  
  public static void main(String[] args) {  
    test(10, 5);  
    print(result);  
    test(5, 10);  
    print(result);  
    test(5, 5);  
    print(result);  
  }  
} /* Output:  
1  
-1  
0  
*///:~  

In the middle of test( ), you’ll also see an “else if,” which is not a new keyword but just an 
else followed by a new if statement.  

Although Java, like C and C++ before it, is a “free-form” language, it is conventional to indent 
the body of a control flow statement so the reader can easily determine where it begins and 
ends.  

Iteration  
Looping is controlled by while, do-while and for, which are sometimes classified as 
iteration statements. A statement repeats until the controlling Boolean-expression evaluates 
to false. The form for a while loop is:  

while(Boolean-expression)  
  statement  

The Boolean-expression is evaluated once at the beginning of the loop and again before each 
further iteration of the statement.  

Here’s a simple example that generates random numbers until a particular condition is met:  

//: control/WhileTest.java 
// Demonstrates the while loop. 
 
public class WhileTest { 
  static boolean condition() { 
    boolean result = Math.random() < 0.99; 
    System.out.print(result + ", "); 
    return result; 
  } 
  public static void main(String[] args) { 
    while(condition()) 
      System.out.println("Inside ‘while’"); 
    System.out.println("Exited ‘while’"); 
  } 
} /* (Execute to see output) *///:~ 

94 Thinking in Java Bruce Eckel 



The condition( ) method uses the static method random( ) in the Math library, which 
generates a double value between 0 and 1. (It includes 0, but not 1.) The result value comes 
from the comparison operator <, which produces a boolean result. If you print a boolean 
value, you automatically get the appropriate string “true” or “false.” The conditional 
expression for the while says: “repeat the statements in the body as long as condition( ) 
returns true.”  

do-while  

The form for do-while is  

do  
  statement  
while(Boolean-expression);  

The sole difference between while and do-while is that the statement of the do-while 
always executes at least once, even if the expression evaluates to false the first time. In a 
while, if the conditional is false the first time the statement never executes. In practice, do-
while is less common than while.  

for  

A for loop is perhaps the most commonly used form of iteration. This loop performs 
initialization before the first iteration. Then it performs conditional testing and, at the end of 
each iteration, some form of “stepping.” The form of the for loop is:  

for(initialization; Boolean-expression; step)  
  statement  

Any of the expressions initialization, Boolean-expression or step can be empty. The 
expression is tested before each iteration, and as soon as it evaluates to false, execution will 
continue at the line following the for statement. At the end of each loop, the step executes.  

for loops are usually used for “counting” tasks:  

//: control/ListCharacters.java 
// Demonstrates "for" loop by listing 
// all the lowercase ASCII letters. 
 
public class ListCharacters { 
  public static void main(String[] args) { 
    for(char c = 0; c < 128; c++) 
      if(Character.isLowerCase(c)) 
        System.out.println("value: " + (int)c + 
          " character: " + c); 
  } 
} /* Output: 
value: 97 character: a 
value: 98 character: b 
value: 99 character: c 
value: 100 character: d 
value: 101 character: e 
value: 102 character: f 
value: 103 character: g 
value: 104 character: h 
value: 105 character: i 
value: 106 character: j 
... 

Controlling Execution 95 



*///:~ 

Note that the variable c is defined at the point where it is used, inside the control expression 
of the for loop, rather than at the beginning of main( ). The scope of c is the statement 
controlled by the for.  

This program also uses the java.lang.Character “wrapper” class, which not only wraps the 
primitive char type in an object, but also provides other utilities. Here, the static 
isLowerCase( ) method is used to detect whether the character in question is a lowercase 
letter.  

Traditional procedural languages like C require that all variables be defined at the beginning 
of a block so that when the compiler creates a block, it can allocate space for those variables. 
In Java and C++, you can spread your variable declarations throughout the block, defining 
them at the point that you need them. This allows a more natural coding style and makes 
code easier to understand.  

Exercise 1:   (1) Write a program that prints values from 1 to 100.  

Exercise 2:   (2) Write a program that generates 25 random int values. For each value, 
use an if-else statement to classify it as greater than, less than, or equal to a second 
randomly generated value.  

Exercise 3:   (1) Modify Exercise 2 so that your code is surrounded by an “infinite” while 
loop. It will then run until you interrupt it from the keyboard (typically by pressing Control-
C).  

Exercise 4:   (3) Write a program that uses two nested for loops and the modulus 
operator (%) to detect and print prime numbers (integral numbers that are not evenly 
divisible by any other numbers except for themselves and 1).  

Exercise 5:   (4) Repeat Exercise 10 from the previous chapter, using the ternary operator 
and a bitwise test to display the ones and zeroes, instead of Integer.toBinaryString( ).  

The comma operator  

Earlier in this chapter I stated that the comma operator (not the comma separator, which is 
used to separate definitions and method arguments) has only one use in Java: in the control 
expression of a for loop. In both the initialization and step portions of the control 
expression, you can have a number of statements separated by commas, and those 
statements will be evaluated sequentially.  

Using the comma operator, you can define multiple variables within a for statement, but 
they must be of the same type:  

//: control/CommaOperator.java 
 
public class CommaOperator { 
  public static void main(String[] args) { 
    for(int i = 1, j = i + 10; i < 5; i++, j = i * 2) { 
      System.out.println("i = " + i + " j = " + j); 
    } 
  } 
} /* Output: 
i = 1 j = 11 
i = 2 j = 4 

96 Thinking in Java Bruce Eckel 



i = 3 j = 6 
i = 4 j = 8 
*///:~ 

The int definition in the for statement covers both i and j. The initialization portion can 
have any number of definitions of one type. The ability to define variables in a control 
expression is limited to the for loop. You cannot use this approach with any of the other 
selection or iteration statements.  

You can see that in both the initialization and step portions, the statements are evaluated in 
sequential order.  

Foreach syntax  
Java SE5 introduces a new and more succinct for syntax, for use with arrays and containers 
(you’ll learn more about these in the Arrays and Containers in Depth chapter). This is often 
called the foreach syntax, and it means that you don’t have to create an int to count through 
a sequence of items—the foreach produces each item for you, automatically.  

For example, suppose you have an array of float and you’d like to select each element in that 
array:  

//: control/ForEachFloat.java 
import java.util.*; 
 
public class ForEachFloat { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    float f[] = new float[10]; 
    for(int i = 0; i < 10; i++) 
      f[i] = rand.nextFloat(); 
    for(float x : f) 
      System.out.println(x); 
  } 
} /* Output: 
0.72711575 
0.39982635 
0.5309454 
0.0534122 
0.16020656 
0.57799757 
0.18847865 
0.4170137 
0.51660204 
0.73734957 
*///:~ 

The array is populated using the old for loop, because it must be accessed with an index. You 
can see the foreach syntax in the line:  

for(float x : f) {  

This defines a variable x of type float and sequentially assigns each element of f to x.  

Any method that returns an array is a candidate for use with foreach. For example, the 
String class has a method toCharArray( ) that returns an array of char, so you can easily 
iterate through the characters in a string:  

Controlling Execution 97 



//: control/ForEachString.java 
 
public class ForEachString { 
  public static void main(String[] args) { 
    for(char c : "An African Swallow".toCharArray() ) 
      System.out.print(c + " "); 
  } 
} /* Output: 
A n   A f r i c a n   S w a l l o w 
*///:~ 

As you’ll see in the Holding Your Objects chapter, foreach will also work with any object that 
is Iterable.  

Many for statements involve stepping through a sequence of integral values, like this:  

for(int i = 0; i < 100; i++)  

For these, the foreach syntax won’t work unless you want to create an array of int first. To 
simplify this task, I’ve created a method called range( ) in net.mindview.util.Range that 
automatically generates the appropriate array. My intent is for range( ) to be used as a 
static import:  

//: control/ForEachInt.java 
import static net.mindview.util.Range.*; 
import static net.mindview.util.Print.*; 
 
public class ForEachInt { 
  public static void main(String[] args) { 
    for(int i : range(10)) // 0..9 
      printnb(i + " "); 
    print(); 
    for(int i : range(5, 10)) // 5..9 
      printnb(i + " "); 
    print(); 
    for(int i : range(5, 20, 3)) // 5..20 step 3 
      printnb(i + " "); 
    print(); 
  } 
} /* Output: 
0 1 2 3 4 5 6 7 8 9 
5 6 7 8 9 
5 8 11 14 17 
*///:~ 

The range( ) method has been overloaded, which means the same method name can be 
used with different argument lists (you’ll learn about overloading soon). The first overloaded 
form of range( ) just starts at zero and produces values up to but not including the top end 
of the range. The second form starts at the first value and goes until one less than the second, 
and the third form has a step value so it increases by that value. range( ) is a very simple 
version of what’s called a generator, which you’ll see later in the book.  

Note that although range( ) allows the use of the foreach syntax in more places, and thus 
arguably increases readability, it is a little less efficient, so if you are tuning for performance 
you may want to use a profiler, which is a tool that measures the performance of your code.  

You’ll note the use of printnb( ) in addition to print( ). The printnb( ) method does not 
emit a newline, so it allows you to output a line in pieces.  

98 Thinking in Java Bruce Eckel 



The foreach syntax not only saves time when typing in code. More importantly, it is far easier 
to read and says what you are trying to do (get each element of the array) rather than giving 
the details of how you are doing it (“I’m creating this index so I can use it to select each of the 
array elements.”). The foreach syntax will be used whenever possible in this book.  

return  
Several keywords represent unconditional branching, which simply means that the branch 
happens without any test. These include return, break, continue, and a way to jump to a 
labeled statement which is similar to the goto in other languages.  

The return keyword has two purposes: It specifies what value a method will return (if it 
doesn’t have a void return value) and it causes the current method to exit, returning that 
value. The preceding test( ) method can be rewritten to take advantage of this:  

//: control/IfElse2.java 
import static net.mindview.util.Print.*; 
 
public class IfElse2 { 
  static int test(int testval, int target) { 
    if(testval > target) 
      return +1; 
    else if(testval < target) 
      return -1; 
    else 
      return 0; // Match 
  } 
  public static void main(String[] args) { 
    print(test(10, 5)); 
    print(test(5, 10)); 
    print(test(5, 5)); 
  } 
} /* Output: 
1 
-1 
0 
*///:~ 

There’s no need for else, because the method will not continue after executing a return.  

If you do not have a return statement in a method that returns void, there’s an implicit 
return at the end of that method, so it’s not always necessary to include a return statement. 
However, if your method states it will return anything other than void, you must ensure 
every code path will return a value.  

Exercise 6:   (2) Modify the two test( ) methods in the previous two programs so that 
they take two extra arguments, begin and end, and so that testval is tested to see if it is 
within the range between (and including) begin and end.  

break and continue  
You can also control the flow of the loop inside the body of any of the iteration statements by 
using break and continue. break quits the loop without executing the rest of the 
statements in the loop. continue stops the execution of the current iteration and goes back 
to the beginning of the loop to begin the next iteration.  

Controlling Execution 99 



This program shows examples of break and continue within for and while loops:  

//: control/BreakAndContinue.java 
// Demonstrates break and continue keywords. 
import static net.mindview.util.Range.*; 
 
public class BreakAndContinue { 
  public static void main(String[] args) { 
    for(int i = 0; i < 100; i++) { 
      if(i == 74) break; // Out of for loop 
      if(i % 9 != 0) continue; // Next iteration 
      System.out.print(i + " "); 
    } 
    System.out.println(); 
    // Using foreach: 
    for(int i : range(100)) { 
      if(i == 74) break; // Out of for loop 
      if(i % 9 != 0) continue; // Next iteration 
      System.out.print(i + " "); 
    } 
    System.out.println(); 
    int i = 0; 
    // An "infinite loop": 
    while(true) { 
      i++; 
      int j = i * 27; 
      if(j == 1269) break; // Out of loop 
      if(i % 10 != 0) continue; // Top of loop 
      System.out.print(i + " "); 
    } 
  } 
} /* Output: 
0 9 18 27 36 45 54 63 72 
0 9 18 27 36 45 54 63 72 
10 20 30 40 
*///:~ 

In the for loop, the value of i never gets to 100 because the break statement breaks out of 
the loop when i is 74. Normally, you’d use a break like this only if you didn’t know when the 
terminating condition was going to occur. The continue statement causes execution to go 
back to the top of the iteration loop (thus incrementing i) whenever i is not evenly divisible 
by 9. When it is, the value is printed.  

The second for loop shows the use of foreach, and that it produces the same results.  

Finally, you see an “infinite” while loop that would, in theory, continue forever. However, 
inside the loop there is a break statement that will break out of the loop. In addition, you’ll 
see that the continue statement moves control back to the top of the loop without 
completing anything after that continue statement. (Thus printing happens in the second 
loop only when the value of i is divisible by 10.) In the output, the value 0 is printed, because 
0 % 9 produces 0.  

A second form of the infinite loop is for(;;). The compiler treats both while(true) and 
for(;;) in the same way, so whichever one you use is a matter of programming taste.  

Exercise 7:   (1) Modify Exercise 1 so that the program exits by using the break keyword 
at value 99. Try using return instead.  

100 Thinking in Java Bruce Eckel 



The infamous “goto” 
The goto keyword has been present in programming languages from the beginning. Indeed, 
goto was the genesis of program control in assembly language: “If condition A, then jump 
here; otherwise, jump there.” If you read the assembly code that is ultimately generated by 
virtually any compiler, you’ll see that program control contains many jumps (the Java 
compiler produces its own “assembly code,” but this code is run by the Java Virtual Machine 
rather than directly on a hardware CPU).  

A goto is a jump at the source-code level, and that’s what brought it into disrepute. If a 
program will always jump from one point to another, isn’t there some way to reorganize the 
code so the flow of control is not so jumpy? goto fell into true disfavor with the publication 
of the famous “Goto considered harmful” paper by Edsger Dijkstra, and since then goto-
bashing has been a popular sport, with advocates of the cast-out keyword scurrying for cover.  

As is typical in situations like this, the middle ground is the most fruitful. The problem is not 
the use of goto, but the overuse of goto; in rare situations goto is actually the best way to 
structure control flow.  

Although goto is a reserved word in Java, it is not used in the language; Java has no goto. 
However, it does have something that looks a bit like a jump tied in with the break and 
continue keywords. It’s not a jump but rather a way to break out of an iteration statement. 
The reason it’s often thrown in with discussions of goto is because it uses the same 
mechanism: a label.  

A label is an identifier followed by a colon, like this:  

label1:  

The only place a label is useful in Java is right before an iteration statement. And that means 
right before—it does no good to put any other statement between the label and the iteration. 
And the sole reason to put a label before an iteration is if you’re going to nest another 
iteration or a switch (which you’ll learn about shortly) inside it. That’s because the break 
and continue keywords will normally interrupt only the current loop, but when used with a 
label, they’ll interrupt the loops up to where the label exists:  

label1:  
outer-iteration {  
  inner-iteration {  
    //...  
    break; // (1)  
    //...  
    continue; // (2)  
    //...  
    continue label1; // (3)  
    //...  
    break label1; // (4)  
  }  
}  

In (1), the break breaks out of the inner iteration and you end up in the outer iteration. In 
(2), the continue moves back to the beginning of the inner iteration. But in (3), the 
continue label1 breaks out of the inner iteration and the outer iteration, all the way back to 
label1. Then it does in fact continue the iteration, but starting at the outer iteration. In (4), 
the break label1 also breaks all the way out to label1, but it does not reenter the iteration. 
It actually does break out of both iterations.  

 

Controlling Execution 101 



Here is an example using for loops:  

//: control/LabeledFor.java 
// For loops with "labeled break" and "labeled continue." 
import static net.mindview.util.Print.*; 
 
public class LabeledFor { 
  public static void main(String[] args) { 
    int i = 0; 
    outer: // Can’t have statements here 
    for(; true ;) { // infinite loop 
      inner: // Can’t have statements here 
      for(; i < 10; i++) { 
        print("i = " + i); 
        if(i == 2) { 
          print("continue"); 
          continue; 
        } 
        if(i == 3) { 
          print("break"); 
          i++; // Otherwise i never 
               // gets incremented. 
          break; 
        } 
        if(i == 7) { 
          print("continue outer"); 
          i++; // Otherwise i never 
               // gets incremented. 
          continue outer; 
        } 
        if(i == 8) { 
          print("break outer"); 
          break outer; 
        } 
        for(int k = 0; k < 5; k++) { 
          if(k == 3) { 
            print("continue inner"); 
            continue inner; 
          } 
        } 
      } 
    } 
    // Can’t break or continue to labels here 
  } 
} /* Output: 
i = 0 
continue inner 
i = 1 
continue inner 
i = 2 
continue 
i = 3 
break 
i = 4 
continue inner 
i = 5 
continue inner 
i = 6 
continue inner 
i = 7 
continue outer 
i = 8 
break outer 

102 Thinking in Java Bruce Eckel 



*///:~ 

Note that break breaks out of the for loop, and that the increment expression doesn’t occur 
until the end of the pass through the for loop. Since break skips the increment expression, 
the increment is performed directly in the case of i == 3. The continue outer statement in 
the case of i == 7 also goes to the top of the loop and also skips the increment, so it too is 
incremented directly.  

If not for the break outer statement, there would be no way to get out of the outer loop 
from within an inner loop, since break by itself can break out of only the innermost loop. 
(The same is true for continue.)  

Of course, in the cases where breaking out of a loop will also exit the method, you can simply 
use a return.  

Here is a demonstration of labeled break and continue statements with while loops:  

//: control/LabeledWhile.java 
// While loops with "labeled break" and "labeled continue." 
import static net.mindview.util.Print.*; 
 
public class LabeledWhile { 
  public static void main(String[] args) { 
    int i = 0; 
    outer: 
    while(true) { 
      print("Outer while loop"); 
      while(true) { 
        i++; 
        print("i = " + i); 
        if(i == 1) { 
          print("continue"); 
          continue; 
        } 
        if(i == 3) { 
          print("continue outer"); 
          continue outer; 
        } 
        if(i == 5) { 
          print("break"); 
          break; 
        } 
        if(i == 7) { 
          print("break outer"); 
          break outer; 
        } 
      } 
    } 
  } 
} /* Output: 
Outer while loop 
i = 1 
continue 
i = 2 
i = 3 
continue outer 
Outer while loop 
i = 4 
i = 5 
break 
Outer while loop 

Controlling Execution 103 



i = 6 
i = 7 
break outer 
*///:~ 

The same rules hold true for while:  

1.  A plain continue goes to the top of the innermost loop and continues.  
 
2. A labeled continue goes to the label and reenters the loop right after that label.  

 
3. A break “drops out of the bottom” of the loop.  

 
4. A labeled break drops out of the bottom of the end of the loop denoted by the label.  

 
It’s important to remember that the only reason to use labels in Java is when you have nested 
loops and you want to break or continue through more than one nested level.  

In Dijkstra’s “Goto considered harmful” paper, what he specifically objected to was the labels, 
not the goto. He observed that the number of bugs seems to increase with the number of 
labels in a program, and that labels and gotos make programs difficult to analyze. Note that 
Java labels don’t suffer from this problem, since they are constrained in their placement and 
can’t be used to transfer control in an ad hoc manner. It’s also interesting to note that this is a 
case where a language feature is made more useful by restricting the power of the statement.  

switch  
The switch is sometimes called a selection statement. The switch statement selects from 
among pieces of code based on the value of an integral expression. Its general form is:  

switch(integral-selector) {  
  case integral-value1 : statement; break;  
  case integral-value2 : statement; break;  
  case integral-value3 : statement; break;  
  case integral-value4 : statement; break;  
  case integral-value5 : statement; break;   
  // ...  
  default: statement;  
}  

Integral-selector is an expression that produces an integral value. The switch compares the 
result of integral-selector to each integral-value. If it finds a match, the corresponding 
statement (a single statement or multiple statements; braces are not required) executes. If no 
match occurs, the default statement executes.  

You will notice in the preceding definition that each case ends with a break, which causes 
execution to jump to the end of the switch body. This is the conventional way to build a 
switch statement, but the break is optional. If it is missing, the code for the following case 
statements executes until a break is encountered. Although you don’t usually want this kind 
of behavior, it can be useful to an experienced programmer. Note that the last statement, 
following the default, doesn’t have a break because the execution just falls through to 
where the break would have taken it anyway. You could put a break at the end of the 
default statement with no harm if you considered it important for style’s sake.  

The switch statement is a clean way to implement multiway selection (i.e., selecting from 
among a number of different execution paths), but it requires a selector that evaluates to an 
integral value, such as int or char. If you want to use, for example, a string or a floating 

104 Thinking in Java Bruce Eckel 



point number as a selector, it won’t work in a switch statement. For non-integral types, you 
must use a series of if statements. At the end of the next chapter, you’ll see that Java SE5’s 
new enum feature helps ease this restriction, as enums are designed to work nicely with 
switch.  

Here’s an example that creates letters randomly and determines whether they’re vowels or 
consonants:  

//: control/VowelsAndConsonants.java 
// Demonstrates the switch statement. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class VowelsAndConsonants { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    for(int i = 0; i < 100; i++) { 
      int c = rand.nextInt(26) + ‘a’; 
      printnb((char)c + ", " + c + ": "); 
      switch(c) { 
        case ‘a’: 
        case ‘e’: 
        case ‘i’: 
        case ‘o’: 
        case ‘u’: print("vowel"); 
                  break; 
        case ‘y’: 
        case ‘w’: print("Sometimes a vowel"); 
                  break; 
        default:  print("consonant"); 
      } 
    } 
  } 
} /* Output: 
y, 121: Sometimes a vowel 
n, 110: consonant 
z, 122: consonant 
b, 98: consonant 
r, 114: consonant 
n, 110: consonant 
y, 121: Sometimes a vowel 
g, 103: consonant 
c, 99: consonant 
f, 102: consonant 
o, 111: vowel 
w, 119: Sometimes a vowel 
z, 122: consonant 
... 
*///:~ 

Since Random.nextInt(26) generates a value between 0 and 26, you need only add an 
offset of ‘a’ to produce the lowercase letters. The single-quoted characters in the case 
statements also produce integral values that are used for comparison.  

Notice how the cases can be “stacked” on top of each other to provide multiple matches for a 
particular piece of code. You should also be aware that it’s essential to put the break 
statement at the end of a particular case; otherwise, control will simply drop through and 
continue processing on the next case.  

 

Controlling Execution 105 



106 Thinking in Java Bruce Eckel 

In the statement:  

int c = rand.nextInt(26) + ‘a’;  

Random.nextInt( ) produces a random int value from 0 to 25, which is added to the value 
of ‘a’. This means that ‘a’ is automatically converted to an int to perform the addition.  

In order to print c as a character, it must be cast to char; otherwise, you’ll produce integral 
output.  

Exercise 8:   (2) Create a switch statement that prints a message for each case, and put 
the switch inside a for loop that tries each case. Put a break after each case and test it, 
then remove the breaks and see what happens.  

Exercise 9:   (4) A Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, 
34, and so on, where each number (from the third on) is the sum of the previous two. Create 
a method that takes an integer as an argument and displays that many Fibonacci numbers 
starting from the beginning, e.g., If you run java Fibonacci 5 (where Fibonacci is the 
name of the class) the output will be: 1, 1, 2, 3, 5.  

Exercise 10:   (5) A vampire number has an even number of digits and is formed by 
multiplying a pair of numbers containing half the number of digits of the result. The digits 
are taken from the original number in any order. Pairs of trailing zeroes are not allowed. 
Examples include:  
1260 = 21 * 60  
1827 = 21 * 87  
2187 = 27 * 81  
Write a program that finds all the 4-digit vampire numbers. (Suggested by Dan Forhan.)  

Summary  
This chapter concludes the study of fundamental features that appear in most programming 
languages: calculation, operator precedence, type casting, and selection and iteration. Now 
you’re ready to begin taking steps that move you closer to the world of object-oriented 
programming. The next chapter will cover the important issues of initialization and cleanup 
of objects, followed in the subsequent chapter by the essential concept of implementation 
hiding.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

   



Initialization  
& Cleanup  

As the computer revolution progresses, “unsafe” programming has 
become one of the major culprits that makes programming expensive.  

Two of these safety issues are initialization and cleanup. Many C bugs occur when the 
programmer forgets to initialize a variable. This is especially true with libraries when users 
don’t know how to initialize a library component, or even that they must. Cleanup is a special 
problem because it’s easy to forget about an element when you’re done with it, since it no 
longer concerns you. Thus, the resources used by that element are retained and you can 
easily end up running out of resources (most notably, memory).  

C++ introduced the concept of a constructor, a special method automatically called when an 
object is created. Java also adopted the constructor, and in addition has a garbage collector 
that automatically releases memory resources when they’re no longer being used. This 
chapter examines the issues of initialization and cleanup, and their support in Java.  

Guaranteed initialization  
with the constructor  

You can imagine creating a method called initialize( ) for every class you write. The name is 
a hint that it should be called before using the object. Unfortunately, this means the user 
must remember to call that method. In Java, the class designer can guarantee initialization of 
every object by providing a constructor. If a class has a constructor, Java automatically calls 
that constructor when an object is created, before users can even get their hands on it. So 
initialization is guaranteed.  

The next challenge is what to name this method. There are two issues. The first is that any 
name you use could clash with a name you might like to use as a member in the class. The 
second is that because the compiler is responsible for calling the constructor, it must always 
know which method to call. The C++ solution seems the easiest and most logical, so it’s also 
used in Java: The name of the constructor is the same as the name of the class. It makes 
sense that such a method will be called automatically during initialization.  

Here’s a simple class with a constructor:  

//: initialization/SimpleConstructor.java 
// Demonstration of a simple constructor. 
 
class Rock { 
  Rock() { // This is the constructor 
    System.out.print("Rock "); 
  } 
} 
 
public class SimpleConstructor { 
  public static void main(String[] args) { 
    for(int i = 0; i < 10; i++) 
      new Rock(); 

 



  } 
} /* Output: 
Rock Rock Rock Rock Rock Rock Rock Rock Rock Rock 
*///:~ 

Now, when an object is created:  

new Rock();  

storage is allocated and the constructor is called. It is guaranteed that the object will be 
properly initialized before you can get your hands on it.  

Note that the coding style of making the first letter of all methods lowercase does not apply to 
constructors, since the name of the constructor must match the name of the class exactly.  

A constructor that takes no arguments is called the default constructor. The Java documents 
typically use the term no-arg constructor, but “default constructor” has been in use for many 
years before Java appeared, so I will tend to use that. But like any method, the constructor 
can also have arguments to allow you to specify how an object is created. The preceding 
example can easily be changed so the constructor takes an argument:  

//: initialization/SimpleConstructor2.java 
// Constructors can have arguments. 
 
class Rock2 { 
  Rock2(int i) { 
    System.out.print("Rock " + i + " "); 
  } 
} 
 
public class SimpleConstructor2 { 
  public static void main(String[] args) { 
    for(int i = 0; i < 8; i++) 
      new Rock2(i); 
  } 
} /* Output: 
Rock 0 Rock 1 Rock 2 Rock 3 Rock 4 Rock 5 Rock 6 Rock 7 
*///:~ 

Constructor arguments provide you with a way to provide parameters for the initialization of 
an object. For example, if the class Tree has a constructor that takes a single integer 
argument denoting the height of the tree, you create a Tree object like this:  

Tree t = new Tree(12); // 12-foot tree  

If Tree(int) is your only constructor, then the compiler won’t let you create a Tree object 
any other way.  

Constructors eliminate a large class of problems and make the code easier to read. In the 
preceding code fragment, for example, you don’t see an explicit call to some initialize( ) 
method that is conceptually separate from creation. In Java, creation and initialization are 
unified concepts—you can’t have one without the other.  

The constructor is an unusual type of method because it has no return value. This is distinctly 
different from a void return value, in which the method returns nothing but you still have 
the option to make it return something else. Constructors return nothing and you don’t have 
an option (the new expression does return a reference to the newly created object, but the 
constructor itself has no return value). If there were a return value, and if you could select 
your own, the compiler would somehow need to know what to do with that return value.  

108 Thinking in Java Bruce Eckel 



Exercise 1:   (1) Create a class containing an uninitialized String reference. Demonstrate 
that this reference is initialized by Java to null.  

Exercise 2:   (2) Create a class with a String field that is initialized at the point of 
definition, and another one that is initialized by the constructor. What is the difference 
between the two approaches?  

Method overloading  
One of the important features in any programming language is the use of names. When you 
create an object, you give a name to a region of storage. A method is a name for an action. 
You refer to all objects and methods by using names. Well-chosen names create a system that 
is easier for people to understand and change. It’s a lot like writing prose—the goal is to 
communicate with your readers.  

A problem arises when mapping the concept of nuance in human language onto a 
programming language. Often, the same word expresses a number of different meanings—it’s 
overloaded. This is useful, especially when it comes to trivial differences. You say, “Wash the 
shirt,” “Wash the car,” and “Wash the dog.” It would be silly to be forced to say, “shirtWash 
the shirt,” “carWash the car,” and “dogWash the dog” just so the listener doesn’t need to 
make any distinction about the action performed. Most human languages are redundant, so 
even if you miss a few words, you can still determine the meaning. You don’t need unique 
identifiers—you can deduce meaning from context.  

Most programming languages (C in particular) require you to have a unique identifier for 
each method (often called functions in those languages). So you could not have one function 
called print( ) for printing integers and another called print( ) for printing floats—each 
function requires a unique name.  

In Java (and C++), another factor forces the overloading of method names: the constructor. 
Because the constructor’s name is predetermined by the name of the class, there can be only 
one constructor name. But what if you want to create an object in more than one way? For 
example, suppose you build a class that can initialize itself in a standard way or by reading 
information from a file. You need two constructors, the default constructor and one that 
takes a String as an argument, which is the name of the file from which to initialize the 
object. Both are constructors, so they must have the same name—the name of the class. Thus, 
method overloading is essential to allow the same method name to be used with different 
argument types. And although method overloading is a must for constructors, it’s a general 
convenience and can be used with any method.  

Here’s an example that shows both overloaded constructors and overloaded methods:  

//: initialization/Overloading.java 
// Demonstration of both constructor 
// and ordinary method overloading. 
import static net.mindview.util.Print.*; 
 
class Tree { 
  int height; 
  Tree() { 
    print("Planting a seedling"); 
    height = 0; 
  } 
  Tree(int initialHeight) { 
    height = initialHeight; 
    print("Creating new Tree that is " + 
      height + " feet tall"); 

Initialization & Cleanup 109 



  }  
  void info() { 
    print("Tree is " + height + " feet tall"); 
  } 
  void info(String s) { 
    print(s + ": Tree is " + height + " feet tall"); 
  } 
} 
 
public class Overloading { 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) { 
      Tree t = new Tree(i); 
      t.info(); 
      t.info("overloaded method"); 
    } 
    // Overloaded constructor: 
    new Tree(); 
  }  
} /* Output: 
Creating new Tree that is 0 feet tall 
Tree is 0 feet tall 
overloaded method: Tree is 0 feet tall 
Creating new Tree that is 1 feet tall 
Tree is 1 feet tall 
overloaded method: Tree is 1 feet tall 
Creating new Tree that is 2 feet tall 
Tree is 2 feet tall 
overloaded method: Tree is 2 feet tall 
Creating new Tree that is 3 feet tall 
Tree is 3 feet tall 
overloaded method: Tree is 3 feet tall 
Creating new Tree that is 4 feet tall 
Tree is 4 feet tall 
overloaded method: Tree is 4 feet tall 
Planting a seedling 
*///:~ 

A Tree object can be created either as a seedling, with no argument, or as a plant grown in a 
nursery, with an existing height. To support this, there is a default constructor, and one that 
takes the existing height.  

You might also want to call the info( ) method in more than one way. For example, if you 
have an extra message you want printed, you can use info(String), and info( ) if you have 
nothing more to say. It would seem strange to give two separate names to what is obviously 
the same concept. Fortunately, method overloading allows you to use the same name for 
both.  

Distinguishing overloaded methods  

If the methods have the same name, how can Java know which method you mean? There’s a 
simple rule: Each overloaded method must take a unique list of argument types.  

If you think about this for a second, it makes sense. How else could a programmer tell the 
difference between two methods that have the same name, other than by the types of their 
arguments?  

Even differences in the ordering of arguments are sufficient to distinguish two methods, 
although you don’t normally want to take this approach because it produces difficult-to-
maintain code:  

110 Thinking in Java Bruce Eckel 



//: initialization/OverloadingOrder.java 
// Overloading based on the order of the arguments. 
import static net.mindview.util.Print.*; 
 
public class OverloadingOrder { 
  static void f(String s, int i) { 
    print("String: " + s + ", int: " + i); 
  } 
  static void f(int i, String s) { 
    print("int: " + i + ", String: " + s); 
  } 
  public static void main(String[] args) { 
    f("String first", 11); 
    f(99, "Int first"); 
  } 
} /* Output: 
String: String first, int: 11 
int: 99, String: Int first 
*///:~ 

The two f( ) methods have identical arguments, but the order is different, and that’s what 
makes them distinct.  

Overloading with primitives  

A primitive can be automatically promoted from a smaller type to a larger one, and this can 
be slightly confusing in combination with overloading. The following example demonstrates 
what happens when a primitive is handed to an overloaded method:  

//: initialization/PrimitiveOverloading.java 
// Promotion of primitives and overloading. 
import static net.mindview.util.Print.*; 
 
public class PrimitiveOverloading { 
  void f1(char x) { printnb("f1(char) "); } 
  void f1(byte x) { printnb("f1(byte) "); } 
  void f1(short x) { printnb("f1(short) "); } 
  void f1(int x) { printnb("f1(int) "); } 
  void f1(long x) { printnb("f1(long) "); } 
  void f1(float x) { printnb("f1(float) "); } 
  void f1(double x) { printnb("f1(double) "); } 
 
  void f2(byte x) { printnb("f2(byte) "); } 
  void f2(short x) { printnb("f2(short) "); } 
  void f2(int x) { printnb("f2(int) "); } 
  void f2(long x) { printnb("f2(long) "); } 
  void f2(float x) { printnb("f2(float) "); } 
  void f2(double x) { printnb("f2(double) "); } 
 
  void f3(short x) { printnb("f3(short) "); } 
  void f3(int x) { printnb("f3(int) "); } 
  void f3(long x) { printnb("f3(long) "); } 
  void f3(float x) { printnb("f3(float) "); } 
  void f3(double x) { printnb("f3(double) "); } 
 
  void f4(int x) { printnb("f4(int) "); } 
  void f4(long x) { printnb("f4(long) "); } 
  void f4(float x) { printnb("f4(float) "); } 
  void f4(double x) { printnb("f4(double) "); } 
 
  void f5(long x) { printnb("f5(long) "); } 

Initialization & Cleanup 111 



  void f5(float x) { printnb("f5(float) "); } 
  void f5(double x) { printnb("f5(double) "); } 
 
  void f6(float x) { printnb("f6(float) "); } 
  void f6(double x) { printnb("f6(double) "); } 
 
  void f7(double x) { printnb("f7(double) "); } 
 
  void testConstVal() { 
    printnb("5: "); 
    f1(5);f2(5);f3(5);f4(5);f5(5);f6(5);f7(5); print(); 
  } 
  void testChar() { 
    char x = ‘x’; 
    printnb("char: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testByte() { 
    byte x = 0; 
    printnb("byte: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testShort() { 
    short x = 0; 
    printnb("short: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testInt() { 
    int x = 0; 
    printnb("int: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testLong() { 
    long x = 0; 
    printnb("long: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testFloat() { 
    float x = 0; 
    printnb("float: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  void testDouble() { 
    double x = 0; 
    printnb("double: "); 
    f1(x);f2(x);f3(x);f4(x);f5(x);f6(x);f7(x); print(); 
  } 
  public static void main(String[] args) { 
    PrimitiveOverloading p = 
      new PrimitiveOverloading(); 
    p.testConstVal(); 
    p.testChar(); 
    p.testByte(); 
    p.testShort(); 
    p.testInt(); 
    p.testLong(); 
    p.testFloat(); 
    p.testDouble(); 
  } 
} /* Output: 
5: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double) 
char: f1(char) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double) 
byte: f1(byte) f2(byte) f3(short) f4(int) f5(long) f6(float) f7(double) 

112 Thinking in Java Bruce Eckel 



short: f1(short) f2(short) f3(short) f4(int) f5(long) f6(float) 
f7(double) 
int: f1(int) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double) 
long: f1(long) f2(long) f3(long) f4(long) f5(long) f6(float) f7(double) 
float: f1(float) f2(float) f3(float) f4(float) f5(float) f6(float) 
f7(double) 
double: f1(double) f2(double) f3(double) f4(double) f5(double) 
f6(double) f7(double) 
*///:~ 

You can see that the constant value 5 is treated as an int, so if an overloaded method is 
available that takes an int, it is used. In all other cases, if you have a data type that is smaller 
than the argument in the method, that data type is promoted. char produces a slightly 
different effect, since if it doesn’t find an exact char match, it is promoted to int.  

What happens if your argument is bigger than the argument expected by the overloaded 
method? A modification of the preceding program gives the answer:  

//: initialization/Demotion.java 
// Demotion of primitives and overloading. 
import static net.mindview.util.Print.*; 
 
public class Demotion { 
  void f1(char x) { print("f1(char)"); } 
  void f1(byte x) { print("f1(byte)"); } 
  void f1(short x) { print("f1(short)"); } 
  void f1(int x) { print("f1(int)"); } 
  void f1(long x) { print("f1(long)"); } 
  void f1(float x) { print("f1(float)"); } 
  void f1(double x) { print("f1(double)"); } 
 
  void f2(char x) { print("f2(char)"); } 
  void f2(byte x) { print("f2(byte)"); } 
  void f2(short x) { print("f2(short)"); } 
  void f2(int x) { print("f2(int)"); } 
  void f2(long x) { print("f2(long)"); } 
  void f2(float x) { print("f2(float)"); } 
 
  void f3(char x) { print("f3(char)"); } 
  void f3(byte x) { print("f3(byte)"); } 
  void f3(short x) { print("f3(short)"); } 
  void f3(int x) { print("f3(int)"); } 
  void f3(long x) { print("f3(long)"); } 
 
  void f4(char x) { print("f4(char)"); } 
  void f4(byte x) { print("f4(byte)"); } 
  void f4(short x) { print("f4(short)"); } 
  void f4(int x) { print("f4(int)"); } 
 
  void f5(char x) { print("f5(char)"); } 
  void f5(byte x) { print("f5(byte)"); } 
  void f5(short x) { print("f5(short)"); } 
 
  void f6(char x) { print("f6(char)"); } 
  void f6(byte x) { print("f6(byte)"); } 
 
  void f7(char x) { print("f7(char)"); } 
 
  void testDouble() { 
    double x = 0; 
    print("double argument:"); 
    f1(x);f2((float)x);f3((long)x);f4((int)x); 

Initialization & Cleanup 113 



    f5((short)x);f6((byte)x);f7((char)x); 
  } 
  public static void main(String[] args) { 
    Demotion p = new Demotion(); 
    p.testDouble(); 
  } 
} /* Output: 
double argument: 
f1(double) 
f2(float) 
f3(long) 
f4(int) 
f5(short) 
f6(byte) 
f7(char) 
*///:~ 

Here, the methods take narrower primitive values. If your argument is wider, then you must 
perform a narrowing conversion with a cast. If you don’t do this, the compiler will issue an 
error message.  

Overloading on return values  

It is common to wonder, “Why only class names and method argument lists? Why not 
distinguish between methods based on their return values?” For example, these two 
methods, which have the same name and arguments, are easily distinguished from each 
other:  

void f() {}  
int f() { return 1; }  

This might work fine as long as the compiler could unequivocally determine the meaning 
from the context, as in int x = f( ). However, you can also call a method and ignore the 
return value. This is often referred to as calling a method for its side effect, since you don’t 
care about the return value, but instead want the other effects of the method call. So if you 
call the method this way:  

f();  

how can Java determine which f( ) should be called? And how could someone reading the 
code see it? Because of this sort of problem, you cannot use return value types to distinguish 
overloaded methods.  

Default constructors  
As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor) is one without 
arguments that is used to create a “default object.” If you create a class that has no 
constructors, the compiler will automatically create a default constructor for you. For 
example:  

//: initialization/DefaultConstructor.java 
 
class Bird {} 
 
public class DefaultConstructor { 
  public static void main(String[] args) { 
    Bird b = new Bird(); // Default! 

114 Thinking in Java Bruce Eckel 



  } 
} ///:~ 

The expression  

new Bird()  

creates a new object and calls the default constructor, even though one was not explicitly 
defined. Without it, you would have no method to call to build the object. However, if you 
define any constructors (with or without arguments), the compiler will not synthesize one for 
you:  

//: initialization/NoSynthesis.java 
 
class Bird2 { 
  Bird2(int i) {} 
  Bird2(double d) {} 
} 
 
public class NoSynthesis { 
  public static void main(String[] args) { 
    //! Bird2 b = new Bird2(); // No default 
    Bird2 b2 = new Bird2(1); 
    Bird2 b3 = new Bird2(1.0); 
  } 
} ///:~ 

If you say:  

new Bird2()  

the compiler will complain that it cannot find a constructor that matches. When you don’t 
put in any constructors, it’s as if the compiler says, “You are bound to need some constructor, 
so let me make one for you.” But if you write a constructor, the compiler says, “You’ve written 
a constructor so you know what you’re doing; if you didn’t put in a default it’s because you 
meant to leave it out.”  

Exercise 3:   (1) Create a class with a default constructor (one that takes no arguments) 
that prints a message. Create an object of this class.  

Exercise 4:   (1) Add an overloaded constructor to the previous exercise that takes a 
String argument and prints it along with your message.  

Exercise 5:   (2) Create a class called Dog with an overloaded bark( ) method. This 
method should be overloaded based on various primitive data types, and print different types 
of barking, howling, etc., depending on which overloaded version is called. Write a main( ) 
that calls all the different versions.  

Exercise 6:   (1) Modify the previous exercise so that two of the overloaded methods have 
two arguments (of two different types), but in reversed order relative to each other. Verify 
that this works.  

Exercise 7:   (1) Create a class without a constructor, and then create an object of that 
class in main( ) to verify that the default constructor is automatically synthesized.  

Initialization & Cleanup 115 



116 Thinking in Java Bruce Eckel 

The this keyword  
If you have two objects of the same type called a and b, you might wonder how it is that you 
can call a method peel( ) for both those objects:  

//: initialization/BananaPeel.java 
 
class Banana { void peel(int i) { /* ... */ } } 
 
public class BananaPeel { 
  public static void main(String[] args) { 
    Banana a = new Banana(), 
           b = new Banana(); 
    a.peel(1); 
    b.peel(2); 
  } 
} ///:~ 

If there’s only one method called peel( ), how can that method know whether it’s being 
called for the object a or b?  

To allow you to write the code in a convenient object-oriented syntax in which you “send a 
message to an object,” the compiler does some undercover work for you. There’s a secret first 
argument passed to the method peel( ), and that argument is the reference to the object 
that’s being manipulated. So the two method calls become something like:  

Banana.peel(a, 1);  
Banana.peel(b, 2);  

This is internal and you can’t write these expressions and get the compiler to accept them, 
but it gives you an idea of what’s happening.  

Suppose you’re inside a method and you’d like to get the reference to the current object. 
Since that reference is passed secretly by the compiler, there’s no identifier for it. However, 
for this purpose there’s a keyword: this. The this keyword—which can be used only inside a 
non-static method—produces the reference to the object that the method has been called 
for. You can treat the reference just like any other object reference. Keep in mind that if 
you’re calling a method of your class from within another method of your class, you don’t 
need to use this. You simply call the method. The current this reference is automatically 
used for the other method. Thus you can say:  

//: initialization/Apricot.java 
public class Apricot { 
  void pick() { /* ... */ } 
  void pit() { pick(); /* ... */ } 
} ///:~ 

Inside pit( ), you could say this.pick( ) but there’s no need to.1 
The compiler does it for you 

automatically. The this keyword is used only for those special cases in which you need to 
explicitly use the reference to the current object. For example, it’s often used in return 
statements when you want to return the reference to the current object:  

                                                            
1 Some people will obsessively put this in front of every method call and field reference, arguing that it makes it “clearer 
and more explicit.” Don’t do it. There’s a reason that we use high-level languages: They do things for us. If you put this in 
when it’s not necessary, you will confuse and annoy everyone who reads your code, since all the rest of the code they’ve 
read won’t use this everywhere. People expect this to be used only when it is necessary. Following a consistent and 
straightforward coding style saves time and money. 



//: initialization/Leaf.java 
// Simple use of the "this" keyword. 
 
public class Leaf { 
  int i = 0; 
  Leaf increment() { 
    i++; 
    return this; 
  } 
  void print() { 
    System.out.println("i = " + i); 
  } 
  public static void main(String[] args) { 
    Leaf x = new Leaf(); 
    x.increment().increment().increment().print(); 
  } 
} /* Output: 
i = 3 
*///:~ 

Because increment( ) returns the reference to the current object via the this keyword, 
multiple operations can easily be performed on the same object.  

The this keyword is also useful for passing the current object to another method:  

//: initialization/PassingThis.java 
 
class Person { 
  public void eat(Apple apple) { 
    Apple peeled = apple.getPeeled(); 
    System.out.println("Yummy"); 
  } 
} 
 
class Peeler { 
  static Apple peel(Apple apple) { 
    // ... remove peel 
    return apple; // Peeled 
  } 
} 
 
class Apple { 
  Apple getPeeled() { return Peeler.peel(this); } 
} 
 
public class PassingThis { 
  public static void main(String[] args) { 
    new Person().eat(new Apple()); 
  } 
} /* Output: 
Yummy 
*///:~ 

Apple needs to call Peeler.peel( ), which is a foreign utility method that performs an 
operation that, for some reason, needs to be external to Apple (perhaps the external method 
can be applied across many different classes, and you don’t want to repeat the code). To pass 
itself to the foreign method, it must use this.  

Exercise 8:   (1) Create a class with two methods. Within the first method, call the second 
method twice: the first time without using this, and the second time using this—just to see it 
working; you should not use this form in practice.  

Initialization & Cleanup 117 



Calling constructors from constructors  

When you write several constructors for a class, there are times when you’d like to call one 
constructor from another to avoid duplicating code. You can make such a call by using the 
this keyword.  

Normally, when you say this, it is in the sense of “this object” or “the current object,” and by 
itself it produces the reference to the current object. In a constructor, the this keyword takes 
on a different meaning when you give it an argument list. It makes an explicit call to the 
constructor that matches that argument list. Thus you have a straightforward way to call 
other constructors:  

//: initialization/Flower.java 
// Calling constructors with "this" 
import static net.mindview.util.Print.*; 
 
public class Flower { 
  int petalCount = 0; 
  String s = "initial value"; 
  Flower(int petals) { 
    petalCount = petals; 
    print("Constructor w/ int arg only, petalCount= " 
      + petalCount); 
  } 
  Flower(String ss) { 
    print("Constructor w/ String arg only, s = " + ss); 
    s = ss; 
  } 
  Flower(String s, int petals) { 
    this(petals); 
//!    this(s); // Can’t call two! 
    this.s = s; // Another use of "this" 
    print("String & int args"); 
  } 
  Flower() { 
    this("hi", 47); 
    print("default constructor (no args)"); 
  } 
  void printPetalCount() { 
//! this(11); // Not inside non-constructor! 
    print("petalCount = " + petalCount + " s = "+ s); 
  } 
  public static void main(String[] args) { 
    Flower x = new Flower(); 
    x.printPetalCount(); 
  } 
} /* Output: 
Constructor w/ int arg only, petalCount= 47 
String & int args 
default constructor (no args) 
petalCount = 47 s = hi 
*///:~ 

The constructor Flower(String s, int petals) shows that, while you can call one 
constructor using this, you cannot call two. In addition, the constructor call must be the first 
thing you do, or you’ll get a compiler error message.  

This example also shows another way you’ll see this used. Since the name of the argument s 
and the name of the member data s are the same, there’s an ambiguity. You can resolve it 

118 Thinking in Java Bruce Eckel 



Initialization & Cleanup 119 

using this.s, to say that you’re referring to the member data. You’ll often see this form used 
in Java code, and it’s used in numerous places in this book.  

In printPetalCount( ) you can see that the compiler won’t let you call a constructor from 
inside any method other than a constructor.  

Exercise 9:   (1) Create a class with two (overloaded) constructors. Using this, call the 
second constructor inside the first one.  

The meaning of static  

With the this keyword in mind, you can more fully understand what it means to make a 
method static. It means that there is no this for that particular method. You cannot call 
non-static methods from inside static methods2 (although the reverse is possible), and you 
can call a static method for the class itself, without any object. In fact, that’s primarily what 
a static method is for. It’s as if you’re creating the equivalent of a global method. However, 
global methods are not permitted in Java, and putting the static method inside a class allows 
it access to other static methods and to static fields.  

Some people argue that static methods are not object-oriented, since they do have the 
semantics of a global method; with a static method, you don’t send a message to an object, 
since there’s no this. This is probably a fair argument, and if you find yourself using a lot of 
static methods, you should probably rethink your strategy. However, statics are pragmatic, 
and there are times when you genuinely need them, so whether or not they are “proper OOP” 
should be left to the theoreticians.  

Cleanup: finalization and  
garbage collection  

Programmers know about the importance of initialization, but often forget the importance of 
cleanup. After all, who needs to clean up an int? But with libraries, simply “letting go” of an 
object once you’re done with it is not always safe. Of course, Java has the garbage collector to 
reclaim the memory of objects that are no longer used. Now consider an unusual case: 
Suppose your object allocates “special” memory without using new. The garbage collector 
only knows how to release memory allocated with new, so it won’t know how to release the 
object’s “special” memory. To handle this case, Java provides a method called finalize( ) 
that you can define for your class. Here’s how it’s supposed to work. When the garbage 
collector is ready to release the storage used for your object, it will first call finalize( ), and 
only on the next garbage-collection pass will it reclaim the object’s memory. So if you choose 
to use finalize( ), it gives you the ability to perform some important cleanup at the time of 
garbage collection.  

This is a potential programming pitfall because some programmers, especially C++ 
programmers, might initially mistake finalize( ) for the destructor in C++, which is a 
function that is always called when an object is destroyed. It is important to distinguish 
between C++ and Java here, because in C++, objects always get destroyed (in a bug-free 
program), whereas in Java, objects do not always get garbage collected. Or, put another way:  

1. Your objects might not get garbage collected. 

                                                            
2 The one case in which this is possible occurs if you pass a reference to an object into the static method (the static 
method could also create its own object). Then, via the reference (which is now effectively this), you can call non-static 
methods and access non-static fields. But typically, if you want to do something like this, you’ll just make an ordinary, 
non-static method. 



120 Thinking in Java Bruce Eckel 

2. Garbage collection is not destruction. 

If you remember this, you will stay out of trouble. What it means is that if there is some 
activity that must be performed before you no longer need an object, you must perform that 
activity yourself. Java has no destructor or similar concept, so you must create an ordinary 
method to perform this cleanup. For example, suppose that in the process of creating your 
object, it draws itself on the screen. If you don’t explicitly erase its image from the screen, it 
might never get cleaned up. If you put some kind of erasing functionality inside finalize( ), 
then if an object is garbage collected and finalize( ) is called (and there’s no guarantee this 
will happen), then the image will first be removed from the screen, but if it isn’t, the image 
will remain.  

You might find that the storage for an object never gets released because your program never 
nears the point of running out of storage. If your program completes and the garbage 
collector never gets around to releasing the storage for any of your objects, that storage will 
be returned to the operating system en masse as the program exits. This is a good thing, 
because garbage collection has some overhead, and if you never do it, you never incur that 
expense.  

What is finalize() for?  

So, if you should not use finalize( ) as a general-purpose cleanup method, what good is it?  

A third point to remember is:  

3. Garbage collection is only about memory. 

That is, the sole reason for the existence of the garbage collector is to recover memory that 
your program is no longer using. So any activity that is associated with garbage collection, 
most notably your finalize( ) method, must also be only about memory and its deallocation.  

Does this mean that if your object contains other objects, finalize( ) should explicitly release 
those objects? Well, no—the garbage collector takes care of the release of all object memory 
regardless of how the object is created. It turns out that the need for finalize( ) is limited to 
special cases in which your object can allocate storage in some way other than creating an 
object. But, you might observe, everything in Java is an object, so how can this be?  

It would seem that finalize( ) is in place because of the possibility that you’ll do something 
Clike by allocating memory using a mechanism other than the normal one in Java. This can 
happen primarily through native methods, which are a way to call non-Java code from Java. 
(Native methods are covered in Appendix B in the electronic 2nd 

 
edition of this book, 

available at www.MindView.net.) C and C++ are the only languages currently supported by 
native methods, but since they can call subprograms in other languages, you can effectively 
call anything. Inside the non-Java code, C’s malloc( ) family of functions might be called to 
allocate storage, and unless you call free( ), that storage will not be released, causing a 
memory leak. Of course, free( ) is a C and C++ function, so you’d need to call it in a native 
method inside your finalize( ).  

After reading this, you probably get the idea that you won’t use finalize( ) much.3 You’re 
correct; it is not the appropriate place for normal cleanup to occur. So where should normal 
cleanup be performed?  

                                                            
3 Joshua Bloch goes further in his section titled “avoid finalizers”: “Finalizers are unpredictable, often dangerous, and 
generally unnecessary.” Effective JavaTM Programming Language Guide, p. 20 (Addison-Wesley, 2001). 



Initialization & Cleanup 121 

You must perform cleanup  

To clean up an object, the user of that object must call a cleanup method at the point the 
cleanup is desired. This sounds pretty straightforward, but it collides a bit with the C++ 
concept of the destructor. In C++, all objects are destroyed. Or rather, all objects should be 
destroyed. If the C++ object is created as a local (i.e., on the stack—not possible in Java), 
then the destruction happens at the closing curly brace of the scope in which the object was 
created. If the object was created using new (like in Java), the destructor is called when the 
programmer calls the C++ operator delete (which doesn’t exist in Java). If the C++ 
programmer forgets to call delete, the destructor is never called, and you have a memory 
leak, plus the other parts of the object never get cleaned up. This kind of bug can be very 
difficult to track down, and is one of the compelling reasons to move from C++ to Java.  

In contrast, Java doesn’t allow you to create local objects—you must always use new. But in 
Java, there’s no “delete” for releasing the object, because the garbage collector releases the 
storage for you. So from a simplistic standpoint, you could say that because of garbage 
collection, Java has no destructor. You’ll see as this book progresses, however, that the 
presence of a garbage collector does not remove the need for or the utility of destructors. 
(And you should never call finalize( ) directly, so that’s not a solution.) If you want some 
kind of cleanup performed other than storage release, you must still explicitly call an 
appropriate method in Java, which is the equivalent of a C++ destructor without the 
convenience.  

Remember that neither garbage collection nor finalization is guaranteed. If the JVM isn’t 
close to running out of memory, then it might not waste time recovering memory through 
garbage collection.  

The termination condition  

In general, you can’t rely on finalize( ) being called, and you must create separate “cleanup” 
methods and call them explicitly. So it appears that finalize( ) is only useful for obscure 
memory cleanup that most programmers will never use. However, there is an interesting use 
of finalize( ) that does not rely on it being called every time. This is the verification of the 
termination condition4 of an object.  

At the point that you’re no longer interested in an object—when it’s ready to be cleaned up—
that object should be in a state whereby its memory can be safely released. For example, if 
the object represents an open file, that file should be closed by the programmer before the 
object is garbage collected. If any portions of the object are not properly cleaned up, then you 
have a bug in your program that can be very difficult to find. finalize( ) can be used to 
eventually discover this condition, even if it isn’t always called. If one of the finalizations 
happens to reveal the bug, then you discover the problem, which is all you really care about.  

Here’s a simple example of how you might use it:  

//: initialization/TerminationCondition.java 
// Using finalize() to detect an object that 
// hasn’t been properly cleaned up. 
 
class Book { 
  boolean checkedOut = false; 
  Book(boolean checkOut) { 
    checkedOut = checkOut; 
  } 

                                                            
4 A term coined by Bill Venners (www.Artima.com) during a seminar that he and I were giving together. 



  void checkIn() { 
    checkedOut = false; 
  } 
  protected void finalize() { 
    if(checkedOut) 
      System.out.println("Error: checked out"); 
    // Normally, you’ll also do this: 
    // super.finalize(); // Call the base-class version 
  } 
} 
 
public class TerminationCondition { 
  public static void main(String[] args) { 
    Book novel = new Book(true); 
    // Proper cleanup: 
    novel.checkIn(); 
    // Drop the reference, forget to clean up: 
    new Book(true); 
    // Force garbage collection & finalization: 
    System.gc(); 
  } 
} /* Output: 
Error: checked out 
*///:~ 

The termination condition is that all Book objects are supposed to be checked in before they 
are garbage collected, but in main( ), a programmer error doesn’t check in one of the books. 
Without finalize( ) to verify the termination condition, this can be a difficult bug to find.  

Note that System.gc( ) is used to force finalization. But even if it isn’t, it’s highly probable 
that the errant Book will eventually be discovered through repeated executions of the 
program (assuming the program allocates enough storage to cause the garbage collector to 
execute).  

You should generally assume that the base-class version of finalize( ) will also be doing 
something important, and call it using super, as you can see in Book.finalize( ). In this 
case, it is commented out because it requires exception handling, which we haven’t covered 
yet.  

Exercise 10:   (2) Create a class with a finalize( ) method that prints a message. In 
main( ), create an object of your class. Explain the behavior of your program.  

Exercise 11:   (4) Modify the previous exercise so that your finalize( ) will always be 
called.  

Exercise 12:   (4) Create a class called Tank that can be filled and emptied, and has a 
termination condition that it must be empty when the object is cleaned up. Write a 
finalize( ) that verifies this termination condition. In main( ), test the possible scenarios 
that can occur when your Tank is used.  

How a garbage collector works  

If you come from a programming language where allocating objects on the heap is expensive, 
you may naturally assume that Java’s scheme of allocating everything (except primitives) on 
the heap is also expensive. However, it turns out that the garbage collector can have a 
significant impact on increasing the speed of object creation. This might sound a bit odd at 
first—that storage release affects storage allocation—but it’s the way some JVMs work, and it 

122 Thinking in Java Bruce Eckel 



means that allocating storage for heap objects in Java can be nearly as fast as creating storage 
on the stack in other languages.  

For example, you can think of the C++ heap as a yard where each object stakes out its own 
piece of turf. This real estate can become abandoned sometime later and must be reused. In 
some JVMs, the Java heap is quite different; it’s more like a conveyor belt that moves 
forward every time you allocate a new object. This means that object storage allocation is 
remarkably rapid. The “heap pointer” is simply moved forward into virgin territory, so it’s 
effectively the same as C++’s stack allocation. (Of course, there’s a little extra overhead for 
bookkeeping, but it’s nothing like searching for storage.)  

You might observe that the heap isn’t in fact a conveyor belt, and if you treat it that way, 
you’ll start paging memory—moving it on and off disk, so that you can appear to have more 
memory than you actually do. Paging significantly impacts performance. Eventually, after 
you create enough objects, you’ll run out of memory. The trick is that the garbage collector 
steps in, and while it collects the garbage it compacts all the objects in the heap so that you’ve 
effectively moved the “heap pointer” closer to the beginning of the conveyor belt and farther 
away from a page fault. The garbage collector rearranges things and makes it possible for the 
high-speed, infinite-free-heap model to be used while allocating storage.  

To understand garbage collection in Java, it’s helpful learn how garbage-collection schemes 
work in other systems. A simple but slow garbage-collection technique is called reference 
counting. This means that each object contains a reference counter, and every time a 
reference is attached to that object, the reference count is increased. Every time a reference 
goes out of scope or is set to null, the reference count is decreased. Thus, managing 
reference counts is a small but constant overhead that happens throughout the lifetime of 
your program. The garbage collector moves through the entire list of objects, and when it 
finds one with a reference count of zero it releases that storage (however, reference counting 
schemes often release an object as soon as the count goes to zero). The one drawback is that 
if objects circularly refer to each other they can have nonzero reference counts while still 
being garbage. Locating such self-referential groups requires significant extra work for the 
garbage collector. Reference counting is commonly used to explain one kind of garbage 
collection, but it doesn’t seem to be used in any JVM implementations.  

In faster schemes, garbage collection is not based on reference counting. Instead, it is based 
on the idea that any non-dead object must ultimately be traceable back to a reference that 
lives either on the stack or in static storage. The chain might go through several layers of 
objects. Thus, if you start in the stack and in the static storage area and walk through all the 
references, you’ll find all the live objects. For each reference that you find, you must trace 
into the object that it points to and then follow all the references in that object, tracing into 
the objects they point to, etc., until you’ve moved through the entire Web that originated with 
the reference on the stack or in static storage. Each object that you move through must still 
be alive. Note that there is no problem with detached self-referential groups—these are 
simply not found, and are therefore automatically garbage.  

In the approach described here, the JVM uses an adaptive garbage-collection scheme, and 
what it does with the live objects that it locates depends on the variant currently being used. 
One of these variants is stop-and-copy. This means that—for reasons that will become 
apparent—the program is first stopped (this is not a background collection scheme). Then, 
each live object is copied from one heap to another, leaving behind all the garbage. In 
addition, as the objects are copied into the new heap, they are packed end-to-end, thus 
compacting the new heap (and allowing new storage to simply be reeled off the end as 
previously described).  

Of course, when an object is moved from one place to another, all references that point at the 
object must be changed. The reference that goes from the heap or the static storage area to 
the object can be changed right away, but there can be other references pointing to this object 

Initialization & Cleanup 123 



that will be encountered later during the “walk.” These are fixed up as they are found (you 
could imagine a table that maps old addresses to new ones).  

There are two issues that make these so-called “copy collectors” inefficient. The first is the 
idea that you have two heaps and you slosh all the memory back and forth between these two 
separate heaps, maintaining twice as much memory as you actually need. Some JVMs deal 
with this by allocating the heap in chunks as needed and simply copying from one chunk to 
another.  

The second issue is the copying process itself. Once your program becomes stable, it might be 
generating little or no garbage. Despite that, a copy collector will still copy all the memory 
from one place to another, which is wasteful. To prevent this, some JVMs detect that no new 
garbage is being generated and switch to a different scheme (this is the “adaptive” part). This 
other scheme is called mark-and-sweep, and it’s what earlier versions of Sun’s JVM used all 
the time. For general use, mark-and-sweep is fairly slow, but when you know you’re 
generating little or no garbage, it’s fast.  

Mark-and-sweep follows the same logic of starting from the stack and static storage, and 
tracing through all the references to find live objects. However, each time it finds a live 
object, that object is marked by setting a flag in it, but the object isn’t collected yet. Only 
when the marking process is finished does the sweep occur. During the sweep, the dead 
objects are released. However, no copying happens, so if the collector chooses to compact a 
fragmented heap, it does so by shuffling objects around.  

“Stop-and-copy” refers to the idea that this type of garbage collection is not done in the 
background; instead, the program is stopped while the garbage collection occurs. In the Sun 
literature you’ll find many references to garbage collection as a low-priority background 
process, but it turns out that the garbage collection was not implemented that way in earlier 
versions of the Sun JVM. Instead, the Sun garbage collector stopped the program when 
memory got low. Mark-and-sweep also requires that the program be stopped.  

As previously mentioned, in the JVM described here memory is allocated in big blocks. If you 
allocate a large object, it gets its own block. Strict stop-and-copy requires copying every live 
object from the source heap to a new heap before you can free the old one, which translates 
to lots of memory. With blocks, the garbage collection can typically copy objects to dead 
blocks as it collects. Each block has a generation count to keep track of whether it’s alive. In 
the normal case, only the blocks created since the last garbage collection are compacted; all 
other blocks get their generation count bumped if they have been referenced from 
somewhere. This handles the normal case of lots of short-lived temporary objects. 
Periodically, a full sweep is made—large objects are still not copied (they just get their 
generation count bumped), and blocks containing small objects are copied and compacted. 
The JVM monitors the efficiency of garbage collection and if it becomes a waste of time 
because all objects are long-lived, then it switches to mark-andsweep. Similarly, the JVM 
keeps track of how successful mark-and-sweep is, and if the heap starts to become 
fragmented, it switches back to stop-and-copy. This is where the “adaptive” part comes in, so 
you end up with a mouthful: “Adaptive generational stop-and-copy mark-andsweep.”  

There are a number of additional speedups possible in a JVM. An especially important one 
involves the operation of the loader and what is called a just-in-time (JIT) compiler. A JIT 
compiler partially or fully converts a program into native machine code so that it doesn’t 
need to be interpreted by the JVM and thus runs much faster. When a class must be loaded 
(typically, the first time you want to create an object of that class), the .class file is located, 
and the bytecodes for that class are brought into memory. At this point, one approach is to 
simply JIT compile all the code, but this has two drawbacks: It takes a little more time, 
which, compounded throughout the life of the program, can add up; and it increases the size 
of the executable (bytecodes are significantly more compact than expanded JIT code), and 
this might cause paging, which definitely slows down a program. An alternative approach is 
lazy evaluation, which means that the code is not JIT compiled until necessary. Thus, code 

124 Thinking in Java Bruce Eckel 



that never gets executed might never be JIT compiled. The Java HotSpot technologies in 
recent JDKs take a similar approach by increasingly optimizing a piece of code each time it is 
executed, so the more the code is executed, the faster it gets.  

Member initialization  
Java goes out of its way to guarantee that variables are properly initialized before they are 
used. In the case of a method’s local variables, this guarantee comes in the form of a compile-
time error. So if you say:  

void f() {  
  int i;  
  i++; // Error -- i not initialized  
}  

you’ll get an error message that says that i might not have been initialized. Of course, the 
compiler could have given i a default value, but an uninitialized local variable is probably a 
programmer error, and a default value would have covered that up. Forcing the programmer 
to provide an initialization value is more likely to catch a bug.  

If a primitive is a field in a class, however, things are a bit different. As you saw in the 
Everything Is an Object chapter, each primitive field of a class is guaranteed to get an initial 
value. Here’s a program that verifies this, and shows the values:  

//: initialization/InitialValues.java 
// Shows default initial values. 
import static net.mindview.util.Print.*; 
 
public class InitialValues { 
  boolean t; 
  char c; 
  byte b; 
  short s; 
  int i; 
  long l; 
  float f; 
  double d; 
  InitialValues reference; 
  void printInitialValues() { 
    print("Data type      Initial value"); 
    print("boolean        " + t); 
    print("char           [" + c + "]"); 
    print("byte           " + b); 
    print("short          " + s); 
    print("int            " + i); 
    print("long           " + l); 
    print("float          " + f); 
    print("double         " + d); 
    print("reference      " + reference); 
  } 
  public static void main(String[] args) { 
    InitialValues iv = new InitialValues(); 
    iv.printInitialValues(); 
    /* You could also say: 
    new InitialValues().printInitialValues(); 
    */ 
  } 
} /* Output: 
Data type      Initial value 

Initialization & Cleanup 125 



boolean        false 
char           [ ] 
byte           0 
short          0 
int            0 
long           0 
float          0.0 
double         0.0 
reference      null 
*///:~ 

You can see that even though the values are not specified, they automatically get initialized 
(the char value is a zero, which prints as a space). So at least there’s no threat of working 
with uninitialized variables.  

When you define an object reference inside a class without initializing it to a new object, that 
reference is given a special value of null.  

Specifying initialization  

What happens if you want to give a variable an initial value? One direct way to do this is 
simply to assign the value at the point you define the variable in the class. (Notice you cannot 
do this in C++, although C++ novices always try.) Here the field definitions in class 
InitialValues are changed to provide initial values:  

//: initialization/InitialValues2.java 
// Providing explicit initial values. 
 
public class InitialValues2 { 
  boolean bool = true; 
  char ch = ‘x’; 
  byte b = 47; 
  short s = 0xff; 
  int i = 999; 
  long lng = 1; 
  float f = 3.14f; 
  double d = 3.14159; 
} ///:~ 

You can also initialize non-primitive objects in this same way. If Depth is a class, you can 
create a variable and initialize it like so:  

//: initialization/Measurement.java 
class Depth {} 
 
public class Measurement { 
  Depth d = new Depth(); 
  // ... 
} ///:~ 

If you haven’t given d an initial value and you try to use it anyway, you’ll get a runtime error 
called an exception (covered in the Error Handling with Exceptions chapter).  

You can even call a method to provide an initialization value:  

//: initialization/MethodInit.java 
public class MethodInit { 
  int i = f(); 
  int f() { return 11; } 

126 Thinking in Java Bruce Eckel 



} ///:~ 

This method can have arguments, of course, but those arguments cannot be other class 
members that haven’t been initialized yet. Thus, you can do this:  

//: initialization/MethodInit2.java 
public class MethodInit2 { 
  int i = f(); 
  int j = g(i); 
  int f() { return 11; } 
  int g(int n) { return n * 10; } 
} ///:~ 

But you cannot do this:  

//: initialization/MethodInit3.java 
public class MethodInit3 { 
  //! int j = g(i); // Illegal forward reference 
  int i = f(); 
  int f() { return 11; } 
  int g(int n) { return n * 10; } 
} ///:~ 

This is one place in which the compiler, appropriately, does complain about forward 
referencing, since this has to do with the order of initialization and not the way the program 
is compiled.  

This approach to initialization is simple and straightforward. It has the limitation that every 
object of type InitialValues will get these same initialization values. Sometimes this is 
exactly what you need, but at other times you need more flexibility.  

Constructor initialization  
The constructor can be used to perform initialization, and this gives you greater flexibility in 
your programming because you can call methods and perform actions at run time to 
determine the initial values. There’s one thing to keep in mind, however: You aren’t 
precluding the automatic initialization, which happens before the constructor is entered. So, 
for example, if you say:  

//: initialization/Counter.java 
public class Counter { 
  int i; 
  Counter() { i = 7; } 
  // ... 
} ///:~ 

then i will first be initialized to 0, then to 7. This is true with all the primitive types and with 
object references, including those that are given explicit initialization at the point of 
definition. For this reason, the compiler doesn’t try to force you to initialize elements in the 
constructor at any particular place, or before they are used—initialization is already 
guaranteed.  

Order of initialization  

Within a class, the order of initialization is determined by the order that the variables are 
defined within the class. The variable definitions may be scattered throughout and in 

Initialization & Cleanup 127 



between method definitions, but the variables are initialized before any methods can be 
called—even the constructor. For example:  

//: initialization/OrderOfInitialization.java 
// Demonstrates initialization order. 
import static net.mindview.util.Print.*; 
 
// When the constructor is called to create a 
// Window object, you’ll see a message: 
class Window { 
  Window(int marker) { print("Window(" + marker + ")"); } 
} 
 
class House { 
  Window w1 = new Window(1); // Before constructor 
  House() { 
    // Show that we’re in the constructor: 
    print("House()"); 
    w3 = new Window(33); // Reinitialize w3 
  } 
  Window w2 = new Window(2); // After constructor 
  void f() { print("f()"); } 
  Window w3 = new Window(3); // At end 
} 
 
public class OrderOfInitialization { 
  public static void main(String[] args) { 
    House h = new House(); 
    h.f(); // Shows that construction is done 
  } 
} /* Output: 
Window(1) 
Window(2) 
Window(3) 
House() 
Window(33) 
f() 
*///:~ 

In House, the definitions of the Window objects are intentionally scattered about to prove 
that they’ll all get initialized before the constructor is entered or anything else can happen. In 
addition, w3 is reinitialized inside the constructor.  

From the output, you can see that the w3 reference gets initialized twice: once before and 
once during the constructor call. (The first object is dropped, so it can be garbage collected 
later.) This might not seem efficient at first, but it guarantees proper initialization—what 
would happen if an overloaded constructor were defined that did not initialize w3 and there 
wasn’t a “default” initialization for w3 in its definition?  

static data initialization  

There’s only a single piece of storage for a static, regardless of how many objects are created. 
You can’t apply the static keyword to local variables, so it only applies to fields. If a field is a 
static primitive and you don’t initialize it, it gets the standard initial value for its type. If it’s 
a reference to an object, the default initialization value is null.  

If you want to place initialization at the point of definition, it looks the same as for non-
statics.  

128 Thinking in Java Bruce Eckel 



To see when the static storage gets initialized, here’s an example:  

//: initialization/StaticInitialization.java 
// Specifying initial values in a class definition. 
import static net.mindview.util.Print.*; 
 
class Bowl { 
  Bowl(int marker) { 
    print("Bowl(" + marker + ")"); 
  } 
  void f1(int marker) { 
    print("f1(" + marker + ")"); 
  } 
} 
 
class Table { 
  static Bowl bowl1 = new Bowl(1); 
  Table() { 
    print("Table()"); 
    bowl2.f1(1); 
  } 
  void f2(int marker) { 
    print("f2(" + marker + ")"); 
  } 
  static Bowl bowl2 = new Bowl(2); 
} 
 
class Cupboard { 
  Bowl bowl3 = new Bowl(3); 
  static Bowl bowl4 = new Bowl(4); 
  Cupboard() { 
    print("Cupboard()"); 
    bowl4.f1(2); 
  } 
  void f3(int marker) { 
    print("f3(" + marker + ")"); 
  } 
  static Bowl bowl5 = new Bowl(5); 
} 
 
public class StaticInitialization { 
  public static void main(String[] args) { 
    print("Creating new Cupboard() in main"); 
    new Cupboard(); 
    print("Creating new Cupboard() in main"); 
    new Cupboard(); 
    table.f2(1); 
    cupboard.f3(1); 
  } 
  static Table table = new Table(); 
  static Cupboard cupboard = new Cupboard(); 
} /* Output: 
Bowl(1) 
Bowl(2) 
Table() 
f1(1) 
Bowl(4) 
Bowl(5) 
Bowl(3) 
Cupboard() 
f1(2) 
Creating new Cupboard() in main 
Bowl(3) 

Initialization & Cleanup 129 



Cupboard() 
f1(2) 
Creating new Cupboard() in main 
Bowl(3) 
Cupboard() 
f1(2) 
f2(1) 
f3(1) 
*///:~ 

Bowl allows you to view the creation of a class, and Table and Cupboard have static 
members of Bowl scattered through their class definitions. Note that Cupboard creates a 
non-static Bowl bowl3 prior to the static definitions.  

From the output, you can see that the static initialization occurs only if it’s necessary. If you 
don’t create a Table object and you never refer to Table.bowl1 or Table.bowl2, the static 
Bowl bowl1 and bowl2 will never be created. They are initialized only when the first Table 
object is created (or the first static access occurs). After that, the static objects are not 
reinitialized.  

The order of initialization is statics first, if they haven’t already been initialized by a previous 
object creation, and then the non-static objects. You can see the evidence of this in the 
output. To execute main( ) (a static method), the StaticInitialization class must be 
loaded, and its static fields table and cupboard are then initialized, which causes those 
classes to be loaded, and since they both contain static Bowl objects, Bowl is then loaded. 
Thus, all the classes in this particular program get loaded before main( ) starts. This is 
usually not the case, because in typical programs you won’t have everything linked together 
by statics as you do in this example.  

To summarize the process of creating an object, consider a class called Dog:  

1. Even though it doesn’t explicitly use the static keyword, the constructor is actually a 
static method. So the first time an object of type Dog is created, or the first time a 
static method or static field of class Dog is accessed, the Java interpreter must 
locate Dog.class, which it does by searching through the classpath.  
 

2. As Dog.class is loaded (creating a Class object, which you’ll learn about later), all of 
its static initializers are run. Thus, static initialization takes place only once, as the 
Class object is loaded for the first time.  

 
3. When you create a new Dog( ), the construction process for a Dog object first 

allocates enough storage for a Dog object on the heap.  
 

4. This storage is wiped to zero, automatically setting all the primitives in that Dog 
object to their default values (zero for numbers and the equivalent for boolean and 
char) and the references to null.  

 
5. Any initializations that occur at the point of field definition are executed.  

 
6. Constructors are executed. As you shall see in the Reusing Classes chapter, this might 

actually involve a fair amount of activity, especially when inheritance is involved.  

Explicit static initialization  

Java allows you to group other static initializations inside a special “static clause” 
(sometimes called a static block) in a class. It looks like this:  

130 Thinking in Java Bruce Eckel 



//: initialization/Spoon.java 
public class Spoon { 
  static int i; 
  static { 
    i = 47; 
  } 
} ///:~ 

It appears to be a method, but it’s just the static keyword followed by a block of code. This 
code, like other static initializations, is executed only once: the first time you make an object 
of that class or the first time you access a static member of that class (even if you never 
make an object of that class). For example:  

//: initialization/ExplicitStatic.java 
// Explicit static initialization with the "static" clause. 
import static net.mindview.util.Print.*; 
 
class Cup { 
  Cup(int marker) { 
    print("Cup(" + marker + ")"); 
  } 
  void f(int marker) { 
    print("f(" + marker + ")"); 
  } 
} 
 
class Cups { 
  static Cup cup1; 
  static Cup cup2; 
  static { 
    cup1 = new Cup(1); 
    cup2 = new Cup(2); 
  } 
  Cups() { 
    print("Cups()"); 
  } 
} 
 
public class ExplicitStatic { 
  public static void main(String[] args) { 
    print("Inside main()"); 
    Cups.cup1.f(99);  // (1) 
  } 
  // static Cups cups1 = new Cups();  // (2) 
  // static Cups cups2 = new Cups();  // (2) 
} /* Output: 
Inside main() 
Cup(1) 
Cup(2) 
f(99) 
*///:~ 

The static initializers for Cups run when either the access of the static object cup1 occurs 
on the line marked (1), or if line (1) is commented out and the lines marked (2) are 
uncommented. If both (1) and (2) are commented out, the static initialization for Cups 
never occurs, as you can see from the output. Also, it doesn’t matter if one or both of the lines 
marked (2) are uncommented; the static initialization only occurs once.  

Exercise 13:   (1) Verify the statements in the previous paragraph.  

Initialization & Cleanup 131 



Exercise 14:   (1) Create a class with a static String field that is initialized at the point of 
definition, and another one that is initialized by the static block. Add a static method that 
prints both fields and demonstrates that they are both initialized before they are used.  

Non-static instance initialization  

Java provides a similar syntax, called instance initialization, for initializing non-static 
variables for each object. Here’s an example:  

//: initialization/Mugs.java 
// Java "Instance Initialization." 
import static net.mindview.util.Print.*; 
 
class Mug { 
  Mug(int marker) { 
    print("Mug(" + marker + ")"); 
  } 
  void f(int marker) { 
    print("f(" + marker + ")"); 
  } 
} 
 
public class Mugs { 
  Mug mug1; 
  Mug mug2; 
  { 
    mug1 = new Mug(1); 
    mug2 = new Mug(2); 
    print("mug1 & mug2 initialized"); 
  } 
  Mugs() { 
    print("Mugs()"); 
  } 
  Mugs(int i) { 
    print("Mugs(int)"); 
  } 
  public static void main(String[] args) { 
    print("Inside main()"); 
    new Mugs(); 
    print("new Mugs() completed"); 
    new Mugs(1); 
    print("new Mugs(1) completed"); 
  } 
} /* Output: 
Inside main() 
Mug(1) 
Mug(2) 
mug1 & mug2 initialized 
Mugs() 
new Mugs() completed 
Mug(1) 
Mug(2) 
mug1 & mug2 initialized 
Mugs(int) 
new Mugs(1) completed 
*///:~ 

You can see that the instance initialization clause:  

{  

132 Thinking in Java Bruce Eckel 



  mug1 = new Mug(1);  
  mug2 = new Mug(2);  
  print("mug1 & mug2 initialized");  
}  

looks exactly like the static initialization clause except for the missing static keyword. This 
syntax is necessary to support the initialization of anonymous inner classes (see the Inner 
Classes chapter), but it also allows you to guarantee that certain operations occur regardless 
of which explicit constructor is called. From the output, you can see that the instance 
initialization clause is executed before either one of the constructors.  

Exercise 15:   (1) Create a class with a String that is initialized using instance 
initialization.  

Array initialization  
An array is simply a sequence of either objects or primitives that are all the same type and are 
packaged together under one identifier name. Arrays are defined and used with the square-
brackets indexing operator [ ]. To define an array reference, you simply follow your type 
name with empty square brackets:  

int[] a1;  

You can also put the square brackets after the identifier to produce exactly the same 
meaning:  

int a1[];  

This conforms to expectations from C and C++ programmers. The former style, however, is 
probably a more sensible syntax, since it says that the type is “an int array.” That style will be 
used in this book.  

The compiler doesn’t allow you to tell it how big the array is. This brings us back to that issue 
of “references.” All that you have at this point is a reference to an array (you’ve allocated 
enough storage for that reference), and there’s been no space allocated for the array object 
itself. To create storage for the array, you must write an initialization expression. For arrays, 
initialization can appear anywhere in your code, but you can also use a special kind of 
initialization expression that must occur at the point where the array is created. This special 
initialization is a set of values surrounded by curly braces. The storage allocation (the 
equivalent of using new) is taken care of by the compiler in this case. For example:  

int[] a1 = { 1, 2, 3, 4, 5 };  

So why would you ever define an array reference without an array?  

int[] a2;  

Well, it’s possible to assign one array to another in Java, so you can say:  

a2 = a1;  

What you’re really doing is copying a reference, as demonstrated here: 

//: initialization/ArraysOfPrimitives.java 
import static net.mindview.util.Print.*; 
 

Initialization & Cleanup 133 



134 Thinking in Java Bruce Eckel 

public class ArraysOfPrimitives { 
  public static void main(String[] args) { 
    int[] a1 = { 1, 2, 3, 4, 5 }; 
    int[] a2; 
    a2 = a1; 
    for(int i = 0; i < a2.length; i++) 
      a2[i] = a2[i] + 1; 
    for(int i = 0; i < a1.length; i++) 
      print("a1[" + i + "] = " + a1[i]); 
  } 
} /* Output: 
a1[0] = 2 
a1[1] = 3 
a1[2] = 4 
a1[3] = 5 
a1[4] = 6 
*///:~ 

You can see that a1 is given an initialization value but a2 is not; a2 is assigned later—in this 
case, to another array. Since a2 and a1 are then aliased to the same array, the changes made 
via a2 are seen in a1.  

All arrays have an intrinsic member (whether they’re arrays of objects or arrays of primitives) 
that you can query—but not change—to tell you how many elements there are in the array. 
This member is length. Since arrays in Java, like C and C++, start counting from element 
zero, the largest element you can index is length - 1. If you go out of bounds, C and C++ 
quietly accept this and allow you to stomp all over your memory, which is the source of many 
infamous bugs. However, Java protects you against such problems by causing a runtime 
error (an exception) if you step out of bounds.5 

 

What if you don’t know how many elements you’re going to need in your array while you’re 
writing the program? You simply use new to create the elements in the array. Here, new 
works even though it’s creating an array of primitives (new won’t create a non-array 
primitive):  

//: initialization/ArrayNew.java 
// Creating arrays with new. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ArrayNew { 
  public static void main(String[] args) { 
    int[] a; 
    Random rand = new Random(47); 
    a = new int[rand.nextInt(20)]; 
    print("length of a = " + a.length); 
    print(Arrays.toString(a)); 
  } 
} /* Output: 
length of a = 18 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
*///:~ 

The size of the array is chosen at random by using the Random.nextInt( ) method, which 
produces a value between zero and that of its argument. Because of the randomness, it’s clear 

                                                            
5 Of course, checking every array access costs time and code and there’s no way to turn it off, which means that array 
accesses might be a source of inefficiency in your program if they occur at a critical juncture. For Internet security and 
programmer productivity, the Java designers saw that this was a worthwhile trade-off. Although you may be tempted to 
write code that you think might make array accesses more efficient, this is a waste of time because automatic compile-time 
and runtime optimizations will speed array accesses. 



that array creation is actually happening at run time. In addition, the output of this program 
shows that array elements of primitive types are automatically initialized to “empty” values. 
(For numerics and char, this is zero, and for boolean, it’s false.)  

The Arrays.toString( ) method, which is part of the standard java.util library, produces a 
printable version of a one-dimensional array.  

Of course, in this case the array could also have been defined and initialized in the same 
statement:  

int[] a = new int[rand.nextInt(20)];  

This is the preferred way to do it, if you can.  

If you create a non-primitive array, you create an array of references. Consider the wrapper 
type Integer, which is a class and not a primitive:  

//: initialization/ArrayClassObj.java 
// Creating an array of nonprimitive objects. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ArrayClassObj { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    Integer[] a = new Integer[rand.nextInt(20)]; 
    print("length of a = " + a.length); 
    for(int i = 0; i < a.length; i++) 
      a[i] = rand.nextInt(500); // Autoboxing 
    print(Arrays.toString(a)); 
  } 
} /* Output: (Sample) 
length of a = 18 
[55, 193, 361, 461, 429, 368, 200, 22, 207, 288, 128, 51, 89, 309, 278, 
498, 361, 20] 
*///:~ 

Here, even after new is called to create the array:  

Integer[] a = new Integer[rand.nextInt(20)];  

it’s only an array of references, and the initialization is not complete until the reference itself 
is initialized by creating a new Integer object (via autoboxing, in this case):  

a[i] = rand.nextInt(500);  

If you forget to create the object, however, you’ll get an exception at run time when you try to 
use the empty array location.  

It’s also possible to initialize arrays of objects by using the curly brace-enclosed list. There are 
two forms:  

//: initialization/ArrayInit.java 
// Array initialization. 
import java.util.*; 
 
public class ArrayInit { 
  public static void main(String[] args) { 
    Integer[] a = { 

Initialization & Cleanup 135 



      new Integer(1), 
      new Integer(2), 
      3, // Autoboxing 
    }; 
    Integer[] b = new Integer[]{ 
      new Integer(1), 
      new Integer(2), 
      3, // Autoboxing 
    }; 
    System.out.println(Arrays.toString(a)); 
    System.out.println(Arrays.toString(b)); 
  } 
} /* Output: 
[1, 2, 3] 
[1, 2, 3] 
*///:~ 

In both cases, the final comma in the list of initializers is optional. (This feature makes for 
easier maintenance of long lists.)  

Although the first form is useful, it’s more limited because it can only be used at the point 
where the array is defined. You can use the second and third forms anywhere, even inside a 
method call. For example, you could create an array of String objects to pass to the main( ) 
of another method, to provide alternate command-line arguments to that main( ):  

//: initialization/DynamicArray.java 
// Array initialization. 
 
public class DynamicArray { 
  public static void main(String[] args) { 
    Other.main(new String[]{ "fiddle", "de", "dum" }); 
  } 
} 
 
class Other { 
  public static void main(String[] args) { 
    for(String s : args) 
      System.out.print(s + " "); 
  } 
} /* Output: 
fiddle de dum 
*///:~ 

The array created for the argument of Other.main( ) is created at the point of the method 
call, so you can even provide alternate arguments at the time of the call.  

Exercise 16:   (1) Create an array of String objects and assign a String to each element. 
Print the array by using a for loop.  

Exercise 17:   (2) Create a class with a constructor that takes a String argument. During 
construction, print the argument. Create an array of object references to this class, but don’t 
actually create objects to assign into the array. When you run the program, notice whether 
the initialization messages from the constructor calls are printed.  

Exercise 18:   (1) Complete the previous exercise by creating objects to attach to the array 
of references.  

 

136 Thinking in Java Bruce Eckel 



Variable argument lists  

The second form provides a convenient syntax to create and call methods that can produce 
an effect similar to C’s variable argument lists (known as “varargs” in C). These can include 
unknown quantities of arguments as well as unknown types. Since all classes are ultimately 
inherited from the common root class Object (a subject you will learn more about as this 
book progresses), you can create a method that takes an array of Object and call it like this:  

//: initialization/VarArgs.java 
// Using array syntax to create variable argument lists. 
 
class A {} 
 
public class VarArgs { 
  static void printArray(Object[] args) { 
    for(Object obj : args) 
      System.out.print(obj + " "); 
    System.out.println(); 
  } 
  public static void main(String[] args) { 
    printArray(new Object[]{ 
      new Integer(47), new Float(3.14), new Double(11.11) 
    }); 
    printArray(new Object[]{"one", "two", "three" }); 
    printArray(new Object[]{new A(), new A(), new A()}); 
  } 
} /* Output: (Sample) 
47 3.14 11.11 
one two three 
A@1a46e30 A@3e25a5 A@19821f 
*///:~ 

You can see that print( ) takes an array of Object, then steps through the array using the 
foreach syntax and prints each one. The standard Java library classes produce sensible 
output, but the objects of the classes created here print the class name, followed by an ‘@’ 
sign and hexadecimal digits. Thus, the default behavior (if you don’t define a toString( ) 
method for your class, which will be described later in the book) is to print the class name 
and the address of the object.  

You may see pre-Java SE5 code written like the above in order to produce variable argument 
lists. In Java SE5, however, this long-requested feature was finally added, so you can now use 
ellipses to define a variable argument list, as you can see in printArray( ):  

//: initialization/NewVarArgs.java 
// Using array syntax to create variable argument lists. 
 
public class NewVarArgs { 
  static void printArray(Object... args) { 
    for(Object obj : args) 
      System.out.print(obj + " "); 
    System.out.println(); 
  } 
  public static void main(String[] args) { 
    // Can take individual elements: 
    printArray(new Integer(47), new Float(3.14), 
      new Double(11.11)); 
    printArray(47, 3.14F, 11.11); 
    printArray("one", "two", "three"); 
    printArray(new A(), new A(), new A()); 
    // Or an array: 

Initialization & Cleanup 137 



    printArray((Object[])new Integer[]{ 1, 2, 3, 4 }); 
    printArray(); // Empty list is OK 
  } 
} /* Output: (75% match) 
47 3.14 11.11 
47 3.14 11.11 
one two three 
A@1bab50a A@c3c749 A@150bd4d 
1 2 3 4 
*///:~ 

With varargs, you no longer have to explicitly write out the array syntax—the compiler will 
actually fill it in for you when you specify varargs. You’re still getting an array, which is why 
print( ) is able to use foreach to iterate through the array. However, it’s more than just an 
automatic conversion from a list of elements to an array. Notice the second-t0-last line in the 
program, where an array of Integer (created using autoboxing) is cast to an Object array (to 
remove a compiler warning) and passed to printArray( ). Clearly, the compiler sees that 
this is already an array and performs no conversion on it. So if you have a group of items you 
can pass them in as a list, and if you already have an array it will accept that as the variable 
argument list.  

The last line of the program shows that it’s possible to pass zero arguments to a vararg list. 
This is helpful when you have optional trailing arguments:  

//: initialization/OptionalTrailingArguments.java 
 
public class OptionalTrailingArguments { 
  static void f(int required, String... trailing) { 
    System.out.print("required: " + required + " "); 
    for(String s : trailing) 
      System.out.print(s + " "); 
    System.out.println(); 
  } 
  public static void main(String[] args) { 
    f(1, "one"); 
    f(2, "two", "three"); 
    f(0); 
  } 
} /* Output: 
required: 1 one 
required: 2 two three 
required: 0 
*///:~ 

This also shows how you can use varargs with a specified type other than Object. Here, all 
the varargs must be String objects. It’s possible to use any type of argument in varargs, 
including a primitive type. The following example also shows that the vararg list becomes an 
array, and if there’s nothing in the list it’s an array of size zero:  

//: initialization/VarargType.java 
 
public class VarargType { 
  static void f(Character... args) { 
    System.out.print(args.getClass()); 
    System.out.println(" length " + args.length); 
  } 
  static void g(int... args) { 
    System.out.print(args.getClass()); 
    System.out.println(" length " + args.length); 
  } 
  public static void main(String[] args) { 

138 Thinking in Java Bruce Eckel 



    f(‘a’); 
    f(); 
    g(1); 
    g(); 
    System.out.println("int[]: " + new int[0].getClass()); 
  } 
} /* Output: 
class [Ljava.lang.Character; length 1 
class [Ljava.lang.Character; length 0 
class [I length 1 
class [I length 0 
int[]: class [I 
*///:~ 

The getClass( ) method is part of Object, and will be explored fully in the Type 
Information chapter. It produces the class of an object, and when you print this class, you see 
an encoded string representing the class type. The leading ‘[‘ indicates that this is an array of 
the type that follows. The ‘I’ is for a primitive int; to double-check, I created an array of int 
in the last line and printed its type. This verifies that using varargs does not depend on 
autoboxing, but that it actually uses the primitive types.  

Varargs do work in harmony with autoboxing, however. For example:  

//: initialization/AutoboxingVarargs.java 
 
public class AutoboxingVarargs { 
  public static void f(Integer... args) { 
    for(Integer i : args) 
      System.out.print(i + " "); 
    System.out.println(); 
  } 
  public static void main(String[] args) { 
    f(new Integer(1), new Integer(2)); 
    f(4, 5, 6, 7, 8, 9); 
    f(10, new Integer(11), 12); 
  } 
} /* Output: 
1 2 
4 5 6 7 8 9 
10 11 12 
*///:~ 

Notice that you can mix the types together in a single argument list, and autoboxing 
selectively promotes the int arguments to Integer.  

Varargs complicate the process of overloading, although it seems safe enough at first:  

//: initialization/OverloadingVarargs.java 
 
public class OverloadingVarargs { 
  static void f(Character... args) { 
    System.out.print("first"); 
    for(Character c : args) 
      System.out.print(" " + c); 
    System.out.println(); 
  } 
  static void f(Integer... args) { 
    System.out.print("second"); 
    for(Integer i : args) 
      System.out.print(" " + i); 
    System.out.println(); 

Initialization & Cleanup 139 



  } 
  static void f(Long... args) { 
    System.out.println("third"); 
  } 
  public static void main(String[] args) { 
    f(‘a’, ‘b’, ‘c’); 
    f(1); 
    f(2, 1); 
    f(0); 
    f(0L); 
    //! f(); // Won’t compile -- ambiguous 
  } 
} /* Output: 
first a b c 
second 1 
second 2 1 
second 0 
third 
*///:~ 

In each case, the compiler is using autoboxing to match the overloaded method, and it calls 
the most specifically matching method.  

But when you call f( ) without arguments, it has no way of knowing which one to call. 
Although this error is understandable, it will probably surprise the client programmer.  

You might try solving the problem by adding a non-vararg argument to one of the methods:  

//: initialization/OverloadingVarargs2.java 
// {CompileTimeError} (Won’t compile) 
 
public class OverloadingVarargs2 { 
  static void f(float i, Character... args) { 
    System.out.println("first"); 
  } 
  static void f(Character... args) { 
    System.out.print("second"); 
  } 
  public static void main(String[] args) { 
    f(1, ‘a’); 
    f(‘a’, ‘b’); 
  } 
} ///:~ 

The {CompileTimeError} comment tag excludes the file from this book’s Ant build. If you 
compile it by hand you’ll see the error message:  

reference to f is ambiguous, both method f(float,java.lang.Character...) in 
OverloadingVarargs2 and method f(java.lang.Character...) in OverloadingVarargs2 
match  

If you give both methods a non-vararg argument, it works:  

//: initialization/OverloadingVarargs3.java 
 
public class OverloadingVarargs3 { 
  static void f(float i, Character... args) { 
    System.out.println("first"); 
  } 
  static void f(char c, Character... args) { 

140 Thinking in Java Bruce Eckel 



    System.out.println("second"); 
  } 
  public static void main(String[] args) { 
    f(1, ‘a’); 
    f(‘a’, ‘b’); 
  } 
} /* Output: 
first 
second 
*///:~ 

You should generally only use a variable argument list on one version of an overloaded 
method. Or consider not doing it at all.  

Exercise 19:   (2) Write a method that takes a vararg String array. Verify that you can 
pass either a comma-separated list of Strings or a String[] into this method.  

Exercise 20:   (1) Create a main( ) that uses varargs instead of the ordinary main( ) 
syntax. Print all the elements in the resulting args array. Test it with various numbers of 
command-line arguments.  

Enumerated types  
An apparently small addition in Java SE5 is the enum keyword, which makes your life much 
easier when you need to group together and use a set of enumerated types. In the past you 
would have created a set of constant integral values, but these do not naturally restrict 
themselves to your set and thus are riskier and more difficult to use. Enumerated types are a 
common enough need that C, C++, and a number of other languages have always had them. 
Before Java SE5, Java programmers were forced to know a lot and be quite careful when they 
wanted to properly produce the enum effect. Now Java has enum, too, and it’s much more 
full-featured than what you find in C/C++. Here’s a simple example:  

//: initialization/Spiciness.java 
 
public enum Spiciness { 
  NOT, MILD, MEDIUM, HOT, FLAMING 
} ///:~ 

This creates an enumerated type called Spiciness with five named values. Because the 
instances of enumerated types are constants, they are in all capital letters by convention (if 
there are multiple words in a name, they are separated by underscores).  

To use an enum, you create a reference of that type and assign it to an instance:  

//: initialization/SimpleEnumUse.java 
 
public class SimpleEnumUse { 
  public static void main(String[] args) { 
    Spiciness howHot = Spiciness.MEDIUM; 
    System.out.println(howHot); 
  } 
} /* Output: 
MEDIUM 
*///:~ 

The compiler automatically adds useful features when you create an enum. For example, it 
creates a toString( ) so that you can easily display the name of an enum instance, which is 
how the print statement above produced its output. The compiler also creates an ordinal( ) 

Initialization & Cleanup 141 



method to indicate the declaration order of a particular enum constant, and a static 
values( ) method that produces an array of values of the enum constants in the order that 
they were declared:  

//: initialization/EnumOrder.java 
 
public class EnumOrder { 
  public static void main(String[] args) { 
    for(Spiciness s : Spiciness.values()) 
      System.out.println(s + ", ordinal " + s.ordinal()); 
  } 
} /* Output: 
NOT, ordinal 0 
MILD, ordinal 1 
MEDIUM, ordinal 2 
HOT, ordinal 3 
FLAMING, ordinal 4 
*///:~ 

Although enums appear to be a new data type, the keyword only produces some compiler 
behavior while generating a class for the enum, so in many ways you can treat an enum as 
if it were any other class. In fact, enums are classes and have their own methods.  

An especially nice feature is the way that enums can be used inside switch statements:  

//: initialization/Burrito.java 
 
public class Burrito { 
  Spiciness degree; 
  public Burrito(Spiciness degree) { this.degree = degree;} 
  public void describe() { 
    System.out.print("This burrito is "); 
    switch(degree) { 
      case NOT:    System.out.println("not spicy at all."); 
                   break; 
      case MILD: 
      case MEDIUM: System.out.println("a little hot."); 
                   break; 
      case HOT: 
      case FLAMING: 
      default:     System.out.println("maybe too hot."); 
    } 
  }  
  public static void main(String[] args) { 
    Burrito 
      plain = new Burrito(Spiciness.NOT), 
      greenChile = new Burrito(Spiciness.MEDIUM), 
      jalapeno = new Burrito(Spiciness.HOT); 
    plain.describe(); 
    greenChile.describe(); 
    jalapeno.describe(); 
  } 
} /* Output: 
This burrito is not spicy at all. 
This burrito is a little hot. 
This burrito is maybe too hot. 
*///:~ 

Since a switch is intended to select from a limited set of possibilities, it’s an ideal match for 
an enum. Notice how the enum names can produce a much clearer indication of what the 
program means to do.  

142 Thinking in Java Bruce Eckel 



Initialization & Cleanup 143 

In general you can use an enum as if it were another way to create a data type, and then just 
put the results to work. That’s the point, so you don’t have to think too hard about them. 
Before the introduction of enum in Java SE5, you had to go to a lot of effort to make an 
equivalent enumerated type that was safe to use.  

This is enough for you to understand and use basic enums, but we’ll look more deeply at 
them later in the book—they have their own chapter: Enumerated Types.  

Exercise 21:   (1) Create an enum of the least-valuable six types of paper currency. Loop 
through the values( ) and print each value and its ordinal( ).  

Exercise 22:   (2) Write a switch statement for the enum in the previous example. For 
each case, output a description of that particular currency.  

Summary  
This seemingly elaborate mechanism for initialization, the constructor, should give you a 
strong hint about the critical importance placed on initialization in the language. As Bjarne 
Stroustrup, the inventor of C++, was designing that language, one of the first observations he 
made about productivity in C was that improper initialization of variables causes a significant 
portion of programming problems. These kinds of bugs are hard to find, and similar issues 
apply to improper cleanup. Because constructors allow you to guarantee proper initialization 
and cleanup (the compiler will not allow an object to be created without the proper 
constructor calls), you get complete control and safety.  

In C++, destruction is quite important because objects created with new must be explicitly 
destroyed. In Java, the garbage collector automatically releases the memory for all objects, so 
the equivalent cleanup method in Java isn’t necessary much of the time (but when it is, you 
must do it yourself). In cases where you don’t need destructor-like behavior, Java’s garbage 
collector greatly simplifies programming and adds much-needed safety in managing 
memory. Some garbage collectors can even clean up other resources like graphics and file 
handles. However, the garbage collector does add a runtime cost, the expense of which is 
difficult to put into perspective because of the historical slowness of Java interpreters. 
Although Java has had significant performance increases over time, the speed problem has 
taken its toll on the adoption of the language for certain types of programming problems.  

Because of the guarantee that all objects will be constructed, there’s actually more to the 
constructor than what is shown here. In particular, when you create new classes using either 
composition or inheritance, the guarantee of construction also holds, and some additional 
syntax is necessary to support this. You’ll learn about composition, inheritance, and how they 
affect constructors in future chapters.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

  





Access Control  
Access control (or implementation hiding) is about “not getting it 
right the first time.”  

All good writers—including those who write software—know that a piece of work isn’t good 
until it’s been rewritten, often many times. If you leave a piece of code in a drawer for a while 
and come back to it, you may see a much better way to do it. This is one of the prime 
motivations for refactoring, which rewrites working code in order to make it more readable, 
understandable, and thus maintainable.1 

There is a tension, however, in this desire to change and improve your code. There are often 
consumers (client programmers) who rely on some aspect of your code staying the same. So 
you want to change it; they want it to stay the same. Thus a primary consideration in object-
oriented design is to “separate the things that change from the things that stay the same.”  

This is particularly important for libraries. Consumers of that library must rely on the part 
they use, and know that they won’t need to rewrite code if a new version of the library comes 
out. On the flip side, the library creator must have the freedom to make modifications and 
improvements with the certainty that the client code won’t be affected by those changes.  

This can be achieved through convention. For example, the library programmer must agree 
not to remove existing methods when modifying a class in the library, since that would break 
the client programmer’s code. The reverse situation is thornier, however. In the case of a 
field, how can the library creator know which fields have been accessed by client 
programmers? This is also true with methods that are only part of the implementation of a 
class, and not meant to be used directly by the client programmer. What if the library creator 
wants to rip out an old implementation and put in a new one? Changing any of those 
members might break a client programmer’s code. Thus the library creator is in a strait jacket 
and can’t change anything.  

To solve this problem, Java provides access specifiers to allow the library creator to say what 
is available to the client programmer and what is not. The levels of access control from “most 
access” to “least access” are public, protected, package access (which has no keyword), and 
private. From the previous paragraph you might think that, as a library designer, you’ll want 
to keep everything as “private” as possible, and expose only the methods that you want the 
client programmer to use. This is exactly right, even though it’s often counterintuitive for 
people who program in other languages (especially C) and who are used to accessing 
everything without restriction. By the end of this chapter you should be convinced of the 
value of access control in Java.  

The concept of a library of components and the control over who can access the components 
of that library is not complete, however. There’s still the question of how the components are 
bundled together into a cohesive library unit. This is controlled with the package keyword in 
Java, and the access specifiers are affected by whether a class is in the same package or in a 
separate package. So to begin this chapter, you’ll learn how library components are placed 
into packages. Then you’ll be able to understand the complete meaning of the access 
specifiers.  

                                                            
1 See Refactoring: Improving the Design of Existing Code, by Martin Fowler, et al. (Addison-Wesley, 1999). Occasionally 
someone will argue against refactoring, suggesting that code which works is perfectly good and it’s a waste of time to 
refactor it. The problem with this way of thinking is that the lion’s share of a project’s time and money is not in the initial 
writing of the code, but in maintaining it. Making code easier to understand translates into very significant dollars. 

 



package: the library unit  
A package contains a group of classes, organized together under a single namespace.  

For example, there’s a utility library that’s part of the standard Java distribution, organized 
under the namespace java.util. One of the classes in java.util is called ArrayList. One way 
to use an ArrayList is to specify the full name java.util.ArrayList.  

//: access/FullQualification.java 
 
public class FullQualification { 
  public static void main(String[] args) { 
    java.util.ArrayList list = new java.util.ArrayList(); 
  } 
} ///:~ 

This rapidly becomes tedious, so you’ll probably want to use the import keyword instead. If 
you want to import a single class, you can name that class in the import statement:  

//: access/SingleImport.java 
import java.util.ArrayList; 
 
public class SingleImport { 
  public static void main(String[] args) { 
    ArrayList list = new java.util.ArrayList(); 
  } 
} ///:~ 

Now you can use ArrayList with no qualification. However, none of the other classes in 
java.util are available. To import everything, you simply use the ‘*’ as you’ve been seeing in 
the rest of the examples in this book:  

import java.util.*;  

The reason for all this importing is to provide a mechanism to manage namespaces. The 
names of all your class members are insulated from each other. A method f( ) inside a class A 
will not clash with an f( ) that has the same signature in class B. But what about the class 
names? Suppose you create a Stack class that is installed on a machine that already has a 
Stack class that’s written by someone else? This potential clashing of names is why it’s 
important to have complete control over the namespaces in Java, and to create a unique 
identifier combination for each class.  

Most of the examples thus far in this book have existed in a single file and have been 
designed for local use, so they haven’t bothered with package names. These examples have 
actually been in packages: the “unnamed” or default package. This is certainly an option, and 
for simplicity’s sake this approach will be used whenever possible throughout the rest of this 
book. However, if you’re planning to create libraries or programs that are friendly to other 
Java programs on the same machine, you must think about preventing class name clashes.  

When you create a source-code file for Java, it’s commonly called a compilation unit 
(sometimes a translation unit). Each compilation unit must have a name ending in .java, 
and inside the compilation unit there can be a public class that must have the same name as 
the file (including capitalization, but excluding the .java file name extension). There can be 
only one public class in each compilation unit; otherwise, the compiler will complain. If 
there are additional classes in that compilation unit, they are hidden from the world outside 
that package because they’re not public, and they comprise “support” classes for the main 
public class.  

146 Thinking in Java Bruce Eckel 



Access Control 147 

Code organization  

When you compile a .java file, you get an output file for each class in the .java file. Each 
output file has the name of a class in the .java file, but with an extension of .class. Thus you 
can end up with quite a few .class files from a small number of .java files. If you’ve 
programmed with a compiled language, you might be used to the compiler spitting out an 
intermediate form (usually an “obj” file) that is then packaged together with others of its kind 
using a linker (to create an executable file) or a librarian (to create a library). That’s not how 
Java works. A working program is a bunch of .class files, which can be packaged and 
compressed into a Java ARchive (JAR) file (using Java’s jar archiver). The Java interpreter is 
responsible for finding, loading, and interpreting2 these files.  

A library is a group of these class files. Each source file usually has a public class and any 
number of non-public classes, so there’s one public component for each source file. If you 
want to say that all these components (each in its own separate .java and .class files) belong 
together, that’s where the package keyword comes in.  

If you use a package statement, it must appear as the first non-comment in the file. When 
you say:  

package access;  

you’re stating that this compilation unit is part of a library named access. Put another way, 
you’re saying that the public class name within this compilation unit is under the umbrella 
of the name access, and anyone who wants to use that name must either fully specify the 
name or use the import keyword in combination with access, using the choices given 
previously. (Note that the convention for Java package names is to use all lowercase letters, 
even for intermediate words.)  

For example, suppose the name of the file is MyClass.java. This means there can be one 
and only one public class in that file, and the name of that class must be MyClass 
(including the capitalization):  

//: access/mypackage/MyClass.java 
package access.mypackage; 
 
public class MyClass { 
  // ... 
} ///:~ 

Now, if someone wants to use MyClass or, for that matter, any of the other public classes in 
access, they must use the import keyword to make the name or names in access available. 
The alternative is to give the fully qualified name:  

//: access/QualifiedMyClass.java 
 
public class QualifiedMyClass { 
  public static void main(String[] args) { 
    access.mypackage.MyClass m = 
      new access.mypackage.MyClass(); 
  } 
} ///:~ 
 

                                                            
2 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java compilers that generate a 
single executable file. 



148 Thinking in Java Bruce Eckel 

The import keyword can make this much cleaner:  

//: access/ImportedMyClass.java 
import access.mypackage.*; 
 
public class ImportedMyClass { 
  public static void main(String[] args) { 
    MyClass m = new MyClass(); 
  } 
} ///:~ 

It’s worth keeping in mind that what the package and import keywords allow you to do, as 
a library designer, is to divide up the single global namespace so you won’t have clashing 
names, no matter how many people get on the Internet and start writing classes in Java.  

Creating unique package names  

You might observe that, since a package never really gets “packaged” into a single file, a 
package can be made up of many .class files, and things could get a bit cluttered. To prevent 
this, a logical thing to do is to place all the .class files for a particular package into a single 
directory; that is, use the hierarchical file structure of the operating system to your 
advantage. This is one way that Java references the problem of clutter; you’ll see the other 
way later when the jar utility is introduced.   

Collecting the package files into a single subdirectory solves two other problems: creating 
unique package names, and finding those classes that might be buried in a directory 
structure someplace. This is accomplished by encoding the path of the location of the .class 
file into the name of the package. By convention, the first part of the package name is the 
reversed Internet domain name of the creator of the class. Since Internet domain names are 
guaranteed to be unique, if you follow this convention, your package name will be unique 
and you’ll never have a name clash. (That is, until you lose the domain name to someone else 
who starts writing Java code with the same path names as you did.) Of course, if you don’t 
have your own domain name, then you must fabricate an unlikely combination (such as your 
first and last name) to create unique package names. If you’ve decided to start publishing 
Java code, it’s worth the relatively small effort to get a domain name.  

The second part of this trick is resolving the package name into a directory on your 
machine, so that when the Java program runs and it needs to load the .class file, it can 
locate the directory where the .class file resides.  

The Java interpreter proceeds as follows. First, it finds the environment variable 
CLASSPATH3 

(set via the operating system, and sometimes by the installation program that 
installs Java or a Java-based tool on your machine). CLASSPATH contains one or more 
directories that are used as roots in a search for .class files. Starting at that root, the 
interpreter will take the package name and replace each dot with a slash to generate a path 
name off of the CLASSPATH root (so package foo.bar.baz becomes foo\bar\baz or 
foo/bar/baz or possibly something else, depending on your operating system). This is then 
concatenated to the various entries in the CLASSPATH. That’s where it looks for the .class 
file with the name corresponding to the class you’re trying to create. (It also searches some 
standard directories relative to where the Java interpreter resides.)  

To understand this, consider my domain name, which is MindView.net. By reversing this 
and making it all lowercase, net.mindview establishes my unique global name for my 
classes. (The com, edu, org, etc., extensions were formerly capitalized in Java packages, but 
this was changed in Java 2 so the entire package name is lowercase.) I can further subdivide 

                                                            
3 When referring to the environment variable, capital letters will be used (CLASSPATH). 



this by deciding that I want to create a library named simple, so I’ll end up with a package 
name:  

package net.mindview.simple;  

Now this package name can be used as an umbrella namespace for the following two files:  

//: net/mindview/simple/Vector.java 
// Creating a package. 
package net.mindview.simple; 
 
public class Vector { 
  public Vector() { 
    System.out.println("net.mindview.simple.Vector"); 
  } 
} ///:~ 

As mentioned before, the package statement must be the first non-comment code in the file. 
The second file looks much the same:  

//: net/mindview/simple/List.java 
// Creating a package. 
package net.mindview.simple; 
 
public class List { 
  public List() { 
    System.out.println("net.mindview.simple.List"); 
  } 
} ///:~ 

Both of these files are placed in the subdirectory on my system:  

C:\DOC\JavaT\net\mindview\simple  

(Notice that the first comment line in every file in this book establishes the directory location 
of that file in the source-code tree—this is used by the automatic code-extraction tool for this 
book.)  

If you walk back through this path, you can see the package name net.mindview.simple, 
but what about the first portion of the path? That’s taken care of by the CLASSPATH 
environment variable, which is, on my machine:  

CLASSPATH=.;D:\JAVA\LIB;C:\DOC\JavaT  

You can see that the CLASSPATH can contain a number of alternative search paths.  

There’s a variation when using JAR files, however. You must put the actual name of the JAR 
file in the classpath, not just the path where it’s located. So for a JAR named grape.jar your 
classpath would include:  

CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar  

Once the classpath is set up properly, the following file can be placed in any directory:  

//: access/LibTest.java 
// Uses the library. 
import net.mindview.simple.*; 
 

Access Control 149 



public class LibTest { 
  public static void main(String[] args) { 
    Vector v = new Vector(); 
    List l = new List(); 
  } 
} /* Output: 
net.mindview.simple.Vector 
net.mindview.simple.List 
*///:~ 

When the compiler encounters the import statement for the simple library, it begins 
searching at the directories specified by CLASSPATH, looking for subdirectory 
net/mindview/simple, then seeking the compiled files of the appropriate names 
(Vector.class for Vector, and List.class for List). Note that both the classes and the 
desired methods in Vector and List must be public.  

Setting the CLASSPATH has been such a trial for beginning Java users (it was for me, when I 
started) that Sun made the JDK in later versions of Java a bit smarter. You’ll find that when 
you install it, even if you don’t set the CLASSPATH, you’ll be able to compile and run basic 
Java programs. To compile and run the source-code package for this book (available at 
www.MindView.net), however, you will need to add the base directory of the book’s code 
tree to your CLASSPATH.  

Exercise 1:   (1) Create a class in a package. Create an instance of your class outside of that 
package.  

Collisions  

What happens if two libraries are imported via ‘*’ and they include the same names? For 
example, suppose a program does this:  

import net.mindview.simple.*;  
import java.util.*;  

Since java.util.* also contains a Vector class, this causes a potential collision. However, as 
long as you don’t write the code that actually causes the collision, everything is OK—this is 
good, because otherwise you might end up doing a lot of typing to prevent collisions that 
would never happen.  

The collision does occur if you now try to make a Vector:  

Vector v = new Vector();  

Which Vector class does this refer to? The compiler can’t know, and the reader can’t know 
either. So the compiler complains and forces you to be explicit. If I want the standard Java 
Vector, for example, I must say:  

java.util.Vector v = new java.util.Vector();  

Since this (along with the CLASSPATH) completely specifies the location of that Vector, 
there’s no need for the import java.util.* statement unless I’m using something else from 
java.util.  

Alternatively, you can use the single-class import form to prevent clashes—as long as you 
don’t use both colliding names in the same program (in which case you must fall back to fully 
specifying the names).  

150 Thinking in Java Bruce Eckel 



Exercise 2:   (1) Take the code fragments in this section and turn them into a program, 
and verify that collisions do in fact occur.  

A custom tool library  

With this knowledge, you can now create your own libraries of tools to reduce or eliminate 
duplicate code. Consider, for example, the alias we’ve been using for 
System.out.println( ), to reduce typing. This can be part of a class called Print so that you 
end up with a readable static import:  

//: net/mindview/util/Print.java 
// Print methods that can be used without 
// qualifiers, using Java SE5 static imports: 
package net.mindview.util; 
import java.io.*; 
 
public class Print { 
  // Print with a newline: 
  public static void print(Object obj) { 
    System.out.println(obj); 
  } 
  // Print a newline by itself: 
  public static void print() { 
    System.out.println(); 
  } 
  // Print with no line break: 
  public static void printnb(Object obj) { 
    System.out.print(obj); 
  } 
  // The new Java SE5 printf() (from C): 
  public static PrintStream 
  printf(String format, Object... args) { 
    return System.out.printf(format, args); 
  } 
} ///:~ 

You can use the printing shorthand to print anything, either with a newline (print( )) or 
without a newline (printnb( )).  

You can guess that the location of this file must be in a directory that starts at one of the 
CLASSPATH locations, then continues into net/mindview. After compiling, the static 
print( ) and printnb( ) methods can be used anywhere on your system with an import 
static statement:  

//: access/PrintTest.java 
// Uses the static printing methods in Print.java. 
import static net.mindview.util.Print.*; 
 
public class PrintTest { 
  public static void main(String[] args) { 
    print("Available from now on!"); 
    print(100); 
    print(100L); 
    print(3.14159); 
  } 
} /* Output: 
Available from now on! 
100 
100 
3.14159 

Access Control 151 



*///:~ 

A second component of this library can be the range( ) methods, introduced in the 
Controlling Execution chapter, that allow the use of the foreach syntax for simple integer 
sequences:  

//: net/mindview/util/Range.java 
// Array creation methods that can be used without 
// qualifiers, using Java SE5 static imports: 
package net.mindview.util; 
 
public class Range { 
  // Produce a sequence [0..n) 
  public static int[] range(int n) { 
    int[] result = new int[n]; 
    for(int i = 0; i < n; i++) 
      result[i] = i; 
    return result; 
  } 
  // Produce a sequence [start..end) 
  public static int[] range(int start, int end) { 
    int sz = end - start; 
    int[] result = new int[sz]; 
    for(int i = 0; i < sz; i++) 
      result[i] = start + i; 
    return result; 
  } 
  // Produce a sequence [start..end) incrementing by step 
  public static int[] range(int start, int end, int step) { 
    int sz = (end - start)/step; 
    int[] result = new int[sz]; 
    for(int i = 0; i < sz; i++) 
      result[i] = start + (i * step); 
    return result; 
  } 
} ///:~ 

From now on, whenever you come up with a useful new utility, you can add it to your own 
library. You’ll see more components added to the net.mindview.util library throughout the 
book.  

Using imports to change behavior  

A feature that is missing from Java is C’s conditional compilation, which allows you to 
change a switch and get different behavior without changing any other code. The reason such 
a feature was left out of Java is probably because it is most often used in C to solve cross-
platform issues: Different portions of the code are compiled depending on the target 
platform. Since Java is intended to be automatically cross-platform, such a feature should 
not be necessary.  

However, there are other valuable uses for conditional compilation. A very common use is for 
debugging code. The debugging features are enabled during development and disabled in the 
shipping product. You can accomplish this by changing the package that’s imported in order 
to change the code used in your program from the debug version to the production version. 
This technique can be used for any kind of conditional code.  

Exercise 3:   (2) Create two packages: debug and debugoff, containing an identical class 
with a debug( ) method. The first version displays its String argument to the console, the 

152 Thinking in Java Bruce Eckel 



second does nothing. Use a static import line to import the class into a test program, and 
demonstrate the conditional compilation effect.  

Package caveat  

It’s worth remembering that anytime you create a package, you implicitly specify a directory 
structure when you give the package a name. The package must live in the directory indicated 
by its name, which must be a directory that is searchable starting from the CLASSPATH. 
Experimenting with the package keyword can be a bit frustrating at first, because unless you 
adhere to the package-name to directory-path rule, you’ll get a lot of mysterious runtime 
messages about not being able to find a particular class, even if that class is sitting there in 
the same directory. If you get a message like this, try commenting out the package 
statement, and if it runs, you’ll know where the problem lies.  

Note that compiled code is often placed in a different directory than source code, but the path 
to the compiled code must still be found by the JVM using the CLASSPATH.  

Java access specifiers  
The Java access specifiers public, protected, and private are placed in front of each 
definition for each member in your class, whether it’s a field or a method. Each access 
specifier only controls the access for that particular definition.  

If you don’t provide an access specifier, it means “package access.” So one way or another, 
everything has some kind of access control. In the following sections, you’ll learn about the 
various types of access.  

Package access  

All the examples before this chapter used no access specifiers. The default access has no 
keyword, but it is commonly referred to as package access (and sometimes “friendly”). It 
means that all the other classes in the current package have access to that member, but to all 
the classes outside of this package, the member appears to be private. Since a compilation 
unit—a file—can belong only to a single package, all the classes within a single compilation 
unit are automatically available to each other via package access.  

Package access allows you to group related classes together in a package so that they can 
easily interact with each other. When you put classes together in a package, thus granting 
mutual access to their package-access members, you “own” the code in that package. It 
makes sense that only code that you own should have package access to other code that you 
own. You could say that package access gives a meaning or a reason for grouping classes 
together in a package. In many languages the way you organize your definitions in files can 
be arbitrary, but in Java you’re compelled to organize them in a sensible fashion. In addition, 
you’ll probably want to exclude classes that shouldn’t have access to the classes being defined 
in the current package.  

The class controls the code that has access to its members. Code from another package can’t 
just come around and say, “Hi, I’m a friend of Bob’s!” and expect to be shown the 
protected, package-access, and private members of Bob. The only way to grant access to a 
member is to:  

1. Make the member public. Then everybody, everywhere, can access it.  
 

Access Control 153 



2. Give the member package access by leaving off any access specifier, and put the other 
classes in the same package. Then the other classes in that package can access the 
member.  

 
3. As you’ll see in the Reusing Classes chapter, when inheritance is introduced, an 

inherited class can access a protected member as well as a public member (but not 
private members). It can access package-access members only if the two classes are 
in the same package. But don’t worry about inheritance and protected right now.  

 
4. Provide “accessor/mutator” methods (also known as “get/set” methods) that read and 

change the value. This is the most civilized approach in terms of OOP, and it is 
fundamental to JavaBeans, as you’ll see in the Graphical User Interfaces chapter.  

public: interface access  

When you use the public keyword, it means that the member declaration that immediately 
follows public is available to everyone, in particular to the client programmer who uses the 
library. Suppose you define a package dessert containing the following compilation unit:  

//: access/dessert/Cookie.java 
// Creates a library. 
package access.dessert; 
 
public class Cookie { 
  public Cookie() { 
   System.out.println("Cookie constructor"); 
  } 
  void bite() { System.out.println("bite"); } 
} ///:~ 

Remember, the class file produced by Cookie.java must reside in a subdirectory called 
dessert, in a directory under access (indicating the Access Control chapter of this book) 
that must be under one of the CLASSPATH directories. Don’t make the mistake of thinking 
that Java will always look at the current directory as one of the starting points for searching. 
If you don’t have a ‘.’ as one of the paths in your CLASSPATH, Java won’t look there.  

Now if you create a program that uses Cookie:  

//: access/Dinner.java 
// Uses the library. 
import access.dessert.*; 
 
public class Dinner { 
  public static void main(String[] args) { 
    Cookie x = new Cookie(); 
    //! x.bite(); // Can’t access 
  } 
} /* Output: 
Cookie constructor 
*///:~ 

you can create a Cookie object, since its constructor is public and the class is public. (We’ll 
look more at the concept of a public class later.) However, the bite( ) member is 
inaccessible inside Dinner.java since bite( ) provides access only within package dessert, 
so the compiler prevents you from using it.  

 

154 Thinking in Java Bruce Eckel 



The default package  

You might be surprised to discover that the following code compiles, even though it would 
appear that it breaks the rules:  

//: access/Cake.java 
// Accesses a class in a separate compilation unit. 
 
class Cake { 
  public static void main(String[] args) { 
    Pie x = new Pie(); 
    x.f(); 
  } 
} /* Output: 
Pie.f() 
*///:~ 

In a second file in the same directory:  

//: access/Pie.java 
// The other class. 
 
class Pie { 
  void f() { System.out.println("Pie.f()"); } 
} ///:~ 

You might initially view these as completely foreign files, and yet Cake is able to create a Pie 
object and call its f( ) method. (Note that you must have ‘.’ in your CLASSPATH in order for 
the files to compile.) You’d typically think that Pie and f( ) have package access and are 
therefore not available to Cake. They do have package access—that part is correct. The 
reason that they are available in Cake.java is because they are in the same directory and 
have no explicit package name. Java treats files like this as implicitly part of the “default 
package” for that directory, and thus they provide package access to all the other files in that 
directory.  

private: you can’t touch that!  

The private keyword means that no one can access that member except the class that 
contains that member, inside methods of that class. Other classes in the same package cannot 
access private members, so it’s as if you’re even insulating the class against yourself. On the 
other hand, it’s not unlikely that a package might be created by several people collaborating 
together, so private allows you to freely change that member without concern that it will 
affect another class in the same package.  

The default package access often provides an adequate amount of hiding; remember, a 
packageaccess member is inaccessible to the client programmer using the class. This is nice, 
since the default access is the one that you normally use (and the one that you’ll get if you 
forget to add any access control). Thus, you’ll typically think about access for the members 
that you explicitly want to make public for the client programmer, and as a result, you might 
initially think that you won’t use the private keyword very often, since it’s tolerable to get 
away without it. However, it turns out that the consistent use of private is very important, 
especially where multithreading is concerned. (As you’ll see in the Concurrency chapter.)  

Here’s an example of the use of private:  

//: access/IceCream.java 
// Demonstrates "private" keyword. 
 

Access Control 155 



156 Thinking in Java Bruce Eckel 

class Sundae { 
  private Sundae() {} 
  static Sundae makeASundae() { 
    return new Sundae(); 
  } 
} 
 
public class IceCream { 
  public static void main(String[] args) { 
    //! Sundae x = new Sundae(); 
    Sundae x = Sundae.makeASundae(); 
  } 
} ///:~ 

This shows an example in which private comes in handy: You might want to control how an 
object is created and prevent someone from directly accessing a particular constructor (or all 
of them). In the preceding example, you cannot create a Sundae object via its constructor; 
instead, you must call the makeASundae( ) method to do it for you.4 

 

Any method that you’re certain is only a “helper” method for that class can be made private, 
to ensure that you don’t accidentally use it elsewhere in the package and thus prohibit 
yourself from changing or removing the method. Making a method private guarantees that 
you retain this option.  

The same is true for a private field inside a class. Unless you must expose the underlying 
implementation (which is less likely than you might think), you should make all fields 
private. However, just because a reference to an object is private inside a class doesn’t 
mean that some other object can’t have a public reference to the same object. (See the online 
supplements for this book to learn about aliasing issues.)  

protected: inheritance access  

Understanding the protected access specifier requires a jump ahead. First, you should be 
aware that you don’t need to understand this section to continue through this book up 
through inheritance (the Reusing Classes chapter). But for completeness, here is a brief 
description and example using protected.  

The protected keyword deals with a concept called inheritance, which takes an existing 
class— which we refer to as the base class—and adds new members to that class without 
touching the existing class. You can also change the behavior of existing members of the 
class. To inherit from a class, you say that your new class extends an existing class, like this:  

class Foo extends Bar {  

The rest of the class definition looks the same.  

If you create a new package and inherit from a class in another package, the only members 
you have access to are the public members of the original package. (Of course, if you 
perform the inheritance in the same package, you can manipulate all the members that have 
package access.) Sometimes the creator of the base class would like to take a particular 
member and grant access to derived classes but not the world in general. That’s what 
protected does. protected also gives package access—that is, other classes in the same 
package may access protected elements.  

                                                            
4 There’s another effect in this case: Since the default constructor is the only one defined, and it’s private, it will prevent 
inheritance of this class. (A subject that will be introduced later.) 



If you refer back to the file Cookie.java, the following class cannot call the package-access 
member bite( ):  

//: access/ChocolateChip.java 
// Can’t use package-access member from another package. 
import access.dessert.*; 
 
public class ChocolateChip extends Cookie { 
  public ChocolateChip() { 
   System.out.println("ChocolateChip constructor"); 
  } 
  public void chomp() { 
    //! bite(); // Can’t access bite 
  } 
  public static void main(String[] args) { 
    ChocolateChip x = new ChocolateChip(); 
    x.chomp(); 
  } 
} /* Output: 
Cookie constructor 
ChocolateChip constructor 
*///:~ 

One of the interesting things about inheritance is that if a method bite( ) exists in class 
Cookie, then it also exists in any class inherited from Cookie. But since bite( ) has package 
access and is in a foreign package, it’s unavailable to us in this one. Of course, you could 
make it public, but then everyone would have access, and maybe that’s not what you want. If 
you change the class Cookie as follows:  

//: access/cookie2/Cookie.java 
package access.cookie2; 
 
public class Cookie { 
  public Cookie() { 
    System.out.println("Cookie constructor"); 
  } 
  protected void bite() { 
    System.out.println("bite"); 
  } 
} ///:~ 

now bite( ) becomes accessible to anyone inheriting from Cookie:  

//: access/ChocolateChip2.java 
import access.cookie2.*; 
 
public class ChocolateChip2 extends Cookie { 
  public ChocolateChip2() { 
   System.out.println("ChocolateChip2 constructor"); 
  } 
  public void chomp() { bite(); } // Protected method 
  public static void main(String[] args) { 
    ChocolateChip2 x = new ChocolateChip2(); 
    x.chomp(); 
  } 
} /* Output: 
Cookie constructor 
ChocolateChip2 constructor 
bite 
*///:~ 

Access Control 157 



158 Thinking in Java Bruce Eckel 

Note that, although bite( ) also has package access, it is not public.  

Exercise 4:   (2) Show that protected methods have package access but are not public.  

Exercise 5:   (2) Create a class with public, private, protected, and package-access 
fields and method members. Create an object of this class and see what kind of compiler 
messages you get when you try to access all the class members. Be aware that classes in the 
same directory are part of the “default” package.  

Exercise 6:   (1) Create a class with protected data. Create a second class in the same file 
with a method that manipulates the protected data in the first class.  

Interface and implementation  
Access control is often referred to as implementation hiding. Wrapping data and methods 
within classes in combination with implementation hiding is often called encapsulation.5 
The result is a data type with characteristics and behaviors.  

Access control puts boundaries within a data type for two important reasons. The first is to 
establish what the client programmers can and can’t use. You can build your internal 
mechanisms into the structure without worrying that the client programmers will 
accidentally treat the internals as part of the interface that they should be using.  

This feeds directly into the second reason, which is to separate the interface from the 
implementation.  If the structure is used in a set of programs, but client programmers can’t 
do anything but send messages to the public interface, then you are free to change anything 
that’s not public (e.g., package access, protected, or private) without breaking client code.  

For clarity, you might prefer a style of creating classes that puts the public members at the 
beginning, followed by the protected, package-access, and private members. The 
advantage is that the user of the class can then read down from the top and see first what’s 
important to them (the public members, because they can be accessed outside the file), and 
stop reading when they encounter the non-public members, which are part of the internal 
implementation:  

//: access/OrganizedByAccess.java 
 
public class OrganizedByAccess { 
  public void pub1() { /* ... */ } 
  public void pub2() { /* ... */ } 
  public void pub3() { /* ... */ } 
  private void priv1() { /* ... */ } 
  private void priv2() { /* ... */ } 
  private void priv3() { /* ... */ } 
  private int i; 
  // ... 
} ///:~ 

This will make it only partially easier to read, because the interface and implementation are 
still mixed together. That is, you still see the source code—the implementation—because it’s 
right there in the class. In addition, the comment documentation supported by Javadoc 
lessens the importance of code readability by the client programmer. Displaying the interface 
to the consumer of a class is really the job of the class browser, a tool whose job is to look at 
all the available classes and show you what you can do with them (i.e., what members are 

                                                            
5 However, people often refer to implementation hiding alone as encapsulation. 



available) in a useful fashion. In Java, viewing the JDK documentation with a Web browser 
gives you the same effect as a class browser.  

Class access  
In Java, the access specifiers can also be used to determine which classes within a library will 
be available to the users of that library. If you want a class to be available to a client 
programmer, you use the public keyword on the entire class definition. This controls 
whether the client programmer can even create an object of the class.  

To control the access of a class, the specifier must appear before the keyword class. Thus you 
can say:  

public class Widget {  

Now if the name of your library is access, any client programmer can access Widget by 
saying  

import access.Widget;  

or  

import access.*;  

However, there’s an extra set of constraints:  

1. There can be only one public class per compilation unit (file). The idea is that each 
compilation unit has a single public interface represented by that public class. It can 
have as many supporting package-access classes as you want. If you have more than 
one public class inside a compilation unit, the compiler will give you an error 
message.  
 

2. The name of the public class must exactly match the name of the file containing the 
compilation unit, including capitalization. So for Widget, the name of the file must be 
Widget.java, not widget.java or WIDGET.java. Again, you’ll get a compile-time 
error if they don’t agree.  

 
3. It is possible, though not typical, to have a compilation unit with no public class at 

all. In this case, you can name the file whatever you like (although naming it 
arbitrarily will be confusing to people reading and maintaining the code).  

 
What if you’ve got a class inside access that you’re only using to accomplish the tasks 
performed by Widget or some other public class in access? You don’t want to go to the 
bother of creating documentation for the client programmer, and you think that sometime 
later you might want to completely change things and rip out your class altogether, 
substituting a different one. To give you this flexibility, you need to ensure that no client 
programmers become dependent on your particular implementation details hidden inside 
access. To accomplish this, you just leave the public keyword off the class, in which case it 
has package access. (That class can be used only within that package.)  

Exercise 7:   (1) Create the library according to the code fragments describing access and 
Widget. Create a Widget in a class that is not part of the access package.  

When you create a package-access class, it still makes sense to make the fields of the class 
private—you should always make fields as private as possible—but it’s generally reasonable 
to give the methods the same access as the class (package access). Since a package-access 

Access Control 159 



160 Thinking in Java Bruce Eckel 

class is usually used only within the package, you only need to make the methods of such a 
class public if you’re forced to, and in those cases, the compiler will tell you.  

Note that a class cannot be private (that would make it inaccessible to anyone but the class) 
or protected.6 So you have only two choices for class access: package access or public. If 
you don’t want anyone else to have access to that class, you can make all the constructors 
private, thereby preventing anyone but you, inside a static member of the class, from 
creating an object of that class. Here’s an example:  

//: access/Lunch.java 
// Demonstrates class access specifiers. Make a class 
// effectively private with private constructors: 
 
class Soup1 { 
  private Soup1() {} 
  // (1) Allow creation via static method: 
  public static Soup1 makeSoup() { 
    return new Soup1(); 
  } 
} 
 
class Soup2 { 
  private Soup2() {} 
  // (2) Create a static object and return a reference 
  // upon request.(The "Singleton" pattern): 
  private static Soup2 ps1 = new Soup2(); 
  public static Soup2 access() { 
    return ps1; 
  } 
  public void f() {} 
} 
 
// Only one public class allowed per file: 
public class Lunch { 
  void testPrivate() { 
    // Can’t do this! Private constructor: 
    //! Soup1 soup = new Soup1(); 
  } 
  void testStatic() { 
    Soup1 soup = Soup1.makeSoup(); 
  } 
  void testSingleton() { 
    Soup2.access().f(); 
  } 
} ///:~ 

Up to now, most of the methods have been returning either void or a primitive type, so the 
definition:  

public static Soup1 makeSoup() {  
  return new Soup1();  
}  

might look a little confusing at first. The word Soup1 before the method name (makeSoup) 
tells what the method returns. So far in this book, this has usually been void, which means it 
returns nothing. But you can also return a reference to an object, which is what happens 
here. This method returns a reference to an object of class Soup1.  

                                                            
6 Actually, an inner class can be private or protected, but that’s a special case. These will be introduced in the Inner 
Classes chapter. 



The classes Soup1 and Soup2 show how to prevent direct creation of a class by making all 
the constructors private. Remember that if you don’t explicitly create at least one 
constructor, the default constructor (a constructor with no arguments) will be created for 
you. By writing the default constructor, it won’t be created automatically. By making it 
private, no one can create an object of that class. But now how does anyone use this class? 
The preceding example shows two options. In Soup1, a static method is created that creates 
a new Soup1 and returns a reference to it. This can be useful if you want to do some extra 
operations on the Soup1 before returning it, or if you want to keep count of how many 
Soup1 objects to create (perhaps to restrict their population).  

Soup2 uses what’s called a design pattern, which is covered in Thinking in Patterns (with 
Java) at www.MindView.net. This particular pattern is called a Singleton, because it allows 
only a single object to ever be created. The object of class Soup2 is created as a static 
private member of Soup2, so there’s one and only one, and you can’t get at it except 
through the public method access( ).  

As previously mentioned, if you don’t put an access specifier for class access, it defaults to 
package access. This means that an object of that class can be created by any other class in 
the package, but not outside the package. (Remember, all the files within the same directory 
that don’t have explicit package declarations are implicitly part of the default package for 
that directory.) However, if a static member of that class is public, the client programmer 
can still access that static member even though they cannot create an object of that class.  

Exercise 8:   (4) Following the form of the example Lunch.java, create a class called 
ConnectionManager that manages a fixed array of Connection objects. The client 
programmer must not be able to explicitly create Connection objects, but can only get them 
via a static method in ConnectionManager. When the ConnectionManager runs out of 
objects, it returns a null reference. Test the classes in main( ).  

Exercise 9:   (2) Create the following file in the access/local directory (presumably in 
your CLASSPATH):  

// access/local/PackagedClass.java 
package access.local; 
 
class PackagedClass { 
  public PackagedClass() { 
    System.out.println("Creating a packaged class"); 
  } 
} 

Then create the following file in a directory other than access/local:  

// access/foreign/Foreign.java 
package access.foreign; 
import access.local.*; 
 
public class Foreign { 
   public static void main(String[] args) { 
      PackagedClass pc = new PackagedClass(); 
   } 
} 

Explain why the compiler generates an error. Would making the Foreign class part of the 
access.local package change anything?  

 

Access Control 161 



 

Summary  
In any relationship it’s important to have boundaries that are respected by all parties 
involved. When you create a library, you establish a relationship with the user of that 
library—the client programmer—who is another programmer, but one using your library to 
build an application or a bigger library.  

Without rules, client programmers can do anything they want with all the members of a 
class, even if you might prefer they don’t directly manipulate some of the members. 
Everything’s naked to the world.  

This chapter looked at how classes are built to form libraries: first, the way a group of classes 
is packaged within a library, and second, the way the class controls access to its members.  

It is estimated that a C programming project begins to break down somewhere between 50K 
and 100K lines of code because C has a single namespace, and names begin to collide, 
causing extra management overhead. In Java, the package keyword, the package naming 
scheme, and the import keyword give you complete control over names, so the issue of 
name collision is easily avoided.  

There are two reasons for controlling access to members. The first is to keep users’ hands off 
portions that they shouldn’t touch. These pieces are necessary for the internal operations of 
the class, but not part of the interface that the client programmer needs. So making methods 
and fields private is a service to client programmers, because they can easily see what’s 
important to them and what they can ignore. It simplifies their understanding of the class.  

The second and most important reason for access control is to allow the library designer to 
change the internal workings of the class without worrying about how it will affect the client 
programmer. You might, for example, build a class one way at first, and then discover that 
restructuring your code will provide much greater speed. If the interface and implementation 
are clearly separated and protected, you can accomplish this without forcing client 
programmers to rewrite their code. Access control ensures that no client programmer 
becomes dependent on any part of the underlying implementation of a class.  

When you have the ability to change the underlying implementation, you not only have the 
freedom to improve your design, you also have the freedom to make mistakes. No matter 
how carefully you plan and design, you’ll make mistakes. Knowing that it’s relatively safe to 
make these mistakes means you’ll be more experimental, you’ll learn more quickly, and you’ll 
finish your project sooner.  

The public interface to a class is what the user does see, so that is the most important part of 
the class to get “right” during analysis and design. Even that allows you some leeway for 
change. If you don’t get the interface right the first time, you can add more methods, as long 
as you don’t remove any that client programmers have already used in their code.  

Notice that access control focuses on a relationship—and a kind of communication—between 
a library creator and the external clients of that library. There are many situations where this 
is not the case. For example, you are writing all the code yourself, or you are working in close 
quarters with a small team and everything goes into the same package. These situations have 
a different kind of communication, and rigid adherence to access rules may not be optimal. 
Default (package) access may be just fine.  

 

162 Thinking in Java Bruce Eckel 



Access Control 163 

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.   





Reusing Classes 
One of the most compelling features about Java is code reuse. But to 
be revolutionary, you’ve got to be able to do a lot more than copy code 
and change it. 

That’s the approach used in procedural languages like C, and it hasn’t worked very well. Like 
everything in Java, the solution revolves around the class. You reuse code by creating new 
classes, but instead of creating them from scratch, you use existing classes that someone has 
already built and debugged. 

The trick is to use the classes without soiling the existing code. In this chapter you’ll see two 
ways to accomplish this. The first is quite straightforward: you simply create objects of your 
existing class inside the new class. This is called composition, because the new class is 
composed of objects of existing classes. You’re simply reusing the functionality of the code, 
not its form. 

The second approach is more subtle. It creates a new class as a type of an existing class. You 
literally take the form of the existing class and add code to it without modifying the existing 
class. This technique  is called inheritance, and the compiler does most of the work. 
Inheritance is one of the cornerstones of object-oriented programming, and has additional 
implications that will be explored in the Polymorphism chapter. 

It turns out that much of the syntax and behavior are similar for both composition and 
inheritance (which makes sense because they are both ways of making new types from 
existing types). In this chapter, you’ll learn about these code reuse mechanisms. 

Composition syntax 
Composition has been used quite frequently up to this point in the book. You simply place 
object references inside new classes. For example, suppose you’d like an object that holds 
several String objects, a couple of primitives, and an object of another class. For the non-
primitive objects, you put references inside your new class, but you define the primitives 
directly: 

//: reusing/SprinklerSystem.java 
// Composition for code reuse. 
 
class WaterSource { 
  private String s; 
  WaterSource() { 
    System.out.println("WaterSource()"); 
    s = "Constructed"; 
  } 
  public String toString() { return s; } 
}  
 
public class SprinklerSystem { 
  private String valve1, valve2, valve3, valve4; 
  private WaterSource source = new WaterSource(); 
  private int i; 
  private float f; 
  public String toString() { 
    return 

 



      "valve1 = " + valve1 + " " + 
      "valve2 = " + valve2 + " " + 
      "valve3 = " + valve3 + " " + 
      "valve4 = " + valve4 + "\n" + 
      "i = " + i + " " + "f = " + f + " " + 
      "source = " + source; 
  }  
  public static void main(String[] args) { 
    SprinklerSystem sprinklers = new SprinklerSystem(); 
    System.out.println(sprinklers); 
  } 
} /* Output: 
WaterSource() 
valve1 = null valve2 = null valve3 = null valve4 = null 
i = 0 f = 0.0 source = Constructed 
*///: 

One of the methods defined in both classes is special: toString( ). Every non-primitive 
object has a toString( ) method, and it’s called in special situations when the compiler 
wants a String but it has an object. So in the expression in SprinklerSystem.toString( ): 

"source = " + source; 

the compiler sees you trying to add a String object ("source = ") to a WaterSource. 
Because you can only “add” a String to another String, it says “I’ll turn source into a 
String by calling toString( )!” After doing this it can combine the two Strings and pass the 
resulting String to System.out.println( ) (or equivalently, this book’s print() and 
printnb( ) static methods). Any time you want to allow this behavior with a class you 
create, you need only write a toString( ) method.  

Primitives that are fields in a class are automatically initialized to zero, as noted in the 
Everything Is an Object chapter. But the object references are initialized to null, and if you 
try to call methods for any of them, you’ll get an exception-a runtime error. Conveniently, 
you can still print a null reference without throwing an exception.  

It makes sense that the compiler doesn’t just create a default object for every reference, 
because that would incur unnecessary overhead in many cases. If you want the references 
initialized, you can do it:  

1. At the point the objects are defined. This means that they’ll always be initialized 
before the constructor is called.  
 

2. In the constructor for that class. 
 

3.  Right before you actually need to use the object. This is often called lazy 
initialization. It can reduce overhead in situations where object creation is expensive 
and the object doesn’t need to be created every time. 
 

4. Using instance initialization. 
 

All four approaches are shown here:  

//: reusing/Bath.java 
// Constructor initialization with composition. 
import static net.mindview.util.Print.*; 
 
class Soap { 
  private String s; 

166 Thinking in Java Bruce Eckel 



  Soap() { 
    print("Soap()"); 
    s = "Constructed"; 
  } 
  public String toString() { return s; } 
}  
 
public class Bath { 
  private String // Initializing at point of definition: 
    s1 = "Happy", 
    s2 = "Happy", 
    s3, s4; 
  private Soap castille; 
  private int i; 
  private float toy; 
  public Bath() { 
    print("Inside Bath()"); 
    s3 = "Joy"; 
    toy = 3.14f; 
    castille = new Soap(); 
  }  
  // Instance initialization: 
  { i = 47; } 
  public String toString() { 
    if(s4 == null) // Delayed initialization: 
      s4 = "Joy"; 
    return 
      "s1 = " + s1 + "\n" + 
      "s2 = " + s2 + "\n" + 
      "s3 = " + s3 + "\n" + 
      "s4 = " + s4 + "\n" + 
      "i = " + i + "\n" + 
      "toy = " + toy + "\n" + 
      "castille = " + castille; 
  }  
  public static void main(String[] args) { 
    Bath b = new Bath(); 
    print(b); 
  } 
} /* Output: 
Inside Bath() 
Soap() 
s1 = Happy 
s2 = Happy 
s3 = Joy 
s4 = Joy 
i = 47 
toy = 3.14 
castille = Constructed 
*///:~ 

Note that in the Bath constructor, a statement is executed before any of the initializations 
take place. When you don’t initialize at the point of definition, there’s still no guarantee that 
you’ll perform any initialization before you send a message to an object reference—except for 
the inevitable run-time exception.  

When toString( ) is called it fills in s4 so that all the fields are properly initialized by the 
time they are used. 

Exercise 1:   (2) Create a simple class. Inside a second class, define a reference to an object 
of the first class. Use lazy initialization to instantiate this object. 

Reusing Classes 167 



Inheritance syntax 
Inheritance is an integral part of Java (and all OOP languages). It turns out that you’re 
always doing inheritance when you create a class, because unless you explicitly inherit from 
some other class, you implicitly inherit from Java’s standard root class Object.  

The syntax for composition is obvious, but to perform inheritance there’s a distinctly 
different form. When you inherit, you say “This new class is like that old class.” You state this 
in code before the opening brace of the class body, using the keyword extends followed by 
the name of the base class. When you do this, you automatically get all the fields and 
methods in the base class. Here’s an example: 

//: reusing/Detergent.java 
// Inheritance syntax & properties. 
import static net.mindview.util.Print.*; 
 
class Cleanser { 
  private String s = "Cleanser"; 
  public void append(String a) { s += a; } 
  public void dilute() { append(" dilute()"); } 
  public void apply() { append(" apply()"); } 
  public void scrub() { append(" scrub()"); } 
  public String toString() { return s; } 
  public static void main(String[] args) { 
    Cleanser x = new Cleanser(); 
    x.dilute(); x.apply(); x.scrub(); 
    print(x); 
  } 
}  
 
public class Detergent extends Cleanser { 
  // Change a method: 
  public void scrub() { 
    append(" Detergent.scrub()"); 
    super.scrub(); // Call base-class version 
  } 
  // Add methods to the interface: 
  public void foam() { append(" foam()"); } 
  // Test the new class: 
  public static void main(String[] args) { 
    Detergent x = new Detergent(); 
    x.dilute(); 
    x.apply(); 
    x.scrub(); 
    x.foam(); 
    print(x); 
    print("Testing base class:"); 
    Cleanser.main(args); 
  }  
} /* Output: 
Cleanser dilute() apply() Detergent.scrub() scrub() foam() 
Testing base class: 
Cleanser dilute() apply() scrub() 
*///:~ 

This demonstrates a number of features. First, in the Cleanser append( ) method, Strings 
are concatenated to s using the += operator, which is one of the operators (along with ‘+’) 
that the Java designers “overloaded” to work with Strings. 

168 Thinking in Java Bruce Eckel 



Second, both Cleanser and Detergent contain a main( ) method. You can create a 
main( ) for each one of your classes; this technique of putting a main() in each class allows 
easy testing for each class. And you don’t need to remove the main() when you’re finished; 
you can leave it in for later testing. 

Even if you have a lot of classes in a program, only the main( ) for the class invoked on the 
command line will be called. So in this case, when you say java Detergent, 
Detergent.main( ) will be called. But you can also say java Cleanser to invoke 
Cleanser.main( ), even though Cleanser is not a public class. Even if a class has package 
access, a public main() is accessible. 

Here, you can see that Detergent.main( ) calls Cleanser.main( ) explicitly, passing it the 
same arguments from the command line (however, you could pass it any String array).  

It’s important that all of the methods in Cleanser are public. Remember that if you leave 
off any access specifier, the member defaults to package access, which allows access only to 
package members. Thus, within this package, anyone could use those methods if there were 
no access specifier. Detergent would have no trouble, for example. However, if a class from 
some other package were to inherit from Cleanser, it could access only public members. So 
to allow for inheritance, as a general rule make all fields private and all methods public. 
(protected members also allow access by derived classes; you’ll learn about this later.) Of 
course, in particular cases you must make adjustments, but this is a useful guideline.  

Cleanser has a set of methods in its interface: append( ), dilute( ), apply( ), scrub( ), 
and toString( ). Because Detergent is derived from Cleanser (via the extends keyword), 
it automatically gets all these methods in its interface, even though you don’t see them all 
explicitly defined in Detergent. You can think of inheritance, then, as reusing the class.  

As seen in scrub( ), it’s possible to take a method that’s been defined in the base class and 
modify it. In this case, you might want to call the method from the base class inside the new 
version. But inside scrub( ), you cannot simply call scrub( ), since that would produce a 
recursive call, which isn’t what you want. To solve this problem, Java has the keyword super 
that refers to the “superclass” that the current class inherits. Thus the expression 
super.scrub( ) calls the base-class version of the method scrub( ). 

When inheriting you’re not restricted to using the methods of the base class. You can also 
add new methods to the derived class exactly the way you put any method in a class: Just 
define it. The method foam( ) is an example of this. 

In Detergent.main( ) you can see that for a Detergent object, you can call all the methods 
that are available in Cleanser as well as in Detergent (i.e., foam( )). 

Exercise 2:   (2) Inherit a new class from class Detergent. Override scrub( ) and add a 
new method called sterilize( ). 

Initializing the base class 

Since there are now two classes involved—the base class and the derived class—instead of 
just one, it can be a bit confusing to try to imagine the resulting object produced by a derived 
class. From the outside, it looks like the new class has the same interface as the base class 
and maybe some additional methods and fields. But inheritance doesn’t just copy the 
interface of the base class. When you create an object of the derived class, it contains within it 
a subobject of the base class. This subobject is the same as if you had created an object of the 
base class by itself. It’s just that from the outside, the subobject of the base class is wrapped 
within the derived-class object. 

Reusing Classes 169 



Of course, it’s essential that the base-class subobject be initialized correctly, and there’s only 
one way to guarantee this: Perform the initialization in the constructor by calling the base-
class constructor, which has all the appropriate knowledge and privileges to perform the 
base-class initialization. Java automatically inserts calls to the base-class constructor in the 
derived-class constructor. The following example shows this working with three levels of 
inheritance: 

//: reusing/Cartoon.java 
// Constructor calls during inheritance. 
import static net.mindview.util.Print.*; 
 
class Art { 
  Art() { print("Art constructor"); } 
} 
 
class Drawing extends Art { 
  Drawing() { print("Drawing constructor"); } 
} 
 
public class Cartoon extends Drawing { 
  public Cartoon() { print("Cartoon constructor"); } 
  public static void main(String[] args) { 
    Cartoon x = new Cartoon(); 
  } 
} /* Output: 
Art constructor 
Drawing constructor 
Cartoon constructor 
*///:~ 

You can see that the construction happens from the base “outward,” so the base class is 
initialized before the derived-class constructors can access it. Even if you don’t create a 
constructor for Cartoon( ), the compiler will synthesize a default constructor for you that 
calls the base class constructor. 

Exercise 3:   (2) Prove the previous sentence. 

Exercise 4:   (2) Prove that the base-class constructors are (a) always called and (b) called 
before derived-class constructors.  

Exercise 5:   (1) Create two classes, A and B, with default constructors (empty argument 
lists) that announce themselves. Inherit a new class called C from A, and create a member of 
class B inside C. Do not create a constructor for C. Create an object of class C and observe 
the results.  

Constructors with arguments 

The preceding example has default constructors; that is, they don’t have any arguments. It’s 
easy for the compiler to call these because there’s no question about what arguments to pass. 
If your class doesn’t have default arguments, or if you want to call a base-class constructor 
that has an argument, you must explicitly write the calls to the base-class constructor using 
the super keyword and the appropriate argument list: 

//: reusing/Chess.java 
// Inheritance, constructors and arguments. 
import static net.mindview.util.Print.*; 
 
class Game { 
  Game(int i) { 

170 Thinking in Java Bruce Eckel 



    print("Game constructor"); 
  } 
} 
 
class BoardGame extends Game { 
  BoardGame(int i) { 
    super(i); 
    print("BoardGame constructor"); 
  } 
}  
 
public class Chess extends BoardGame { 
  Chess() { 
    super(11); 
    print("Chess constructor"); 
  } 
  public static void main(String[] args) { 
    Chess x = new Chess(); 
  } 
} /* Output: 
Game constructor 
BoardGame constructor 
Chess constructor 
*///:~ 

If you don’t call the base-class constructor in BoardGame( ), the compiler will complain 
that it can’t find a constructor of the form Game( ). In addition, the call to the base-class 
constructor must be the first thing you do in the derived-class constructor. (The compiler will 
remind you if you get it wrong.) 

Exercise 6:   (1) Using Chess.java, prove the statements in the previous paragraph. 

Exercise 7:   (1) Modify Exercise 5 so that A and B have constructors with arguments 
instead of default constructors. Write a constructor for C and perform all initialization within 
C’s constructor. 

Exercise 8:   (1) Create a base class with only a non-default constructor, and a derived 
class with both a default (no-arg) and non-default constructor. In the derived-class 
constructors, call the base-class constructor. 

Exercise 9:   (2) Create a class called Root that contains an instance of each of the classes 
(that you also create) named Component1, Component2, and Component3. Derive a 
class Stem from Root that also contains an instance of each “component.” All classes should 
have default constructors that print a message about that class. 

Exercise 10:   (1) Modify the previous exercise so that each class only has non-default 
constructors. 

Delegation 
A third relationship, which is not directly supported by Java, is called delegation. This is 
midway between inheritance and composition, because you place a member object in the 
class you’re building (like composition), but at the same time you expose all the methods 
from the member object in your new class (like inheritance). For example, a spaceship needs 
a control module: 

//: reusing/SpaceShipControls.java 

Reusing Classes 171 



 
public class SpaceShipControls { 
  void up(int velocity) {} 
  void down(int velocity) {} 
  void left(int velocity) {} 
  void right(int velocity) {} 
  void forward(int velocity) {} 
  void back(int velocity) {} 
  void turboBoost() {} 
} ///:~ 

One way to build a spaceship is to use inheritance: 

//: reusing/SpaceShip.java 
 
public class SpaceShip extends SpaceShipControls { 
  private String name; 
  public SpaceShip(String name) { this.name = name; } 
  public String toString() { return name; } 
  public static void main(String[] args) { 
    SpaceShip protector = new SpaceShip("NSEA Protector"); 
    protector.forward(100); 
  } 
} ///:~ 

However, a SpaceShip isn’t really “a type of” SpaceShipControls, even if, for example, 
you “tell” a SpaceShip to go forward( ). It’s more accurate to say that a SpaceShip 
contains SpaceShipControls, and at the same time all the methods in 
SpaceShipControls are exposed in a SpaceShip. Delegation solves the dilemma: 

//: reusing/SpaceShipDelegation.java 
 
public class SpaceShipDelegation { 
  private String name; 
  private SpaceShipControls controls = 
    new SpaceShipControls(); 
  public SpaceShipDelegation(String name) { 
    this.name = name; 
  } 
  // Delegated methods: 
  public void back(int velocity) { 
    controls.back(velocity); 
  } 
  public void down(int velocity) { 
    controls.down(velocity); 
  } 
  public void forward(int velocity) { 
    controls.forward(velocity); 
  } 
  public void left(int velocity) { 
    controls.left(velocity); 
  } 
  public void right(int velocity) { 
    controls.right(velocity); 
  } 
  public void turboBoost() { 
    controls.turboBoost(); 
  } 
  public void up(int velocity) { 
    controls.up(velocity); 
  } 
  public static void main(String[] args) { 

172 Thinking in Java Bruce Eckel 



    SpaceShipDelegation protector = 
      new SpaceShipDelegation("NSEA Protector"); 
    protector.forward(100); 
  } 
} ///:~ 

You can see how the methods are forwarded to the underlying controls object, and the 
interface is thus the same as it is with inheritance. However, you have more control with 
delegation because you can choose to provide only a subset of the methods in the member 
object. 

Although the Java language doesn’t support delegation, development tools often do. The 
above example, for instance, was automatically generated using the JetBrains Idea IDE. 

Exercise 11:   (3) Modify Detergent.java so that it uses delegation. 

Combining composition  
     and inheritance 

It is very common to use composition and inheritance together. The following example shows 
the creation of a more complex class, using both inheritance and composition, along with the 
necessary constructor initialization: 

//: reusing/PlaceSetting.java 
// Combining composition & inheritance. 
import static net.mindview.util.Print.*; 
 
class Plate { 
  Plate(int i) { 
    print("Plate constructor"); 
  } 
} 
 
class DinnerPlate extends Plate { 
  DinnerPlate(int i) { 
    super(i); 
    print("DinnerPlate constructor"); 
  } 
}  
 
class Utensil { 
  Utensil(int i) { 
    print("Utensil constructor"); 
  } 
} 
 
class Spoon extends Utensil { 
  Spoon(int i) { 
    super(i); 
    print("Spoon constructor"); 
  } 
} 
 
class Fork extends Utensil { 
  Fork(int i) { 
    super(i); 
    print("Fork constructor"); 
  } 

Reusing Classes 173 



}  
 
class Knife extends Utensil { 
  Knife(int i) { 
    super(i); 
    print("Knife constructor"); 
  } 
} 
 
// A cultural way of doing something: 
class Custom { 
  Custom(int i) { 
    print("Custom constructor"); 
  } 
}  
 
public class PlaceSetting extends Custom { 
  private Spoon sp; 
  private Fork frk; 
  private Knife kn; 
  private DinnerPlate pl; 
  public PlaceSetting(int i) { 
    super(i + 1); 
    sp = new Spoon(i + 2); 
    frk = new Fork(i + 3); 
    kn = new Knife(i + 4); 
    pl = new DinnerPlate(i + 5); 
    print("PlaceSetting constructor"); 
  } 
  public static void main(String[] args) { 
    PlaceSetting x = new PlaceSetting(9); 
  } 
} /* Output: 
Custom constructor 
Utensil constructor 
Spoon constructor 
Utensil constructor 
Fork constructor 
Utensil constructor 
Knife constructor 
Plate constructor 
DinnerPlate constructor 
PlaceSetting constructor 
*///:~ 

Although the compiler forces you to initialize the base classes, and requires that you do it 
right at the beginning of the constructor, it doesn’t watch over you to make sure that you 
initialize the member objects, so you must remember to pay attention to that. 

It’s rather amazing how cleanly the classes are separated. You don’t even need the source 
code for the methods in order to reuse the code. At most, you just import a package. (This is 
true for both inheritance and composition.) 

Guaranteeing proper cleanup 

Java doesn’t have the C++ concept of a destructor, a method that is automatically called 
when an object is destroyed. The reason is probably that in Java, the practice is simply to 
forget about objects rather than to destroy them, allowing the garbage collector to reclaim the 
memory as necessary. 

174 Thinking in Java Bruce Eckel 



Often this is fine, but there are times when your class might perform some activities during 
its lifetime that require cleanup. As mentioned in the Initialization & Cleanup chapter, you 
can’t know when the garbage collector will be called, or if it will be called. So if you want 
something cleaned up for a class, you must explicitly write a special method to do it, and 
make sure that the client programmer knows that they must call this method. On top of 
this—as described in the Error Handling with Exceptions chapter—you must guard against 
an exception by putting such cleanup in a finally clause. 

Consider an example of a computer-aided design system that draws pictures on the screen: 

//: reusing/CADSystem.java 
// Ensuring proper cleanup. 
package reusing; 
import static net.mindview.util.Print.*; 
 
class Shape { 
  Shape(int i) { print("Shape constructor"); } 
  void dispose() { print("Shape dispose"); } 
} 
 
class Circle extends Shape { 
  Circle(int i) { 
    super(i); 
    print("Drawing Circle"); 
  } 
  void dispose() { 
    print("Erasing Circle"); 
    super.dispose(); 
  } 
} 
 
class Triangle extends Shape { 
  Triangle(int i) { 
    super(i); 
    print("Drawing Triangle"); 
  } 
  void dispose() { 
    print("Erasing Triangle"); 
    super.dispose(); 
  } 
} 
 
class Line extends Shape { 
  private int start, end; 
  Line(int start, int end) { 
    super(start); 
    this.start = start; 
    this.end = end; 
    print("Drawing Line: " + start + ", " + end); 
  } 
  void dispose() { 
    print("Erasing Line: " + start + ", " + end); 
    super.dispose(); 
  } 
} 
 
public class CADSystem extends Shape { 
  private Circle c; 
  private Triangle t; 
  private Line[] lines = new Line[3]; 
  public CADSystem(int i) { 
    super(i + 1); 

Reusing Classes 175 



    for(int j = 0; j < lines.length; j++) 
      lines[j] = new Line(j, j*j); 
    c = new Circle(1); 
    t = new Triangle(1); 
    print("Combined constructor"); 
  } 
  public void dispose() { 
    print("CADSystem.dispose()"); 
    // The order of cleanup is the reverse 
    // of the order of initialization: 
    t.dispose(); 
    c.dispose(); 
    for(int i = lines.length - 1; i >= 0; i--) 
      lines[i].dispose(); 
    super.dispose(); 
  } 
  public static void main(String[] args) { 
    CADSystem x = new CADSystem(47); 
    try { 
      // Code and exception handling... 
    } finally { 
      x.dispose(); 
    } 
  } 
} /* Output: 
Shape constructor 
Shape constructor 
Drawing Line: 0, 0 
Shape constructor 
Drawing Line: 1, 1 
Shape constructor 
Drawing Line: 2, 4 
Shape constructor 
Drawing Circle 
Shape constructor 
Drawing Triangle 
Combined constructor 
CADSystem.dispose() 
Erasing Triangle 
Shape dispose 
Erasing Circle 
Shape dispose 
Erasing Line: 2, 4 
Shape dispose 
Erasing Line: 1, 1 
Shape dispose 
Erasing Line: 0, 0 
Shape dispose 
Shape dispose 
*///:~ 

Everything in this system is some kind of Shape (which is itself a kind of Object, since it’s 
implicitly inherited from the root class). Each class overrides Shape’s dispose( ) method in 
addition to calling the base-class version of that method using super. The specific Shape 
classes—Circle, Triangle, and Line—all have constructors that “draw,” although any 
method called during the lifetime of the object could be responsible for doing something that 
needs cleanup. Each class has its own dispose( ) method to restore non-memory things 
back to the way they were before the object existed. 

In main( ), you can see two keywords that are new, and won’t be explained until the Error 
Handling with Exceptions chapter: try and finally. The try keyword indicates that the block 
that follows (delimited by curly braces) is a guarded region, which means that it is given 

176 Thinking in Java Bruce Eckel 



special treatment. One of these special treatments is that the code in the finally clause 
following this guarded region is always executed, no matter how the try block exits. (With 
exception handling, it’s possible to leave a try block in a number of non-ordinary ways.) 
Here, the finally clause is saying “always call dispose( ) for x, no matter what happens.”  

Note that in your cleanup method, you must also pay attention to the calling order for the 
base-class and member-object cleanup methods in case one subobject depends on another. 
In general, you should follow the same form that is imposed by a C++ compiler on its 
destructors: First perform all of the cleanup work specific to your class, in the reverse order 
of creation. (In general, this requires that base-class elements still be viable.) Then call the 
base-class cleanup method, as demonstrated here.  

There can be many cases in which the cleanup issue is not a problem; you just let the garbage 
collector do the work. But when you must do it explicitly, diligence and attention are 
required, because there’s not much you can rely on when it comes to garbage collection. The 
garbage collector might never be called. If it is, it can reclaim objects in any order it wants. 
You can’t rely on garbage collection for anything but memory reclamation. If you want 
cleanup to take place, make your own cleanup methods and don’t use on finalize( ). 

Exercise 12:   (3) Add a proper hierarchy of dispose( ) methods to all the classes in 
Exercise 9. 

Name hiding 

If a Java base class has a method name that’s overloaded several times, redefining that 
method name in the derived class will not hide any of the base-class versions (unlike C++). 
Thus overloading works regardless of whether the method was defined at this level or in a 
base class: 

//: reusing/Hide.java 
// Overloading a base-class method name in a derived 
// class does not hide the base-class versions. 
import static net.mindview.util.Print.*; 
 
class Homer { 
  char doh(char c) { 
    print("doh(char)"); 
    return ‘d’; 
  } 
  float doh(float f) { 
    print("doh(float)"); 
    return 1.0f; 
  } 
} 
 
class Milhouse {} 
 
class Bart extends Homer { 
  void doh(Milhouse m) { 
    print("doh(Milhouse)"); 
  } 
} 
 
public class Hide { 
  public static void main(String[] args) { 
    Bart b = new Bart(); 
    b.doh(1); 
    b.doh(‘x’); 
    b.doh(1.0f); 

Reusing Classes 177 



    b.doh(new Milhouse()); 
  } 
} /* Output: 
doh(float) 
doh(char) 
doh(float) 
doh(Milhouse) 
*///:~ 

You can see that all the overloaded methods of Homer are available in Bart, even though 
Bart introduces a new overloaded method (in C++ doing this would hide the base-class 
methods). As you’ll see in the next chapter, it’s far more common to override methods of the 
same name, using exactly the same signature and return type as in the base class. It can be 
confusing otherwise (which is why C++ disallows it—to prevent you from making what is 
probably a mistake). 

Java SE5 has added the @Override annotation, which is not a keyword but can be used as if 
it were. When you mean to override a method, you can choose to add this annotation and the 
compiler will produce an error message if you accidentally overload instead of overriding. 

//: reusing/Lisa.java 
// {CompileTimeError} (Won’t compile) 
 
class Lisa extends Homer { 
  @Override void doh(Milhouse m) { 
    System.out.println("doh(Milhouse)"); 
  } 
} ///:~ 

The {CompileTimeError} tag excludes the file from this book’s Ant build, but if you 
compile it by hand you’ll see the error message: 

method does not override a method from its superclass 

The @Override annotation will thus prevent you from accidentally overloading when you 
don’t mean to. 

Exercise 13:   (2) Create a class with a method that is overloaded three times. Inherit a 
new class, add a new overloading of the method, and show that all four methods are available 
in the derived class. 

Choosing composition  
     vs. inheritance 

Both composition and inheritance allow you to place subobjects inside your new class 
(composition explicitly does this—with inheritance it’s implicit). You might wonder about the 
difference between the two, and when to choose one over the other.  

Composition is generally used when you want the features of an existing class inside your 
new class, but not its interface. That is, you embed an object so that you can use it to 
implement features in your new class, but the user of your new class sees the interface you’ve 
defined for the new class rather than the interface from the embedded object. For this effect, 
you embed private objects of existing classes inside your new class. 

Sometimes it makes sense to allow the class user to directly access the composition of your 
new class; that is, to make the member objects public. The member objects use 

178 Thinking in Java Bruce Eckel 



implementation hiding themselves, so this is a safe thing to do. When the user knows you’re 
assembling a bunch of parts, it makes the interface easier to understand. A car object is a 
good example:  

//: reusing/Car.java 
// Composition with public objects. 
 
class Engine { 
  public void start() {} 
  public void rev() {} 
  public void stop() {} 
} 
 
class Wheel { 
  public void inflate(int psi) {} 
} 
 
class Window { 
  public void rollup() {} 
  public void rolldown() {} 
} 
 
class Door { 
  public Window window = new Window(); 
  public void open() {} 
  public void close() {} 
} 
 
public class Car { 
  public Engine engine = new Engine(); 
  public Wheel[] wheel = new Wheel[4]; 
  public Door 
    left = new Door(), 
    right = new Door(); // 2-door 
  public Car() { 
    for(int i = 0; i < 4; i++) 
      wheel[i] = new Wheel(); 
  } 
  public static void main(String[] args) { 
    Car car = new Car(); 
    car.left.window.rollup(); 
    car.wheel[0].inflate(72); 
  } 
} ///:~ 

Because in this case the composition of a car is part of the analysis of the problem (and not 
simply part of the underlying design), making the members public assists the client 
programmer’s understanding of how to use the class and requires less code complexity for 
the creator of the class. However, keep in mind that this is a special case, and that in general 
you should make fields private. 

When you inherit, you take an existing class and make a special version of it. In general, this 
means that you’re taking a general-purpose class and specializing it for a particular need. 
With a little thought, you’ll see that it would make no sense to compose a car using a vehicle 
object—a car doesn’t contain a vehicle, it is a vehicle. The is-a relationship is expressed with 
inheritance, and the has-a relationship is expressed with composition.  

Exercise 14:   (1) In Car.java add a service( ) method to Engine and call this method 
in main( ). 

Reusing Classes 179 



protected 
Now that you’ve been introduced to inheritance, the keyword protected finally has 
meaning. In an ideal world, the private keyword would be enough. In real projects, there are 
times when you want to make something hidden from the world at large and yet allow access 
for members of derived classes.  

The protected keyword is a nod to pragmatism. It says “This is private as far as the class 
user is concerned, but available to anyone who inherits from this class or anyone else in the 
same package.” (In Java, protected also provides package access.) 

Although it’s possible to create protected fields, the best approach is to leave the fields 
private; you should always preserve your right to change the underlying implementation. 
You can then allow controlled access to inheritors of your class through protected methods: 

//: reusing/Orc.java 
// The protected keyword. 
import static net.mindview.util.Print.*; 
 
class Villain { 
  private String name; 
  protected void set(String nm) { name = nm; } 
  public Villain(String name) { this.name = name; } 
  public String toString() { 
    return "I’m a Villain and my name is " + name; 
  } 
}  
 
public class Orc extends Villain { 
  private int orcNumber; 
  public Orc(String name, int orcNumber) { 
    super(name); 
    this.orcNumber = orcNumber; 
  } 
  public void change(String name, int orcNumber) { 
    set(name); // Available because it’s protected 
    this.orcNumber = orcNumber; 
  } 
  public String toString() { 
    return "Orc " + orcNumber + ": " + super.toString(); 
  }  
  public static void main(String[] args) { 
    Orc orc = new Orc("Limburger", 12); 
    print(orc); 
    orc.change("Bob", 19); 
    print(orc); 
  } 
} /* Output: 
Orc 12: I’m a Villain and my name is Limburger 
Orc 19: I’m a Villain and my name is Bob 
*///:~ 

You can see that change( ) has access to set( ) because it’s protected. Also note the way 
that Orc’s toString( ) method is defined in terms of the base-class version of toString( ). 

Exercise 15:   (2) Create a class inside a package. Your class should contain a protected 
method. Outside of the package, try to call the protected method and explain the results. 
Now inherit from your class and call the protected method from inside a method of your 
derived class. 

180 Thinking in Java Bruce Eckel 



Upcasting 
The most important aspect of inheritance is not that it provides methods for the new class. 
It’s the relationship expressed between the new class and the base class. This relationship can 
be summarized by saying, “The new class is a type of the existing class.” 

This description is not just a fanciful way of explaining inheritance—it’s supported directly by 
the language. As an example, consider a base class called Instrument that represents 
musical instruments, and a derived class called Wind. Because inheritance means that all of 
the methods in the base class are also available in the derived class, any message you can 
send to the base class can also be sent to the derived class. If the Instrument class has a 
play( ) method, so will Wind instruments. This means we can accurately say that a Wind 
object is also a type of Instrument. The following example shows how the compiler 
supports this notion: 

//: reusing/Wind.java 
// Inheritance & upcasting. 
 
class Instrument { 
  public void play() {} 
  static void tune(Instrument i) { 
    // ... 
    i.play(); 
  } 
} 
 
// Wind objects are instruments 
// because they have the same interface: 
public class Wind extends Instrument { 
  public static void main(String[] args) { 
    Wind flute = new Wind(); 
    Instrument.tune(flute); // Upcasting 
  } 
} ///:~ 

What’s interesting in this example is the tune( ) method, which accepts an Instrument 
reference. However, in Wind.main( ) the tune( ) method is called by giving it a Wind 
reference. Given that Java is particular about type checking, it seems strange that a method 
that accepts one type will readily accept another type, until you realize that a Wind object is 
also an Instrument object, and there’s no method that tune( ) could call for an 
Instrument that isn’t also in Wind. Inside tune( ), the code works for Instrument and 
anything derived from Instrument, and the act of converting a Wind reference into an 
Instrument reference is called upcasting. 

Why “upcasting”? 
The term is based on the way that class inheritance diagrams have traditionally been drawn: 
with the root at the top of the page, growing downward. (Of course, you can draw your 
diagrams any way you find helpful.) The inheritance diagram for Wind.java is then:  

Reusing Classes 181 



 

Casting from a derived type to a base type moves up on the inheritance diagram, so it’s 
commonly referred to as upcasting. Upcasting is always safe because you’re going from a 
more specific type to a more general type. That is, the derived class is a superset of the base 
class. It might contain more methods than the base class, but it must contain at least the 
methods in the base class. The only thing that can occur to the class interface during the 
upcast is that it can lose methods, not gain them. This is why the compiler allows upcasting 
without any explicit casts or other special notation.  

You can also perform the reverse of upcasting, called downcasting, but this involves a 
dilemma that will be examined further in the next chapter, and in the Type Information 
chapter. 

Composition vs. inheritance revisited 

In object-oriented programming, the most likely way that you’ll create and use code is by 
simply packaging data and methods together into a class, and using objects of that class. 
You’ll also use existing classes to build new classes with composition. Less frequently, you’ll 
use inheritance. So although inheritance gets a lot of emphasis while learning OOP, it doesn’t 
mean that you should use it everywhere you possibly can. On the contrary, you should use it 
sparingly, only when it’s clear that inheritance is useful. One of the clearest ways to 
determine whether you should use composition or inheritance is to ask whether you’ll ever 
need to upcast from your new class to the base class. If you must upcast, then inheritance is 
necessary, but if you don’t need to upcast, then you should look closely at whether you need 
inheritance. The Polymorphism chapter provides one of the most compelling reasons for 
upcasting, but if you remember to ask “Do I need to upcast?” you’ll have a good tool for 
deciding between composition and inheritance. 

Exercise 16:   (2) Create a class called Amphibian. From this, inherit a class called 
Frog. Put appropriate methods in the base class. In main( ), create a Frog and upcast it to 
Amphibian and demonstrate that all the methods still work. 

Exercise 17:   (1) Modify Exercise 16 so that Frog overrides the method definitions from 
the base class (provides new definitions using the same method signatures). Note what 
happens in main( ). 

The final keyword 
Java’s final keyword has slightly different meanings depending on the context, but in 
general it says “This cannot be changed.” You might want to prevent changes for two reasons: 
design or efficiency. Because these two reasons are quite different, it’s possible to misuse the 
final keyword. 

The following sections discuss the three places where final can be used: for data, methods, 
and classes.  

182 Thinking in Java Bruce Eckel 



final data 

Many programming languages have a way to tell the compiler that a piece of data is 
“constant.” A constant is useful for two reasons:  

1. It can be a compile-time constant that won’t ever change.  
 

2. It can be a value initialized at run time that you don’t want changed.  
 

In the case of a compile-time constant, the compiler is allowed to “fold” the constant value 
into any calculations in which it’s used; that is, the calculation can be performed at compile 
time, eliminating some run-time overhead. In Java, these sorts of constants must be 
primitives and are expressed with the final keyword. A value must be given at the time of 
definition of such a constant. 

A field that is both static and final has only one piece of storage that cannot be changed. 

When final is used with object references rather than primitives, the meaning can be 
confusing. With a primitive, final makes the value a constant, but with an object reference, 
final makes the reference a constant. Once the reference is initialized to an object, it can 
never be changed to point to another object. However, the object itself can be modified; Java 
does not provide a way to make any arbitrary object a constant. (You can, however, write 
your class so that objects have the effect of being constant.) This restriction includes arrays, 
which are also objects. 

Here’s an example that demonstrates final fields. Note that by convention, fields that are 
both static and final (that is, compile-time constants) are capitalized and use underscores 
to separate words. 

//: reusing/FinalData.java 
// The effect of final on fields. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Value { 
  int i; // Package access 
  public Value(int i) { this.i = i; } 
} 
 
public class FinalData { 
  private static Random rand = new Random(47); 
  private String id; 
  public FinalData(String id) { this.id = id; } 
  // Can be compile-time constants: 
  private final int valueOne = 9; 
  private static final int VALUE_TWO = 99; 
  // Typical public constant: 
  public static final int VALUE_THREE = 39; 
  // Cannot be compile-time constants: 
  private final int i4 = rand.nextInt(20); 
  static final int INT_5 = rand.nextInt(20); 
  private Value v1 = new Value(11); 
  private final Value v2 = new Value(22); 
  private static final Value VAL_3 = new Value(33); 
  // Arrays: 
  private final int[] a = { 1, 2, 3, 4, 5, 6 }; 
  public String toString() { 
    return id + ": " + "i4 = " + i4 + ", INT_5 = " + INT_5; 
  } 

Reusing Classes 183 



  public static void main(String[] args) { 
    FinalData fd1 = new FinalData("fd1"); 
    //! fd1.valueOne++; // Error: can’t change value 
    fd1.v2.i++; // Object isn’t constant! 
    fd1.v1 = new Value(9); // OK -- not final 
    for(int i = 0; i < fd1.a.length; i++) 
      fd1.a[i]++; // Object isn’t constant! 
    //! fd1.v2 = new Value(0); // Error: Can’t 
    //! fd1.VAL_3 = new Value(1); // change reference 
    //! fd1.a = new int[3]; 
    print(fd1); 
    print("Creating new FinalData"); 
    FinalData fd2 = new FinalData("fd2"); 
    print(fd1); 
    print(fd2); 
  } 
} /* Output: 
fd1: i4 = 15, INT_5 = 18 
Creating new FinalData 
fd1: i4 = 15, INT_5 = 18 
fd2: i4 = 13, INT_5 = 18 
*///:~ 

Since valueOne and VALUE_TWO are final primitives with compile-time values, they 
can both be used as compile-time constants and are not different in any important way. 
VALUE_THREE is the more typical way you’ll see such constants defined: public so 
they’re usable outside the package, static to emphasize that there’s only one, and final to 
say that it’s a constant. Note that final static primitives with constant initial values (that is, 
compile-time constants) are named with all capitals by convention, with words separated by 
underscores. (This is just like C constants, which is where the convention originated.)  

Just because something is final doesn’t mean that its value is known at compile time. This is 
demonstrated by initializing i4 and INT_5 at run time using randomly generated numbers. 
This portion of the example also shows the difference between making a final value static or 
non-static. This difference shows up only when the values are initialized at run time, since 
the compile-time values are treated the same by the compiler. (And presumably optimized 
out of existence.) The difference is shown when you run the program. Note that the values of 
i4 for fd1 and fd2 are unique, but the value for INT_5 is not changed by creating the second 
FinalData object. That’s because it’s static and is initialized once upon loading and not 
each time a new object is created.  

The variables v1 through VAL_3 demonstrate the meaning of a final reference. As you can 
see in main( ), just because v2 is final doesn’t mean that you can’t change its value. 
Because it’s a reference, final means that you cannot rebind v2 to a new object. You can also 
see that the same meaning holds true for an array, which is just another kind of reference. 
(There is no way that I know of to make the array references themselves final.) Making 
references final seems less useful than making primitives final. 

Exercise 18:   (2) Create a class with a static final field and a final field and 
demonstrate the difference between the two. 

Blank finals 

Java allows the creation of blank finals, which are fields that are declared as final but are not 
given an initialization value. In all cases, the blank final must be initialized before it is used, 
and the compiler ensures this. However, blank finals provide much more flexibility in the use 
of the final keyword since, for example, a final field inside a class can now be different for 
each object, and yet it retains its immutable quality. Here’s an example:  

184 Thinking in Java Bruce Eckel 



//: reusing/BlankFinal.java 
// "Blank" final fields. 
 
class Poppet { 
  private int i; 
  Poppet(int ii) { i = ii; } 
} 
 
public class BlankFinal { 
  private final int i = 0; // Initialized final 
  private final int j; // Blank final 
  private final Poppet p; // Blank final reference 
  // Blank finals MUST be initialized in the constructor: 
  public BlankFinal() { 
    j = 1; // Initialize blank final 
    p = new Poppet(1); // Initialize blank final reference 
  } 
  public BlankFinal(int x) { 
    j = x; // Initialize blank final 
    p = new Poppet(x); // Initialize blank final reference 
  } 
  public static void main(String[] args) { 
    new BlankFinal(); 
    new BlankFinal(47); 
  } 
} ///:~ 

You’re forced to perform assignments to finals either with an expression at the point of 
definition of the field or in every constructor. That way it’s guaranteed that the final field is 
always initialized before use. 

Exercise 19:   (2) Create a class with a blank final reference to an object. Perform the 
initialization of the blank final inside all constructors. Demonstrate the guarantee that the 
final must be initialized before use, and that it cannot be changed once initialized. 

final arguments 

Java allows you to make arguments final by declaring them as such in the argument list. 
This means that inside the method you cannot change what the argument reference points 
to: 

//: reusing/FinalArguments.java 
// Using "final" with method arguments. 
 
class Gizmo { 
  public void spin() {} 
} 
 
public class FinalArguments { 
  void with(final Gizmo g) { 
    //! g = new Gizmo(); // Illegal -- g is final 
  } 
  void without(Gizmo g) { 
    g = new Gizmo(); // OK -- g not final 
    g.spin(); 
  } 
  // void f(final int i) { i++; } // Can’t change 
  // You can only read from a final primitive: 
  int g(final int i) { return i + 1; } 
  public static void main(String[] args) { 
    FinalArguments bf = new FinalArguments(); 

Reusing Classes 185 



186 Thinking in Java Bruce Eckel 

    bf.without(null); 
    bf.with(null); 
  } 
} ///:~ 

The methods f( ) and g( ) show what happens when primitive arguments are final: You can 
read the argument, but you can’t change it. This feature is primarily used to pass data to 
anonymous inner classes, which you’ll learn about in the Inner Classes chapter. 

final methods 

There are two reasons for final methods. The first is to put a “lock” on the method to prevent 
any inheriting class from changing its meaning. This is done for design reasons when you 
want to make sure that a method’s behavior is retained during inheritance and cannot be 
overridden.  

The second reason for final methods is efficiency. In earlier implementations of Java, if you 
made a method final, you allowed the compiler to turn any calls to that method into inline 
calls. When the compiler saw a final method call, it could (at its discretion) skip the normal 
approach of inserting code to perform the method call mechanism (push arguments on the 
stack, hop over to the method code and execute it, hop back and clean off the stack 
arguments, and deal with the return value) and instead replace the method call with a copy of 
the actual code in the method body. This eliminated the overhead of the method call. Of 
course, if a method is big, then your code begins to bloat, and you probably wouldn’t see any 
performance gains from inlining, since any improvements will be dwarfed by the amount of 
time spent inside the method.  

In more recent version of Java, the virtual machine (in particular, the hotspot technologies) 
can detect these situations and optimize away the extra indirection, so its no longer 
necessary-in fact, it is now generally discouraged-to use final to try to help the optimizer. 
With Java SE5/6, you should let the compiler and JVM handle efficiency issues and make a 
method final only if you want to explicitly prevent overriding. 1 

final and private 

Any private methods in a class are implicitly final. Because you can’t access a private 
method, you can’t override it. You can add the final specifier to a private method, but it 
doesn’t give that method any extra meaning. 

This issue can cause confusion, because if you try to override a private method (which is 
implicitly final), it seems to work, and the compiler doesn’t give an error message: 

//: reusing/FinalOverridingIllusion.java 
// It only looks like you can override 
// a private or private final method. 
import static net.mindview.util.Print.*; 
 
class WithFinals { 
  // Identical to "private" alone: 
  private final void f() { print("WithFinals.f()"); } 
  // Also automatically "final": 
  private void g() { print("WithFinals.g()"); } 
} 

                                                            
1 Don’t fall prey to the urge to prematurely optimize. If you get your system working and it’s too slow, it’s doubtful that you 
can fix it with the final keyword. http://MindView.net/Books/BetterJava has information about profiling, which can be 
helpful in speeding up your program. 



 
class OverridingPrivate extends WithFinals { 
  private final void f() { 
    print("OverridingPrivate.f()"); 
  } 
  private void g() { 
    print("OverridingPrivate.g()"); 
  } 
} 
 
class OverridingPrivate2 extends OverridingPrivate { 
  public final void f() { 
    print("OverridingPrivate2.f()"); 
  } 
  public void g() { 
    print("OverridingPrivate2.g()"); 
  } 
} 
 
public class FinalOverridingIllusion { 
  public static void main(String[] args) { 
    OverridingPrivate2 op2 = new OverridingPrivate2(); 
    op2.f(); 
    op2.g(); 
    // You can upcast: 
    OverridingPrivate op = op2; 
    // But you can’t call the methods: 
    //! op.f(); 
    //! op.g(); 
    // Same here: 
    WithFinals wf = op2; 
    //! wf.f(); 
    //! wf.g(); 
  } 
} /* Output: 
OverridingPrivate2.f() 
OverridingPrivate2.g() 
*///:~ 

“Overriding” can only occur if something is part of the base-class interface. That is, you must 
be able to upcast an object to its base type and call the same method (the point of this will 
become clear in the next chapter). If a method is private, it isn’t part of the base-class 
interface. It is just some code that’s hidden away inside the class, and it just happens to have 
that name, but if you create a public, protected, or package-access method with the same 
name in the derived class, there’s no connection to the method that might happen to have 
that name in the base class. You haven’t overridden the method; you’ve just created a new 
method. Since a private method is unreachable and effectively invisible, it doesn’t factor 
into anything except for the code organization of the class for which it was defined. 

Exercise 20:   (1) Show that @Override annotation solves the problem in this section. 

Exercise 21:   (1) Create a class with a final method. Inherit from that class and attempt 
to overwrite that method. 

final classes 
When you say that an entire class is final (by preceding its definition with the final 
keyword), you state that you don’t want to inherit from this class or allow anyone else to do 
so. In other words, for some reason the design of your class is such that there is never a need 
to make any changes, or for safety or security reasons you don’t want subclassing. 

Reusing Classes 187 



//: reusing/Jurassic.java 
// Making an entire class final. 
 
class SmallBrain {} 
 
final class Dinosaur { 
  int i = 7; 
  int j = 1; 
  SmallBrain x = new SmallBrain(); 
  void f() {} 
} 
 
//! class Further extends Dinosaur {} 
// error: Cannot extend final class ‘Dinosaur’ 
 
public class Jurassic { 
  public static void main(String[] args) { 
    Dinosaur n = new Dinosaur(); 
    n.f(); 
    n.i = 40; 
    n.j++; 
  } 
} ///:~ 

Note that the fields of a final class can be final or not, as you choose. The same rules apply 
to final for fields regardless of whether the class is defined as final. However, because it 
prevents inheritance, all methods in a final class are implicitly final, since there’s no way to 
override them. You can add the final specifier to a method in a final class, but it doesn’t add 
any meaning. 

Exercise 22:   (1) Create a final class and attempt to inherit from it. 

final caution 

It can seem to be sensible to make a method final while you’re designing a class. You might 
feel that no one could possibly want to override your methods. Sometimes this is true. 

But be careful with your assumptions. In general, it’s difficult to anticipate how a class can be 
reused, especially a general-purpose class. If you define a method as final, you might prevent 
the possibility of reusing your class through inheritance in some other programmer’s project 
simply because you couldn’t imagine it being used that way. 

The standard Java library is a good example of this. In particular, the Java 1.0/1.1 Vector 
class was commonly used and might have been even more useful if, in the name of efficiency 
(which was almost certainly an illusion), all the methods hadn’t been made final. It’s easily 
conceivable that you might want to inherit and override with such a fundamentally useful 
class, but the designers somehow decided this wasn’t appropriate. This is ironic for two 
reasons. First, Stack is inherited from Vector, which says that a Stack is a Vector, which 
isn’t really true from a logical standpoint. Nonetheless, it’s a case where the Java designers 
themselves inherited Vector. At the point they created Stack this way, they should have 
realized that final methods were too restrictive. 

Second, many of the most important methods of Vector, such as addElement( ) and 
elementAt( ), are synchronized. As you will see in the Concurrency chapter, this imposes 
a significant performance overhead that probably wipes out any gains provided by final. This 
lends credence to the theory that programmers are consistently bad at guessing where 
optimizations should occur. It’s just too bad that such a clumsy design made it into the 
standard library, where everyone had to cope with it. (Fortunately, the modern Java 

188 Thinking in Java Bruce Eckel 



Reusing Classes 189 

container library replaces Vector with ArrayList, which behaves much more civilly. 
Unfortunately, there’s still new code being written that uses the old container library.)  

It’s also interesting to note that Hashtable, another important Java 1.0/1.1 standard library 
class, does not have any final methods. As mentioned elsewhere in this book, it’s quite 
obvious that some classes were designed by completely different people than others. (You’ll 
see that the method names in Hashtable are much briefer compared to those in Vector, 
another piece of evidence.) This is precisely the sort of thing that should not be obvious to 
consumers of a class library. When things are inconsistent, it just makes more work for the 
user—yet another paean to the value of design and code walkthroughs. (Note that the modern 
Java container library replaces Hashtable with HashMap.) 

Initialization and  
     class loading 

In more traditional languages, programs are loaded all at once as part of the startup process. 
This is followed by initialization, and then the program begins. The process of initialization in 
these languages must be carefully controlled so that the order of initialization of statics 
doesn’t cause trouble. C++, for example, has problems if one static expects another static to 
be valid before the second one has been initialized. 

Java doesn’t have this problem because it takes a different approach to loading. This is one of 
the activities that become easier, because everything in Java is an object. Remember that the 
compiled code for each class exists in its own separate file. That file isn’t loaded until the 
code is needed. In general, you can say that “class code is loaded at the point of first use.” 
This is usually when the first object of that class is constructed, but loading also occurs when 
a static field or static method is accessed. 2   

The point of first use is also where the static initialization takes place. All the static objects 
and the static code block will be initialized in textual order (that is, the order that you write 
them down in the class definition) at the point of loading. The statics, of course, are 
initialized only once.  

Initialization with inheritance 

It’s helpful to look at the whole initialization process, including inheritance, to get a full 
picture of what happens. Consider the following example: 

//: reusing/Beetle.java 
// The full process of initialization. 
import static net.mindview.util.Print.*; 
 
class Insect { 
  private int i = 9; 
  protected int j; 
  Insect() { 
    print("i = " + i + ", j = " + j); 
    j = 39; 
  } 
  private static int x1 = 
    printInit("static Insect.x1 initialized"); 
  static int printInit(String s) { 

                                                            
2 The constructor is also a static method even though the static keyword is not explicit. So to be precise, a class is first 
loaded when any one of its static members is accessed. 



    print(s); 
    return 47; 
  } 
} 
 
public class Beetle extends Insect { 
  private int k = printInit("Beetle.k initialized"); 
  public Beetle() { 
    print("k = " + k); 
    print("j = " + j); 
  } 
  private static int x2 = 
    printInit("static Beetle.x2 initialized"); 
  public static void main(String[] args) { 
    print("Beetle constructor"); 
    Beetle b = new Beetle(); 
  } 
} /* Output: 
static Insect.x1 initialized 
static Beetle.x2 initialized 
Beetle constructor 
i = 9, j = 0 
Beetle.k initialized 
k = 47 
j = 39 
*///:~ 

The first thing that happens when you run Java on Beetle is that you try to access 
Beetle.main( ) (a static method), so the loader goes out and finds the compiled code for 
the Beetle class (this happens to be in a file called Beetle.class). In the process of loading 
it, the loader notices that it has a base class (that’s what the extends keyword says), which it 
then loads. This will happen whether or not you’re going to make an object of that base class. 
(Try commenting out the object creation to prove it to yourself.)  

If the base class has a base class, that second base class would then be loaded, and so on. 
Next, the static initialization in the root base class (in this case, Insect) is performed, and 
then the next derived class, and so on. This is important because the derived-class static 
initialization might depend on the base class member being initialized properly. 

At this point, the necessary classes have all been loaded so the object can be created. First, all 
the primitives in this object are set to their default values and the object references are set to 
null—this happens in one fell swoop by setting the memory in the object to binary zero. Then 
the base-class constructor will be called. In this case the call is automatic, but you can also 
specify the base-class constructor call (as the first operation in the Beetle( ) constructor) by 
using super. The base class construction goes through the same process in the same order as 
the derived-class constructor. After the base-class constructor completes, the instance 
variables are initialized in textual order. Finally, the rest of the body of the constructor is 
executed. 

Exercise 23:   (2) Prove that class loading takes place only once. Prove that loading may 
be caused by either the creation of the first instance of that class or by the access of a static 
member. 

Exercise 24:   (2) In Beetle.java, inherit a specific type of beetle from class Beetle, 
following the same format as the existing classes. Trace and explain the output. 

190 Thinking in Java Bruce Eckel 



Reusing Classes 191 

Summary 
Both inheritance and composition allow you to create a new type from existing types. 
Composition reuses existing types as part of the underlying implementation of the new type, 
and inheritance reuses the interface.  

With Inheritance, the derived class has the base-class interface, so it can be upcast to the 
base, which is critical for polymorphism, as you’ll see in the next chapter. 

Despite the strong emphasis on inheritance in object-oriented programming, when you start 
a design you should generally prefer composition (or possibly delegation) during the first cut 
and use inheritance only when it is clearly necessary. Composition tends to be more flexible. 
In addition, by using the added artifice of inheritance with your member type, you can 
change the exact type, and thus the behavior, of those member objects at run time. Therefore, 
you can change the behavior of the composed object at run time. 

When designing a system, your goal is to find or create a set of classes in which each class has 
a specific use and is neither too big (encompassing so much functionality that it’s unwieldy to 
reuse) nor annoyingly small (you can’t use it by itself or without adding functionality). If your 
designs become too complex, it’s often helpful to add more objects by breaking down existing 
ones into smaller parts. 

When you set out to design a system, it’s important to realize that program development is an 
incremental process, just like human learning. It relies on experimentation; you can do as 
much analysis as you want, but you still won’t know all the answers when you set out on a 
project. You’ll have much more success-and more immediate feedback-if you start out to 
“grow” your project as an organic, evolutionary creature, rather than constructing it all at 
once like a glass-box skyscraper. Inheritance and composition are two of the most 
fundamental tools in object-oriented programming that allow you to perform such 
experiments. 

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net. 

   





Polymorphism 
”I have been asked, ‘Pray, Mr. Babbage, if you put into the 
machine wrong figures, will the right answers come out?’ I am 
not able to rightly apprehend the kind of confusion of ideas that 
could provoke such a question.” Charles Babbage (1791-1871) 

Polymorphism is the third essential feature of an object-oriented 
programming language, after data abstraction and inheritance. 

It provides another dimension of separation of interface from implementation, to decouple 
what from how. Polymorphism allows improved code organization and readability as well as 
the creation of extensible programs that can be “grown” not only during the original creation 
of the project, but also when new features are desired.  

Encapsulation creates new data types by combining characteristics and behaviors. 
Implementation hiding separates the interface from the implementation by making the 
details private. This sort of mechanical organization makes ready sense to someone with a 
procedural programming background. But polymorphism deals with decoupling in terms of 
types. In the last chapter, you saw how inheritance allows the treatment of an object as its 
own type or its base type. This ability is critical because it allows many types (derived from 
the same base type) to be treated as if they were one type, and a single piece of code to work 
on all those different types equally. The polymorphic method call allows one type to express 
its distinction from another, similar type, as long as they’re both derived from the same base 
type. This distinction is expressed through differences in behavior of the methods that you 
can call through the base class.  

In this chapter, you’ll learn about polymorphism (also called dynamic binding or late 
binding or run-time binding) starting from the basics, with simple examples that strip away 
everything but the polymorphic behavior of the program. 

Upcasting revisited 
In the last chapter you saw how an object can be used as its own type or as an object of its 
base type. Taking an object reference and treating it as a reference to its base type is called 
upcasting because of the way inheritance trees are drawn with the base class at the top.  

You also saw a problem arise, which is embodied in the following example about musical 
instruments.  

First, since several examples play Notes, we should create a separate Note enumeration, in a 
package: 

//: polymorphism/music/Note.java 
// Notes to play on musical instruments. 
package polymorphism.music; 
 
public enum Note { 
    MIDDLE_C, C_SHARP, B_FLAT; // Etc. 
} ///:~ 

enums were introduced in the Initialization & Cleanup chapter. 

 



Here, Wind is a type of Instrument; therefore, Wind is inherited from Instrument: 

//: polymorphism/music/Instrument.java 
package polymorphism.music; 
import static net.mindview.util.Print.*; 
 
class Instrument { 
  public void play(Note n) { 
    print("Instrument.play()"); 
  } 
} 
 ///:~ 
 
//: polymorphism/music/Wind.java 
package polymorphism.music; 
 
// Wind objects are instruments 
// because they have the same interface: 
public class Wind extends Instrument { 
  // Redefine interface method: 
  public void play(Note n) { 
    System.out.println("Wind.play() " + n); 
  } 
} ///:~ 
 
//: polymorphism/music/Music.java 
// Inheritance & upcasting. 
package polymorphism.music; 
 
public class Music { 
  public static void tune(Instrument i) { 
    // ... 
    i.play(Note.MIDDLE_C); 
  } 
  public static void main(String[] args) { 
    Wind flute = new Wind(); 
    tune(flute); // Upcasting 
  } 
} /* Output: 
Wind.play() MIDDLE_C 
*///:~ 

The method Music.tune( ) accepts an Instrument reference, but also anything derived 
from Instrument. In main( ), you can see this happening as a Wind reference is passed to 
tune( ), with no cast necessary. This is acceptable—the interface in Instrument must exist 
in Wind, because Wind is inherited from Instrument. Upcasting from Wind to 
Instrument may “narrow” that interface, but it cannot make it anything less than the full 
interface to Instrument. 

Forgetting the object type 
Music.java might seem strange to you. Why should anyone intentionally forget the type of 
an object? This is what happens when you upcast, and it seems like it could be much more 
straightforward if tune( ) simply takes a Wind reference as its argument. This brings up an 
essential point: If you did that, you’d need to write a new tune( ) for every type of 
Instrument in your system. Suppose we follow this reasoning and add Stringed and 
Brass instruments: 

//: polymorphism/music/Music2.java 
// Overloading instead of upcasting. 

194 Thinking in Java Bruce Eckel 



package polymorphism.music; 
import static net.mindview.util.Print.*; 
 
class Stringed extends Instrument { 
  public void play(Note n) { 
    print("Stringed.play() " + n); 
  } 
} 
 
class Brass extends Instrument { 
  public void play(Note n) { 
    print("Brass.play() " + n); 
  } 
} 
 
public class Music2 { 
  public static void tune(Wind i) { 
    i.play(Note.MIDDLE_C); 
  } 
  public static void tune(Stringed i) { 
    i.play(Note.MIDDLE_C); 
  } 
  public static void tune(Brass i) { 
    i.play(Note.MIDDLE_C); 
  } 
  public static void main(String[] args) { 
    Wind flute = new Wind(); 
    Stringed violin = new Stringed(); 
    Brass frenchHorn = new Brass(); 
    tune(flute); // No upcasting 
    tune(violin); 
    tune(frenchHorn); 
  } 
} /* Output: 
Wind.play() MIDDLE_C 
Stringed.play() MIDDLE_C 
Brass.play() MIDDLE_C 
*///:~ 

This works, but there’s a major drawback: you must write type-specific methods for each new 
Instrument class you add. This means more programming in the first place, but it also 
means that if you want to add a new method like tune( ) or a new type of Instrument, 
you’ve got a lot of work to do. Add the fact that the compiler won’t give you any error 
messages if you forget to overload one of your methods and the whole process of working 
with types becomes unmanageable.  

Wouldn’t it be much nicer if you could just write a single method that takes the base class as 
its argument, and not any of the specific derived classes? That is, wouldn’t it be nice if you 
could forget that there are derived classes, and write your code to talk only to the base class?  

That’s exactly what polymorphism allows you to do. However, most programmers who come 
from a procedural programming background have a bit of trouble with the way 
polymorphism works. 

Exercise 1:   (2) Create a Cycle class, with subclasses Unicycle, Bicycle and Tricycle. 
Demonstrate that an instance of each type can be upcast to Cycle via a ride( ) method. 

Polymorphism 195 



The twist 
The difficulty with Music.java can be seen by running the program. The output is 
Wind.play( ). This is clearly the desired output, but it doesn’t seem to make sense that it 
would work that way. Look at the tune( ) method: 

  public static void tune(Instrument i) { 
    // ... 
    i.play(Note.MIDDLE_C); 
  } 

It receives an Instrument reference. So how can the compiler possibly know that this 
Instrument reference points to a Wind in this case and not a Brass or Stringed? The 
compiler can’t. To get a deeper understanding of the issue, it’s helpful to examine the subject 
of binding. 

Method-call binding 

Connecting a method call to a method body is called binding. When binding is performed 
before the program is run (by the compiler and linker, if there is one), it’s called early 
binding. You might not have heard the term before because it has never been an option with 
procedural languages. C compilers have only one kind of method call, and that’s early 
binding.  

The confusing part of the preceding program revolves around early binding, because the 
compiler cannot know the correct method to call when it has only an Instrument reference.  

The solution is called late binding, which means that the binding occurs at run time, based 
on the type of object. Late binding is also called dynamic binding or runtime binding. When 
a language implements late binding, there must be some mechanism to determine the type of 
the object at run time and to call the appropriate method. That is, the compiler still doesn’t 
know the object type, but the method-call mechanism finds out and calls the correct method 
body. The late-binding mechanism varies from language to language, but you can imagine 
that some sort of type information must be installed in the objects.  

All method binding in Java uses late binding unless the method is static or final (private 
methods are implicitly final). This means that ordinarily you don’t need to make any 
decisions about whether late binding will occur—it happens automatically.  

Why would you declare a method final? As noted in the last chapter, it prevents anyone from 
overriding that method. Perhaps more important, it effectively “turns off” dynamic binding, 
or rather it tells the compiler that dynamic binding isn’t necessary. This allows the compiler 
to generate slightly more efficient code for final method calls. However, in most cases it 
won’t make any overall performance difference in your program, so it’s best to only use final 
as a design decision, and not as an attempt to improve performance. 

Producing the right behavior 

Once you know that all method binding in Java happens polymorphically via late binding, 
you can write your code to talk to the base class and know that all the derived-class cases will 
work correctly using the same code. Or to put it another way, you “send a message to an 
object and let the object figure out the right thing to do.”  

196 Thinking in Java Bruce Eckel 



The classic example in OOP is the “shape” example. This is commonly used because it is easy 
to visualize, but unfortunately it can confuse novice programmers into thinking that OOP is 
just for graphics programming, which is of course not the case.  

The shape example has a base class called Shape and various derived types: Circle, 
Square, Triangle, etc. The reason the example works so well is that it’s easy to say “a circle 
is a type of shape” and be understood. The inheritance diagram shows the relationships:  

 

The upcast could occur in a statement as simple as: 

Shape s = new Circle(); 

Here, a Circle object is created, and the resulting reference is immediately assigned to a 
Shape, which would seem to be an error (assigning one type to another); and yet it’s fine 
because a Circle is a Shape by inheritance. So the compiler agrees with the statement and 
doesn’t issue an error message.  

Suppose you call one of the base-class methods (that have been overridden in the derived 
classes): 

s.draw(); 

Again, you might expect that Shape’s draw( ) is called because this is, after all, a Shape 
reference—so how could the compiler know to do anything else? And yet the proper 
Circle.draw( ) is called because of late binding (polymorphism).  

The following example puts it a slightly different way. First, let’s create a reusable library of 
Shape types: 

//: polymorphism/shape/Shape.java 
package polymorphism.shape; 
 
public class Shape { 
  public void draw() {} 
  public void erase() {} 
} ///:~ 
 
//: polymorphism/shape/Circle.java 
package polymorphism.shape; 
import static net.mindview.util.Print.*; 
 
public class Circle extends Shape { 

Polymorphism 197 



  public void draw() { print("Circle.draw()"); } 
  public void erase() { print("Circle.erase()"); } 
} ///:~ 
 
//: polymorphism/shape/Square.java 
package polymorphism.shape; 
import static net.mindview.util.Print.*; 
 
public class Square extends Shape { 
  public void draw() { print("Square.draw()"); } 
  public void erase() { print("Square.erase()"); } 
} ///:~ 
 
//: polymorphism/shape/Triangle.java 
package polymorphism.shape; 
import static net.mindview.util.Print.*; 
 
public class Triangle extends Shape { 
  public void draw() { print("Triangle.draw()"); } 
  public void erase() { print("Triangle.erase()"); } 
} ///:~ 
 
//: polymorphism/shape/RandomShapeGenerator.java 
// A "factory" that randomly creates shapes. 
package polymorphism.shape; 
import java.util.*; 
 
public class RandomShapeGenerator { 
  private Random rand = new Random(47); 
  public Shape next() { 
    switch(rand.nextInt(3)) { 
      default: 
      case 0: return new Circle(); 
      case 1: return new Square(); 
      case 2: return new Triangle(); 
    } 
  } 
} ///:~ 
 
//: polymorphism/Shapes.java 
// Polymorphism in Java. 
import polymorphism.shape.*; 
 
public class Shapes { 
  private static RandomShapeGenerator gen = 
    new RandomShapeGenerator(); 
  public static void main(String[] args) { 
    Shape[] s = new Shape[9]; 
    // Fill up the array with shapes: 
    for(int i = 0; i < s.length; i++) 
      s[i] = gen.next(); 
    // Make polymorphic method calls: 
    for(Shape shp : s) 
      shp.draw(); 
  } 
} /* Output: 
Triangle.draw() 
Triangle.draw() 
Square.draw() 
Triangle.draw() 
Square.draw() 
Triangle.draw() 
Square.draw() 

198 Thinking in Java Bruce Eckel 



Triangle.draw() 
Circle.draw() 
*///:~ 

The base class Shape establishes the common interface to anything inherited from Shape—
that is, all shapes can be drawn and erased. The derived classes override these definitions to 
provide unique behavior for each specific type of shape.  

RandomShapeGenerator is a kind of “factory” that produces a reference to a randomly-
selected Shape object each time you call its next( ) method. Note that the upcasting 
happens in the return statements, each of which takes a reference to a Circle, Square, or 
Triangle and sends it out of next( ) as the return type, Shape. So whenever you call 
next( ), you never get a chance to see what specific type it is, since you always get back a 
plain Shape reference.  

main( ) contains an array of Shape references filled through calls to 
RandomShapeGenerator.next( ). At this point you know you have Shapes, but you 
don’t know anything more specific than that (and neither does the compiler). However, when 
you step through this array and call draw( ) for each one, the correct type-specific behavior 
magically occurs, as you can see from the output when you run the program.  

The point of creating the shapes randomly is to drive home the understanding that the 
compiler can have no special knowledge that allows it to make the correct calls at compile 
time. All the calls to draw( ) must be made through dynamic binding.  

Exercise 2:   (1) Add the @Override annotation to the shapes example. 

Exercise 3:   (1) Add a new method in the base class of Shapes.java that prints a 
message, but don’t override it in the derived classes. Explain what happens. Now override it 
in one of the derived classes but not the others, and see what happens. Finally, override it in 
all the derived classes. 

Exercise 4:   (2) Add a new type of Shape to Shapes.java and verify in main( ) that 
polymorphism works for your new type as it does in the old types.  

Exercise 5:   (1) Starting from Exercise 1, add a wheels( ) method in Cycle, which 
returns the number of wheels. Modify ride( ) to call wheels( ) and verify that 
polymorphism works. 

Extensibility 

Now let’s return to the musical instrument example. Because of polymorphism, you can add 
as many new types as you want to the system without changing the tune( ) method. In a 
well-designed OOP program, most or all of your methods will follow the model of tune( ) 
and communicate only with the base-class interface. Such a program is extensible because 
you can add new functionality by inheriting new data types from the common base class. The 
methods that manipulate the base-class interface will not need to be changed at all to 
accommodate the new classes.  

Consider what happens if you take the instrument example and add more methods in the 
base class and a number of new classes. Here’s the diagram: 

Polymorphism 199 



 

All these new classes work correctly with the old, unchanged tune( ) method. Even if 
tune( ) is in a separate file and new methods are added to the interface of Instrument, 
tune( ) will still work correctly, even without recompiling it. Here is the implementation of 
the diagram: 

//: polymorphism/music3/Music3.java 
// An extensible program. 
package polymorphism.music3; 
import polymorphism.music.Note; 
import static net.mindview.util.Print.*; 
 
class Instrument { 
  void play(Note n) { print("Instrument.play() " + n); } 
  String what() { return "Instrument"; } 
  void adjust() { print("Adjusting Instrument"); } 
} 
 
class Wind extends Instrument { 
  void play(Note n) { print("Wind.play() " + n); } 
  String what() { return "Wind"; } 
  void adjust() { print("Adjusting Wind"); } 
}  
 
class Percussion extends Instrument { 
  void play(Note n) { print("Percussion.play() " + n); } 
  String what() { return "Percussion"; } 
  void adjust() { print("Adjusting Percussion"); } 
} 
 
class Stringed extends Instrument { 

200 Thinking in Java Bruce Eckel 



  void play(Note n) { print("Stringed.play() " + n); } 
  String what() { return "Stringed"; } 
  void adjust() { print("Adjusting Stringed"); } 
} 
 
class Brass extends Wind { 
  void play(Note n) { print("Brass.play() " + n); } 
  void adjust() { print("Adjusting Brass"); } 
} 
 
class Woodwind extends Wind { 
  void play(Note n) { print("Woodwind.play() " + n); } 
  String what() { return "Woodwind"; } 
}  
 
public class Music3 { 
  // Doesn’t care about type, so new types 
  // added to the system still work right: 
  public static void tune(Instrument i) { 
    // ... 
    i.play(Note.MIDDLE_C); 
  } 
  public static void tuneAll(Instrument[] e) { 
    for(Instrument i : e) 
      tune(i); 
  }  
  public static void main(String[] args) { 
    // Upcasting during addition to the array: 
    Instrument[] orchestra = { 
      new Wind(), 
      new Percussion(), 
      new Stringed(), 
      new Brass(), 
      new Woodwind() 
    }; 
    tuneAll(orchestra); 
  } 
} /* Output: 
Wind.play() MIDDLE_C 
Percussion.play() MIDDLE_C 
Stringed.play() MIDDLE_C 
Brass.play() MIDDLE_C 
Woodwind.play() MIDDLE_C 
*///:~ 

The new methods are what( ), which returns a String reference with a description of the 
class, and adjust( ), which provides some way to adjust each instrument.  

In main( ), when you place something inside the orchestra array, you automatically upcast 
to Instrument.  

You can see that the tune( ) method is blissfully ignorant of all the code changes that have 
happened around it, and yet it works correctly. This is exactly what polymorphism is 
supposed to provide. Changes in your code don’t cause damage to parts of the program that 
should not be affected. Put another way, polymorphism is an important technique for the 
programmer to “separate the things that change from the things that stay the same.” 

 

Polymorphism 201 



Exercise 6:   (1) Change Music3.java so that what( ) becomes the root Object method 
toString( ). Try printing the Instrument objects using System.out.println( ) (without 
any casting). 

Exercise 7:   (2) Add a new type of Instrument to Music3.java and verify that 
polymorphism works for your new type. 

Exercise 8:   (2) Modify Music3.java so that it randomly creates Instrument objects 
the way Shapes.java does. 

Exercise 9:   (3) Create an inheritance hierarchy of Rodent: Mouse, Gerbil, Hamster, 
etc. In the base class, provide methods that are common to all Rodents, and override these 
in the derived classes to perform different behaviors depending on the specific type of 
Rodent. Create an array of Rodent, fill it with different specific types of Rodents, and call 
your base-class methods to see what happens. 

Exercise 10:   (3) Create a base class with two methods. In the first method, call the 
second method. Inherit a class and override the second method. Create an object of the 
derived class, upcast it to the base type, and call the first method. Explain what happens. 

Pitfall: “overriding” private methods 
Here’s something you might innocently try to do: 

//: polymorphism/PrivateOverride.java 
// Trying to override a private method. 
package polymorphism; 
import static net.mindview.util.Print.*; 
 
public class PrivateOverride { 
  private void f() { print("private f()"); } 
  public static void main(String[] args) { 
    PrivateOverride po = new Derived(); 
    po.f(); 
  } 
} 
 
class Derived extends PrivateOverride { 
  public void f() { print("public f()"); } 
} /* Output: 
private f() 
*///:~ 

You might reasonably expect the output to be “public f( )”, but a private method is 
automatically final, and is also hidden from the derived class. So Derived’s f( ) in this case 
is a brand new method; it’s not even overloaded, since the base-class version of f( ) isn’t 
visible in Derived.  

The result of this is that only non-private methods may be overridden, but you should watch 
out for the appearance of overriding private methods, which generates no compiler 
warnings, but doesn’t do what you might expect. To be clear, you should use a different name 
from a private base-class method in your derived class. 

 

 

202 Thinking in Java Bruce Eckel 



Polymorphism 203 

Pitfall: fields and static methods 

Once you learn about polymorphism, you can begin to think that everything happens 
polymorphically. However, only ordinary method calls can be polymorphic. For example, if 
you access a field directly, that access will be resolved at compile time, as the following 
example demonstrates: 1

 

//: polymorphism/FieldAccess.java 
// Direct field access is determined at compile time. 
 
class Super { 
  public int field = 0; 
  public int getField() { return field; } 
} 
 
class Sub extends Super { 
  public int field = 1; 
  public int getField() { return field; } 
  public int getSuperField() { return super.field; } 
} 
 
public class FieldAccess { 
  public static void main(String[] args) { 
    Super sup = new Sub(); // Upcast 
    System.out.println("sup.field = " + sup.field + 
      ", sup.getField() = " + sup.getField()); 
    Sub sub = new Sub(); 
    System.out.println("sub.field = " + 
      sub.field + ", sub.getField() = " + 
      sub.getField() + 
      ", sub.getSuperField() = " + 
      sub.getSuperField()); 
  } 
} /* Output: 
sup.field = 0, sup.getField() = 1 
sub.field = 1, sub.getField() = 1, sub.getSuperField() = 0 
*///:~ 

When a Sub object is upcast to a Super reference, any field accesses are resolved by the 
compiler, and are thus not polymorphic. In this example, different storage is allocated for 
Super.field and Sub.field. Thus, Sub actually contains two fields called field: its own and 
the one that it gets from Super. However, the Super version is not the default that is 
produced when you refer to field in Sub; in order to get the Super field you must explicitly 
say super.field. 

Although this seems like it could be a confusing issue, in practice it virtually never comes up. 
For one thing, you’ll generally make all fields private and so you won’t access them directly, 
but only as side effects of calling methods. In addition, you probably won’t give the same 
name to a base-class field and a derived-class field, because its confusing. 

If a method is static, it doesn’t behave polymorphically: 

//: polymorphism/StaticPolymorphism.java 
// Static methods are not polymorphic. 
 
class StaticSuper { 
  public static String staticGet() { 

                                                            
1 Thanks to Randy Nichols for asking this question. 



    return "Base staticGet()"; 
  } 
  public String dynamicGet() { 
    return "Base dynamicGet()"; 
  } 
} 
 
class StaticSub extends StaticSuper { 
  public static String staticGet() { 
    return "Derived staticGet()"; 
  } 
  public String dynamicGet() { 
    return "Derived dynamicGet()"; 
  } 
} 
 
public class StaticPolymorphism { 
  public static void main(String[] args) { 
    StaticSuper sup = new StaticSub(); // Upcast 
    System.out.println(sup.staticGet()); 
    System.out.println(sup.dynamicGet()); 
  } 
} /* Output: 
Base staticGet() 
Derived dynamicGet() 
*///:~ 

static methods are associated with the class, and not the individual objects.  

Constructors and polymorphism 
As usual, constructors are different from other kinds of methods. This is also true when 
polymorphism is involved. Even though constructors are not polymorphic (they’re actually 
static methods, but the static declaration is implicit), it’s important to understand the way 
constructors work in complex hierarchies and with polymorphism. This understanding will 
help you avoid unpleasant entanglements. 

Order of constructor calls 

The order of constructor calls was briefly discussed in the Initialization & Cleanup chapter 
and again in the Reusing Classes chapter, but that was before polymorphism was introduced.  

A constructor for the base class is always called during the construction process for a derived 
class, chaining up the inheritance hierarchy so that a constructor for every base class is 
called. This makes sense because the constructor has a special job: to see that the object is 
built properly. A derived class has access to its own members only, and not to those of the 
base class (whose members are typically private). Only the base-class constructor has the 
proper knowledge and access to initialize its own elements. Therefore, it’s essential that all 
constructors get called; otherwise the entire object wouldn’t be constructed. That’s why the 
compiler enforces a constructor call for every portion of a derived class. It will silently call the 
default constructor if you don’t explicitly call a base-class constructor in the derived-class 
constructor body. If there is no default constructor, the compiler will complain. (In the case 
where a class has no constructors, the compiler will automatically synthesize a default 
constructor.) 

 

204 Thinking in Java Bruce Eckel 



Let’s take a look at an example that shows the effects of composition, inheritance, and 
polymorphism on the order of construction: 

//: polymorphism/Sandwich.java 
// Order of constructor calls. 
package polymorphism; 
import static net.mindview.util.Print.*; 
 
class Meal { 
  Meal() { print("Meal()"); } 
} 
 
class Bread { 
  Bread() { print("Bread()"); } 
} 
 
class Cheese { 
  Cheese() { print("Cheese()"); } 
} 
 
class Lettuce { 
  Lettuce() { print("Lettuce()"); } 
} 
 
class Lunch extends Meal { 
  Lunch() { print("Lunch()"); } 
} 
 
class PortableLunch extends Lunch { 
  PortableLunch() { print("PortableLunch()");} 
} 
 
public class Sandwich extends PortableLunch { 
  private Bread b = new Bread(); 
  private Cheese c = new Cheese(); 
  private Lettuce l = new Lettuce(); 
  public Sandwich() { print("Sandwich()"); } 
  public static void main(String[] args) { 
    new Sandwich(); 
  } 
} /* Output: 
Meal() 
Lunch() 
PortableLunch() 
Bread() 
Cheese() 
Lettuce() 
Sandwich() 
*///:~ 

This example creates a complex class out of other classes, and each class has a constructor 
that announces itself. The important class is Sandwich, which reflects three levels of 
inheritance (four, if you count the implicit inheritance from Object) and three member 
objects. You can see the output when a Sandwich object is created in main( ). This means 
that the order of constructor calls for a complex object is as follows: 

1. The base-class constructor is called. This step is repeated recursively such that the 
root of the hierarchy is constructed first, followed by the next-derived class, etc., until 
the most-derived class is reached.  
 

2. Member initializers are called in the order of declaration.  

Polymorphism 205 



 
3. The body of the derived-class constructor is called. 

 

The order of the constructor calls is important. When you inherit, you know all about the 
base class and can access any public and protected members of the base class. This means 
that you must be able to assume that all the members of the base class are valid when you’re 
in the derived class. In a normal method, construction has already taken place, so all the 
members of all parts of the object have been built. Inside the constructor, however, you must 
be able to assume that all members that you use have been built. The only way to guarantee 
this is for the base-class constructor to be called first. Then when you’re in the derived-class 
constructor, all the members you can access in the base class have been initialized. Knowing 
that all members are valid inside the constructor is also the reason that, whenever possible, 
you should initialize all member objects (that is, objects placed in the class using 
composition) at their point of definition in the class (e.g., b, c, and l in the preceding 
example). If you follow this practice, you will help ensure that all base class members and 
member objects of the current object have been initialized. Unfortunately, this doesn’t handle 
every case, as you will see in the next section. 

Exercise 11:   (1) Add class Pickle to Sandwich.java. 

Inheritance and cleanup 
When using composition and inheritance to create a new class, most of the time you won’t 
have to worry about cleaning up; subobjects can usually be left to the garbage collector. If you 
do have cleanup issues, you must be diligent and create a dispose( ) method (the name I 
have chosen to use here; you may come up with something better) for your new class. And 
with inheritance, you must override dispose( ) in the derived class if you have any special 
cleanup that must happen as part of garbage collection. When you override dispose( ) in an 
inherited class, it’s important to remember to call the base-class version of dispose( ), since 
otherwise the base-class cleanup will not happen. The following example demonstrates this: 

//: polymorphism/Frog.java 
// Cleanup and inheritance. 
package polymorphism; 
import static net.mindview.util.Print.*; 
 
class Characteristic { 
  private String s; 
  Characteristic(String s) { 
    this.s = s; 
    print("Creating Characteristic " + s); 
  } 
  protected void dispose() { 
    print("disposing Characteristic " + s); 
  } 
} 
 
class Description { 
  private String s; 
  Description(String s) { 
    this.s = s; 
    print("Creating Description " + s); 
  } 
  protected void dispose() { 
    print("disposing Description " + s); 
  } 
} 
 

206 Thinking in Java Bruce Eckel 



class LivingCreature { 
  private Characteristic p = 
    new Characteristic("is alive"); 
  private Description t = 
    new Description("Basic Living Creature"); 
  LivingCreature() { 
    print("LivingCreature()"); 
  } 
  protected void dispose() { 
    print("LivingCreature dispose"); 
    t.dispose(); 
    p.dispose(); 
  } 
} 
 
class Animal extends LivingCreature { 
  private Characteristic p = 
    new Characteristic("has heart"); 
  private Description t = 
    new Description("Animal not Vegetable"); 
  Animal() { print("Animal()"); } 
  protected void dispose() { 
    print("Animal dispose"); 
    t.dispose(); 
    p.dispose(); 
    super.dispose(); 
  } 
} 
 
class Amphibian extends Animal { 
  private Characteristic p = 
    new Characteristic("can live in water"); 
  private Description t = 
    new Description("Both water and land"); 
  Amphibian() { 
    print("Amphibian()"); 
  } 
  protected void dispose() { 
    print("Amphibian dispose"); 
    t.dispose(); 
    p.dispose(); 
    super.dispose(); 
  } 
} 
 
public class Frog extends Amphibian { 
  private Characteristic p = new Characteristic("Croaks"); 
  private Description t = new Description("Eats Bugs"); 
  public Frog() { print("Frog()"); } 
  protected void dispose() { 
    print("Frog dispose"); 
    t.dispose(); 
    p.dispose(); 
    super.dispose(); 
  } 
  public static void main(String[] args) { 
    Frog frog = new Frog(); 
    print("Bye!"); 
    frog.dispose(); 
  } 
} /* Output: 
Creating Characteristic is alive 
Creating Description Basic Living Creature 

Polymorphism 207 



LivingCreature() 
Creating Characteristic has heart 
Creating Description Animal not Vegetable 
Animal() 
Creating Characteristic can live in water 
Creating Description Both water and land 
Amphibian() 
Creating Characteristic Croaks 
Creating Description Eats Bugs 
Frog() 
Bye! 
Frog dispose 
disposing Description Eats Bugs 
disposing Characteristic Croaks 
Amphibian dispose 
disposing Description Both water and land 
disposing Characteristic can live in water 
Animal dispose 
disposing Description Animal not Vegetable 
disposing Characteristic has heart 
LivingCreature dispose 
disposing Description Basic Living Creature 
disposing Characteristic is alive 
*///:~ 

Each class in the hierarchy also contains a member objects of types Characteristic and 
Description, which must also be disposed. The order of disposal should be the reverse of 
the order of initialization, in case one subobject is dependent on another. For fields, this 
means the reverse of the order of declaration (since fields are initialized in declaration 
order). For base classes (following the form that’s used in C++ for destructors), you should 
perform the derived-class cleanup first, then the base-class cleanup. That’s because the 
derived-class cleanup could call some methods in the base class that require the base-class 
components to be alive, so you must not destroy them prematurely. From the output you can 
see that all parts of the Frog object are disposed in reverse order of creation. 

From this example, you can see that although you don’t always need to perform cleanup, 
when you do, the process requires care and awareness. 

Exercise 12:   (3) Modify Exercise 9 so that it demonstrates the order of initialization of 
the base classes and derived classes. Now add member objects to both the base and derived 
classes and show the order in which their initialization occurs during construction. 

Also note that in the above example, a Frog object “owns” its member objects. It creates 
them, and it knows how long they should live (as long as the Frog does), so it knows when to 
dispose( ) the member objects. However, if one of these member objects is shared with one 
or more other objects, the problem becomes more complex and you cannot simply assume 
that you can call dispose( ). In this case, reference counting may be necessary to keep track 
of the number of objects that are still accessing a shared object. Here’s what it looks like: 

//: polymorphism/ReferenceCounting.java 
// Cleaning up shared member objects. 
import static net.mindview.util.Print.*; 
 
class Shared { 
  private int refcount = 0; 
  private static long counter = 0; 
  private final long id = counter++; 
  public Shared() { 
    print("Creating " + this); 
  } 

208 Thinking in Java Bruce Eckel 



  public void addRef() { refcount++; } 
  protected void dispose() { 
    if(--refcount == 0) 
      print("Disposing " + this); 
  } 
  public String toString() { return "Shared " + id; } 
} 
 
class Composing { 
  private Shared shared; 
  private static long counter = 0; 
  private final long id = counter++; 
  public Composing(Shared shared) { 
    print("Creating " + this); 
    this.shared = shared; 
    this.shared.addRef(); 
  } 
  protected void dispose() { 
    print("disposing " + this); 
    shared.dispose(); 
  } 
  public String toString() { return "Composing " + id; } 
} 
 
public class ReferenceCounting { 
  public static void main(String[] args) { 
    Shared shared = new Shared(); 
    Composing[] composing = { new Composing(shared), 
      new Composing(shared), new Composing(shared), 
      new Composing(shared), new Composing(shared) }; 
    for(Composing c : composing) 
      c.dispose(); 
  } 
} /* Output: 
Creating Shared 0 
Creating Composing 0 
Creating Composing 1 
Creating Composing 2 
Creating Composing 3 
Creating Composing 4 
disposing Composing 0 
disposing Composing 1 
disposing Composing 2 
disposing Composing 3 
disposing Composing 4 
Disposing Shared 0 
*///:~ 

The static long counter keeps track of the number of instances of Shared that are created, 
and it also provides a value for id. The type of counter is long rather than int, to prevent 
overflow (this is just good practice; overflowing such a counter is not likely to happen in any 
of the examples in this book). The id is final because we do not expect it to change its value 
during the lifetime of the object. 

When you attach a shared object to your class, you must remember to call addRef( ), but the 
dispose( ) method will keep track of the reference count and decide when to actually 
perform the cleanup. This technique requires extra diligence to use, but if you are sharing 
objects that require cleanup you don’t have much choice. 

Exercise 13:   (3) Add a finalize( ) method to ReferenceCounting.java to verify the 
termination condition (see the Initialization & Cleanup chapter). 

Polymorphism 209 



Exercise 14:   (4) Modify Exercise 12 so that one of the member objects is a shared object 
with reference counting, and demonstrate that it works properly. 

Behavior of polymorphic methods  
inside constructors 

The hierarchy of constructor calls brings up an interesting dilemma. What happens if you’re 
inside a constructor and you call a dynamically-bound method of the object being 
constructed?  

Inside an ordinary method, the  dynamically-bound call is resolved at run time, because the 
object cannot know whether it belongs to the class that the method is in or some class 
derived from it.  

If you call a dynamically-bound method inside a constructor, the overridden definition for 
that method is used. However, the effect of this call can be rather unexpected because the 
overridden method will be called before the object is fully constructed. This can conceal some 
difficult-to-find bugs. 

Conceptually, the constructor’s job is to bring the object into existence (which is hardly an 
ordinary feat). Inside any constructor, the entire object might be only partially formed—you 
can only know that the base-class objects have been initialized. If the constructor is only one 
step in building an object of a class that’s been derived from that constructor’s class, the 
derived parts have not yet been initialized at the time that the current constructor is being 
called.  A dynamically bound method call, however, reaches “outward” into the inheritance 
hierarchy. It calls a method in a derived class. If you do this inside a constructor, you call a 
method that might manipulate members that haven’t been initialized yet—a sure recipe for 
disaster.  

You can see the problem in the following example: 

//: polymorphism/PolyConstructors.java 
// Constructors and polymorphism 
// don’t produce what you might expect. 
import static net.mindview.util.Print.*; 
 
class Glyph { 
  void draw() { print("Glyph.draw()"); } 
  Glyph() { 
    print("Glyph() before draw()"); 
    draw(); 
    print("Glyph() after draw()"); 
  } 
}  
 
class RoundGlyph extends Glyph { 
  private int radius = 1; 
  RoundGlyph(int r) { 
    radius = r; 
    print("RoundGlyph.RoundGlyph(), radius = " + radius); 
  } 
  void draw() { 
    print("RoundGlyph.draw(), radius = " + radius); 
  } 
}  
 
public class PolyConstructors { 
  public static void main(String[] args) { 

210 Thinking in Java Bruce Eckel 



    new RoundGlyph(5); 
  } 
} /* Output: 
Glyph() before draw() 
RoundGlyph.draw(), radius = 0 
Glyph() after draw() 
RoundGlyph.RoundGlyph(), radius = 5 
*///:~ 

Glyph. draw( ) is designed to be overridden, which happens in RoundGlyph. But the 
Glyph constructor calls this method, and the call ends up in RoundGlyph.draw( ), which 
would seem to be the intent. But if you look at the output, you can see that when Glyph’s 
constructor calls draw( ), the value of radius isn’t even the default initial value 1. It’s 0. 
This would probably result in either a dot or nothing at all being drawn on the screen, and 
you’d be left staring, trying to figure out why the program won’t work.  

The order of initialization described in the earlier section isn’t quite complete, and that’s the 
key to solving the mystery. The actual process of initialization is: 

1. The storage allocated for the object is initialized to binary zero before anything else 
happens.  
 

2. The base-class constructors are called as described previously. At this point, the 
overridden draw( ) method is called (yes, before the RoundGlyph constructor is 
called), which discovers a radius value of zero, due to Step 1.  
 

3. Member initializers are called in the order of declaration.  
 

4. The body of the derived-class constructor is called.  
 

There’s an upside to this, which is that everything is at least initialized to zero (or whatever 
zero means for that particular data type) and not just left as garbage. This includes object 
references that are embedded inside a class via composition, which become null. So if you 
forget to initialize that reference, you’ll get an exception at run time. Everything else gets 
zero, which is usually a telltale value when looking at output.  

On the other hand, you should be pretty horrified at the outcome of this program. You’ve 
done a perfectly logical thing, and yet the behavior is mysteriously wrong, with no complaints 
from the compiler. (C++ produces more rational behavior in this situation.) Bugs like this 
could easily be buried and take a long time to discover.  

As a result, a good guideline for constructors is, “Do as little as possible to set the object into 
a good state, and if you can possibly avoid it, don’t call any other methods in this class.” The 
only safe methods to call inside a constructor are those that are final in the base class. (This 
also applies to private methods, which are automatically final.) These cannot be overridden 
and thus cannot produce this kind of surprise. You may not always be able to follow this 
guideline, but it’s something to strive towards.  

Exercise 15:   (2) Add a RectangularGlyph to PolyConstructors.java and 
demonstrate the problem described in this section. 

Covariant return types 
Java SE5 adds covariant return types, which means that an overridden method in a derived 
class can return a type derived from the type returned by the base-class method: 

//: polymorphism/CovariantReturn.java 

Polymorphism 211 



 
class Grain { 
  public String toString() { return "Grain"; } 
} 
 
class Wheat extends Grain { 
  public String toString() { return "Wheat"; } 
} 
 
class Mill { 
  Grain process() { return new Grain(); } 
} 
 
class WheatMill extends Mill { 
  Wheat process() { return new Wheat(); } 
} 
 
public class CovariantReturn { 
  public static void main(String[] args) { 
    Mill m = new Mill(); 
    Grain g = m.process(); 
    System.out.println(g); 
    m = new WheatMill(); 
    g = m.process(); 
    System.out.println(g); 
  } 
} /* Output: 
Grain 
Wheat 
*///:~ 

The key difference between Java SE5 and earlier versions of java is that the earlier versions 
would force the overridden version of process( ) to return Grain, rather than Wheat, even 
though Wheat is derived from Grain and thus is still a legitimate return type. Covariant 
return types allow the more specific Wheat return type. 

Designing with inheritance 
Once you learn about polymorphism, it can seem that everything ought to be inherited, 
because polymorphism is such a clever tool. This can burden your designs; in fact, if you 
choose inheritance first when you’re using an existing class to make a new class, things can 
become needlessly complicated.  

A better approach is to choose composition first, especially when it’s not obvious which one 
you should use. Composition does not force a design into an inheritance hierarchy. But 
composition is also more flexible since it’s possible to dynamically choose a type (and thus 
behavior) when using composition, whereas inheritance requires an exact type to be known 
at compile time. The following example illustrates this: 

//: polymorphism/Transmogrify.java 
// Dynamically changing the behavior of an object 
// via composition (the "State" design pattern). 
import static net.mindview.util.Print.*; 
 
class Actor { 
  public void act() {} 
} 
 
class HappyActor extends Actor { 
  public void act() { print("HappyActor"); } 

212 Thinking in Java Bruce Eckel 



} 
 
class SadActor extends Actor { 
  public void act() { print("SadActor"); } 
} 
 
class Stage { 
  private Actor actor = new HappyActor(); 
  public void change() { actor = new SadActor(); } 
  public void performPlay() { actor.act(); } 
} 
 
public class Transmogrify { 
  public static void main(String[] args) { 
    Stage stage = new Stage(); 
    stage.performPlay(); 
    stage.change(); 
    stage.performPlay(); 
  } 
} /* Output: 
HappyActor 
SadActor 
*///:~ 

A Stage object contains a reference to an Actor, which is initialized to a HappyActor 
object. This means performPlay( ) produces a particular behavior. But since a reference 
can be rebound to a different object at run time, a reference for a SadActor object can be 
substituted in actor, and then the behavior produced by performPlay( ) changes. Thus 
you gain dynamic flexibility at run time. (This is also called the State Pattern. See Thinking 
in Patterns (with Java) at www.MindView.com.) In contrast, you can’t decide to inherit 
differently at run time; that must be completely determined at compile time. 

A general guideline is “Use inheritance to express differences in behavior, and fields to 
express variations in state.” In the preceding example, both are used; two different classes 
are inherited to express the difference in the act( ) method, and Stage uses composition to 
allow its state to be changed. In this case, that change in state happens to produce a change 
in behavior.  

Exercise 16:   (3) Following the example in Transmogrify.java, create a Starship class 
containing an AlertStatus reference that can indicate three different states. Include 
methods to change the states. 

Substitution vs. extension 

It would seem that the cleanest way to create an inheritance hierarchy is to take the “pure” 
approach. That is, only methods that have been established in the base class are overridden 
in the derived class, as seen in this diagram: 

Polymorphism 213 



 

This can be called a pure “is-a” relationship because the interface of a class establishes what 
it is. Inheritance guarantees that any derived class will have the interface of the base class 
and nothing less. If you follow this diagram, derived classes will also have no more than the 
base-class interface. 

This can be thought of as pure substitution, because derived class objects can be perfectly 
substituted for the base class, and you never need to know any extra information about the 
subclasses when you’re using them: 

 

That is, the base class can receive any message you can send to the derived class because the 
two have exactly the same interface. All you need to do is upcast from the derived class and 
never look back to see what exact type of object you’re dealing with. Everything is handled 
through polymorphism.  

When you see it this way, it seems like a pure is-a relationship is the only sensible way to do 
things, and any other design indicates muddled thinking and is by definition broken. This too 
is a trap. As soon as you start thinking this way, you’ll turn around and discover that 
extending the interface (which, unfortunately, the keyword extends seems to encourage) is 
the perfect solution to a particular problem. This can be termed an “is-like-a” relationship, 
because the derived class is like the base class—it has the same fundamental interface—but it 
has other features that require additional methods to implement: 

214 Thinking in Java Bruce Eckel 



 

While this is also a useful and sensible approach (depending on the situation), it has a 
drawback. The extended part of the interface in the derived class is not available from the 
base class, so once you upcast, you can’t call the new methods: 

 

If you’re not upcasting in this case, it won’t bother you, but often you’ll get into a situation in 
which you need to rediscover the exact type of the object so you can access the extended 
methods of that type. The following section shows how this is done. 

Downcasting and runtime  
type information 
Since you lose the specific type information via an upcast (moving up the inheritance 
hierarchy), it makes sense that to retrieve the type information—that is, to move back down 
the inheritance hierarchy—you use a downcast. However, you know an upcast is always safe 
because the base class cannot have a bigger interface than the derived class. Therefore, every 
message you send through the base class interface is guaranteed to be accepted. But with a 
downcast, you don’t really know that a shape (for example) is actually a circle. It could 
instead be a triangle or square or some other type. 

To solve this problem, there must be some way to guarantee that a downcast is correct, so 
that you won’t accidentally cast to the wrong type and then send a message that the object 
can’t accept. This would be quite unsafe.  

In some languages (like C++) you must perform a special operation in order to get a type-safe 
downcast, but in Java, every cast is checked! So even though it looks like you’re just 
performing an ordinary parenthesized cast, at run time this cast is checked to ensure that it is 
in fact the type you think it is. If it isn’t, you get a ClassCastException. This act of checking 

Polymorphism 215 



types at run time is called runtime type identification (RTTI). The following example 
demonstrates the behavior of RTTI: 

//: polymorphism/RTTI.java 
// Downcasting & Runtime type information (RTTI). 
// {ThrowsException} 
 
class Useful { 
  public void f() {} 
  public void g() {} 
} 
 
class MoreUseful extends Useful { 
  public void f() {} 
  public void g() {} 
  public void u() {} 
  public void v() {} 
  public void w() {} 
}  
 
public class RTTI { 
  public static void main(String[] args) { 
    Useful[] x = { 
      new Useful(), 
      new MoreUseful() 
    }; 
    x[0].f(); 
    x[1].g(); 
    // Compile time: method not found in Useful: 
    //! x[1].u(); 
    ((MoreUseful)x[1]).u(); // Downcast/RTTI 
    ((MoreUseful)x[0]).u(); // Exception thrown 
  } 
} ///:~ 

As in the previous diagram, MoreUseful extends the interface of Useful. But since it’s 
inherited, it can also be upcast to a Useful. You can see this happening in the initialization of 
the array x in main( ). Since both objects in the array are of class Useful, you can send the 
f( ) and g( ) methods to both, and if you try to call u( ) (which exists only in MoreUseful), 
you’ll get a compile-time error message.  

If you want to access the extended interface of a MoreUseful object, you can try to 
downcast. If it’s the correct type, it will be successful. Otherwise, you’ll get a 
ClassCastException. You don’t need to write any special code for this exception, since it 
indicates a programmer error that could happen anywhere in a program. The 
{ThrowsException} comment tag tells this book’s build system to expect this program to 
throw an exception when it executes. 

There’s more to RTTI than a simple cast. For example, there’s a way to see what type you’re 
dealing with before you try to downcast it. All of the Type Information chapter is devoted to 
the study of different aspects of Java run-time type identification. 

Exercise 17:   (2) Using the Cycle hierarchy from Exercise 1, add a balance( ) method to 
Unicycle and Bicycle, but not to Tricycle. Create instances of all three types and upcast 
them to an array of Cycle. Try to call balance( ) on each element of the array and observe 
the results. Downcast and call balance( ) and observe what happens. 

216 Thinking in Java Bruce Eckel 



Polymorphism 217 

Summary 
Polymorphism means “different forms.” In object-oriented programming, you have the same 
interface from the base class, and different forms using that interface: the different versions 
of the dynamically bound methods.  

You’ve seen in this chapter that it’s impossible to understand, or even create, an example of 
polymorphism without using data abstraction and inheritance. Polymorphism is a feature 
that cannot be viewed in isolation (like a switch statement can, for example), but instead 
works only in concert, as part of the larger picture of class relationships.  

To use polymorphism—and thus object-oriented techniques—effectively in your programs, 
you must expand your view of programming to include not just members and messages of an 
individual class, but also the commonality among classes and their relationships with each 
other. Although this requires significant effort, it’s a worthy struggle. The results are faster 
program development, better code organization, extensible programs, and easier code 
maintenance. 

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  





Interfaces 
Interfaces and abstract  classes provide more structured way to 
separate interface from implementation. 

Such mechanisms are not that common in programming languages. C++, for example, only 
has indirect support for these concepts. The fact that language keywords exist in Java 
indicates that these ideas were considered important enough to provide direct support. 

First, we’ll look at the abstract class, which is a kind of midway step between an ordinary 
class and an interface. Although your first impulse will be to create an interface, the abstract 
class is an important and necessary tool for building classes that have some unimplemented 
methods. You can’t always use a pure interface. 

Abstract classes  
     and methods 

In all the “instrument” examples in the previous chapter, the methods in the base class 
Instrument were always “dummy” methods. If these methods are ever called, you’ve done 
something wrong. That’s because the intent of Instrument is to create a common interface 
for all the classes derived from it. 

In those examples, the only reason to establish this common interface is so that it can be 
expressed differently for each different subtype. It establishes a basic form, so that you can 
say what’s common for all the derived classes. Another way of saying this is to call 
Instrument an abstract base class, or simply an abstract class. 

If you have an abstract class like Instrument, objects of that specific class almost always 
have no meaning. You create an abstract class when you want to manipulate a set of classes 
through its common interface. Thus, Instrument is meant to express only the interface, and 
not a particular implementation, so creating an Instrument object makes no sense, and you’ll 
probably want to prevent the user from doing it. This can be accomplished by making all 
methods in Instrument generate errors, but that delays the information until run time and 
requires reliable exhaustive testing on the user’s part. It’s usually better to catch problems at 
compile time. 

Java provides a mechanism for doing this called the abstract method. 1  This is a method that 
is incomplete; it has only a declaration and no method body. Here is the syntax for an 
abstract method declaration. 

abstract void f( ); 

A class containing abstract methods is called an abstract class. If a class contains one or more 
abstract methods, the class itself must be qualified as abstract. (Otherwise, the compiler 
gives you an error message.) 

If an abstract class is incomplete, what is the compiler supposed to do when someone tries to 
make an object of that class? It cannot safely create an object of an abstract class, so you get 

                                                            
1 For C++ programmers, this ist he analogue of C++’s pure virtual function. 

 



an error message from the compiler. This way, the compiler ensures the purity of the abstract 
class, and you don’t need to worry about misusing it. 

If you inherit from an abstract class and you want to make objects of the new type, you must 
provide method definitions for all the abstract methods in the base class. If you don’t (and 
you may choose not to), then the derived class is also abstract, and the compiler will force 
you to qualify that class with the abstract keyword. 

It’s possible to make a class abstract without including any abstract methods. This is 
useful when you’ve got a class in which it doesn’t make sense to have any abstract methods, 
and yet you want to prevent any instances of that class. 

The Instrument class from the previous chapter can easily be turned into an abstract 
class. Only some of the methods will be abstract, since making a class abstract doesn’t force 
you to make all the methods abstract. Here’s what it looks like: 

 

 

Here’s the orchestra example modified to use abstract classes and methods: 

//: interfaces/music4/Music4.java 
// Abstract classes and methods. 
package interfaces.music4; 
import polymorphism.music.Note; 
import static net.mindview.util.Print.*; 
 
abstract class Instrument { 
  private int i; // Storage allocated for each 

220 Thinking in Java Bruce Eckel 



  public abstract void play(Note n); 
  public String what() { return "Instrument"; } 
  public abstract void adjust(); 
} 
 
class Wind extends Instrument { 
  public void play(Note n) { 
    print("Wind.play() " + n); 
  } 
  public String what() { return "Wind"; } 
  public void adjust() {} 
} 
 
class Percussion extends Instrument { 
  public void play(Note n) { 
    print("Percussion.play() " + n); 
  } 
  public String what() { return "Percussion"; } 
  public void adjust() {} 
} 
 
class Stringed extends Instrument { 
  public void play(Note n) { 
    print("Stringed.play() " + n); 
  } 
  public String what() { return "Stringed"; } 
  public void adjust() {} 
}  
 
class Brass extends Wind { 
  public void play(Note n) { 
    print("Brass.play() " + n); 
  } 
  public void adjust() { print("Brass.adjust()"); } 
} 
 
class Woodwind extends Wind { 
  public void play(Note n) { 
    print("Woodwind.play() " + n); 
  } 
  public String what() { return "Woodwind"; } 
}  
 
public class Music4 { 
  // Doesn’t care about type, so new types 
  // added to the system still work right: 
  static void tune(Instrument i) { 
    // ... 
    i.play(Note.MIDDLE_C); 
  } 
  static void tuneAll(Instrument[] e) { 
    for(Instrument i : e) 
      tune(i); 
  }  
  public static void main(String[] args) { 
    // Upcasting during addition to the array: 
    Instrument[] orchestra = { 
      new Wind(), 
      new Percussion(), 
      new Stringed(), 
      new Brass(), 
      new Woodwind() 
    }; 

Interfaces 221 



    tuneAll(orchestra); 
  } 
} /* Output: 
Wind.play() MIDDLE_C 
Percussion.play() MIDDLE_C 
Stringed.play() MIDDLE_C 
Brass.play() MIDDLE_C 
Woodwind.play() MIDDLE_C 
*///:~ 

You can see that there’s really no change except in the base class. 

It’s helpful to create abstract classes and methods because they make the abstractness of a 
class explicit, and tell both the user and the compiler how it was intended to be used. 
Abstract classes are also useful refactoring tolls, since they allow you to easily move common 
methods up the inheritance hierarchy. 

Exercise 1:   (1) Modify Exercise 9 in the previous chapter so that Rodent is an abstract 
class. Make the methods of Rodent abstract whenever possible. 

Exercise 2:   (1) Create a class as abstract without including any abstract methods and 
verify that you cannot create any instances of that class. 

Exercise 3:   (2) Create a base class with an abstract print( ) method that is overridden 
in a derived class. The overridden version of the method prints the value of an int variable 
defined in the derived class. At the point of definition of this variable, give it a nonzero value. 
In the base-class constructor, call this method. In main( ), create an object of the derived 
type, and then call its print( ) method. Explain the results. 

Exercise 4:   (3) Create an abstract class with no methods. Derive a class and add a 
method. Create a static method that takes a reference to the base class, downcasts it to the 
derived class, and calls the method. In main( ), demonstrate that it works. Now put the 
abstract declaration for the method in the base class, thus eliminating the need for the 
downcast. 

Interfaces 
The interface keyword takes the concept of abstractness one step further. The abstract 
keyword allows you to create one or more undefined methods in a class—you provide part of 
the interface without providing a corresponding implementation. The implementation is 
provided by inheritors. The interface keyword produces a completely abstract class, one 
that provides no implementation at all. It allows the creator to determine method names, 
argument lists, and return types, but no method bodies. An interface provides only a form, 
but no implementation. 

An interface says, "All classes that implement this particular interface will look like this." 
Thus, any code that uses a particular interface knows what methods might be called for that 
interface, and that’s all. So the interface is used to establish a "protocol" between classes. 
(Some object-oriented programming languages have a keyword called protocol to do the 
same thing.) 

However, an interface is more than just an abstract class taken to the extreme, since it allows 
you to perform a variation of "multiple inheritance" by creating a class that can be upcast to 
more than one base type. 

222 Thinking in Java Bruce Eckel 



To create an interface, use the interface keyword instead of the class keyword. As with a 
class, you can add the public keyword before the interface keyword (but only if that 
interface is defined in a file of the same name). If you leave off the public keyword, you get 
package access, so the interface is only usable within the same package. An interface can also 
contain fields, but these are implicitly static and final. 

To make a class that conforms to a particular interface (or group of interfaces), use the 
implements keyword, which says, "The interface is what it looks like, but now I’m going to 
say how it works." Other than that, it looks like inheritance. The diagram for the instrument 
example shows this:  

 

 

You can see from the Woodwind and Brass classes that once you’ve implemented an 
interface, that implementation becomes an ordinary class that can be extended in the regular 
way. 

You can choose to explicitly declare the methods in an interface as public, but they are 
public even if you don’t say it. So when you implement an interface, the methods from the 
interface must be defined as public. Otherwise, they would default to package access, and 
you’d be reducing the accessibility of a method during inheritance, which is not allowed by 
the Java compiler. 

You can see this in the modified version of the Instrument example. Note that every 
method in the interface is strictly a declaration, which is the only thing the compiler allows. 
In addition, none of the methods in Instrument are declared as public, but they’re 
automatically public anyway: 

Interfaces 223 



//: interfaces/music5/Music5.java 
// Interfaces. 
package interfaces.music5; 
import polymorphism.music.Note; 
import static net.mindview.util.Print.*; 
 
interface Instrument { 
  // Compile-time constant: 
  int VALUE = 5; // static & final 
  // Cannot have method definitions: 
  void play(Note n); // Automatically public 
  void adjust(); 
} 
 
class Wind implements Instrument { 
  public void play(Note n) { 
    print(this + ".play() " + n); 
  } 
  public String toString() { return "Wind"; } 
  public void adjust() { print(this + ".adjust()"); } 
} 
 
class Percussion implements Instrument { 
  public void play(Note n) { 
    print(this + ".play() " + n); 
  } 
  public String toString() { return "Percussion"; } 
  public void adjust() { print(this + ".adjust()"); } 
} 
 
class Stringed implements Instrument { 
  public void play(Note n) { 
    print(this + ".play() " + n); 
  } 
  public String toString() { return "Stringed"; } 
  public void adjust() { print(this + ".adjust()"); } 
} 
 
class Brass extends Wind { 
  public String toString() { return "Brass"; } 
}  
 
class Woodwind extends Wind { 
  public String toString() { return "Woodwind"; } 
} 
 
public class Music5 { 
  // Doesn’t care about type, so new types 
  // added to the system still work right: 
  static void tune(Instrument i) { 
    // ... 
    i.play(Note.MIDDLE_C); 
  } 
  static void tuneAll(Instrument[] e) { 
    for(Instrument i : e) 
      tune(i); 
  }  
  public static void main(String[] args) { 
    // Upcasting during addition to the array: 
    Instrument[] orchestra = { 
      new Wind(), 
      new Percussion(), 
      new Stringed(), 

224 Thinking in Java Bruce Eckel 



      new Brass(), 
      new Woodwind() 
    }; 
    tuneAll(orchestra); 
  } 
} /* Output: 
Wind.play() MIDDLE_C 
Percussion.play() MIDDLE_C 
Stringed.play() MIDDLE_C 
Brass.play() MIDDLE_C 
Woodwind.play() MIDDLE_C 
*///:~ 

One other change has been made to this version of the example: The what( ) method has 
been changed to toString( ), since that was how the method was being used. Since 
toString( ) is part of the root class Object, it doesn’t need to appear in the interface. 

The rest of the code works the same. Notice that it doesn’t matter if you are upcasting to a 
"regular" class called Instrument, an abstract class called Instrument, or to an interface 
called Instrument. The behavior is the same. In fact, you can see in the tune( ) method 
that there isn’t any evidence about whether Instrument is a "regular" class, an abstract 
class, or an interface.  

Exercise 5:   (2) Create an interface containing three methods, in its own package. 
Implement the interface in a different package. 

Exercise 6:   (2) Prove that all the methods in an interface are automatically public. 

Exercise 7:   (1) Change Exercise 9 in the Polymorphism chapter so that Rodent is an 
interface. 

Exercise 8:   (2) In polymorphism.Sandwich.java, create an interface called 
FastFoo d (with appropriate methods) and change Sandwic h so that it also implements 
FastFood. 

Exercise 9:   (3) Refactor Musics.java by moving the common methods in Wind, 
Percussion and Stringed into an abstract class. 

Exercise 10:   (3) Modify Musics.java by adding a Playable interface. Move the play( ) 
declaration from Instrument to Playable. Add Playable to the derived classes by 
including it in the implement s list. Change tune( ) so that it takes a Playable instead of 
an Instrument.  

Complete decoupling 
Whenever a method works with a class instead of an interface, you are limited to using that 
class or its subclasses. If you would like to apply the method to a class that isn’t in that 
hierarchy, you’re out of luck. An interface relaxes this constraint considerably. As a result, it 
allows you to write more reusable code.  

For example, suppose you have a Processor class that has a name( ) and a process( ) 
method that takes input, modifies it and produces output. The base class is extended to 
create different types of Processor. In this case, the Processor subtypes modify String objects 
(note that the return types can be covariant, but not the argument types):  

//: interfaces/classprocessor/Apply.java 

Interfaces 225 



package interfaces.classprocessor; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Processor { 
  public String name() { 
    return getClass().getSimpleName(); 
  } 
  Object process(Object input) { return input; } 
}  
 
class Upcase extends Processor { 
  String process(Object input) { // Covariant return 
    return ((String)input).toUpperCase(); 
  } 
} 
 
class Downcase extends Processor { 
  String process(Object input) { 
    return ((String)input).toLowerCase(); 
  } 
} 
 
class Splitter extends Processor { 
  String process(Object input) { 
    // The split() argument divides a String into pieces: 
    return Arrays.toString(((String)input).split(" ")); 
  } 
}  
 
public class Apply { 
  public static void process(Processor p, Object s) { 
    print("Using Processor " + p.name()); 
    print(p.process(s)); 
  } 
  public static String s = 
    "Disagreement with beliefs is by definition incorrect"; 
  public static void main(String[] args) { 
    process(new Upcase(), s); 
    process(new Downcase(), s); 
    process(new Splitter(), s); 
  } 
} /* Output: 
Using Processor Upcase 
DISAGREEMENT WITH BELIEFS IS BY DEFINITION INCORRECT 
Using Processor Downcase 
disagreement with beliefs is by definition incorrect 
Using Processor Splitter 
[Disagreement, with, beliefs, is, by, definition, incorrect] 
*///:~ 

The Apply.process( ) method takes any kind of Processor and applies it to an Object, 
then prints the results. Creating a method that behaves differently depending on the 
argument object that you pass it is called the Strategy design pattern. The method contains 
the fixed part of the algorithm to be performed, and the Strategy contains the part that 
varies. The Strategy is the object that you pass in, and it contains code to be executed. Here, 
the Processor object is the Strategy, and in main( ) you can see three different Strategies 
applied to the String s. 

The split( ) method is part of the String class. It takes the String object and splits it using 
the argument as a boundary, and returns a String[]. It is used here as a shorter way of 
creating an array of String. 

226 Thinking in Java Bruce Eckel 



Now suppose you discover a set of electronic filters that seem like they could fit into your 
Apply.process( ) method:  

//: interfaces/filters/Waveform.java 
package interfaces.filters; 
 
public class Waveform { 
  private static long counter; 
  private final long id = counter++; 
  public String toString() { return "Waveform " + id; } 
} ///:~ 
 
//: interfaces/filters/Filter.java 
package interfaces.filters; 
 
public class Filter { 
  public String name() { 
    return getClass().getSimpleName(); 
  } 
  public Waveform process(Waveform input) { return input; } 
} ///:~ 
 
//: interfaces/filters/LowPass.java 
package interfaces.filters; 
 
public class LowPass extends Filter { 
  double cutoff; 
  public LowPass(double cutoff) { this.cutoff = cutoff; } 
  public Waveform process(Waveform input) { 
    return input; // Dummy processing 
  } 
} ///:~ 
 
//: interfaces/filters/HighPass.java 
package interfaces.filters; 
 
public class HighPass extends Filter { 
  double cutoff; 
  public HighPass(double cutoff) { this.cutoff = cutoff; } 
  public Waveform process(Waveform input) { return input; } 
} ///:~ 
 
//: interfaces/filters/BandPass.java 
package interfaces.filters; 
 
public class BandPass extends Filter { 
  double lowCutoff, highCutoff; 
  public BandPass(double lowCut, double highCut) { 
    lowCutoff = lowCut; 
    highCutoff = highCut; 
  } 
  public Waveform process(Waveform input) { return input; } 
} ///:~ 

Filter has the same interface elements as Processor, but because it isn’t inherited from 
Processor—because the creator of the Filter class had no clue you might want to use it as a 
Processor—you can’t use a Filter with the Apply.process( ) method, even though it 
would work fine. Basically, the coupling between Apply.process( ) and Processor is 
stronger than it needs to be, and this prevents the Apply.process( ) code from being reused 
when it ought to be. Also notice that the inputs and outputs are both Waveforms.  

Interfaces 227 



If Processor is an interface, however, the constraints are loosened enough that you can 
reuse an Apply.process( ) that takes that interface. Here are the modified versions of 
Processor and Apply:  

 
//: interfaces/interfaceprocessor/Processor.java 
package interfaces.interfaceprocessor; 
 
public interface Processor { 
  String name(); 
  Object process(Object input); 
} ///:~ 
 
//: interfaces/interfaceprocessor/Apply.java 
package interfaces.interfaceprocessor; 
import static net.mindview.util.Print.*; 
 
public class Apply { 
  public static void process(Processor p, Object s) { 
    print("Using Processor " + p.name()); 
    print(p.process(s)); 
  } 
} ///:~ 

The first way you can reuse code is if client programmers can write their classes to conform 
to the interface, like this:  

//: interfaces/interfaceprocessor/StringProcessor.java 
package interfaces.interfaceprocessor; 
import java.util.*; 
 
public abstract class StringProcessor implements Processor{ 
  public String name() { 
    return getClass().getSimpleName(); 
  } 
  public abstract String process(Object input); 
  public static String s = 
    "If she weighs the same as a duck, she’s made of wood"; 
  public static void main(String[] args) { 
    Apply.process(new Upcase(), s); 
    Apply.process(new Downcase(), s); 
    Apply.process(new Splitter(), s); 
  } 
}  
 
class Upcase extends StringProcessor { 
  public String process(Object input) { // Covariant return 
    return ((String)input).toUpperCase(); 
  } 
} 
 
class Downcase extends StringProcessor { 
  public String process(Object input) { 
    return ((String)input).toLowerCase(); 
  } 
} 
 
class Splitter extends StringProcessor { 
  public String process(Object input) { 
    return Arrays.toString(((String)input).split(" ")); 
  }  
} /* Output: 

228 Thinking in Java Bruce Eckel 



Using Processor Upcase 
IF SHE WEIGHS THE SAME AS A DUCK, SHE’S MADE OF WOOD 
Using Processor Downcase 
if she weighs the same as a duck, she’s made of wood 
Using Processor Splitter 
[If, she, weighs, the, same, as, a, duck,, she’s, made, of, wood] 
*///:~ 

However, you are often in the situation of not being able to modify the classes that you want 
to use. In the case of the electronic filters, for example, the library was discovered rather than 
created. In these cases, you can use the Adapter design pattern. In Adapter, you write code to 
take the interface that you have and produce the interface that you need, like this:  

//: interfaces/interfaceprocessor/FilterProcessor.java 
package interfaces.interfaceprocessor; 
import interfaces.filters.*; 
 
class FilterAdapter implements Processor { 
  Filter filter; 
  public FilterAdapter(Filter filter) { 
    this.filter = filter; 
  } 
  public String name() { return filter.name(); } 
  public Waveform process(Object input) { 
    return filter.process((Waveform)input); 
  } 
}  
 
public class FilterProcessor { 
  public static void main(String[] args) { 
    Waveform w = new Waveform(); 
    Apply.process(new FilterAdapter(new LowPass(1.0)), w); 
    Apply.process(new FilterAdapter(new HighPass(2.0)), w); 
    Apply.process( 
      new FilterAdapter(new BandPass(3.0, 4.0)), w); 
  } 
} /* Output: 
Using Processor LowPass 
Waveform 0 
Using Processor HighPass 
Waveform 0 
Using Processor BandPass 
Waveform 0 
*///:~ 

In this approach to Adapter, the FilterAdapter constructor takes the interface that you 
have—Filter—and produces an object that has the Processor interface that you need. You 
may also notice delegation in the FilterAdapter class. 

Decoupling interface from implementation allows an interface to be applied to multiple 
different implementations, and thus your code is more reusable. 

Exercise 11:   (4) Create a class with a method that takes a String argument and produces 
a result that swaps each pair of characters in that argument. Adapt the class so that it works 
with interfaceprocessor.Apply.process( ).  

Interfaces 229 



“Multiple inheritance” in Java 
Because an interface has no implementation at all—that is, there is no storage associated with 
an interface—there’s nothing to prevent many interfaces from being combined. This is 
valuable because there are times when you need to say, "An x is an a and a b and a c." In 
C++, this act of combining multiple class interfaces is called multiple inheritance, and it 
carries some rather sticky baggage because each class can have an implementation. In Java, 
you can perform the same act, but only one of the classes can have an implementation, so the 
C++ problems do not occur with Java when combining multiple interfaces:  

 

In a derived class, you aren’t forced to have a base class that is either abstract or "concrete" 
(one with no abstract methods). If you do inherit from a non-interface, you can inherit from 
only one. All the rest of the base elements must be interfaces. You place all the interface 
names after the implements keyword and separate them with commas. You can have as 
many interfaces as you want. You can upcast to each interface, because each interface is an 
independent type. The following example shows a concrete class combined with several 
interfaces to produce a new class:  

//: interfaces/Adventure.java 
// Multiple interfaces. 
 
interface CanFight { 
  void fight(); 
} 
 
interface CanSwim { 
  void swim(); 
} 
 
interface CanFly { 
  void fly(); 
} 
 
class ActionCharacter { 
  public void fight() {} 
}  
 
class Hero extends ActionCharacter 
    implements CanFight, CanSwim, CanFly { 
  public void swim() {} 
  public void fly() {} 
} 
 
public class Adventure { 
  public static void t(CanFight x) { x.fight(); } 
  public static void u(CanSwim x) { x.swim(); } 

230 Thinking in Java Bruce Eckel 



Interfaces 231 

  public static void v(CanFly x) { x.fly(); } 
  public static void w(ActionCharacter x) { x.fight(); } 
  public static void main(String[] args) { 
    Hero h = new Hero(); 
    t(h); // Treat it as a CanFight 
    u(h); // Treat it as a CanSwim 
    v(h); // Treat it as a CanFly 
    w(h); // Treat it as an ActionCharacter 
  } 
} ///:~ 

You can see that Hero combines the concrete class ActionCharacter with the interfaces 
CanFight, CanSwim, and CanFly. When you combine a concrete class with interfaces this 
way, the concrete class must come first, then the interfaces. (The compiler gives an error 
otherwise.) 

The signature for fight( ) is the same in the interface CanFight and the class 
ActionCharacter, and that fight( ) is not provided with a definition in Hero. You can 
extend an interface, but then you’ve got another interface. When you want to create an 
object, all the definitions must first exist. Even though Hero does not explicitly provide a 
definition for fight( ), the definition comes along with ActionCharacter; thus, it’s possible 
to create Hero objects. 

In class Adventure, you can see that there are four methods that take arguments of the 
various interfaces and of the concrete class. When a Hero object is created, it can be passed 
to any of these methods, which means it is being upcast to each interface in turn. Because of 
the way interfaces are designed in Java, this works without any particular effort on the part of 
the programmer. 

Keep in mind that one of the core reasons for interfaces is shown in the preceding example: 
to upcast to more than one base type (and the flexibility that this provides). However, a 
second reason for using interfaces is the same as using an abstract base class: to prevent the 
client programmer from making an object of this class and to establish that it is only an 
interface. 

This brings up a question: Should you use an interface or an abstract class? If it’s possible to 
create your base class without any method definitions or member variables, you should 
always prefer interfaces to abstract classes. In fact, if you know something is going to be a 
base class, you can consider making it an interface (this subject will be revisited in the 
chapter summary). 

Exercise 12:   (2) In Adventure.java, add an interface called CanClimb, following the 
form of the other interfaces. 

Exercise 13:   (2) Create an interface, and inherit two new interfaces from that interface. 
Multiply inherit a third interface from the second two. 2   

Extending an interface  
     with inheritance 

You can easily add new method declarations to an interface by using inheritance, and you can 
also combine several interfaces into a new interface with inheritance. In both cases you get a 
new interface, as seen in this example:  

                                                            
2 This shows how interfaces prevent the "diamond problem" that occurs with C++ multiple inheritance. 



//: interfaces/HorrorShow.java 
// Extending an interface with inheritance. 
 
interface Monster { 
  void menace(); 
} 
 
interface DangerousMonster extends Monster { 
  void destroy(); 
} 
 
interface Lethal { 
  void kill(); 
} 
 
class DragonZilla implements DangerousMonster { 
  public void menace() {} 
  public void destroy() {} 
}  
 
interface Vampire extends DangerousMonster, Lethal { 
  void drinkBlood(); 
} 
 
class VeryBadVampire implements Vampire { 
  public void menace() {} 
  public void destroy() {} 
  public void kill() {} 
  public void drinkBlood() {} 
}  
 
public class HorrorShow { 
  static void u(Monster b) { b.menace(); } 
  static void v(DangerousMonster d) { 
    d.menace(); 
    d.destroy(); 
  } 
  static void w(Lethal l) { l.kill(); } 
  public static void main(String[] args) { 
    DangerousMonster barney = new DragonZilla(); 
    u(barney); 
    v(barney); 
    Vampire vlad = new VeryBadVampire(); 
    u(vlad); 
    v(vlad); 
    w(vlad); 
  } 
} ///:~ 

DangerousMonster is a simple extension to Monster that produces a new interface. This 
is implemented in DragonZilla.  

The syntax used in Vampire works only when inheriting interfaces. Normally, you can use 
extends with only a single class, but extends can refer to multiple base interfaces when 
building a new interface. As you can see, the interface names are simply separated with 
commas.  

Exercise 14:   (2) Create three interfaces, each with two methods. Inherit a new interface 
that combines the three, adding a new method. Create a class by implementing the new 
interface and also inheriting from a concrete class. Now write four methods, each of which 

232 Thinking in Java Bruce Eckel 



takes one of the four interfaces as an argument. In main( ), create an object of your class 
and pass it to each of the methods.  

Exercise 15:   (2) Modify the previous exercise by creating an abstract class and 
inheriting that into the derived class.  

Name collisions when combining 
Interfaces 

You can encounter a small pitfall when implementing multiple interfaces. In the preceding 
example, both CanFight and ActionCharacter have identical void fight( ) methods. An 
identical method is not a problem, but what if the method differs by signature or return type? 
Here’s an example:  

//: interfaces/InterfaceCollision.java 
package interfaces; 
 
interface I1 { void f(); } 
interface I2 { int f(int i); } 
interface I3 { int f(); } 
class C { public int f() { return 1; } } 
 
class C2 implements I1, I2 { 
  public void f() {} 
  public int f(int i) { return 1; } // overloaded 
} 
 
class C3 extends C implements I2 { 
  public int f(int i) { return 1; } // overloaded 
} 
 
class C4 extends C implements I3 { 
  // Identical, no problem: 
  public int f() { return 1; } 
} 
 
// Methods differ only by return type: 
//! class C5 extends C implements I1 {} 
//! interface I4 extends I1, I3 {} ///:~ 

The difficulty occurs because overriding, implementation, and overloading get unpleasantly 
mixed together. Also, overloaded methods cannot differ only by return type. When the last 
two lines are uncommented, the error messages say it all:  

InterfaceCollision.java:23: f() in C cannot implementf() in It; attempting to use 
incompatible return type  
found: int  
required: void  
InterfaceCollision.java:24: Interfaces I3 andh are incompatible; both define f(), but with 
different return type  
 
Using the same method names in different interfaces that are intended to be combined 
generally causes confusion in the readability of the code, as well. Strive to avoid it.  

Interfaces 233 



Adapting to an interface 
One of the most compelling reasons for interfaces is to allow multiple implementations for 
the same interface. In simple cases this is in the form of a method that accepts an interface, 
leaving it up to you to implement that interface and pass your object to the method.  

Thus, a common use for interfaces is the aforementioned Strategy design pattern. You write 
a method that performs certain operations, and that method takes an interface that you also 
specify. You’re basically saying, "You can use my method with any object you like, as long as 
your object conforms to my interface." This makes your method more flexible, general and 
reusable.  

For example, the constructor for the Java SE5 Scanner class (which you’ll learn more about 
in the Strings chapter) takes a Readable interface. You’ll find that Readable is not an 
argument for any other method in the Java standard library—it was created solely for 
Scanner, so that Scanner doesn’t have to constrain its argument to be a particular class. 
This way, Scanner can be made to work with more types. If you create a new class and you 
want it to be usable with Scanner, you make it Readable, like this:  

//: interfaces/RandomWords.java 
// Implementing an interface to conform to a method. 
import java.nio.*; 
import java.util.*; 
 
public class RandomWords implements Readable { 
  private static Random rand = new Random(47); 
  private static final char[] capitals = 
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ".toCharArray(); 
  private static final char[] lowers = 
    "abcdefghijklmnopqrstuvwxyz".toCharArray(); 
  private static final char[] vowels = 
    "aeiou".toCharArray(); 
  private int count; 
  public RandomWords(int count) { this.count = count; }  
  public int read(CharBuffer cb) { 
    if(count-- == 0) 
      return -1; // Indicates end of input 
    cb.append(capitals[rand.nextInt(capitals.length)]); 
    for(int i = 0; i < 4; i++) { 
      cb.append(vowels[rand.nextInt(vowels.length)]); 
      cb.append(lowers[rand.nextInt(lowers.length)]); 
    } 
    cb.append(" "); 
    return 10; // Number of characters appended 
  } 
  public static void main(String[] args) { 
    Scanner s = new Scanner(new RandomWords(10)); 
    while(s.hasNext()) 
      System.out.println(s.next()); 
  } 
} /* Output: 
Yazeruyac 
Fowenucor 
Goeazimom 
Raeuuacio 
Nuoadesiw 
Hageaikux 
Ruqicibui 
Numasetih 
Kuuuuozog 

234 Thinking in Java Bruce Eckel 



Waqizeyoy 
*///:~ 

The Readable interface only requires the implementation of a read( ) method. Inside 
read( ), you add to the CharBuffer argument (there are several ways to do this; see the 
CharBuffer documentation), or return -l when you have no more input.  

Suppose you have a class that does not already implement Readable—how do you make it 
work with Scanner? Here’s an example of a class that produces random floating point 
numbers:  

//: interfaces/RandomDoubles.java 
import java.util.*; 
 
public class RandomDoubles { 
  private static Random rand = new Random(47); 
  public double next() { return rand.nextDouble(); } 
  public static void main(String[] args) { 
    RandomDoubles rd = new RandomDoubles(); 
    for(int i = 0; i < 7; i ++) 
      System.out.print(rd.next() + " "); 
  } 
} /* Output: 
0.7271157860730044 0.5309454508634242 0.16020656493302599 
0.18847866977771732 0.5166020801268457 0.2678662084200585 
0.2613610344283964 
*///:~ 

Because you can add an interface onto any existing class in this way, it means that a method 
that takes an interface provides a way for any class to be adapted to work with that method. 
This is the power of using interfaces instead of classes.  

Exercise 16:   (3) Create a class that produces a sequence of chars. Adapt this class so 
that it can be an input to a Scanner object.  

Fields in interfaces 
Because any fields you put into an interface are automatically static and final, the interface 
is a convenient tool for creating groups of constant values. Before Java SE5, this was the only 
way to produce the same effect as an enum in C or C++. So you will see pre-Java SE5 code 
like this:  

//: interfaces/Months.java 
// Using interfaces to create groups of constants. 
package interfaces; 
 
public interface Months { 
  int 
    JANUARY = 1, FEBRUARY = 2, MARCH = 3, 
    APRIL = 4, MAY = 5, JUNE = 6, JULY = 7, 
    AUGUST = 8, SEPTEMBER = 9, OCTOBER = 10, 
    NOVEMBER = 11, DECEMBER = 12; 
} ///:~ 

Notice the Java style of using all uppercase letters (with underscores to separate multiple 
words in a single identifier) for static finals that have constant initializers. The fields in an 
interface are automatically public, so that is not explicitly specified.  

Interfaces 235 



With Java SE5, you now have the much more powerful and flexible enum keyword, so it 
rarely makes sense to use interfaces for constants anymore. However, you will probably run 
across the old idiom on many occasions when reading legacy code (the supplements for this 
book at www.MindView.net contain a complete description of the pre-Java SE5 approach to 
producing enumerated types using interfaces). You can find more details about using enums 
in the Enumerated Types chapter.  

Exercise 17:   (2) Prove that the fields in an interface are implicitly static and final.  

Initializing fields in interfaces 

Fields defined in interfaces cannot be "blank finals," but they can be initialized with non-
constant expressions. For example:  

//: interfaces/RandVals.java 
// Initializing interface fields with 
// non-constant initializers. 
import java.util.*; 
 
public interface RandVals { 
  Random RAND = new Random(47); 
  int RANDOM_INT = RAND.nextInt(10); 
  long RANDOM_LONG = RAND.nextLong() * 10; 
  float RANDOM_FLOAT = RAND.nextLong() * 10; 
  double RANDOM_DOUBLE = RAND.nextDouble() * 10; 
} ///:~ 

Since the fields are static, they are initialized when the class is first loaded, which happens 
when any of the fields are accessed for the first time. Here’s a simple test:  

//: interfaces/TestRandVals.java 
import static net.mindview.util.Print.*; 
 
public class TestRandVals { 
  public static void main(String[] args) { 
    print(RandVals.RANDOM_INT); 
    print(RandVals.RANDOM_LONG); 
    print(RandVals.RANDOM_FLOAT); 
    print(RandVals.RANDOM_DOUBLE); 
  } 
} /* Output: 
8 
-32032247016559954 
-8.5939291E18 
5.779976127815049 
*///:~ 

The fields, of course, are not part of the interface. The values are stored in the static storage 
area for that interface.  

236 Thinking in Java Bruce Eckel 



Interfaces 237 

Nesting interfaces 
Interfaces may be nested within classes and within other interfaces. 3  This reveals a number 
of interesting features:  

//: interfaces/nesting/NestingInterfaces.java 
package interfaces.nesting; 
 
class A { 
  interface B { 
    void f(); 
  } 
  public class BImp implements B { 
    public void f() {} 
  } 
  private class BImp2 implements B { 
    public void f() {} 
  } 
  public interface C { 
    void f(); 
  } 
  class CImp implements C { 
    public void f() {} 
  }  
  private class CImp2 implements C { 
    public void f() {} 
  } 
  private interface D { 
    void f(); 
  } 
  private class DImp implements D { 
    public void f() {} 
  } 
  public class DImp2 implements D { 
    public void f() {} 
  } 
  public D getD() { return new DImp2(); } 
  private D dRef; 
  public void receiveD(D d) { 
    dRef = d; 
    dRef.f(); 
  } 
}  
 
interface E { 
  interface G { 
    void f(); 
  } 
  // Redundant "public": 
  public interface H { 
    void f(); 
  } 
  void g(); 
  // Cannot be private within an interface: 
  //! private interface I {} 
}  
 
public class NestingInterfaces { 

                                                            
3 Thanks to Martin Danner for asking about this during a seminar. 



  public class BImp implements A.B { 
    public void f() {} 
  } 
  class CImp implements A.C { 
    public void f() {} 
  } 
  // Cannot implement a private interface except 
  // within that interface’s defining class: 
  //! class DImp implements A.D { 
  //!  public void f() {} 
  //! } 
  class EImp implements E { 
    public void g() {} 
  } 
  class EGImp implements E.G { 
    public void f() {} 
  } 
  class EImp2 implements E { 
    public void g() {} 
    class EG implements E.G { 
      public void f() {} 
    } 
  }  
  public static void main(String[] args) { 
    A a = new A(); 
    // Can’t access A.D: 
    //! A.D ad = a.getD(); 
    // Doesn’t return anything but A.D: 
    //! A.DImp2 di2 = a.getD(); 
    // Cannot access a member of the interface: 
    //! a.getD().f(); 
    // Only another A can do anything with getD(): 
    A a2 = new A(); 
    a2.receiveD(a.getD()); 
  } 
} ///:~ 

The syntax for nesting an interface within a class is reasonably obvious. Just like non-nested 
interfaces, these can have public or package-access visibility.  

As an added twist, interfaces can also be private, as seen in A.D (the same qualification 
syntax is used for nested interfaces as for nested classes). What good is a private nested 
interface? You might guess that it can only be implemented as a private inner class as in 
DImp, but A.DImp2 shows that it can also be implemented as a public class. However, 
A.DImp2 can only be used as itself. You are not allowed to mention the fact that it 
implements the private interface D, so implementing a private interface is a way to force 
the definition of the methods in that interface without adding any type information (that is, 
without allowing any upcasting).  

The method getD( ) produces a further quandary concerning the private interface: It’s a 
public method that returns a reference to a private interface. What can you do with the 
return value of this method? In main( ), you can see several attempts to use the return 
value, all of which fail. The only thing that works is if the return value is handed to an object 
that has permission to use it—in this case, another A, via the receiveD( ) method.  

Interface E shows that interfaces can be nested within each other. However, the rules about 
interfaces—in particular, that all interface elements must be public—are strictly enforced 
here, so an interface nested within another interface is automatically public and cannot be 
made private.  

238 Thinking in Java Bruce Eckel 



Nestinglnterfaces shows the various ways that nested interfaces can be implemented. In 
particular, notice that when you implement an interface, you are not required to implement 
any interfaces nested within. Also, private interfaces cannot be implemented outside of 
their defining classes.  

Initially, these features may seem like they are added strictly for syntactic consistency, but I 
generally find that once you know about a feature, you often discover places where it is 
useful.  

Interfaces and factories 
An interface is intended to be a gateway to multiple implementations, and a typical way to 
produce objects that fit the interface is the Factory Method design pattern. Instead of calling 
a constructor directly, you call a creation method on a factory object which produces an 
implementation of the interface—this way, in theory, your code is completely isolated from 
the implementation of the interface, thus making it possible to transparently swap one 
implementation for another. Here’s a demonstration showing the structure of the Factory 
Method:  

//: interfaces/Factories.java 
import static net.mindview.util.Print.*; 
 
interface Service { 
  void method1(); 
  void method2(); 
} 
 
interface ServiceFactory { 
  Service getService(); 
} 
 
class Implementation1 implements Service { 
  Implementation1() {} // Package access 
  public void method1() {print("Implementation1 method1");} 
  public void method2() {print("Implementation1 method2");} 
}  
 
class Implementation1Factory implements ServiceFactory { 
  public Service getService() { 
    return new Implementation1(); 
  } 
} 
 
class Implementation2 implements Service { 
  Implementation2() {} // Package access 
  public void method1() {print("Implementation2 method1");} 
  public void method2() {print("Implementation2 method2");} 
} 
 
class Implementation2Factory implements ServiceFactory { 
  public Service getService() { 
    return new Implementation2(); 
  } 
}  
 
public class Factories { 
  public static void serviceConsumer(ServiceFactory fact) { 
    Service s = fact.getService(); 
    s.method1(); 
    s.method2(); 

Interfaces 239 



  } 
  public static void main(String[] args) { 
    serviceConsumer(new Implementation1Factory()); 
    // Implementations are completely interchangeable: 
    serviceConsumer(new Implementation2Factory()); 
  } 
} /* Output: 
Implementation1 method1 
Implementation1 method2 
Implementation2 method1 
Implementation2 method2 
*///:~ 

Without the Factory Method, your code would somewhere have to specify the exact type of 
Service being created, so that it could call the appropriate constructor.  

Why would you want to add this extra level of indirection? One common reason is to create a 
framework. Suppose you are creating a system to play games; for example, to play both chess 
and checkers on the same board:  

//: interfaces/Games.java 
// A Game framework using Factory Methods. 
import static net.mindview.util.Print.*; 
 
interface Game { boolean move(); } 
interface GameFactory { Game getGame(); } 
 
class Checkers implements Game { 
  private int moves = 0; 
  private static final int MOVES = 3; 
  public boolean move() { 
    print("Checkers move " + moves); 
    return ++moves != MOVES; 
  } 
} 
 
class CheckersFactory implements GameFactory { 
  public Game getGame() { return new Checkers(); } 
}  
 
class Chess implements Game { 
  private int moves = 0; 
  private static final int MOVES = 4; 
  public boolean move() { 
    print("Chess move " + moves); 
    return ++moves != MOVES; 
  } 
} 
 
class ChessFactory implements GameFactory { 
  public Game getGame() { return new Chess(); } 
}  
 
public class Games { 
  public static void playGame(GameFactory factory) { 
    Game s = factory.getGame(); 
    while(s.move()) 
      ; 
  } 
  public static void main(String[] args) { 
    playGame(new CheckersFactory()); 
    playGame(new ChessFactory()); 

240 Thinking in Java Bruce Eckel 



Interfaces 241 

  } 
} /* Output: 
Checkers move 0 
Checkers move 1 
Checkers move 2 
Chess move 0 
Chess move 1 
Chess move 2 
Chess move 3 
*///:~ 

If the Games class represents a complex piece of code, this approach allows you to reuse 
that code with different types of games. You can imagine more elaborate games that can 
benefit from this pattern. In the next chapter, you’ll see a more elegant way to implement the 
factories using anonymous inner classes.  

Exercise 18:   (2) Create a Cycle interface, with implementations Unicycle, Bicycle 
and Tricycle. Create factories for each type of Cycle, and code that uses these factories.  

Exercise 19:   (3) Create a framework using Factory Methods that performs both coin 
tossing and dice tossing.  

Summary 
It is tempting to decide that interfaces are good, and therefore you should always choose 
interfaces over concrete classes. Of course, almost anytime you create a class, you could 
instead create an interface and a factory.  

Many people have fallen to this temptation, creating interfaces and factories wherever it’s 
possible. The logic seems to be that you might need to use a different implementation, so you 
should always add that abstraction. It has become a kind of premature design optimization.  

Any abstraction should be motivated by a real need. Interfaces should be something you 
refactor to when necessary, rather than installing the extra level of indirection everywhere, 
along with the extra complexity. That extra complexity is significant, and if you make 
someone work through that complexity only to realize that you’ve added interfaces "just in 
case" and for no compelling reason—well, if I see such a thing I begin to question all the 
designs that this particular person has done.  

An appropriate guideline is to prefer classes to interfaces. Start with classes, and if it 
becomes clear that interfaces are necessary, then refactor. Interfaces are a great tool, but they 
can easily be overused.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net. 

   





Inner Classes 
It’s possible to place a class definition within another class definition. 
This is called an inner class.  

The inner class is a valuable feature because it allows you to group classes that logically 
belong together and to control the visibility of one within the other. However, it’s important 
to understand that inner classes are distinctly different from composition.  

At first, inner classes look like a simple code-hiding mechanism: You place classes inside 
other classes. You’ll learn, however, that the inner class does more than that—it knows about 
and can communicate with the surrounding class—and the kind of code you can write with 
inner classes is more elegant and clear, although there’s certainly no guarantee of this.  

Initially, inner classes may seem odd, and it will take some time to become comfortable using 
them in your designs. The need for inner classes isn’t always obvious, but after the basic 
syntax and semantics of inner classes have been described, the section "Why inner classes?" 
should begin to make clear the benefits of inner classes.  

After that section, the remainder of the chapter contains more detailed explorations of the 
syntax of inner classes. These features are provided for language completeness, but you 
might not need to use them, at least not at first. So the initial parts of the chapter might be all 
you need for now, and you can leave the more detailed explorations as reference material.  

Creating inner classes 
You create an inner class just as you’d expect—by placing the class definition inside a 
surrounding class:  

//: innerclasses/Parcel1.java 
// Creating inner classes. 
 
public class Parcel1 { 
  class Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  class Destination { 
    private String label; 
    Destination(String whereTo) { 
      label = whereTo; 
    } 
    String readLabel() { return label; } 
  }  
  // Using inner classes looks just like 
  // using any other class, within Parcel1: 
  public void ship(String dest) { 
    Contents c = new Contents(); 
    Destination d = new Destination(dest); 
    System.out.println(d.readLabel()); 
  } 
  public static void main(String[] args) { 
    Parcel1 p = new Parcel1(); 
    p.ship("Tasmania"); 
  } 

 



} /* Output: 
Tasmania 
*///:~ 

The inner classes used inside ship( ) look just like ordinary classes. Here, the only practical 
difference is that the names are nested within Parceli. You’ll see in a while that this isn’t the 
only difference. More typically, an outer class will have a method that returns a reference to 
an inner class, as you can see in the to( ) and contents( ) methods:  

//: innerclasses/Parcel2.java 
// Returning a reference to an inner class. 
 
public class Parcel2 { 
  class Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  class Destination { 
    private String label; 
    Destination(String whereTo) { 
      label = whereTo; 
    } 
    String readLabel() { return label; } 
  } 
  public Destination to(String s) { 
    return new Destination(s); 
  } 
  public Contents contents() { 
    return new Contents(); 
  } 
  public void ship(String dest) { 
    Contents c = contents(); 
    Destination d = to(dest); 
    System.out.println(d.readLabel()); 
  } 
  public static void main(String[] args) { 
    Parcel2 p = new Parcel2(); 
    p.ship("Tasmania"); 
    Parcel2 q = new Parcel2(); 
    // Defining references to inner classes: 
    Parcel2.Contents c = q.contents(); 
    Parcel2.Destination d = q.to("Borneo"); 
  } 
} /* Output: 
Tasmania 
*///:~ 

If you want to make an object of the inner class anywhere except from within a non-static 
method of the outer class, you must specify the type of that object as 
OuterClassName.InnerClassName, as seen in main( ).  

Exercise 1:   (1) Write a class named Outer that contains an inner class named Inner. 
Add a method to Outer that returns an object of type Inner. In main( ), create and 
initialize a reference to an Inner.  

The link to the outer class 
So far, it appears that inner classes are just a name-hiding and code organization scheme, 
which is helpful but not totally compelling. However, there’s another twist. When you create 

244 Thinking in Java Bruce Eckel 



Inner Classes 245 

an inner class, an object of that inner class has a link to the enclosing object that made it, and 
so it can access the members of that enclosing object—without any special qualifications. In 
addition, inner classes have access rights to all the elements in the enclosing class. 1

 The 
following example demonstrates this:  

//: innerclasses/Sequence.java 
// Holds a sequence of Objects. 
 
interface Selector { 
  boolean end(); 
  Object current(); 
  void next(); 
}  
 
public class Sequence { 
  private Object[] items; 
  private int next = 0; 
  public Sequence(int size) { items = new Object[size]; } 
  public void add(Object x) { 
    if(next < items.length) 
      items[next++] = x; 
  } 
  private class SequenceSelector implements Selector { 
    private int i = 0; 
    public boolean end() { return i == items.length; } 
    public Object current() { return items[i]; } 
    public void next() { if(i < items.length) i++; } 
  } 
  public Selector selector() { 
    return new SequenceSelector(); 
  }  
  public static void main(String[] args) { 
    Sequence sequence = new Sequence(10); 
    for(int i = 0; i < 10; i++) 
      sequence.add(Integer.toString(i)); 
    Selector selector = sequence.selector(); 
    while(!selector.end()) { 
      System.out.print(selector.current() + " "); 
      selector.next(); 
    } 
  } 
} /* Output: 
0 1 2 3 4 5 6 7 8 9 
*///:~ 

The Sequence is simply a fixed-sized array of Object with a class wrapped around it. You 
call add( ) to add a new Object to the end of the sequence (if there’s room left). To fetch 
each of the objects in a Sequence, there’s an interface called Selector. This is an example 
of the Iterator design pattern that you shall learn more about later in the book. A Selector 
allows you to see if you’re at the end( ), to access the current( ) Object, and to move to the 
next( ) Object in the Sequence. Because Selector is an interface, other classes can 
implement the interface in their own ways, and other methods can take the interface as an 
argument, in order to create more general-purpose code.  

Here, the SequenceSelector is a private class that provides Selector functionality. In 
main( ), you can see the creation of a Sequence, followed by the addition of a number of 
String objects. Then, a Selector is produced with a call to selector( ), and this is used to 
move through the Sequence and select each item.  
                                                            
1 This is very different from the design of nested classes in C++, which is simply a namehiding mechanism. There is no 
link to an enclosing object and no implied permissions in C++. 



At first, the creation of SequenceSelector looks like just another inner class. But examine 
it closely. Note that each of the methods—end( ), current( ), and next( )—refers to items, 
which is a reference that isn’t part of SequenceSelector, but is instead a private field in 
the enclosing class. However, the inner class can access methods and fields from the 
enclosing class as if it owned them. This turns out to be very convenient, as you can see in the 
preceding example.  

So an inner class has automatic access to the members of the enclosing class. How can this 
happen? The inner class secretly captures a reference to the particular object of the enclosing 
class that was responsible for creating it. Then, when you refer to a member of the enclosing 
class, that reference is used to select that member. Fortunately, the compiler takes care of all 
these details for you, but now you can see that an object of an inner class can be created only 
in association with an object of the enclosing class (when, as you shall see, the inner class is 
non-static). Construction of the inner-class object requires the reference to the object of the 
enclosing class, and the compiler will complain if it cannot access that reference. Most of the 
time this occurs without any intervention on the part of the programmer.  

Exercise 2:   (1) Create a class that holds a String, and has a toString( ) method that 
displays this String. Add several instances of your new class to a Sequence object, then 
display them.  

Exercise 3:   (1) Modify Exercise 1 so that Outer has a private String field (initialized 
by the constructor), and Inner has a toString( ) that displays this field. Create an object of 
type Inner and display it.  

Using .this and .new 
If you need to produce the reference to the outer-class object, you name the outer class 
followed by a dot and this. The resulting reference is automatically the correct type, which is 
known and checked at compile time, so there is no runtime overhead. Here’s an example that 
shows how to use .this:  

//: innerclasses/DotThis.java 
// Qualifying access to the outer-class object. 
 
public class DotThis { 
  void f() { System.out.println("DotThis.f()"); } 
  public class Inner { 
    public DotThis outer() { 
      return DotThis.this; 
      // A plain "this" would be Inner’s "this" 
    } 
  } 
  public Inner inner() { return new Inner(); } 
  public static void main(String[] args) { 
    DotThis dt = new DotThis(); 
    DotThis.Inner dti = dt.inner(); 
    dti.outer().f(); 
  } 
} /* Output: 
DotThis.f() 
*///:~ 

Sometimes you want to tell some other object to create an object of one of its inner classes. 
To do this you must provide a reference to the other outer-class object in the new 
expression, using the .new syntax, like this:  

//: innerclasses/DotNew.java 

246 Thinking in Java Bruce Eckel 



// Creating an inner class directly using the .new syntax. 
 
public class DotNew { 
  public class Inner {} 
  public static void main(String[] args) { 
    DotNew dn = new DotNew(); 
    DotNew.Inner dni = dn.new Inner(); 
  } 
} ///:~ 

To create an object of the inner class directly, you don’t follow the same form and refer to the 
outer class name DotNew as you might expect, but instead you must use an object of the 
outer class to make an object of the inner class, as you can see above. This also resolves the 
name scoping issues for the inner class, so you don’t say (indeed, you can’t say) dn.new 
DotNew.Inner( ).  

It’s not possible to create an object of the inner class unless you already have an object of the 
outer class. This is because the object of the inner class is quietly connected to the object of 
the outer class that it was made from. However, if you make a nested class (a static inner 
class), then it doesn’t need a reference to the outer-class object.  

Here, you see the use of .new applied to the "Parcel" example:  

//: innerclasses/Parcel3.java 
// Using .new to create instances of inner classes. 
 
public class Parcel3 { 
  class Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  class Destination { 
    private String label; 
    Destination(String whereTo) { label = whereTo; } 
    String readLabel() { return label; } 
  } 
  public static void main(String[] args) { 
    Parcel3 p = new Parcel3(); 
    // Must use instance of outer class 
    // to create an instance of the inner class: 
    Parcel3.Contents c = p.new Contents(); 
    Parcel3.Destination d = p.new Destination("Tasmania"); 
  } 
} ///:~ 

Exercise 4:   (2) Add a method to the class Sequence.SequenceSelector that produces 
the reference to the outer class Sequence.  

Exercise 5:   (1) Create a class with an inner class. In a separate class, make an instance of 
the inner class.  

Inner classes and upcasting 
Inner classes really come into their own when you start upcasting to a base class, and in 
particular to an interface. (The effect of producing an interface reference from an object that 
implements it is essentially the same as upcasting to a base class.) That’s because the inner 
class—the implementation of the interface—can then be unseen and unavailable, which is 

Inner Classes 247 



convenient for hiding the implementation. All you get back is a reference to the base class or 
the interface.  

We can create interfaces for the previous examples:  

//: innerclasses/Destination.java 
public interface Destination { 
  String readLabel(); 
} ///:~ 

Now Contents and Destination represent interfaces available to the client programmer. 
Remember that an interface automatically makes all of its members public.  

When you get a reference to the base class or the interface, it’s possible that you can’t even 
find out the exact type, as shown here:  

//: innerclasses/TestParcel.java 
 
class Parcel4 { 
  private class PContents implements Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  protected class PDestination implements Destination { 
    private String label; 
    private PDestination(String whereTo) { 
      label = whereTo; 
    } 
    public String readLabel() { return label; } 
  } 
  public Destination destination(String s) { 
    return new PDestination(s); 
  } 
  public Contents contents() { 
    return new PContents(); 
  } 
} 
 
public class TestParcel { 
  public static void main(String[] args) { 
    Parcel4 p = new Parcel4(); 
    Contents c = p.contents(); 
    Destination d = p.destination("Tasmania"); 
    // Illegal -- can’t access private class: 
    //! Parcel4.PContents pc = p.new PContents(); 
  } 
} ///:~ 

In Parcel4, something new has been added: The inner class PContents is private, so 
nothing but Parcel4 can access it. Normal (non-inner) classes cannot be made private or 
protected; they may only be given public or package access. PDestination is protected, 
so nothing but Parcel4, classes in the same package (since protected also gives package 
access), and the inheritors of Parcel4 can access PDestination. This means that the client 
programmer has restricted knowledge and access to these members. In fact, you can’t even 
downcast to a private inner class (or a protected inner class unless you’re an inheritor), 
because you can’t access the name, as you can see in class TestParcel. Thus, the private 
inner class provides a way for the class designer to completely prevent any type-coding 
dependencies and to completely hide details about implementation. In addition, extension of 
an interface is useless from the client programmer’s perspective since the client programmer 

248 Thinking in Java Bruce Eckel 



cannot access any additional methods that aren’t part of the public interface. This also 
provides an opportunity for the Java compiler to generate more efficient code.  

Exercise 6:   (2) Create an interface with at least one method, in its own package. Create a 
class in a separate package. Add a protected inner class that implements the interface. In a 
third package, inherit from your class and, inside a method, return an object of the 
protected inner class, upcasting to the interface during the return.  

Exercise 7:   (2) Create a class with a private field and a private method. Create an 
inner class with a method that modifies the outer-class field and calls the outer-class method. 
In a second outer-class method, create an object of the inner class and call its method, then 
show the effect on the outer-class object.  

Exercise 8:   (2) Determine whether an outer class has access to the private elements of 
its inner class.  

Inner classes 
     in methods and scopes 

What you’ve seen so far encompasses the typical use for inner classes. In general, the code 
that you’ll write and read involving inner classes will be "plain" inner classes that are simple 
and easy to understand. However, the syntax for inner classes covers a number of other, 
more obscure techniques. Inner classes can be created within a method or even an arbitrary 
scope. There are two reasons for doing this:  

1. As shown previously, you’re implementing an interface of some kind so that you can 
create and return a reference.  
 

2. You’re solving a complicated problem and you want to create a class to aid in your 
solution, but you don’t want it publicly available.  

 
In the following examples, the previous code will be modified to use:  

1. A class defined within a method 
 

2. A class defined within a scope inside a method 
 

3. An anonymous class implementing an interface 
 

4. An anonymous class extending a class that has a non-default constructor  
 

5. An anonymous class that performs field initialization 
 

6. An anonymous class that performs construction using instance initialization 
(anonymous inner classes cannot have constructors)  

 
The first example shows the creation of an entire class within the scope of a method (instead 
of the scope of another class). This is called a local inner class:  

//: innerclasses/Parcel5.java 
// Nesting a class within a method. 
 
public class Parcel5 { 
  public Destination destination(String s) { 
    class PDestination implements Destination { 

Inner Classes 249 



      private String label; 
      private PDestination(String whereTo) { 
        label = whereTo; 
      } 
      public String readLabel() { return label; } 
    } 
    return new PDestination(s); 
  } 
  public static void main(String[] args) { 
    Parcel5 p = new Parcel5(); 
    Destination d = p.destination("Tasmania"); 
  } 
} ///:~ 

The class PDestination is part of destination( ) rather than being part of Parcels. 
Therefore, PDestination cannot be accessed outside of destination( ). Notice the 
upcasting that occurs in the return statementnothing comes out of destination( ) except a 
reference to Destination, the base class. Of course, the fact that the name of the class 
PDestination is placed inside destination( ) doesn’t mean that PDestination is not a valid 
object once destination( ) returns.  

You could use the class identifier PDestination for an inner class inside each class in the 
same subdirectory without a name clash.  

The next example shows how you can nest an inner class within any arbitrary scope:  

//: innerclasses/Parcel6.java 
// Nesting a class within a scope. 
 
public class Parcel6 { 
  private void internalTracking(boolean b) { 
    if(b) { 
      class TrackingSlip { 
        private String id; 
        TrackingSlip(String s) { 
          id = s; 
        } 
        String getSlip() { return id; } 
      } 
      TrackingSlip ts = new TrackingSlip("slip"); 
      String s = ts.getSlip(); 
    } 
    // Can’t use it here! Out of scope: 
    //! TrackingSlip ts = new TrackingSlip("x"); 
  }  
  public void track() { internalTracking(true); } 
  public static void main(String[] args) { 
    Parcel6 p = new Parcel6(); 
    p.track(); 
  } 
} ///:~ 

The class TrackingSlip is nested inside the scope of an if statement. This does not mean 
that the class is conditionally created—it gets compiled along with everything else. However, 
it’s not available outside the scope in which it is defined. Other than that, it looks just like an 
ordinary class.  

Exercise 9:   (1) Create an interface with at least one method, and implement that 
interface by defining an inner class within a method, which returns a reference to your 
interface.  

250 Thinking in Java Bruce Eckel 



Exercise 10:   (1) Repeat the previous exercise but define the inner class within a scope 
within a method.  

Exercise 11:   (2) Create a private inner class that implements a public interface. Write 
a method that returns a reference to an instance of the private inner class, upcast to the 
interface. Show that the inner class is completely hidden by trying to downcast to it.  

Anonymous inner classes 
The next example looks a little odd: 

//: innerclasses/Parcel7.java 
// Returning an instance of an anonymous inner class. 
 
public class Parcel7 { 
  public Contents contents() { 
    return new Contents() { // Insert a class definition 
      private int i = 11; 
      public int value() { return i; } 
    }; // Semicolon required in this case 
  } 
  public static void main(String[] args) { 
    Parcel7 p = new Parcel7(); 
    Contents c = p.contents(); 
  } 
} ///:~ 

The contents( ) method combines the creation of the return value with the definition of the 
class that represents that return value! In addition, the class is anonymous; it has no name. 
To make matters a bit worse, it looks like you’re starting out to create a Contents object, But 
then, before you get to the semicolon, you say, "But wait, I think I’ll slip in a class definition."  

What this strange syntax means is "Create an object of an anonymous class that’s inherited 
from Contents." The reference returned by the new expression is automatically upcast to a 
Contents reference. The anonymous inner-class syntax is a shorthand for:  

//: innerclasses/Parcel7b.java 
// Expanded version of Parcel7.java 
 
public class Parcel7b { 
  class MyContents implements Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  public Contents contents() { return new MyContents(); } 
  public static void main(String[] args) { 
    Parcel7b p = new Parcel7b(); 
    Contents c = p.contents(); 
  } 
} ///:~ 

In the anonymous inner class, Contents is created by using a default constructor.  

The following code shows what to do if your base class needs a constructor with an argument:  

//: innerclasses/Parcel8.java 
// Calling the base-class constructor. 
 

Inner Classes 251 



public class Parcel8 { 
  public Wrapping wrapping(int x) { 
    // Base constructor call: 
    return new Wrapping(x) { // Pass constructor argument. 
      public int value() { 
        return super.value() * 47; 
      } 
    }; // Semicolon required 
  } 
  public static void main(String[] args) { 
    Parcel8 p = new Parcel8(); 
    Wrapping w = p.wrapping(10); 
  } 
} ///:~ 

That is, you simply pass the appropriate argument to the base-class constructor, seen here as 
the x passed in new Wrapping(x). Although it’s an ordinary class with an implementation, 
Wrapping is also being used as a common "interface" to its derived classes:  

//: innerclasses/Wrapping.java 
public class Wrapping { 
  private int i; 
  public Wrapping(int x) { i = x; } 
  public int value() { return i; } 
} ///:~ 

You’ll notice that Wrapping has a constructor that requires an argument, to make things a 
bit more interesting.  

The semicolon at the end of the anonymous inner class doesn’t mark the end of the class 
body. Instead, it marks the end of the expression that happens to contain the anonymous 
class. Thus, it’s identical to the use of the semicolon everywhere else.  

You can also perform initialization when you define fields in an anonymous class:  

//: innerclasses/Parcel9.java 
// An anonymous inner class that performs 
// initialization. A briefer version of Parcel5.java. 
 
public class Parcel9 { 
  // Argument must be final to use inside 
  // anonymous inner class: 
  public Destination destination(final String dest) { 
    return new Destination() { 
      private String label = dest; 
      public String readLabel() { return label; } 
    }; 
  } 
  public static void main(String[] args) { 
    Parcel9 p = new Parcel9(); 
    Destination d = p.destination("Tasmania"); 
  } 
} ///:~ 

If you’re defining an anonymous inner class and want to use an object that’s defined outside 
the anonymous inner class, the compiler requires that the argument reference be final, as 
you see in the argument to destination( ). If you forget, you’ll get a compile-time error 
message.  

252 Thinking in Java Bruce Eckel 



As long as you’re simply assigning a field, the approach in this example is fine. But what if 
you need to perform some constructor-like activity? You can’t have a named constructor in 
an anonymous class (since there’s no name!), but with instance initialization, you can, in 
effect, create a constructor for an anonymous inner class, like this:  

//: innerclasses/AnonymousConstructor.java 
// Creating a constructor for an anonymous inner class. 
import static net.mindview.util.Print.*; 
 
abstract class Base { 
  public Base(int i) { 
    print("Base constructor, i = " + i); 
  } 
  public abstract void f(); 
}  
 
public class AnonymousConstructor { 
  public static Base getBase(int i) { 
    return new Base(i) { 
      { print("Inside instance initializer"); } 
      public void f() { 
        print("In anonymous f()"); 
      } 
    }; 
  } 
  public static void main(String[] args) { 
    Base base = getBase(47); 
    base.f(); 
  } 
} /* Output: 
Base constructor, i = 47 
Inside instance initializer 
In anonymous f() 
*///:~ 

In this case, the variable i did nor have to be final. While i is passed to the base constructor of 
the anonymous class, it is never directly used inside the anonymous class.  

Here’s the "parcel" theme with instance initialization. Note that the arguments to 
destination( ) must be final since they are used within the anonymous class:  

//: innerclasses/Parcel10.java 
// Using "instance initialization" to perform 
// construction on an anonymous inner class. 
 
public class Parcel10 { 
  public Destination 
  destination(final String dest, final float price) { 
    return new Destination() { 
      private int cost; 
      // Instance initialization for each object: 
      { 
        cost = Math.round(price); 
        if(cost > 100) 
          System.out.println("Over budget!"); 
      } 
      private String label = dest; 
      public String readLabel() { return label; } 
    }; 
  }  
  public static void main(String[] args) { 
    Parcel10 p = new Parcel10(); 

Inner Classes 253 



    Destination d = p.destination("Tasmania", 101.395F); 
  } 
} /* Output: 
Over budget! 
*///:~ 

Inside the instance initializer you can see code that couldn’t be executed as part of a field 
initializer (that is, the if statement). So in effect, an instance initializer is the constructor for 
an anonymous inner class. Of course, it’s limited; you can’t overload instance initializers, so 
you can have only one of these constructors.  

Anonymous inner classes are somewhat limited compared to regular inheritance, because 
they can either extend a class or implement an interface, but not both. And if you do 
implement an interface, you can only implement one.  

Exercise 12:   (1) Repeat Exercise 7 using an anonymous inner class.  

Exercise 13:   (1) Repeat Exercise 9 using an anonymous inner class.  

Exercise 14:   (1) Modify interfaces/HorrorShow.java to implement 
DangerousMonster and Vampire using anonymous classes.  

Exercise 15:   (2) Create a class with a non-default constructor (one with arguments) and 
no default constructor (no "no-arg" constructor). Create a second class that has a method 
that returns a reference to an object of the first class. Create the object that you return by 
making an anonymous inner class that inherits from the first class.  

Factory Method revisited 

Look at how much nicer the interfaces/Factories.java example comes out when you use 
anonymous inner classes:  

//: innerclasses/Factories.java 
import static net.mindview.util.Print.*; 
 
interface Service { 
  void method1(); 
  void method2(); 
} 
 
interface ServiceFactory { 
  Service getService(); 
}  
 
class Implementation1 implements Service { 
  private Implementation1() {} 
  public void method1() {print("Implementation1 method1");} 
  public void method2() {print("Implementation1 method2");} 
  public static ServiceFactory factory = 
    new ServiceFactory() { 
      public Service getService() { 
        return new Implementation1(); 
      } 
    }; 
}  
 
class Implementation2 implements Service { 
  private Implementation2() {} 

254 Thinking in Java Bruce Eckel 



  public void method1() {print("Implementation2 method1");} 
  public void method2() {print("Implementation2 method2");} 
  public static ServiceFactory factory = 
    new ServiceFactory() { 
      public Service getService() { 
        return new Implementation2(); 
      } 
    }; 
}  
 
public class Factories { 
  public static void serviceConsumer(ServiceFactory fact) { 
    Service s = fact.getService(); 
    s.method1(); 
    s.method2(); 
  } 
  public static void main(String[] args) { 
    serviceConsumer(Implementation1.factory); 
    // Implementations are completely interchangeable: 
    serviceConsumer(Implementation2.factory); 
  } 
} /* Output: 
Implementation1 method1 
Implementation1 method2 
Implementation2 method1 
Implementation2 method2 
*///:~ 

Now the constructors for Implementation1 and Implementation2 can be private, and 
there’s no need to create a named class as the factory. In addition, you often only need a single 
factory object, and so here it has been created as a static field in the Service implementation. 
The resulting syntax is more meaningful, as well.  

The interfaces/Games.java example can also be improved with anonymous inner classes:  

//: innerclasses/Games.java 
// Using anonymous inner classes with the Game framework. 
import static net.mindview.util.Print.*; 
 
interface Game { boolean move(); } 
interface GameFactory { Game getGame(); } 
 
class Checkers implements Game { 
  private Checkers() {} 
  private int moves = 0; 
  private static final int MOVES = 3; 
  public boolean move() { 
    print("Checkers move " + moves); 
    return ++moves != MOVES; 
  } 
  public static GameFactory factory = new GameFactory() { 
    public Game getGame() { return new Checkers(); } 
  }; 
}  
 
class Chess implements Game { 
  private Chess() {} 
  private int moves = 0; 
  private static final int MOVES = 4; 
  public boolean move() { 
    print("Chess move " + moves); 
    return ++moves != MOVES; 

Inner Classes 255 



256 Thinking in Java Bruce Eckel 

  } 
  public static GameFactory factory = new GameFactory() { 
    public Game getGame() { return new Chess(); } 
  }; 
}  
 
public class Games { 
  public static void playGame(GameFactory factory) { 
    Game s = factory.getGame(); 
    while(s.move()) 
      ; 
  } 
  public static void main(String[] args) { 
    playGame(Checkers.factory); 
    playGame(Chess.factory); 
  } 
} /* Output: 
Checkers move 0 
Checkers move 1 
Checkers move 2 
Chess move 0 
Chess move 1 
Chess move 2 
Chess move 3 
*///:~ 

Remember the advice given at the end of the last chapter: Prefer classes to interfaces. If your 
design demands an interface, you’ll know it. Otherwise, don’t put it in until you are forced to.  

Exercise 16:   (1) Modify the solution to Exercise 18 from the Interfaces chapter to use 
anonymous inner classes.  

Exercise 17:   (1) Modify the solution to Exercise 19 from the Interfaces chapter to use 
anonymous inner classes.  

Nested classes 
If you don’t need a connection between the inner-class object and the outerclass object, then 
you can make the inner class static. This is commonly called a nested class. 2

 To understand 
the meaning of static when applied to inner classes, you must remember that the object of 
an ordinary inner class implicitly keeps a reference to the object of the enclosing class that 
created it. This is not true, however, when you say an inner class is static. A nested class 
means:  

1. You don’t need an outer-class object in order to create an object of a nested class.  
 

2. You can’t access a non-static outer-class object from an object of a nested class.  
 

Nested classes are different from ordinary inner classes in another way, as well. Fields and 
methods in ordinary inner classes can only be at the outer level of a class, so ordinary inner 
classes cannot have static data, static fields, or nested classes. However, nested classes can have 
all of these:  

//: innerclasses/Parcel11.java 
// Nested classes (static inner classes). 
                                                            
2 Roughly similar to nested classes in C++, except that those classes cannot access private members as they can in Java. 



 
public class Parcel11 { 
  private static class ParcelContents implements Contents { 
    private int i = 11; 
    public int value() { return i; } 
  } 
  protected static class ParcelDestination 
  implements Destination { 
    private String label; 
    private ParcelDestination(String whereTo) { 
      label = whereTo; 
    } 
    public String readLabel() { return label; }  
    // Nested classes can contain other static elements: 
    public static void f() {} 
    static int x = 10; 
    static class AnotherLevel { 
      public static void f() {} 
      static int x = 10; 
    } 
  } 
  public static Destination destination(String s) { 
    return new ParcelDestination(s); 
  } 
  public static Contents contents() { 
    return new ParcelContents(); 
  } 
  public static void main(String[] args) { 
    Contents c = contents(); 
    Destination d = destination("Tasmania"); 
  } 
} ///:~ 

In main( ), no object of Parcel11 is necessary; instead, you use the normal syntax for 
selecting a static member to call the methods that return references to Contents and 
Destination.  

As you’ve seen earlier in this chapter, in an ordinary (non-static) inner class, the link to the 
outer-class object is achieved with a special this reference. A nested class does not have a 
special this reference, which makes it analogous to a static method.  

Exercise 18:   (1) Create a class containing a nested class. In main( ), create an instance 
of the nested class.  

Exercise 19:   (2) Create a class containing an inner class that itself contains an inner 
class. Repeat this using nested classes. Note the names of the .class files produced by the 
compiler.  

Classes inside interfaces 

Normally, you can’t put any code inside an interface, but a nested class can be part of an 
interface. Any class you put inside an interface is automatically public and static. Since the 
class is static, it doesn’t violate the rules for interfaces—the nested class is only placed inside 
the namespace of the interface. You can even implement the surrounding interface in the 
inner class, like this:  

//: innerclasses/ClassInInterface.java 
// {main: ClassInInterface$Test} 
 

Inner Classes 257 



public interface ClassInInterface { 
  void howdy(); 
  class Test implements ClassInInterface { 
    public void howdy() { 
      System.out.println("Howdy!"); 
    } 
    public static void main(String[] args) { 
      new Test().howdy(); 
    } 
  } 
} /* Output: 
Howdy! 
*///:~ 

It’s convenient to nest a class inside an interface when you want to create some common code 
to be used with all different implementations of that interface.  

Earlier in this book I suggested putting a main( ) in every class to act as a test bed for that 
class. One drawback to this is the amount of extra compiled code you must carry around. If 
this is a problem, you can use a nested class to hold your test code:  

 

//: innerclasses/TestBed.java 
// Putting test code in a nested class. 
// {main: TestBed$Tester} 
 
public class TestBed { 
  public void f() { System.out.println("f()"); } 
  public static class Tester { 
    public static void main(String[] args) { 
      TestBed t = new TestBed(); 
      t.f(); 
    } 
  } 
} /* Output: 
f() 
*///:~ 

This generates a separate class called TestBed$Tester (to run the program, you say Java 
TestBed$Tester, but you must escape the ‘$’ under Unix/Linux systems). You can use this 
class for testing, but you don’t need to include it in your shipping product; you can simply 
delete TestBed$Tester.class before packaging things up.  

Exercise 20:   (1) Create an interface containing a nested class. Implement this interface 
and create an instance of the nested class.  

Exercise 21:   (2) Create an interface that contains a nested class that has a static method 
that calls the methods of your interface and displays the results. Implement your interface 
and pass an instance of your implementation to the method.  

 

 

 

 

258 Thinking in Java Bruce Eckel 



Inner Classes 259 

Reaching outward from a multiply 
nested class 

It doesn’t matter how deeply an inner class may be nested—it can transparently access all of 
the members of all the classes it is nested within, as seen here: 3   

//: innerclasses/MultiNestingAccess.java 
// Nested classes can access all members of all 
// levels of the classes they are nested within. 
 
class MNA { 
  private void f() {} 
  class A { 
    private void g() {} 
    public class B { 
      void h() { 
        g(); 
        f(); 
      } 
    } 
  } 
}  
 
public class MultiNestingAccess { 
  public static void main(String[] args) { 
    MNA mna = new MNA(); 
    MNA.A mnaa = mna.new A(); 
    MNA.A.B mnaab = mnaa.new B(); 
    mnaab.h(); 
  } 
} ///:~ 

You can see that in MNAAB, the methods g( ) and f( ) are callable without any qualification 
(despite the fact that they are private). This example also demonstrates the syntax 
necessary to create objects of multiply nested inner classes when you create the objects in a 
different class. The ".new" syntax produces the correct scope, so you do not have to qualify 
the class name in the constructor call.  

Why inner classes? 
At this point you’ve seen a lot of syntax and semantics describing the way inner classes work, 
but this doesn’t answer the question of why they exist. Why did the Java designers go to so 
much trouble to add this fundamental language feature?  

Typically, the inner class inherits from a class or implements an interface, and the code in the 
inner class manipulates the outer-class object that it was created within. So you could say 
that an inner class provides a kind of window into the outer class.  

A question that cuts to the heart of inner classes is this: If I just need a reference to an 
interface, why don’t I just make the outer class implement that interface? The answer is "If 
that’s all you need, then that’s how you should do it." So what is it that distinguishes an inner 
class implementing an interface from an outer class implementing the same interface? The 
answer is that you can’t always have the convenience of interfaces—sometimes you’re 
working with implementations. So the most compelling reason for inner classes is:  

                                                            
3 Thanks again to Martin Danner. 



Each inner class can independently inherit from an implementation. Thus, the inner 
class is not limited by whether the outer class is already inheriting from an 
implementation.  

Without the ability that inner classes provide to inherit—in effect—from more than one 
concrete or abstract class, some design and programming problems would be intractable. 
So one way to look at the inner class is as the rest of the solution of the multiple-inheritance 
problem. Interfaces solve part of the problem, but inner classes effectively allow "multiple 
implementation inheritance." That is, inner classes effectively allow you to inherit from more 
than one non-interface.  

To see this in more detail, consider a situation in which you have two interfaces that must 
somehow be implemented within a class. Because of the flexibility of interfaces, you have two 
choices: a single class or an inner class.  

//: innerclasses/MultiInterfaces.java 
// Two ways that a class can implement multiple interfaces. 
package innerclasses; 
 
interface A {} 
interface B {} 
 
class X implements A, B {} 
 
class Y implements A { 
  B makeB() { 
    // Anonymous inner class: 
    return new B() {}; 
  } 
} 
 
public class MultiInterfaces { 
  static void takesA(A a) {} 
  static void takesB(B b) {} 
  public static void main(String[] args) { 
    X x = new X(); 
    Y y = new Y(); 
    takesA(x); 
    takesA(y); 
    takesB(x); 
    takesB(y.makeB()); 
  } 
} ///:~ 

Of course, this assumes that the structure of your code makes logical sense either way. 
However, you’ll ordinarily have some kind of guidance from the nature of the problem about 
whether to use a single class or an inner class. But without any other constraints, the 
approach in the preceding example doesn’t really make much difference from an 
implementation standpoint. Both of them work.  

However, if you have abstract or concrete classes instead of interfaces, you are suddenly 
limited to using inner classes if your class must somehow implement both of the others:  

//: innerclasses/MultiImplementation.java 
// With concrete or abstract classes, inner 
// classes are the only way to produce the effect 
// of "multiple implementation inheritance." 
package innerclasses; 
 
class D {} 

260 Thinking in Java Bruce Eckel 



abstract class E {} 
 
class Z extends D { 
  E makeE() { return new E() {}; } 
} 
 
public class MultiImplementation { 
  static void takesD(D d) {} 
  static void takesE(E e) {} 
  public static void main(String[] args) { 
    Z z = new Z(); 
    takesD(z); 
    takesE(z.makeE()); 
  } 
} ///:~ 

If you didn’t need to solve the "multiple implementation inheritance" problem, you could 
conceivably code around everything else without the need for inner classes. But with inner 
classes you have these additional features:  

1. The inner class can have multiple instances, each with its own state information that 
is independent of the information in the outer-class object.  
 

2. In a single outer class you can have several inner classes, each of which implements 
the same interface or inherits from the same class in a different way. An example of 
this will be shown shortly.  
 

3. The point of creation of the inner-class object is not tied to the creation of the outer-
class object.  
 

4. There is no potentially confusing "is-a" relationship with the inner class; it’s a separate 
entity.  

 
As an example, if Sequence.java did not use inner classes, you’d have to say, "A Sequence 
is a Selector," and you’d only be able to have one Selector in existence for a particular 
Sequence. You can easily have a second method, reverseSelector( ), that produces a 
Selector that moves backward through the sequence. This kind of flexibility is only available 
with inner classes.  

Exercise 22:   (2) Implement reverseSelector( ) in Sequence.java.  

Exercise 23:   (4) Create an interface U with three methods. Create a class A with a 
method that produces a reference to a U by building an anonymous inner class. Create a 
second class B that contains an array of U. B should have one method that accepts and stores 
a reference to a U in the array, a second method that sets a reference in the array (specified 
by the method argument) to null, and a third method that moves through the array and calls 
the methods in U. In main( ), create a group of A objects and a single B. Fill the B with U 
references produced by the A objects. Use the B to call back into all the A objects. Remove 
some of the U references from the B.  

Closures & callbacks 

A closure is a callable object that retains information from the scope in which it was created. 
From this definition, you can see that an inner class is an object-oriented closure, because it 
doesn’t just contain each piece of information from the outer-class object ("the scope in 
which it was created"), but it automatically holds a reference back to the whole outer-class 
object, where it has permission to manipulate all the members, even private ones.  

Inner Classes 261 



One of the most compelling arguments made to include some kind of pointer mechanism in 
Java was to allow callbacks. With a callback, some other object is given a piece of 
information that allows it to call back into the originating object at some later point. This is a 
very powerful concept, as you will see later in the book. If a callback is implemented using a 
pointer, however, you must rely on the programmer to behave properly and not misuse the 
pointer. As you’ve seen by now, Java tends to be more careful than that, so pointers were not 
included in the language.  

The closure provided by the inner class is a good solution—more flexible and far safer than a 
pointer. Here’s an example:  

//: innerclasses/Callbacks.java 
// Using inner classes for callbacks 
package innerclasses; 
import static net.mindview.util.Print.*; 
 
interface Incrementable { 
  void increment(); 
} 
 
// Very simple to just implement the interface: 
class Callee1 implements Incrementable { 
  private int i = 0; 
  public void increment() { 
    i++; 
    print(i); 
  } 
}  
 
class MyIncrement { 
  public void increment() { print("Other operation"); } 
  static void f(MyIncrement mi) { mi.increment(); } 
}  
 
// If your class must implement increment() in 
// some other way, you must use an inner class: 
class Callee2 extends MyIncrement { 
  private int i = 0; 
  public void increment() { 
    super.increment(); 
    i++; 
    print(i); 
  } 
  private class Closure implements Incrementable { 
    public void increment() { 
      // Specify outer-class method, otherwise 
      // you’d get an infinite recursion: 
      Callee2.this.increment(); 
    } 
  } 
  Incrementable getCallbackReference() { 
    return new Closure(); 
  } 
}  
 
class Caller { 
  private Incrementable callbackReference; 
  Caller(Incrementable cbh) { callbackReference = cbh; } 
  void go() { callbackReference.increment(); } 
} 
 
public class Callbacks { 

262 Thinking in Java Bruce Eckel 



  public static void main(String[] args) { 
    Callee1 c1 = new Callee1(); 
    Callee2 c2 = new Callee2(); 
    MyIncrement.f(c2); 
    Caller caller1 = new Caller(c1); 
    Caller caller2 = new Caller(c2.getCallbackReference()); 
    caller1.go(); 
    caller1.go(); 
    caller2.go(); 
    caller2.go(); 
  }  
} /* Output: 
Other operation 
1 
1 
2 
Other operation 
2 
Other operation 
3 
*///:~ 

This also shows a further distinction between implementing an interface in an outer class 
versus doing so in an inner class. Callee1 is clearly the simpler solution in terms of the code. 
Callee2 inherits from Mylncrement, which already has a different increment( ) method 
that does something unrelated to the one expected by the Incrementable interface. When 
Mylncrement is inherited into Callee2, increment( ) can’t be overridden for use by 
Incrementable, so you’re forced to provide a separate implementation using an inner class. 
Also note that when you create an inner class, you do not add to or modify the interface of the 
outer class.  

Everything except getCallbackReference( ) in Callee2 is private. To allow any 
connection to the outside world, the interface Incrementable is essential. Here you can see 
how interfaces allow for a complete separation of interface from implementation.  

The inner class Closure implements Incrementable to provide a hook back into Callee2—
but a safe hook. Whoever gets the Incrementable reference can, of course, only call 
increment( ) and has no other abilities (unlike a pointer, which would allow you to run 
wild).  

Caller takes an Incrementable reference in its constructor (although the capturing of the 
callback reference could happen at any time) and then, sometime later, uses the reference to 
"call back" into the Callee class.  

The value of the callback is in its flexibility; you can dynamically decide what methods will be 
called at run time. The benefit of this will become more evident in the Graphical User 
Interfaces chapter, where callbacks are used everywhere to implement GUI functionality.  

Inner classes & control frameworks 

A more concrete example of the use of inner classes can be found in something that I will 
refer to here as a control framework.  

An application framework is a class or a set of classes that’s designed to solve a particular 
type of problem. To apply an application framework, you typically inherit from one or more 
classes and override some of the methods. The code that you write in the overridden methods 
customizes the general solution provided by that application framework in order to solve 
your specific problem. This is an example of the Template Method design pattern (see 

Inner Classes 263 



Thinking in Patterns (with Java) at www.MindView.net). The Template Method contains 
the basic structure of the algorithm, and it calls one or more overrideable methods to 
complete the action of that algorithm. A design pattern separates things that change from 
things that stay the same, and in this case the Template Method is the part that stays the 
same, and the overrideable methods are the things that change.  

A control framework is a particular type of application framework dominated by the need to 
respond to events. A system that primarily responds to events is called an event-driven 
system. A common problem in application programming is the graphical user interface 
(GUI), which is almost entirely event-driven. As you will see in the Graphical User Interfaces 
chapter, the Java Swing library is a control framework that elegantly solves the GUI problem 
and that heavily uses inner classes.  

To see how inner classes allow the simple creation and use of control frameworks, consider a 
control framework whose job is to execute events whenever those events are "ready." 
Although "ready" could mean anything, in this case it will be based on clock time. What 
follows is a control framework that contains no specific information about what it’s 
controlling. That information is supplied during inheritance, when the action( ) portion of 
the algorithm is implemented.  

First, here is the interface that describes any control event. It’s an abstract class instead of 
an actual interface because the default behavior is to perform the control based on time. 
Thus, some of the implementation is included here:  

//: innerclasses/controller/Event.java 
// The common methods for any control event. 
package innerclasses.controller; 
 
public abstract class Event { 
  private long eventTime; 
  protected final long delayTime; 
  public Event(long delayTime) { 
    this.delayTime = delayTime; 
    start(); 
  } 
  public void start() { // Allows restarting 
    eventTime = System.nanoTime() + delayTime; 
  } 
  public boolean ready() { 
    return System.nanoTime() >= eventTime; 
  } 
  public abstract void action(); 
} ///:~ 

The constructor captures the time (measured from the time of creation of the object) when 
you want the Event to run, and then calls start( ), which takes the current time and adds 
the delay time to produce the time when the event will occur. Rather than being included in 
the constructor, start( ) is a separate method. This way, you can restart the timer after the 
event has run out, so the Event object can be reused. For example, if you want a repeating 
event, you can simply call start( ) inside your action( ) method.  

ready( ) tells you when it’s time to run the action( ) method. Of course, ready( ) can be 
overridden in a derived class to base the Event on something other than time.  

The following file contains the actual control framework that manages and fires events. The 
Event objects are held inside a container object of type List<Event> (pronounced "List of 
Event"), which you’ll learn more about in the Holding Your Objects chapter. For now, all you 
need to know is that add( ) will append an Event to the end of the List, size( ) produces 

264 Thinking in Java Bruce Eckel 



Inner Classes 265 

the number of entries in the List, the foreach syntax fetches successive Events from the 
List, and remove( ) removes the specified Event from the List.  

//: innerclasses/controller/Controller.java 
// The reusable framework for control systems. 
package innerclasses.controller; 
import java.util.*; 
 
public class Controller { 
  // A class from java.util to hold Event objects: 
  private List<Event> eventList = new ArrayList<Event>(); 
  public void addEvent(Event c) { eventList.add(c); } 
  public void run() { 
    while(eventList.size() > 0) 
      // Make a copy so you’re not modifying the list 
      // while you’re selecting the elements in it: 
      for(Event e : new ArrayList<Event>(eventList)) 
        if(e.ready()) { 
          System.out.println(e); 
          e.action(); 
          eventList.remove(e); 
        } 
  } 
} ///:~ 

The run( ) method loops through a copy of the eventList, hunting for an Event object 
that’s ready( ) to run. For each one it finds ready( ), it prints information using the object’s 
toString( ) method, calls the action( ) method, and then removes the Event from the list.  

Note that so far in this design you know nothing about exactly what an Event does. And this 
is the crux of the design—how it "separates the things that change from the things that stay 
the same." Or, to use my term, the "vector of change" is the different actions of the various 
kinds of Event objects, and you express different actions by creating different Event 
subclasses.  

This is where inner classes come into play. They allow two things:  

1.  The entire implementation of a control framework is created in a single class, thereby 
encapsulating everything that’s unique about that implementation. Inner classes are 
used to express the many different kinds of action( ) necessary to solve the problem.  
 

2. Inner classes keep this implementation from becoming awkward, since you’re able to 
easily access any of the members in the outer class. Without this ability the code might 
become unpleasant enough that you’d end up seeking an alternative.  
 

Consider a particular implementation of the control framework designed to control greenhouse 
functions. 4  Each action is entirely different: turning lights, water, and thermostats on and off, 
ringing bells, and restarting the system. But the control framework is designed to easily isolate 
this different code. Inner classes allow you to have multiple derived versions of the same base 
class, Event, within a single class. For each type of action, you inherit a new Event inner class, 
and write the control code in the action( ) implementation.  

As is typical with an application framework, the class GreenhouseControls is inherited from 
Controller:  

                                                            
4 For some reason this has always been a pleasing problem for me to solve; it came from my earlier book C++ Inside & 
Out, but Java allows a more elegant solution 



//: innerclasses/GreenhouseControls.java 
// This produces a specific application of the 
// control system, all in a single class. Inner 
// classes allow you to encapsulate different 
// functionality for each type of event. 
import innerclasses.controller.*; 
 
public class GreenhouseControls extends Controller { 
  private boolean light = false; 
  public class LightOn extends Event { 
    public LightOn(long delayTime) { super(delayTime); } 
    public void action() { 
      // Put hardware control code here to 
      // physically turn on the light. 
      light = true; 
    } 
    public String toString() { return "Light is on"; } 
  }  
  public class LightOff extends Event { 
    public LightOff(long delayTime) { super(delayTime); } 
    public void action() { 
      // Put hardware control code here to 
      // physically turn off the light. 
      light = false; 
    } 
    public String toString() { return "Light is off"; } 
  } 
  private boolean water = false; 
  public class WaterOn extends Event { 
    public WaterOn(long delayTime) { super(delayTime); } 
    public void action() { 
      // Put hardware control code here. 
      water = true; 
    } 
    public String toString() { 
      return "Greenhouse water is on"; 
    } 
  }  
  public class WaterOff extends Event { 
    public WaterOff(long delayTime) { super(delayTime); } 
    public void action() { 
      // Put hardware control code here. 
      water = false; 
    } 
    public String toString() { 
      return "Greenhouse water is off"; 
    } 
  } 
  private String thermostat = "Day";  
  public class ThermostatNight extends Event { 
    public ThermostatNight(long delayTime) { 
      super(delayTime); 
    } 
    public void action() { 
      // Put hardware control code here. 
      thermostat = "Night"; 
    } 
    public String toString() { 
      return "Thermostat on night setting"; 
    } 
  }  
  public class ThermostatDay extends Event { 
    public ThermostatDay(long delayTime) { 

266 Thinking in Java Bruce Eckel 



      super(delayTime); 
    } 
    public void action() { 
      // Put hardware control code here. 
      thermostat = "Day"; 
    } 
    public String toString() { 
      return "Thermostat on day setting"; 
    } 
  } 
  // An example of an action() that inserts a 
  // new one of itself into the event list: 
  public class Bell extends Event { 
    public Bell(long delayTime) { super(delayTime); } 
    public void action() { 
      addEvent(new Bell(delayTime)); 
    } 
    public String toString() { return "Bing!"; } 
  }  
  public class Restart extends Event { 
    private Event[] eventList; 
    public Restart(long delayTime, Event[] eventList) { 
      super(delayTime); 
      this.eventList = eventList; 
      for(Event e : eventList) 
        addEvent(e); 
    } 
    public void action() { 
      for(Event e : eventList) { 
        e.start(); // Rerun each event 
        addEvent(e); 
      } 
      start(); // Rerun this Event 
      addEvent(this); 
    } 
    public String toString() { 
      return "Restarting system"; 
    } 
  }  
  public static class Terminate extends Event { 
    public Terminate(long delayTime) { super(delayTime); } 
    public void action() { System.exit(0); } 
    public String toString() { return "Terminating";  } 
  } 
} ///:~ 

Note that light, water, and thermostat belong to the outer class GreenhouseControls, 
and yet the inner classes can access those fields without qualification or special permission. 
Also, the action( ) methods usually involve some sort of hardware control.  

Most of the Event classes look similar, but Bell and Restart are special. Bell rings and 
then adds a new Bell object to the event list, so it will ring again later. Notice how inner 
classes almost look like multiple inheritance: Bell and Restart have all the methods of 
Event and also appear to have all the methods of the outer class GreenhouseControls.  

Restart is given an array of Event objects that it adds to the controller. Since Restart( ) is 
just another Event object, you can also add a Restart object within Restart.action( ) so 
that the system regularly restarts itself.  

Inner Classes 267 



The following class configures the system by creating a GreenhouseControls object and 
adding various kinds of Event objects. This is an example of the Command design pattern—
each object in eventList is a request encapsulated as an object:  

//: innerclasses/GreenhouseController.java 
// Configure and execute the greenhouse system. 
// {Args: 5000} 
import innerclasses.controller.*; 
 
public class GreenhouseController { 
  public static void main(String[] args) { 
    GreenhouseControls gc = new GreenhouseControls(); 
    // Instead of hard-wiring, you could parse 
    // configuration information from a text file here: 
    gc.addEvent(gc.new Bell(900)); 
    Event[] eventList = { 
      gc.new ThermostatNight(0), 
      gc.new LightOn(200), 
      gc.new LightOff(400), 
      gc.new WaterOn(600), 
      gc.new WaterOff(800), 
      gc.new ThermostatDay(1400) 
    };  
    gc.addEvent(gc.new Restart(2000, eventList)); 
    if(args.length == 1) 
      gc.addEvent( 
        new GreenhouseControls.Terminate( 
          new Integer(args[0]))); 
    gc.run(); 
  } 
} /* Output: 
Bing! 
Thermostat on night setting 
Light is on 
Light is off 
Greenhouse water is on 
Greenhouse water is off 
Thermostat on day setting 
Restarting system 
Terminating 
*///:~ 

This class initializes the system, so it adds all the appropriate events. The Restart event is 
repeatedly run, and it loads the eventList into the GreenhouseControls object each time. 
If you provide a command-line argument indicating milliseconds, it will terminate the 
program after that many milliseconds (this is used for testing).  

Of course, it’s more flexible to read the events from a file instead of hardcoding them. An 
exercise in the I/O chapter asks you to modify this example to do just that.  

This example should move you toward an appreciation of the value of inner classes, 
especially when used within a control framework. However, in the Graphical User Interfaces 
chapter you’ll see how elegantly inner classes are used to describe the actions of a graphical 
user interface. By the time you finish that chapter, you should be fully convinced.  

Exercise 24:   (2) In GreenhouseControls.java, add Event inner classes that turn 
fans on and off. Configure GreenhouseController.java to use these new Event objects.  

268 Thinking in Java Bruce Eckel 



Exercise 25:   (3) Inherit from GreenhouseControls in GreenhouseControls.java 
to add Event inner classes that turn water mist generators on and off. Write a new version of 
GreenhouseController.java to use these new Event objects.  

Inheriting from inner classes 
Because the inner-class constructor must attach to a reference of the enclosing class object, 
things are slightly complicated when you inherit from an inner class. The problem is that the 
"secret" reference to the enclosing class object must be initialized, and yet in the derived class 
there’s no longer a default object to attach to. You must use a special syntax to make the 
association explicit:  

//: innerclasses/InheritInner.java 
// Inheriting an inner class. 
 
class WithInner { 
  class Inner {} 
} 
 
public class InheritInner extends WithInner.Inner { 
  //! InheritInner() {} // Won’t compile 
  InheritInner(WithInner wi) { 
    wi.super(); 
  } 
  public static void main(String[] args) { 
    WithInner wi = new WithInner(); 
    InheritInner ii = new InheritInner(wi); 
  } 
} ///:~ 

You can see that InheritInner is extending only the inner class, not the outer one. But when 
it comes time to create a constructor, the default one is no good, and you can’t just pass a 
reference to an enclosing object. In addition, you must use the syntax  

enclosingClassReference.super();  

inside the constructor. This provides the necessary reference, and the program will then 
compile.  

Exercise 26:   (2) Create a class with an inner class that has a non-default constructor 
(one that takes arguments). Create a second class with an inner class that inherits from the 
first inner class.  

Can inner classes be overridden? 
What happens when you create an inner class, then inherit from the enclosing class and 
redefine the inner class? That is, is it possible to "override" the entire inner class? This seems 
like it would be a powerful concept, but "overriding" an inner class as if it were another 
method of the outer class doesn’t really do anything:  

//: innerclasses/BigEgg.java 
// An inner class cannot be overriden like a method. 
import static net.mindview.util.Print.*; 
 
class Egg { 
  private Yolk y; 

Inner Classes 269 



  protected class Yolk { 
    public Yolk() { print("Egg.Yolk()"); } 
  } 
  public Egg() { 
    print("New Egg()"); 
    y = new Yolk(); 
  } 
}  
 
public class BigEgg extends Egg { 
  public class Yolk { 
    public Yolk() { print("BigEgg.Yolk()"); } 
  } 
  public static void main(String[] args) { 
    new BigEgg(); 
  } 
} /* Output: 
New Egg() 
Egg.Yolk() 
*///:~ 

The default constructor is synthesized automatically by the compiler, and this calls the base-
class default constructor. You might think that since a BigEgg is being created, the 
"overridden" version of Yolk would be used, but this is not the case, as you can see from the 
output.  

This example shows that there isn’t any extra inner-class magic going on when you inherit 
from the outer class. The two inner classes are completely separate entities, each in its own 
namespace. However, it’s still possible to explicitly inherit from the inner class:  

//: innerclasses/BigEgg2.java 
// Proper inheritance of an inner class. 
import static net.mindview.util.Print.*; 
 
class Egg2 { 
  protected class Yolk { 
    public Yolk() { print("Egg2.Yolk()"); } 
    public void f() { print("Egg2.Yolk.f()");} 
  } 
  private Yolk y = new Yolk(); 
  public Egg2() { print("New Egg2()"); } 
  public void insertYolk(Yolk yy) { y = yy; } 
  public void g() { y.f(); } 
}  
 
public class BigEgg2 extends Egg2 { 
  public class Yolk extends Egg2.Yolk { 
    public Yolk() { print("BigEgg2.Yolk()"); } 
    public void f() { print("BigEgg2.Yolk.f()"); } 
  } 
  public BigEgg2() { insertYolk(new Yolk()); } 
  public static void main(String[] args) { 
    Egg2 e2 = new BigEgg2(); 
    e2.g(); 
  } 
} /* Output: 
Egg2.Yolk() 
New Egg2() 
Egg2.Yolk() 
BigEgg2.Yolk() 
BigEgg2.Yolk.f() 
*///:~ 

270 Thinking in Java Bruce Eckel 



Now BigEgg2.Yolk explicitly extends Egg2.Yolk and overrides its methods. The method 
insertYolk( ) allows BigEgg2 to upcast one of its own Yolk objects into the y reference in 
Egg2, so when g( ) calls y.f( ), the overridden version of f( ) is used. The second call to 
Egg2.Yolk( ) is the base-class constructor call of the BigEgg2.Yolk constructor. You can 
see that the overridden version of f( ) is used when g( ) is called.  

Local inner classes 
As noted earlier, inner classes can also be created inside code blocks, typically inside the body 
of a method. A local inner class cannot have an access specifier because it isn’t part of the 
outer class, but it does have access to the final variables in the current code block and all the 
members of the enclosing class. Here’s an example comparing the creation of a local inner 
class with an anonymous inner class:  

//: innerclasses/LocalInnerClass.java 
// Holds a sequence of Objects. 
import static net.mindview.util.Print.*; 
 
interface Counter { 
  int next(); 
}  
 
public class LocalInnerClass { 
  private int count = 0; 
  Counter getCounter(final String name) { 
    // A local inner class: 
    class LocalCounter implements Counter { 
      public LocalCounter() { 
        // Local inner class can have a constructor 
        print("LocalCounter()"); 
      } 
      public int next() { 
        printnb(name); // Access local final 
        return count++; 
      } 
    } 
    return new LocalCounter(); 
  }  
  // The same thing with an anonymous inner class: 
  Counter getCounter2(final String name) { 
    return new Counter() { 
      // Anonymous inner class cannot have a named 
      // constructor, only an instance initializer: 
      { 
        print("Counter()"); 
      } 
      public int next() { 
        printnb(name); // Access local final 
        return count++; 
      } 
    }; 
  }  
  public static void main(String[] args) { 
    LocalInnerClass lic = new LocalInnerClass(); 
    Counter 
      c1 = lic.getCounter("Local inner "), 
      c2 = lic.getCounter2("Anonymous inner "); 
    for(int i = 0; i < 5; i++) 
      print(c1.next()); 
    for(int i = 0; i < 5; i++) 

Inner Classes 271 



272 Thinking in Java Bruce Eckel 

      print(c2.next()); 
  } 
} /* Output: 
LocalCounter() 
Counter() 
Local inner 0 
Local inner 1 
Local inner 2 
Local inner 3 
Local inner 4 
Anonymous inner 5 
Anonymous inner 6 
Anonymous inner 7 
Anonymous inner 8 
Anonymous inner 9 
*///:~ 

Counter returns the next value in a sequence. It is implemented as both a local class and an 
anonymous inner class, both of which have the same behaviors and capabilities. Since the 
name of the local inner class is not accessible outside the method, the only justification for 
using a local inner class instead of an anonymous inner class is if you need a named 
constructor and/or an overloaded constructor, since an anonymous inner class can only use 
instance initialization.  

Another reason to make a local inner class rather than an anonymous inner class is if you 
need to make more than one object of that class.  

Inner-class identifiers 
Since every class produces a .class file that holds all the information about how to create 
objects of this type (this information produces a "meta-class" called the Class object), you 
might guess that inner classes must also produce .class files to contain the information for 
their Class objects. The names of these files/classes have a strict formula: the name of the 
enclosing class, followed by a ‘$’, followed by the name of the inner class. For example, the 
.class files created by LocalInnerClass.java include:  

Counter.class 
LocalInnerClass$l.class 
LocallnnerClassSlLocalCounter.class 
LocallnnerClass.class 

If inner classes are anonymous, the compiler simply starts generating numbers as inner-class 
identifiers. If inner classes are nested within inner classes, their names are simply appended 
after a ‘$’ and the outer-class identifier (s).  

Although this scheme of generating internal names is simple and straightforward, it’s also 
robust and handles most situations. 5

 Since it is the standard naming scheme for Java, the 
generated files are automatically platform-independent. (Note that the Java compiler is 
changing your inner classes in all sorts of other ways in order to make them work.)  

                                                            
5 On the other hand, ‘$’ is a meta-character to the Unix shell and so you’ll sometimes have trouble when listing the .class 
files. This is a bit strange coming from Sun, a Unix-based company. My guess is that they weren’t considering this issue, 
but instead thought you’d naturally focus on the source-code files. 



Inner Classes 273 

Summary 
Interfaces and inner classes are more sophisticated concepts than what you’ll find in many 
OOP languages; for example, there’s nothing like them in C++. Together, they solve the same 
problem that C++ attempts to solve with its multiple inheritance (MI) feature. However, MI 
in C++ turns out to be rather difficult to use, whereas Java interfaces and inner classes are, 
by comparison, much more accessible.  

Although the features themselves are reasonably straightforward, the use of these features is 
a design issue, much the same as polymorphism. Over time, you’ll become better at 
recognizing situations where you should use an interface, or an inner class, or both. But at 
this point in this book, you should at least be comfortable with the syntax and semantics. As 
you see these language features in use, you’ll eventually internalize them.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net. 

   





Holding Your  
     Objects 

It’s a fairly simple program that only has a fixed quantity of objects 
with known lifetimes.  

In general, your programs will always be creating new objects based on some criteria that will 
be known only at run time. Before then, you won’t know the quantity or even the exact type 
of the objects you need. To solve the general programming problem, you need to create any 
number of objects, anytime, anywhere. So you can’t rely on creating a named reference to 
hold each one of your objects:  

MyType aReference;  

since you’ll never know how many of these you’ll actually need.  

Most languages provide some way to solve this essential problem. Java has several ways to 
hold objects (or rather, references to objects). The compiler-supported type is the array, 
which has been discussed before. An array is the most efficient way to hold a group of objects, 
and you’re pointed towards this choice if you want to hold a group of primitives. But an array 
has a fixed size, and in the more general case, you won’t know at the time you’re writing the 
program how many objects you’re going to need, or whether you need a more sophisticated 
way to store your objects—so the fixed-sized constraint of an array is too limiting.  

The java.util library has a reasonably complete set of container classes to solve this 
problem, the basic types of which are List, Set, Queue, and Map. These types of objects are 
also known as collection classes, but because the Java library uses the name Collection to 
refer to a particular subset of the library, I shall use the more inclusive term "container." 
Containers provide sophisticated ways to hold your objects, and you can solve a surprising 
number of problems by using these tools.  

Among their other characteristics—Set, for example, holds only one object of each value, and 
Map is an associative array that lets you associate objects with other objects—the Java 
container classes will automatically resize themselves. So, unlike with arrays, you can put in 
any number of objects and you don’t need to worry about how big to make the container 
while you’re writing the program.  

Even though they don’t have direct keyword support in Java,1 container classes are 
fundamental tools that significantly increase your programming muscle. In this chapter 
you’ll get a basic working knowledge of the Java container library, with an emphasis on 
typical usage. Here, we’ll focus on the containers that you’ll use in day-to-day programming. 
Later, in the Containers in Depth chapter, you’ll learn about the rest of the containers and 
more details about their functionality and how to use them.  

                                                            
1 A number of languages, such as Perl, Python, and Ruby, have native support for containers. 

 



276 Thinking in Java Bruce Eckel 

Generics and type-safe containers  
One of the problems of using pre-Java SE5 containers was that the compiler allowed you to 
insert an incorrect type into a container. For example, consider a container of Apple objects, 
using the basic workhorse container, ArrayList. For now, you can think of ArrayList as 
"an array that automatically expands itself." Using an ArrayList is straightforward: Create 
one, insert objects using add( ), and access them with get( ), using an index—just as you do 
with an array, but without the square brackets.2 ArrayList also has a method size( ) to let 
you know how many elements have been added, so that you don’t inadvertently index off the 
end and cause an error (by throwing a runtime exception; exceptions will be introduced in 
the chapter Error Handling with Exceptions).  

In this example, Apples and Oranges are placed into the container, then pulled out. 
Normally, the Java compiler will give you a warning because the example does not use 
generics. Here, a special Java SE5 annotation is used to suppress the warning. Annotations 
start with an ‘@’ sign, and can take an argument; this one is @SuppressWarnings and the 
argument indicates that "unchecked" warnings only should be suppressed: 

//: holding/ApplesAndOrangesWithoutGenerics.java 
// Simple container example (produces compiler warnings). 
// {ThrowsException} 
import java.util.*; 
 
class Apple { 
  private static long counter; 
  private final long id = counter++; 
  public long id() { return id; } 
} 
 
class Orange {}  
 
public class ApplesAndOrangesWithoutGenerics { 
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) { 
    ArrayList apples = new ArrayList(); 
    for(int i = 0; i < 3; i++) 
      apples.add(new Apple()); 
    // Not prevented from adding an Orange to apples: 
    apples.add(new Orange()); 
    for(int i = 0; i < apples.size(); i++) 
      ((Apple)apples.get(i)).id(); 
      // Orange is detected only at run time 
  } 
} /* (Execute to see output) *///:~ 

You’ll learn more about Java SE5 annotations in the Annotations chapter.  

The classes Apple and Orange are distinct; they have nothing in common except that they 
are both Objects. (Remember that if you don’t explicitly say what class you’re inheriting 
from, you automatically inherit from Object.) Since ArrayList holds Objects, you can not 
only add Apple objects into this container using the ArrayList method add( ), but you can 
also add Orange objects without complaint at either compile time or run time. When you go 
to fetch out what you think are Apple objects using the ArrayList method get( ), you get 
back a reference to an Object that you must cast to an Apple. Then you need to surround 
the entire expression with parentheses to force the evaluation of the cast before calling the 

                                                            
2 This is a place where operator overloading would have been nice. C++ and C# container classes produce a cleaner syntax 
using operator overloading. 



Holding Your Objects 277 

id( ) method for Apple; otherwise, you’ll get a syntax error. At run time, when you try to 
cast the Orange object to an Apple, you’ll get an error in the form of the aforementioned 
exception. In the Generics chapter, you’ll learn that creating classes using Java generics can 
be complex. However, applying predefined generic classes is usually straightforward. For 
example, to define an ArrayList intended to hold Apple objects, you say 
ArrayList<Apple> instead of just ArrayList. The angle brackets surround the type 
parameters (there may be more than one), which specify the type(s) that can be held by that 
instance of the container. With generics, you’re prevented, at compile time, from putting the 
wrong type of object into a container.3 Here’s the example again, using generics:  

//: holding/ApplesAndOrangesWithGenerics.java 
import java.util.*; 
 
public class ApplesAndOrangesWithGenerics { 
  public static void main(String[] args) { 
    ArrayList<Apple> apples = new ArrayList<Apple>(); 
    for(int i = 0; i < 3; i++) 
      apples.add(new Apple()); 
    // Compile-time error: 
    // apples.add(new Orange()); 
    for(int i = 0; i < apples.size(); i++) 
      System.out.println(apples.get(i).id()); 
    // Using foreach: 
    for(Apple c : apples) 
      System.out.println(c.id()); 
  } 
} /* Output: 
0 
1 
2 
0 
1 
2 
*///:~ 

Now the compiler will prevent you from putting an Orange into apples, so it becomes a 
compile-time error rather than a runtime error. Also notice that the cast is no longer 
necessary when fetching items back out from the List. Since the List knows what type it 
holds, it does the cast for you when you call get( ). Thus, with generics you not only know 
that the compiler will check the type of object that you put into a container, but you also get 
cleaner syntax when using the objects in the container. The example also shows that, if you 
do not need to use the index of each element, you can use the foreach syntax to select each 
element in the List. You are not limited to putting the exact type of object into a container 
when you specify that type as a generic parameter. Upcasting works the same with generics 
as it does with other types:  

//: holding/GenericsAndUpcasting.java 
import java.util.*; 
 
class GrannySmith extends Apple {} 
class Gala extends Apple {} 
class Fuji extends Apple {} 
class Braeburn extends Apple {} 
 
public class GenericsAndUpcasting { 
  public static void main(String[] args) { 
    ArrayList<Apple> apples = new ArrayList<Apple>(); 
    apples.add(new GrannySmith()); 
                                                            
3 At the end of the Generics chapter, you’ll find a discussion about whether this is such a bad problem. However, the 
Generics chapter will also show you that Java generics are useful for more than just type-safe containers. 



    apples.add(new Gala()); 
    apples.add(new Fuji()); 
    apples.add(new Braeburn()); 
    for(Apple c : apples) 
      System.out.println(c); 
  } 
} /* Output: (Sample) 
GrannySmith@7d772e 
Gala@11b86e7 
Fuji@35ce36 
Braeburn@757aef 
*///:~ 

Thus, you can add a subtype of Apple to a container that is specified to hold Apple objects.  

The output is produced from the default toString( ) method of Object, which prints the 
class name followed by the unsigned hexadecimal representation of the hash code of the 
object (generated by the hashCode( ) method). You’ll learn about hash codes in detail in 
Containers in Depth.  

Exercise 1:   (2) Create a new class called Gerbil with an int gerbilNumber that’s 
initialized in the constructor. Give it a method called hop( ) that displays which gerbil 
number this is, and that it’s hopping. Create an ArrayList and add Gerbil objects to the 
List. Now use the get( ) method to move through the List and call hop( ) for each Gerbil.  

Basic concepts  
The Java container library takes the idea of "holding your objects" and divides it into two 
distinct concepts, expressed as the basic interfaces of the library:  

1. Collection: a sequence of individual elements with one or more rules applied to 
them. A List must hold the elements in the way that they were inserted, a Set cannot 
have duplicate elements, and a Queue produces the elements in the order 
determined by a queuing discipline (usually the same order in which they are 
inserted).  
 

2. Map: a group of key-value object pairs, allowing you to look up a value using a key. 
An ArrayList allows you to look up an object using a number, so in a sense it 
associates numbers to objects. A map allows you to look up an object using another 
object. It’s also called an associative array, because it associates objects with other 
objects, or a dictionary, because you look up a value object using a key object just like 
you look up a definition using a word. Maps are powerful programming tools.  

 
Although it’s not always possible, ideally you’ll write most of your code to talk to these 
interfaces, and the only place where you’ll specify the precise type you’re using is at the point 
of creation. So you can create a List like this:  

List<Apple> apples = new ArrayList<Apple>(); 

Notice that the ArrayList has been upcast to a List, in contrast to the way it was handled in 
the previous examples. The intent of using the interface is that if you decide you want to 
change your implementation, all you need to do is change it at the point of creation, like this:  

List<Apple> apples = new LinkedList<Apple>(); 

Thus, you’ll typically make an object of a concrete class, upcast it to the corresponding 
interface, and then use the interface throughout the rest of your code.  

278 Thinking in Java Bruce Eckel 



This approach won’t always work, because some classes have additional functionality. For 
example, LinkedList has additional methods that are not in the List interface, and a 
TreeMap has methods that are not in the Map interface. If you need to use those methods, 
you won’t be able to upcast to the more general interface.  

The Collection interface generalizes the idea of a sequence—a way of holding a group of 
objects. Here’s a simple example that fills a Collection (represented here with an 
ArrayList) with Integer objects and then prints each element in the resulting container:  

//: holding/SimpleCollection.java 
import java.util.*; 
 
public class SimpleCollection { 
  public static void main(String[] args) { 
    Collection<Integer> c = new ArrayList<Integer>(); 
    for(int i = 0; i < 10; i++) 
      c.add(i); // Autoboxing 
    for(Integer i : c) 
      System.out.print(i + ", "); 
  } 
} /* Output: 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
*///:~ 

Since this example only uses Collection methods, any object of a class inherited from 
Collection would work, but ArrayList is the most basic type of sequence.  

The name of the add( ) method suggests that it puts a new element in the Collection. 
However, the documentation carefully states that add( ) "ensures that this Collection 
contains the specified element." This is to allow for the meaning of Set, which adds the 
element only if it isn’t already there. With an ArrayList, or any sort of List, add( ) always 
means "put it in," because Lists don’t care if there are duplicates.  

All Collections can be traversed using the foreach syntax, as shown here. Later in this 
chapter you’ll learn about a more flexible concept called an Iterator.  

Exercise 2:   (1) Modify SimpleCollection.java to use a Set for c.  

Exercise 3:   (2) Modify innerclasses/Sequence.java so that you can add any number 
of elements to it.  

Adding groups of elements  
There are utility methods in both the Arrays and Collections classes in java.util that add 
groups of elements to a Collection. Arrays.asList( ) takes either an array or a comma-
separated list of elements (using varargs) and turns it into a List object. 
Collections.addAll( ) takes a Collection object and either an array or a comma-separated 
list and adds the elements to the Collection. Here’s an example that shows both methods, as 
well as the more conventional addAll( ) method that’s part of all Collection types:  

//: holding/AddingGroups.java 
// Adding groups of elements to Collection objects. 
import java.util.*; 
 
public class AddingGroups { 
  public static void main(String[] args) { 
    Collection<Integer> collection = 

Holding Your Objects 279 



      new ArrayList<Integer>(Arrays.asList(1, 2, 3, 4, 5)); 
    Integer[] moreInts = { 6, 7, 8, 9, 10 }; 
    collection.addAll(Arrays.asList(moreInts)); 
    // Runs significantly faster, but you can’t 
    // construct a Collection this way: 
    Collections.addAll(collection, 11, 12, 13, 14, 15); 
    Collections.addAll(collection, moreInts); 
    // Produces a list "backed by" an array: 
    List<Integer> list = Arrays.asList(16, 17, 18, 19, 20); 
    list.set(1, 99); // OK -- modify an element 
    // list.add(21); // Runtime error because the 
                     // underlying array cannot be resized. 
  } 
} ///:~ 

The constructor for a Collection can accept another Collection which it uses for 
initializing itself, so you can use Arrays.asList( ) to produce input for the constructor. 
However, Collections.addAll( ) runs much faster, and it’s just as easy to construct the 
Collection with no elements and then call Collections.addAll( ), so this is the preferred 
approach.  

The Collection.addAll( ) member method can only take an argument of another 
Collection object, so it is not as flexible as Arrays.asList( ) or Collections.addAll( ), 
which use variable argument lists.  

It’s also possible to use the output of Arrays.asList( ) directly, as a List, but the underlying 
representation in this case is the array, which cannot be resized. If you try to add( ) or 
delete( ) elements in such a list, that would attempt to change the size of an array, so you’ll 
get an "Unsupported Operation" error at run time.  

A limitation of Arrays.asList( ) is that it takes a best guess about the resulting type of the 
List, and doesn’t pay attention to what you’re assigning it to. Sometimes this can cause a 
problem:  

//: holding/AsListInference.java 
// Arrays.asList() makes its best guess about type. 
import java.util.*; 
 
class Snow {} 
class Powder extends Snow {} 
class Light extends Powder {} 
class Heavy extends Powder {} 
class Crusty extends Snow {} 
class Slush extends Snow {} 
 
public class AsListInference { 
  public static void main(String[] args) { 
    List<Snow> snow1 = Arrays.asList( 
      new Crusty(), new Slush(), new Powder()); 
 
    // Won’t compile: 
    // List<Snow> snow2 = Arrays.asList( 
    //   new Light(), new Heavy()); 
    // Compiler says: 
    // found   : java.util.List<Powder> 
    // required: java.util.List<Snow> 
 
    // Collections.addAll() doesn’t get confused: 
    List<Snow> snow3 = new ArrayList<Snow>(); 
    Collections.addAll(snow3, new Light(), new Heavy()); 
 

280 Thinking in Java Bruce Eckel 



    // Give a hint using an 
    // explicit type argument specification: 
    List<Snow> snow4 = Arrays.<Snow>asList( 
       new Light(), new Heavy()); 
  } 
} ///:~ 

When trying to create snow2, Arrays.asList( ) only has types of Powder, so it creates a 
List<Powder> rather than a List<Snow>, whereas Collections.addAll( ) works fine 
because it knows from the first argument what the target type is.  

As you can see from the creation of snow4, it’s possible to insert a "hint" in the middle of 
Arrays.asList( ), to tell the compiler what the actual target type should be for the resulting 
List type produced by Arrays.asList( ). This is called an explicit type argument 
specification.  

Maps are more complex, as you’ll see, and the Java standard library does not provide any 
way to automatically initialize them, except from the contents of another Map.  

Printing containers  
You must use Arrays.toString( ) to produce a printable representation of an array, but the 
containers print nicely without any help. Here’s an example that also introduces you to the 
basic Java containers:  

//: holding/PrintingContainers.java 
// Containers print themselves automatically. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class PrintingContainers { 
  static Collection fill(Collection<String> collection) { 
    collection.add("rat"); 
    collection.add("cat"); 
    collection.add("dog"); 
    collection.add("dog"); 
    return collection; 
  } 
  static Map fill(Map<String,String> map) { 
    map.put("rat", "Fuzzy"); 
    map.put("cat", "Rags"); 
    map.put("dog", "Bosco"); 
    map.put("dog", "Spot"); 
    return map; 
  }  
  public static void main(String[] args) { 
    print(fill(new ArrayList<String>())); 
    print(fill(new LinkedList<String>())); 
    print(fill(new HashSet<String>())); 
    print(fill(new TreeSet<String>())); 
    print(fill(new LinkedHashSet<String>())); 
    print(fill(new HashMap<String,String>())); 
    print(fill(new TreeMap<String,String>())); 
    print(fill(new LinkedHashMap<String,String>())); 
  } 
} /* Output: 
[rat, cat, dog, dog] 
[rat, cat, dog, dog] 
[dog, cat, rat] 

Holding Your Objects 281 



[cat, dog, rat] 
[rat, cat, dog] 
{dog=Spot, cat=Rags, rat=Fuzzy} 
{cat=Rags, dog=Spot, rat=Fuzzy} 
{rat=Fuzzy, cat=Rags, dog=Spot} 
*///:~ 

This shows the two primary categories in the Java container library. The distinction is based 
on the number of items that are held in each "slot" in the container. The Collection category 
only holds one item in each slot. It includes the List, which holds a group of items in a 
specified sequence, the Set, which only allows the addition of one identical item, and the 
Queue, which only allows you to insert objects at one "end" of the container and remove 
objects from the other "end" (for the purposes of this example, this is just another way of 
looking at a sequence and so it is not shown). A Map holds two objects, a key and an 
associated value, in each slot.  

In the output, you can see that the default printing behavior (provided via each container’s 
toString( ) method) produces reasonably readable results. A Collection is printed 
surrounded by square brackets, with each element separated by a comma. A Map is 
surrounded by curly braces, with each key and value associated with an equal sign (keys on 
the left, values on the right).  

The first fill( ) method works with all types of Collection, each of which implements the 
add( ) method to include new elements.  

ArrayList and LinkedList are both types of List, and you can see from the output that 
they both hold elements in the same order in which they are inserted. The difference between 
the two is not only performance for certain types of operations, but also that a LinkedList 
contains more operations than an ArrayList. These will be explored more fully later in this 
chapter.  

HashSet, TreeSet and LinkedHashSet are types of Set. The output shows that a Set will 
only hold one of each identical item, but it also shows that the different Set implementations 
store the elements differently. The HashSet stores elements using a rather complex 
approach that will be explored in the Containers in Depth chapter—all you need to know at 
this point is that this technique is the fastest way to retrieve elements, and as a result the 
storage order can seem nonsensical (often, you only care whether something is a member of 
the Set, not the order in which it appears). If storage order is important, you can use a 
TreeSet, which keeps the objects in ascending comparison order, or a LinkedHashSet, 
which keeps the objects in the order in which they were added.  

A Map (also called an associative array) allows you to look up an object using a key, like a 
simple database. The associated object is called a value. If you have a Map that associates 
states with their capitals and you want to know the capital of Ohio, you look it up using 
"Ohio" as the key—almost as if you were indexing into an array. Because of this behavior, a 
Map only accepts one of each key.  

Map.put(key, value) adds a value (the thing you want) and associates it with a key (the 
thing you look it up with). Map.get(key) produces the value associated with that key. The 
above example only adds key-value pairs, and does not perform lookups. That will be shown 
later.  

Notice that you don’t have to specify (or think about) the size of the Map because it resizes 
itself automatically. Also, Maps know how to print themselves, showing the association with 
keys and values. The order that the keys and values are held inside the Map is not the 
insertion order because the HashMap implementation uses a very fast algorithm that 
controls the order.  

282 Thinking in Java Bruce Eckel 



The example uses the three basic flavors of Map: HashMap, TreeMap and 
LinkedHashMap. Like HashSet, HashMap provides the fastest lookup technique, and 
also doesn’t hold its elements in any apparent order. A TreeMap keeps the keys sorted by 
ascending comparison order, and a LinkedHashMap keeps the keys in insertion order 
while retaining the lookup speed of the HashMap.  

Exercise 4:   (3) Create a generator class that produces character names (as String 
objects) from your favorite movie (you can use Snow White or Star Wars as a fallback) each 
time you call next( ), and loops around to the beginning of the character list when it runs out 
of names. Use this generator to fill an array, an ArrayList, a LinkedList, a HashSet, a 
LinkedHashSet, and a TreeSet, then print each container.  

List  
Lists promise to maintain elements in a particular sequence. The List interface adds a 
number of methods to Collection that allow insertion and removal of elements in the 
middle of a List.  

There are two types of List: 

• The basic ArrayList, which excels at randomly accessing elements, but is slower 
when inserting and removing elements in the middle of a List. 

 
• The LinkedList, which provides optimal sequential access, with inexpensive 

insertions and deletions from the middle of the List. A LinkedList is relatively slow 
for random access, but it has a larger feature set than the ArrayList.  

 
The following example reaches forward in the book to use a library from the Type 
Information chapter by importing typeinfo.pets. This is a library that contains a hierarchy 
of Pet classes along with some tools to randomly generate Pet objects. You don’t need to 
know the full details at this point, just that (1) there’s a Pet class and various subtypes of Pet 
and (2) the static Pets.arrayList( ) method will return an ArrayList filled with randomly 
selected Pet objects:  

//: holding/ListFeatures.java 
import typeinfo.pets.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ListFeatures { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    List<Pet> pets = Pets.arrayList(7); 
    print("1: " + pets); 
    Hamster h = new Hamster(); 
    pets.add(h); // Automatically resizes 
    print("2: " + pets); 
    print("3: " + pets.contains(h)); 
    pets.remove(h); // Remove by object 
    Pet p = pets.get(2); 
    print("4: " +  p + " " + pets.indexOf(p)); 
    Pet cymric = new Cymric(); 
    print("5: " + pets.indexOf(cymric)); 
    print("6: " + pets.remove(cymric)); 
    // Must be the exact object: 
    print("7: " + pets.remove(p)); 
    print("8: " + pets); 
    pets.add(3, new Mouse()); // Insert at an index 

Holding Your Objects 283 



    print("9: " + pets); 
    List<Pet> sub = pets.subList(1, 4); 
    print("subList: " + sub); 
    print("10: " + pets.containsAll(sub)); 
    Collections.sort(sub); // In-place sort 
    print("sorted subList: " + sub); 
    // Order is not important in containsAll(): 
    print("11: " + pets.containsAll(sub)); 
    Collections.shuffle(sub, rand); // Mix it up 
    print("shuffled subList: " + sub); 
    print("12: " + pets.containsAll(sub)); 
    List<Pet> copy = new ArrayList<Pet>(pets); 
    sub = Arrays.asList(pets.get(1), pets.get(4)); 
    print("sub: " + sub); 
    copy.retainAll(sub); 
    print("13: " + copy); 
    copy = new ArrayList<Pet>(pets); // Get a fresh copy 
    copy.remove(2); // Remove by index 
    print("14: " + copy); 
    copy.removeAll(sub); // Only removes exact objects 
    print("15: " + copy); 
    copy.set(1, new Mouse()); // Replace an element 
    print("16: " + copy); 
    copy.addAll(2, sub); // Insert a list in the middle 
    print("17: " + copy); 
    print("18: " + pets.isEmpty()); 
    pets.clear(); // Remove all elements 
    print("19: " + pets); 
    print("20: " + pets.isEmpty()); 
    pets.addAll(Pets.arrayList(4)); 
    print("21: " + pets); 
    Object[] o = pets.toArray(); 
    print("22: " + o[3]); 
    Pet[] pa = pets.toArray(new Pet[0]); 
    print("23: " + pa[3].id()); 
  } 
} /* Output: 
1: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug] 
2: [Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Hamster] 
3: true 
4: Cymric 2 
5: -1 
6: false 
7: true 
8: [Rat, Manx, Mutt, Pug, Cymric, Pug] 
9: [Rat, Manx, Mutt, Mouse, Pug, Cymric, Pug] 
subList: [Manx, Mutt, Mouse] 
10: true 
sorted subList: [Manx, Mouse, Mutt] 
11: true 
shuffled subList: [Mouse, Manx, Mutt] 
12: true 
sub: [Mouse, Pug] 
13: [Mouse, Pug] 
14: [Rat, Mouse, Mutt, Pug, Cymric, Pug] 
15: [Rat, Mutt, Cymric, Pug] 
16: [Rat, Mouse, Cymric, Pug] 
17: [Rat, Mouse, Mouse, Pug, Cymric, Pug] 
18: false 
19: [] 
20: true 
21: [Manx, Cymric, Rat, EgyptianMau] 
22: EgyptianMau 

284 Thinking in Java Bruce Eckel 



23: 14 
*///:~ 

The print lines are numbered so the output can be related to the source code. The first output 
line shows the original List of Pets. Unlike an array, a List allows you to add elements after 
it has been created, or remove elements, and it resizes itself. That’s its fundamental value: a 
modifiable sequence. You can see the result of adding a Hamster in output line 2—the 
object is appended to the end of the list.  

You can find out whether an object is in the list using the contains( ) method. If you want to 
remove an object, you can pass that object’s reference to the remove( ) method. Also, if you 
have a reference to an object, you can discover the index number where that object is located 
in the List using indexOf( ), as you can see in output line 4.  

When deciding whether an element is part of a List, discovering the index of an element, and 
removing an element from a List by reference, the equals( ) method (part of the root class 
Object) is used. Each Pet is defined to be a unique object, so even though there are two 
Cymrics in the list, if I create a new Cymric object and pass it to indexOf( ), the result will 
be -1 (indicating it wasn’t found), and attempts to remove( ) the object will return false. 
For other classes, equals( ) may be defined differently—Strings, for example, are equal if 
the contents of two Strings are identical. So to prevent surprises, it’s important to be aware 
that List behavior changes depending on equals( ) behavior.  

In output lines 7 and 8, removing an object that exactly matches an object in the List is 
shown to be successful.  

It’s possible to insert an element in the middle of the List, as you can see in output line 9 and 
the code that precedes it, but this brings up an issue: for a LinkedList, insertion and 
removal in the middle of a list is a cheap operation (except for, in this case, the actual 
random access into the middle of the list), but for an ArrayList it is an expensive operation. 
Does this mean you should never insert elements in the middle of an ArrayList, and switch 
to a LinkedList if you do? No, it just means you should be aware of the issue, and if you 
start doing many insertions in the middle of an ArrayList and your program starts slowing 
down, that you might look at your List implementation as the possible culprit (the best way 
to discover such a bottleneck, as you will see in the supplement at 
http://MindView.net/Books/BetterJava, is to use a profiler). Optimization is a tricky issue, 
and the best policy is to leave it alone until you discover you need to worry about it (although 
understanding the issues is always a good idea).  

The subList( ) method allows you to easily create a slice out of a larger list, and this 
naturally produces a true result when passed to containsAll( ) for that larger list. It’s also 
interesting to note that order is unimportant—you can see in output lines 11 and 12 that 
calling the intuitively named Collections.sort( ) and Collections.shuffle( ) on sub 
doesn’t affect the outcome of containsAll( ). subList( ) produces a list backed by the 
original list. Therefore, changes in the returned list are reflected in the original list, and vice 
versa.  

The retainAll( ) method is effectively a "set intersection" operation, in this case keeping all 
the elements in copy that are also in sub. Again, the resulting behavior depends on the 
equals( ) method.  

Output line 14 shows the result of removing an element using its index number, which is 
more straightforward than removing it by object reference since you don’t have to worry 
about equals( ) behavior when using indexes.  

The removeAll( ) method also operates based on the equals( ) method. As the name 
implies, it removes all the objects from the List that are in the argument List. The set( ) 
method is rather unfortunately named because of the potential confusion with the Set class—

Holding Your Objects 285 



"replace" might have been a better name here, because it replaces the element at the index 
(the first argument) with the second argument.  

Output line 17 shows that for Lists, there’s an overloaded addAll( ) method that allows you 
to insert the new list in the middle of the original list, instead of just appending it to the end 
with the addAll( ) that comes from Collection.  

Output lines 18-20 show the effect of the isEmpty( ) and clear( ) methods.  

Output lines 22 and 23 show how you can convert any Collection to an array using 
toArray( ). This is an overloaded method; the no-argument version returns an array of 
Object, but if you pass an array of the target type to the overloaded version, it will produce 
an array of the type specified (assuming it passes type checking). If the argument array is too 
small to hold all the objects in the List (as is the case here), to Array( ) will create a new 
array of the appropriate size. Pet objects have an id( ) method, which you can see is called 
on one of the objects in the resulting array.  

Exercise 5:   (3) Modify ListFeatures.java so that it uses Integers (remember 
autoboxing!) instead of Pets, and explain any difference in results.  

Exercise 6:   (2) Modify ListFeatures.java so that it uses Strings instead of Pets, and 
explain any difference in results.  

Exercise 7:   (3) Create a class, then make an initialized array of objects of your class. Fill 
a List from your array. Create a subset of your List by using subList( ), then remove this 
subset from your List.  

Iterator  
In any container, you must have a way to insert elements and fetch them out again. After all, 
that’s the primary job of a container—to hold things. In a List, add( ) is one way to insert 
elements, and get( ) is one way to fetch elements.  

If you want to start thinking at a higher level, there’s a drawback: You need to program to the 
exact type of the container in order to use it. This might not seem bad at first, but what if you 
write code for a List, and later on you discover that it would be convenient to apply that 
same code to a Set? Or suppose you’d like to write, from the beginning, a piece of general-
purpose code that doesn’t know or care what type of container it’s working with, so that it can 
be used on different types of containers without rewriting that code?  

The concept of an Iterator (another design pattern) can be used to achieve this abstraction. 
An iterator is an object whose job is to move through a sequence and select each object in 
that sequence without the client programmer knowing or caring about the underlying 
structure of that sequence. In addition, an iterator is usually what’s called a lightweight 
object: one that’s cheap to create. For that reason, you’ll often find seemingly strange 
constraints for iterators; for example, the Java Iterator can move in only one direction. 
There’s not much you can do with an Iterator except:  

1. Ask a Collection to hand you an Iterator using a method called iterator( ). That 
Iterator will be ready to return the first element in the sequence.  
 

2. Get the next object in the sequence with next( ).  
 

3.  See if there are any more objects in the sequence with hasNext( ).  
 

286 Thinking in Java Bruce Eckel 



Holding Your Objects 287 

4.  Remove the last element returned by the iterator with remove( ).  
 

To see how it works, we can again use the Pets tools from the Type Information chapter:  

//: holding/SimpleIteration.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class SimpleIteration { 
  public static void main(String[] args) { 
    List<Pet> pets = Pets.arrayList(12); 
    Iterator<Pet> it = pets.iterator(); 
    while(it.hasNext()) { 
      Pet p = it.next(); 
      System.out.print(p.id() + ":" + p + " "); 
    } 
    System.out.println(); 
    // A simpler approach, when possible: 
    for(Pet p : pets) 
      System.out.print(p.id() + ":" + p + " "); 
    System.out.println();  
    // An Iterator can also remove elements: 
    it = pets.iterator(); 
    for(int i = 0; i < 6; i++) { 
      it.next(); 
      it.remove(); 
    } 
    System.out.println(pets); 
  } 
} /* Output: 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 8:Cymric 9:Rat 
10:EgyptianMau 11:Hamster 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 8:Cymric 9:Rat 
10:EgyptianMau 11:Hamster 
[Pug, Manx, Cymric, Rat, EgyptianMau, Hamster] 
*///:~ 

With an Iterator, you don’t need to worry about the number of elements in the container. 
That’s taken care of for you by hasNext( ) and next( ).  

If you’re simply moving forward through the List and not trying to modify the List object 
itself, you can see that the foreach syntax is more succinct.  

An Iterator will also remove the last element produced by next( ), which means you must 
call next( ) before you call remove( ).4  

This idea of taking a container of objects and passing through it to perform an operation on 
each one is powerful and will be seen throughout this book.  

Now consider the creation of a display( ) method that is container-agnostic:  

//: holding/CrossContainerIteration.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class CrossContainerIteration { 

                                                            
4 remove( ) is a so-called "optional" method (there are other such methods), which means that not all Iterator 
implementations must implement it. This topic is covered in the Containers in Depth chapter. The standard Java library 
containers implement remove( ), however, so you don’t need to worry about it until that chapter. 



  public static void display(Iterator<Pet> it) { 
    while(it.hasNext()) { 
      Pet p = it.next(); 
      System.out.print(p.id() + ":" + p + " "); 
    } 
    System.out.println(); 
  }  
  public static void main(String[] args) { 
    ArrayList<Pet> pets = Pets.arrayList(8); 
    LinkedList<Pet> petsLL = new LinkedList<Pet>(pets); 
    HashSet<Pet> petsHS = new HashSet<Pet>(pets); 
    TreeSet<Pet> petsTS = new TreeSet<Pet>(pets); 
    display(pets.iterator()); 
    display(petsLL.iterator()); 
    display(petsHS.iterator()); 
    display(petsTS.iterator()); 
  } 
} /* Output: 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat 
5:Cymric 2:Cymric 7:Manx 1:Manx 3:Mutt 6:Pug 4:Pug 0:Rat 
*///:~ 

Note that display( ) contains no information about the type of sequence that it is traversing, 
and this shows the true power of the Iterator: the ability to separate the operation of 
traversing a sequence from the underlying structure of that sequence. For this reason, we 
sometimes say that iterators unify access to containers.  

Exercise 8:   (1) Modify Exercise l so it uses an Iterator to move through the List while 
calling hop( ).  

Exercise 9:   (4) Modify innerclasses/Sequence.java so that Sequence works with an 
Iterator instead of a Selector.  

Exercise 10:   (2) Change Exercise 9 in the Polymorphism chapter to use an ArrayList to 
hold the Rodents and an Iterator to move through the sequence of Rodents.  

Exercise 11:   (2) Write a method that uses an Iterator to step through a Collection and 
print the toString( ) of each object in the container. Fill all the different types of 
Collections with objects and apply your method to each container.  

ListIterator  

The ListIterator is a more powerful subtype of Iterator that is produced only by List 
classes. While Iterator can only move forward, ListIterator is bidirectional. It can also 
produce the indexes of the next and previous elements relative to where the iterator is 
pointing in the list, and it can replace the last element that it visited using the set( ) method. 
You can produce a ListIterator that points to the beginning of the List by calling 
listIterator( ), and you can also create a ListIterator that starts out pointing to an index n 
in the list by calling listIterator(n). Here’s an example that demonstrates all these abilities:  

//: holding/ListIteration.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class ListIteration { 
  public static void main(String[] args) { 

288 Thinking in Java Bruce Eckel 



    List<Pet> pets = Pets.arrayList(8); 
    ListIterator<Pet> it = pets.listIterator(); 
    while(it.hasNext()) 
      System.out.print(it.next() + ", " + it.nextIndex() + 
        ", " + it.previousIndex() + "; "); 
    System.out.println(); 
    // Backwards: 
    while(it.hasPrevious()) 
      System.out.print(it.previous().id() + " "); 
    System.out.println(); 
    System.out.println(pets);  
    it = pets.listIterator(3); 
    while(it.hasNext()) { 
      it.next(); 
      it.set(Pets.randomPet()); 
    } 
    System.out.println(pets); 
  } 
} /* Output: 
Rat, 1, 0; Manx, 2, 1; Cymric, 3, 2; Mutt, 4, 3; Pug, 5, 4; Cymric, 6, 
5; Pug, 7, 6; Manx, 8, 7; 
7 6 5 4 3 2 1 0 
[Rat, Manx, Cymric, Mutt, Pug, Cymric, Pug, Manx] 
[Rat, Manx, Cymric, Cymric, Rat, EgyptianMau, Hamster, EgyptianMau] 
*///:~ 

The Pets.randomPet( ) method is used to replace all the Pet objects in the List from 
location 3 onward.  

Exercise 12:   (3) Create and populate a List<Integer>. Create a second List<Integer> 
of the same size as the first, and use ListIterators to read elements from the first List and 
insert them into the second in reverse order. (You may want to explore a number of different 
ways to solve this problem.)  

LinkedList  
The LinkedList also implements the basic List interface like ArrayList does, but it 
performs certain operations (insertion and removal in the middle of the List) more 
efficiently than does ArrayList. Conversely, it is less efficient for random-access operations.  

LinkedList also adds methods that allow it to be used as a stack, a Queue or a double-
ended queue (deque).  

Some of these methods are aliases or slight variations of each other, to produce names that 
are more familiar within the context of a particular usage (Queue, in particular). For 
example, getFirst( ) and element( ) are identical—they return the head (first element) of 
the list without removing it, and throw NoSuchElementException if the List is empty. 
peek( ) is a slight variation of those two that returns null if the list is empty.  

removeFirst( ) and remove( ) are also identical—they remove and return the head of the 
list, and throw NoSuchElementException for an empty list, and poll( ) is a slight 
variation that returns null if this list is empty.  

addFirst( ) inserts an element at the beginning of the list.  

offer( ) is the same as add( ) and addLast( ). They all add an element to the tail (end) of a 
list.  

Holding Your Objects 289 



removeLast( ) removes and returns the last element of the list.  

Here’s an example that shows the basic similarity and differences between these features. It 
doesn’t repeat the behavior that was shown in ListFeatures.java:  

//: holding/LinkedListFeatures.java 
import typeinfo.pets.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class LinkedListFeatures { 
  public static void main(String[] args) { 
    LinkedList<Pet> pets = 
      new LinkedList<Pet>(Pets.arrayList(5)); 
    print(pets); 
    // Identical: 
    print("pets.getFirst(): " + pets.getFirst()); 
    print("pets.element(): " + pets.element()); 
    // Only differs in empty-list behavior: 
    print("pets.peek(): " + pets.peek()); 
    // Identical; remove and return the first element: 
    print("pets.remove(): " + pets.remove()); 
    print("pets.removeFirst(): " + pets.removeFirst()); 
    // Only differs in empty-list behavior: 
    print("pets.poll(): " + pets.poll()); 
    print(pets); 
    pets.addFirst(new Rat()); 
    print("After addFirst(): " + pets); 
    pets.offer(Pets.randomPet()); 
    print("After offer(): " + pets); 
    pets.add(Pets.randomPet()); 
    print("After add(): " + pets); 
    pets.addLast(new Hamster()); 
    print("After addLast(): " + pets); 
    print("pets.removeLast(): " + pets.removeLast()); 
  } 
} /* Output: 
[Rat, Manx, Cymric, Mutt, Pug] 
pets.getFirst(): Rat 
pets.element(): Rat 
pets.peek(): Rat 
pets.remove(): Rat 
pets.removeFirst(): Manx 
pets.poll(): Cymric 
[Mutt, Pug] 
After addFirst(): [Rat, Mutt, Pug] 
After offer(): [Rat, Mutt, Pug, Cymric] 
After add(): [Rat, Mutt, Pug, Cymric, Pug] 
After addLast(): [Rat, Mutt, Pug, Cymric, Pug, Hamster] 
pets.removeLast(): Hamster 
*///:~ 

The result of Pets.arrayList( ) is handed to the LinkedList constructor in order to 
populate it. If you look at the Queue interface, you’ll see the element( ), offer( ), peek( ), 
poll( ) and remove( ) methods that were added to LinkedList in order that it could be a 
Queue implementation. Full examples of Queues will be given later in this chapter.  

Exercise 13:   (3) In the innerclasses/GreenhouseController.java example, the 
class Controller uses an ArrayList. Change the code to use a LinkedList instead, and use 
an Iterator to cycle through the set of events.  

290 Thinking in Java Bruce Eckel 



Exercise 14:   (3) Create an empty LinkedList<Integer>. Using a Listlterator, add 
Integers to the List by always inserting them in the middle of the List.  

Stack  
A stack is sometimes referred to as a "last-in, first-out" (LIFO) container. It’s sometimes 
called a pushdown stack, because whatever you "push" on the stack last is the first item you 
can "pop" off of the stack. An often-used analogy is of cafeteria trays in a spring-loaded 
holder—the last ones that go in are the first ones that come out.  

LinkedList has methods that directly implement stack functionality, so you can also just 
use a LinkedList rather than making a stack class. However, a stack class can sometimes 
tell the story better:  

//: net/mindview/util/Stack.java 
// Making a stack from a LinkedList. 
package net.mindview.util; 
import java.util.LinkedList; 
 
public class Stack<T> { 
  private LinkedList<T> storage = new LinkedList<T>(); 
  public void push(T v) { storage.addFirst(v); } 
  public T peek() { return storage.getFirst(); } 
  public T pop() { return storage.removeFirst(); } 
  public boolean empty() { return storage.isEmpty(); } 
  public String toString() { return storage.toString(); } 
} ///:~ 

This introduces the simplest possible example of a class definition using generics. The <T> 
after the class name tells the compiler that this will be a parameterized type, and that the 
type parameter—the one that will be substituted with a real type when the class is used—is T. 
Basically, this says, "We’re defining a Stack that holds objects of type T." The Stack is 
implemented using a LinkedList, and the LinkedList is also told that it is holding type T. 
Notice that push( ) takes an object of type T, while peek( ) and pop( ) return an object of 
type T. The peek( ) method provides you with the top element without removing it from the 
top of the stack, while pop( ) removes and returns the top element.  

If you want only stack behavior, inheritance is inappropriate here because it would produce a 
class with all the rest of the LinkedList methods (you’ll see in the Containers in Depth 
chapter that this very mistake was made by the Java l.o designers when they created 
java.util.Stack).  

Here’s a simple demonstration of this new Stack class:  

//: holding/StackTest.java 
import net.mindview.util.*; 
 
public class StackTest { 
  public static void main(String[] args) { 
    Stack<String> stack = new Stack<String>(); 
    for(String s : "My dog has fleas".split(" ")) 
      stack.push(s); 
    while(!stack.empty()) 
      System.out.print(stack.pop() + " "); 
  } 
} /* Output: 
fleas has dog My 
*///:~ 

Holding Your Objects 291 



If you want to use this Stack class in your own code, you’ll need to fully specify the package—
or change the name of the class—when you create one; otherwise, you’ll probably collide with 
the Stack in the java.util package. For example, if we import java.util.* into the above 
example, we must use package names in order to prevent collisions:  

//: holding/StackCollision.java 
import net.mindview.util.*; 
 
public class StackCollision { 
  public static void main(String[] args) { 
    net.mindview.util.Stack<String> stack = 
      new net.mindview.util.Stack<String>(); 
    for(String s : "My dog has fleas".split(" ")) 
      stack.push(s); 
    while(!stack.empty()) 
      System.out.print(stack.pop() + " "); 
    System.out.println(); 
    java.util.Stack<String> stack2 = 
      new java.util.Stack<String>(); 
    for(String s : "My dog has fleas".split(" ")) 
      stack2.push(s); 
    while(!stack2.empty()) 
      System.out.print(stack2.pop() + " "); 
  } 
} /* Output: 
fleas has dog My 
fleas has dog My 
*///:~ 

The two Stack classes have the same interface, but there is no common Stack interface in 
java.util—probably because the original, poorly designed java.util.Stack class in Java 1.0 
co-opted the name. Even though java.util.Stack exists, LinkedList produces a better 
Stack and so the net.mindview.util.Stack approach is preferable.  

You can also control the selection of the "preferred" Stack implementation using an explicit 
import:  

import net.mindview.util.Stack;  

Now any reference to Stack will select the net.mindview.util version, and to select 
java.util.Stack you must use full qualification.  

Exercise 15:   (4) Stacks are often used to evaluate expressions in programming languages. 
Using net.mindview.util.Stack, evaluate the following expression, where’+’ means "push 
the following letter onto the stack," and’-’ means "pop the top of the stack and print it": 
"+U+n+c—+e+r+t—+a-+i-+n+t+y—+ -+r+u—+l+e+s—"  

Set  
A Set refuses to hold more than one instance of each object value. If you try to add more than 
one instance of an equivalent object, the Set prevents duplication. The most common use for 
a Set is to test for membership, so that you can easily ask whether an object is in a Set. 
Because of this, lookup is typically the most important operation for a Set, so you’ll usually 
choose a HashSet implementation, which is optimized for rapid lookup.  

Set has the same interface as Collection, so there isn’t any extra functionality like there is 
in the two different types of List. Instead, the Set is exactly a Collection—it just has 
different behavior. (This is the ideal use of inheritance and polymorphism: to express 

292 Thinking in Java Bruce Eckel 



different behavior.) A Set determines membership based on the "value" of an object, a more 
complex topic that you will learn about in the Containers in Depth chapter.  

Here’s an example that uses a HashSet with Integer objects:  

//: holding/SetOfInteger.java 
import java.util.*; 
 
public class SetOfInteger { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    Set<Integer> intset = new HashSet<Integer>(); 
    for(int i = 0; i < 10000; i++) 
      intset.add(rand.nextInt(30)); 
    System.out.println(intset); 
  } 
} /* Output: 
[15, 8, 23, 16, 7, 22, 9, 21, 6, 1, 29, 14, 24, 4, 19, 26, 11, 18, 3, 
12, 27, 17, 2, 13, 28, 20, 25, 10, 5, 0] 
*///:~ 

Ten thousand random numbers from o up to 29 are added to the Set, so you can imagine 
that each value has many duplications. And yet you can see that only one instance of each 
appears in the result.  

You’ll also notice that the output is in no discernible order. This is because a HashSet uses 
hashing for speed—hashing is covered in the Containers in Depth chapter. The order 
maintained by a HashSet is different from a TreeSet or a LinkedHashSet, since each 
implementation has a different way of storing elements. TreeSet keeps elements sorted into 
a red-black tree data structure, whereas HashSet uses the hashing function. 
LinkedHashSet also uses hashing for lookup speed, but appears to maintain elements in 
insertion order using a linked list.  

If you want the results to be sorted, one approach is to use a TreeSet instead of a HashSet:  

//: holding/SortedSetOfInteger.java 
import java.util.*; 
 
public class SortedSetOfInteger { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    SortedSet<Integer> intset = new TreeSet<Integer>(); 
    for(int i = 0; i < 10000; i++) 
      intset.add(rand.nextInt(30)); 
    System.out.println(intset); 
  } 
} /* Output: 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 
*///:~ 

One of the most common operations you will perform is a test for set membership using 
contains( ), but there are also operations that will remind you of the Venn diagrams you 
may have been taught in elementary school:  

//: holding/SetOperations.java 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class SetOperations { 

Holding Your Objects 293 



  public static void main(String[] args) { 
    Set<String> set1 = new HashSet<String>(); 
    Collections.addAll(set1, 
      "A B C D E F G H I J K L".split(" ")); 
    set1.add("M"); 
    print("H: " + set1.contains("H")); 
    print("N: " + set1.contains("N")); 
    Set<String> set2 = new HashSet<String>(); 
    Collections.addAll(set2, "H I J K L".split(" ")); 
    print("set2 in set1: " + set1.containsAll(set2)); 
    set1.remove("H"); 
    print("set1: " + set1); 
    print("set2 in set1: " + set1.containsAll(set2)); 
    set1.removeAll(set2); 
    print("set2 removed from set1: " + set1); 
    Collections.addAll(set1, "X Y Z".split(" ")); 
    print("‘X Y Z’ added to set1: " + set1); 
  } 
} /* Output: 
H: true 
N: false 
set2 in set1: true 
set1: [D, K, C, B, L, G, I, M, A, F, J, E] 
set2 in set1: false 
set2 removed from set1: [D, C, B, G, M, A, F, E] 
‘X Y Z’ added to set1: [Z, D, C, B, G, M, A, F, Y, X, E] 
*///:~ 

The method names are self-explanatory, and there are a few more that you will find in the 
JDK documentation.  

Producing a list of unique elements can be quite useful. For example, suppose you’d like to 
list all the words in the file SetOperations.java, above. Using the 
net.mindview.TextFile utility that will be introduced later in the book, you can open and 
read a file into a Set:  

//: holding/UniqueWords.java 
import java.util.*; 
import net.mindview.util.*; 
 
public class UniqueWords { 
  public static void main(String[] args) { 
    Set<String> words = new TreeSet<String>( 
      new TextFile("SetOperations.java", "\\W+")); 
    System.out.println(words); 
  } 
} /* Output: 
[A, B, C, Collections, D, E, F, G, H, HashSet, I, J, K, L, M, N, Output, 
Print, Set, SetOperations, String, X, Y, Z, add, addAll, added, args, 
class, contains, containsAll, false, from, holding, import, in, java, 
main, mindview, net, new, print, public, remove, removeAll, removed, 
set1, set2, split, static, to, true, util, void] 
*///:~ 

TextFile is inherited from List<String>. The TextFile constructor opens the file and 
breaks it into words according to the regular expression "\\W+", which means "one or more 
letters" (regular expressions are introduced in the Strings chapter). The result is handed to 
the TreeSet constructor, which adds the contents of the List to itself. Since it is a TreeSet, 
the result is sorted. In this case, the sorting is done lexicographically so that the uppercase 
and lowercase letters are in separate groups. If you’d like to sort it alphabetically, you can 

294 Thinking in Java Bruce Eckel 



pass the String.CASE_INSENSITIVE_ORDER Comparator (a comparator is an 
object that establishes order) to the TreeSet constructor:  

//: holding/UniqueWordsAlphabetic.java 
// Producing an alphabetic listing. 
import java.util.*; 
import net.mindview.util.*; 
 
public class UniqueWordsAlphabetic { 
  public static void main(String[] args) { 
    Set<String> words = 
      new TreeSet<String>(String.CASE_INSENSITIVE_ORDER); 
    words.addAll( 
      new TextFile("SetOperations.java", "\\W+")); 
    System.out.println(words); 
  } 
} /* Output: 
[A, add, addAll, added, args, B, C, class, Collections, contains, 
containsAll, D, E, F, false, from, G, H, HashSet, holding, I, import, 
in, J, java, K, L, M, main, mindview, N, net, new, Output, Print, 
public, remove, removeAll, removed, Set, set1, set2, SetOperations, 
split, static, String, to, true, util, void, X, Y, Z] 
*///:~ 

Comparators will be explored in detail in the Arrays chapter.  

Exercise 16:   (5) Create a Set of the vowels. Working from UniqueWords.Java, count 
and display the number of vowels in each input word, and also display the total number of 
vowels in the input file.  

Map  
The ability to map objects to other objects can be an immensely powerful way to solve 
programming problems. For example, consider a program to examine the randomness of 
Java’s Random class. Ideally, Random would produce a perfect distribution of numbers, 
but to test this you need to generate many random numbers and count the ones that fall in 
the various ranges. A Map easily solves the problem; in this case, the key is the number 
produced by Random, and the value is the number of times that number appears:  

//: holding/Statistics.java 
// Simple demonstration of HashMap. 
import java.util.*; 
 
public class Statistics { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    Map<Integer,Integer> m = 
      new HashMap<Integer,Integer>(); 
    for(int i = 0; i < 10000; i++) { 
      // Produce a number between 0 and 20: 
      int r = rand.nextInt(20); 
      Integer freq = m.get(r); 
      m.put(r, freq == null ? 1 : freq + 1); 
    } 
    System.out.println(m); 
  } 
} /* Output: 

Holding Your Objects 295 



{15=497, 4=481, 19=464, 8=468, 11=531, 16=533, 18=478, 3=508, 7=471, 
12=521, 17=509, 2=489, 13=506, 9=549, 6=519, 1=502, 14=477, 10=513, 
5=503, 0=481} 
*///:~ 

In main( ), autoboxing converts the randomly generated int into an Integer reference that 
can be used with the HashMap (you can’t use primitives with containers). The get( ) 
method returns null if the key is not already in the container (which means that this is the 
first time the number has been found). Otherwise, the get( ) method produces the associated 
Integer value for the key, which is incremented (again, autoboxing simplifies the expression 
but there are actually conversions to and from Integer taking place).  

Here’s an example that allows you to use a String description to look up Pet objects. It also 
shows how you can test a Map to see if it contains a key or a value with containsKey( ) and 
containsValue( ):  

//: holding/PetMap.java 
import typeinfo.pets.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class PetMap { 
  public static void main(String[] args) { 
    Map<String,Pet> petMap = new HashMap<String,Pet>(); 
    petMap.put("My Cat", new Cat("Molly")); 
    petMap.put("My Dog", new Dog("Ginger")); 
    petMap.put("My Hamster", new Hamster("Bosco")); 
    print(petMap); 
    Pet dog = petMap.get("My Dog"); 
    print(dog); 
    print(petMap.containsKey("My Dog")); 
    print(petMap.containsValue(dog)); 
  } 
} /* Output: 
{My Cat=Cat Molly, My Hamster=Hamster Bosco, My Dog=Dog Ginger} 
Dog Ginger 
true 
true 
*///:~ 

Maps, like arrays and Collections, can easily be expanded to multiple dimensions; you 
simply make a Map whose values are Maps (and the values of those Maps can be other 
containers, even other Maps). Thus, it’s quite easy to combine containers to quickly produce 
powerful data structures. For example, suppose you are keeping track of people who have 
multiple pets—all you need is a Map<Person, List<Pet>>:  

//: holding/MapOfList.java 
package holding; 
import typeinfo.pets.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class MapOfList { 
  public static Map<Person, List<? extends Pet>> 
    petPeople = new HashMap<Person, List<? extends Pet>>(); 
  static { 
    petPeople.put(new Person("Dawn"), 
      Arrays.asList(new Cymric("Molly"),new Mutt("Spot"))); 
    petPeople.put(new Person("Kate"), 
      Arrays.asList(new Cat("Shackleton"), 
        new Cat("Elsie May"), new Dog("Margrett"))); 

296 Thinking in Java Bruce Eckel 



    petPeople.put(new Person("Marilyn"), 
      Arrays.asList( 
       new Pug("Louie aka Louis Snorkelstein Dupree"), 
       new Cat("Stanford aka Stinky el Negro"), 
       new Cat("Pinkola")));  
    petPeople.put(new Person("Luke"), 
      Arrays.asList(new Rat("Fuzzy"), new Rat("Fizzy"))); 
    petPeople.put(new Person("Isaac"), 
      Arrays.asList(new Rat("Freckly"))); 
  } 
  public static void main(String[] args) { 
    print("People: " + petPeople.keySet()); 
    print("Pets: " + petPeople.values()); 
    for(Person person : petPeople.keySet()) { 
      print(person + " has:"); 
      for(Pet pet : petPeople.get(person)) 
        print("    " + pet); 
    } 
  } 
} /* Output:  
People: [Person Luke, Person Marilyn, Person Isaac, Person Dawn, Person 
Kate] 
Pets: [[Rat Fuzzy, Rat Fizzy], [Pug Louie aka Louis Snorkelstein Dupree, 
Cat Stanford aka Stinky el Negro, Cat Pinkola], [Rat Freckly], [Cymric 
Molly, Mutt Spot], [Cat Shackleton, Cat Elsie May, Dog Margrett]] 
Person Luke has: 
    Rat Fuzzy 
    Rat Fizzy 
Person Marilyn has: 
    Pug Louie aka Louis Snorkelstein Dupree 
    Cat Stanford aka Stinky el Negro 
    Cat Pinkola 
Person Isaac has: 
    Rat Freckly 
Person Dawn has: 
    Cymric Molly 
    Mutt Spot 
Person Kate has: 
    Cat Shackleton 
    Cat Elsie May 
    Dog Margrett 
*///:~ 

A Map can return a Set of its keys, a Collection of its values, or a Set of its pairs. The 
keySet( ) method produces a Set of all the keys in petPeople, which is used in the foreach 
statement to iterate through the Map.  

Exercise 17:   (2) Take the Gerbil class in Exercise 1 and put it into a Map instead, 
associating each Gerbil’s name (e.g. "Fuzzy" or "Spot") as a String (the key) for each 
Gerbil (the value) you put in the table. Get an Iterator for the keySet( ) and use it to move 
through the Map, looking up the Gerbil for each key and printing out the key and telling the 
Gerbil to hop( ).  

Exercise 18:   (3) Fill a HashMap with key-value pairs. Print the results to show 
ordering by hash code. Extract the pairs, sort by key, and place the result into a 
LinkedHashMap. Show that the insertion order is maintained.  

Exercise 19:   (2) Repeat the previous exercise with a HashSet and LinkedHashSet.  

Holding Your Objects 297 



Exercise 20:   (3) Modify Exercise 16 so that you keep a count of the occurrence of each 
vowel.  

Exercise 21:   (3) Using a Map<String,Integer>, follow the form of 
UniqueWords.java to create a program that counts the occurrence of words in a file. Sort 
the results using Collections.sort( ) with a second argument of 
String.CASE_INSENSITIVE_ORDER (to produce an alphabetic sort), and display the 
result.  

Exercise 22:   (5) Modify the previous exercise so that it uses a class containing a String 
and a count field to store each different word, and a Set of these objects to maintain the list 
of words.  

Exercise 23:   (4) Starting with Statistics.java, create a program that runs the test 
repeatedly and looks to see if any one number tends to appear more than the others in the 
results.  

Exercise 24:   (2) Fill a LinkedHashMap with String keys and objects of your choice. 
Now extract the pairs, sort them based on the keys, and reinsert them into the Map.  

Exercise 25:   (3) Create a Map<String,ArrayList<Integer>>. Use 
net.mindview.TextFile to open a text file and read it in a word at a time (use "\\W+" as 
the second argument to the TextFile constructor). Count the words as you read them in, and 
for each word in the file, record in the ArrayList<Integer> the word count associated with 
that word—this is, in effect, the location in the file where that word was found.  

Exercise 26:   (4) Take the resulting Map from the previous exercise and re-create the 
order of the words as they appeared in the original file.  

Queue  
A queue is typically a “first-in, first-out" (FIFO) container. That is, you put things in at one 
end and pull them out at the other, and the order in which you put them in will be the same 
order in which they come out. Queues are commonly used as a way to reliably transfer 
objects from one area of a program to another. Queues are especially important in concurrent 
programming, as you will see in the Concurrency chapter, because they safely transfer 
objects from one task to another.  

LinkedList has methods to support queue behavior and it implements the Queue interface, 
so a LinkedList can be used as a Queue implementation. By upcasting a LinkedList to a 
Queue, this example uses the Queuespecific methods in the Queue interface:  

//: holding/QueueDemo.java 
// Upcasting to a Queue from a LinkedList. 
import java.util.*; 
 
public class QueueDemo { 
  public static void printQ(Queue queue) { 
    while(queue.peek() != null) 
      System.out.print(queue.remove() + " "); 
    System.out.println(); 
  } 
  public static void main(String[] args) { 
    Queue<Integer> queue = new LinkedList<Integer>(); 
    Random rand = new Random(47); 
    for(int i = 0; i < 10; i++) 

298 Thinking in Java Bruce Eckel 



Holding Your Objects 299 

      queue.offer(rand.nextInt(i + 10)); 
    printQ(queue); 
    Queue<Character> qc = new LinkedList<Character>(); 
    for(char c : "Brontosaurus".toCharArray()) 
      qc.offer(c); 
    printQ(qc); 
  } 
} /* Output: 
8 1 1 1 5 14 3 1 0 1 
B r o n t o s a u r u s 
*///:~ 

offer( ) is one of the Queue-specific methods; it inserts an element at the tail of the queue if 
it can, or returns false. Both peek( ) and element( ) return the head of the queue without 
removing it, but peek( ) returns null if the queue is empty and element( ) throws 
NoSuchElementException. Both poll( ) and remove( ) remove and return the head of 
the queue, but poll( ) returns null if the queue is empty, while remove( ) throws 
NoSuchElementException.  

Autoboxing automatically converts the int result of nextInt( ) into the Integer object 
required by queue, and the char c into the Character object required by qc. The Queue 
interface narrows access to the methods of LinkedList so that only the appropriate methods 
are available, and you are thus less tempted to use LinkedList methods (here, you could 
actually cast queue back to a LinkedList, but you are at least discouraged from doing so).  

Notice that the Queue-specific methods provide complete and standalone functionality. That 
is, you can have a usable Queue without any of the methods that are in Collection, from 
which it is inherited.  

Exercise 27:   (2) Write a class called Command that contains a String and has a 
method operation( ) that displays the String. Write a second class with a method that fills 
a Queue with Command objects and returns it. Pass the filled Queue to a method in a 
third class that consumes the objects in the Queue and calls their operation( ) methods.  

PriorityQueue  

First-in, first-out (FIFO) describes the most typical queuing discipline. A queuing discipline 
is what decides, given a group of elements in the queue, which one goes next. First-in, first-
out says that the next element should be the one that was waiting the longest.  

Apriority queue says that the element that goes next is the one with the greatest need (the 
highest priority). For example, in an airport, a customer might be pulled out of a queue if 
their plane is about to leave. If you build a messaging system, some messages will be more 
important than others, and should be dealt with sooner, regardless of when they arrive. The 
PriorityQueue was added in Java SE5 to provide an automatic implementation for this 
behavior.  

When you offer( ) an object onto a PriorityQueue, that object is sorted into the queue.5 
The default sorting uses the natural order of the objects in the queue, but you can modify the 
order by providing your own Comparator. The PriorityQueue ensures that when you call 
peek( ), poll( ) or remove( ), the element you get will be the one with the highest priority.  

                                                            
5 This actually depends on the implementation. Priority queue algorithms typically sort on insertion (maintaining a heap), 
but they may also perform the selection of the most important element upon removal. The choice of algorithm could be 
important if object priority can change while it is waiting in the queue. 



It’s trivial to make a PriorityQueue that works with built-in types like Integer, String or 
Character. In the following example, the first set of values are the identical random values 
from the previous example, so you can see that they emerge differently from the 
PriorityQueue:  

//: holding/PriorityQueueDemo.java 
import java.util.*; 
 
public class PriorityQueueDemo { 
  public static void main(String[] args) { 
    PriorityQueue<Integer> priorityQueue = 
      new PriorityQueue<Integer>(); 
    Random rand = new Random(47); 
    for(int i = 0; i < 10; i++) 
      priorityQueue.offer(rand.nextInt(i + 10)); 
    QueueDemo.printQ(priorityQueue); 
 
    List<Integer> ints = Arrays.asList(25, 22, 20, 
      18, 14, 9, 3, 1, 1, 2, 3, 9, 14, 18, 21, 23, 25); 
    priorityQueue = new PriorityQueue<Integer>(ints); 
    QueueDemo.printQ(priorityQueue); 
    priorityQueue = new PriorityQueue<Integer>( 
        ints.size(), Collections.reverseOrder()); 
    priorityQueue.addAll(ints); 
    QueueDemo.printQ(priorityQueue); 
 
    String fact = "EDUCATION SHOULD ESCHEW OBFUSCATION"; 
    List<String> strings = Arrays.asList(fact.split("")); 
    PriorityQueue<String> stringPQ = 
      new PriorityQueue<String>(strings); 
    QueueDemo.printQ(stringPQ); 
    stringPQ = new PriorityQueue<String>( 
      strings.size(), Collections.reverseOrder()); 
    stringPQ.addAll(strings); 
    QueueDemo.printQ(stringPQ); 
 
    Set<Character> charSet = new HashSet<Character>(); 
    for(char c : fact.toCharArray()) 
      charSet.add(c); // Autoboxing 
    PriorityQueue<Character> characterPQ = 
      new PriorityQueue<Character>(charSet); 
    QueueDemo.printQ(characterPQ); 
  } 
} /* Output: 
0 1 1 1 1 1 3 5 8 14 
1 1 2 3 3 9 9 14 14 18 18 20 21 22 23 25 25 
25 25 23 22 21 20 18 18 14 14 9 9 3 3 2 1 1 
       A A B C C C D D E E E F H H I I L N N O O O O S S S T T U U U W 
W U U U T T S S S O O O O N N L I I H H F E E E D D C C C B A A 
  A B C D E F H I L N O S T U W 
*///:~ 

You can see that duplicates are allowed, and the lowest values have the highest priority (in 
the case of String, spaces also count as values and are higher in priority than letters). To 
show how you can change the ordering by providing your own Comparator object, the third 
constructor call to PriorityQueue<Integer> and the second call to 
PriorityQueue<String> use the reverse-order Comparator produced by 
Collections.reverseOrder( ) (added in Java SE5).  

The last section adds a HashSet to eliminate duplicate Characters, just to make things a 
little more interesting.  

300 Thinking in Java Bruce Eckel 



Holding Your Objects 301 

Integer, String and Character work with PriorityQueue because these classes already 
have natural ordering built in. If you want you use your own class in a PriorityQueue, you 
must include additional functionality to produce natural ordering, or provide your own 
Comparator. There’s a more sophisticated example that demonstrates this in the 
Containers in Depth chapter.  

Exercise 28:   (2) Fill a PriorityQueue (using offer( )) with Double values created 
using java.util.Random, then remove the elements using poll( ) and display them.  

Exercise 29:   (2) Create a simple class that inherits from Object and contains no 
members, and show that you cannot successfully add multiple elements of that class to a 
PriorityQueue. This issue will be fully explained in the Containers in Depth chapter.  

Collection vs. Iterator  
Collection is the root interface that describes what is common for all sequence containers. 
It might be thought of as an "incidental interface," one that appeared because of 
commonality between other interfaces. In addition, the java.utiLAbstractCollection class 
provides a default implementation for a Collection, so that you can create a new subtype of 
AbstractCollection without unnecessary code duplication.  

One argument for having an interface is that it allows you to create more generic code. By 
writing to an interface rather than an implementation, your code can be applied to more 
types of objects.6

 So if I write a method that takes a Collection, that method can be applied 
to any type that implements Collection—and this allows a new class to choose to implement 
Collection in order to be used with my method. It’s interesting to note, however, that the 
Standard C++ Library has no common base class for its containers—all commonality 
between containers is achieved through iterators. In Java, it might seem sensible to follow 
the C++ approach, and to express commonality between containers using an iterator rather 
than a Collection. However, the two approaches are bound together, since implementing 
Collection also means providing an iterator( ) method:  

//: holding/InterfaceVsIterator.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class InterfaceVsIterator { 
  public static void display(Iterator<Pet> it) { 
    while(it.hasNext()) { 
      Pet p = it.next(); 
      System.out.print(p.id() + ":" + p + " "); 
    } 
    System.out.println(); 
  } 
  public static void display(Collection<Pet> pets) { 
    for(Pet p : pets) 
      System.out.print(p.id() + ":" + p + " "); 
    System.out.println(); 
  }  
  public static void main(String[] args) { 
    List<Pet> petList = Pets.arrayList(8); 
    Set<Pet> petSet = new HashSet<Pet>(petList); 
    Map<String,Pet> petMap = 
      new LinkedHashMap<String,Pet>(); 

                                                            
6 Some people advocate the automatic creation of an interface for every possible combination of methods in a class—
sometimes for every single class. I believe that an interface should have more meaning than a mechanical duplication of 
method combinations, so I tend to wait until I see the value added by an interface before creating one. 



    String[] names = ("Ralph, Eric, Robin, Lacey, " + 
      "Britney, Sam, Spot, Fluffy").split(", "); 
    for(int i = 0; i < names.length; i++) 
      petMap.put(names[i], petList.get(i)); 
    display(petList); 
    display(petSet); 
    display(petList.iterator()); 
    display(petSet.iterator()); 
    System.out.println(petMap); 
    System.out.println(petMap.keySet()); 
    display(petMap.values()); 
    display(petMap.values().iterator()); 
  }  
} /* Output: 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
4:Pug 6:Pug 3:Mutt 1:Manx 5:Cymric 7:Manx 2:Cymric 0:Rat 
{Ralph=Rat, Eric=Manx, Robin=Cymric, Lacey=Mutt, Britney=Pug, 
Sam=Cymric, Spot=Pug, Fluffy=Manx} 
[Ralph, Eric, Robin, Lacey, Britney, Sam, Spot, Fluffy] 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
*///:~ 

Both versions of display( ) work with Map objects as well as with subtypes of Collection, 
and both the Collection interface and the Iterator decouple the display( ) methods from 
knowing about the particular implementation of the underlying container.  

In this case the two approaches come up even. In fact, Collection pulls ahead a bit because 
it is Iterable, and so in the implementation of display(Collection) the foreach construct 
can be used, which makes the code a little cleaner.  

The use of Iterator becomes compelling when you implement a foreign class, one that is not 
a Collection, in which it would be difficult or annoying to make it implement the 
Collection interface. For example, if we create a Collection implementation by inheriting 
from a class that holds Pet objects, we must implement all the Collection methods, even if 
we don’t need to use them within the display( ) method. Although this can easily be 
accomplished by inheriting from AbstractCollection, you’re forced to implement 
iterator( ) anyway, along with size( ), in order to provide the methods that are not 
implemented by AbstractCollection, but that are used by the other methods in 
AbstractCollection:  

//: holding/CollectionSequence.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class CollectionSequence 
extends AbstractCollection<Pet> { 
  private Pet[] pets = Pets.createArray(8); 
  public int size() { return pets.length; } 
  public Iterator<Pet> iterator() { 
    return new Iterator<Pet>() { 
      private int index = 0; 
      public boolean hasNext() { 
        return index < pets.length; 
      } 
      public Pet next() { return pets[index++]; } 
      public void remove() { // Not implemented 
        throw new UnsupportedOperationException(); 
      } 

302 Thinking in Java Bruce Eckel 



    }; 
  }  
  public static void main(String[] args) { 
    CollectionSequence c = new CollectionSequence(); 
    InterfaceVsIterator.display(c); 
    InterfaceVsIterator.display(c.iterator()); 
  } 
} /* Output: 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
*///:~ 

The remove( ) method is an "optional operation," which you will learn about in the 
Containers in Depth chapter. Here, it’s not necessary to implement it, and if you call it, it will 
throw an exception.  

From this example, you can see that if you implement Collection, you also implement 
iterator( ), and just implementing iterator( ) alone requires only slightly less effort than 
inheriting from AbstractCoUection. However, if your class already inherits from another 
class, then you cannot also inherit from AbstractCollection. In that case, to implement 
Collection you’d have to implement all the methods in the interface. In this case it would be 
much easier to inherit and add the ability to create an iterator:  

//: holding/NonCollectionSequence.java 
import typeinfo.pets.*; 
import java.util.*; 
 
class PetSequence { 
  protected Pet[] pets = Pets.createArray(8); 
} 
 
public class NonCollectionSequence extends PetSequence { 
  public Iterator<Pet> iterator() { 
    return new Iterator<Pet>() { 
      private int index = 0; 
      public boolean hasNext() { 
        return index < pets.length; 
      } 
      public Pet next() { return pets[index++]; } 
      public void remove() { // Not implemented 
        throw new UnsupportedOperationException(); 
      } 
    }; 
  } 
  public static void main(String[] args) { 
    NonCollectionSequence nc = new NonCollectionSequence(); 
    InterfaceVsIterator.display(nc.iterator()); 
  } 
} /* Output: 
0:Rat 1:Manx 2:Cymric 3:Mutt 4:Pug 5:Cymric 6:Pug 7:Manx 
*///:~ 

Producing an Iterator is the least-coupled way of connecting a sequence to a method that 
consumes that sequence, and puts far fewer constraints on the sequence class than does 
implementing Collection.  

Exercise 30:   (5) Modify CollectionSequence.java so that it does not inherit from 
AbstractCollection, but instead implements Collection.  

Holding Your Objects 303 



Foreach and iterators  
So far, the foreach syntax has been primarily used with arrays, but it also works with any 
Collection object. You’ve actually seen a few examples of this using ArrayList, but here’s a 
general proof:  

//: holding/ForEachCollections.java 
// All collections work with foreach. 
import java.util.*; 
 
public class ForEachCollections { 
  public static void main(String[] args) { 
    Collection<String> cs = new LinkedList<String>(); 
    Collections.addAll(cs, 
      "Take the long way home".split(" ")); 
    for(String s : cs) 
      System.out.print("‘" + s + "‘ "); 
  } 
} /* Output: 
‘Take’ ‘the’ ‘long’ ‘way’ ‘home’ 
*///:~ 

Since cs is a Collection, this code shows that working with foreach is a characteristic of all 
Collection objects.  

The reason that this works is that Java SE5 introduced a new interface called Iterable which 
contains an iterator( ) method to produce an Iterator, and the Iterable interface is what 
foreach uses to move through a sequence. So if you create any class that implements 
Iterable, you can use it in a foreach statement:  

//: holding/IterableClass.java 
// Anything Iterable works with foreach. 
import java.util.*; 
 
public class IterableClass implements Iterable<String> { 
  protected String[] words = ("And that is how " + 
    "we know the Earth to be banana-shaped.").split(" "); 
  public Iterator<String> iterator() { 
    return new Iterator<String>() { 
      private int index = 0; 
      public boolean hasNext() { 
        return index < words.length; 
      } 
      public String next() { return words[index++]; } 
      public void remove() { // Not implemented 
        throw new UnsupportedOperationException(); 
      } 
    }; 
  }  
  public static void main(String[] args) { 
    for(String s : new IterableClass()) 
      System.out.print(s + " "); 
  } 
} /* Output: 
And that is how we know the Earth to be banana-shaped. 
*///:~ 

304 Thinking in Java Bruce Eckel 



Holding Your Objects 305 

The iterator( ) method returns an instance of an anonymous inner implementation of 
Iterator<String> which delivers each word in the array. In main( ), you can see that 
IterableClass does indeed work in a foreach statement.  

In Java SE5, a number of classes have been made Iterable, primarily all Collection classes 
(but not Maps). For example, this code displays all the operating system environment 
variables:  

//: holding/EnvironmentVariables.java 
import java.util.*; 
 
public class EnvironmentVariables { 
  public static void main(String[] args) { 
    for(Map.Entry entry: System.getenv().entrySet()) { 
      System.out.println(entry.getKey() + ": " + 
        entry.getValue()); 
    } 
  } 
} /* (Execute to see output) *///:~ 

System.getenv( )7 returns a Map, entrySet( ) produces a Set of Map.Entry elements, 
and a Set is Iterable so it can be used in a foreach loop.  

A foreach statement works with an array or anything Iterable, but that doesn’t mean that an 
array is automatically an Iterable, nor is there any autoboxing that takes place:  

//: holding/ArrayIsNotIterable.java 
import java.util.*; 
 
public class ArrayIsNotIterable { 
  static <T> void test(Iterable<T> ib) { 
    for(T t : ib) 
      System.out.print(t + " "); 
  } 
  public static void main(String[] args) { 
    test(Arrays.asList(1, 2, 3)); 
    String[] strings = { "A", "B", "C" }; 
    // An array works in foreach, but it’s not Iterable: 
    //! test(strings); 
    // You must explicitly convert it to an Iterable: 
    test(Arrays.asList(strings)); 
  } 
} /* Output: 
1 2 3 A B C 
*///:~ 

Trying to pass an array as an Iterable argument fails. There is no automatic conversion to 
an Iterable; you must do it by hand.  

Exercise 31:   (3) Modify polymorphism/shape/RandomShapeGenerator.java to 
make it Iterable. You’ll need to add a constructor that takes the number of elements that 
you want the iterator to produce before stopping. Verify that it works.  

 

                                                            
7 This was not available before Java SE5, because it was thought to be too tightly coupled to the operating system, and 
thus to violate "write once, run anywhere." The fact that it is included now suggests that the Java designers are becoming 
more pragmatic. 



The Adapter Method idiom  

What if you have an existing class that is Iterable, and you’d like to add one or more new 
ways to use this class in a foreach statement? For example, suppose you’d like to choose 
whether to iterate through a list of words in either a forward or reverse direction. If you 
simply inherit from the class and override the iterator( ) method, you replace the existing 
method and you don’t get a choice.  

One solution is what I call the Adapter Method idiom. The "Adapter" part comes from design 
patterns, because you must provide a particular interface to satisfy the foreach statement. 
When you have one interface and you need another one, writing an adapter solves the 
problem. Here, I want to add the ability to produce a reverse iterator to the default forward 
iterator, so I can’t override. Instead, I add a method that produces an Iterable object which 
can then be used in the foreach statement. As you see here, this allows us to provide multiple 
ways to use foreach:  

//: holding/AdapterMethodIdiom.java 
// The "Adapter Method" idiom allows you to use foreach 
// with additional kinds of Iterables. 
import java.util.*; 
 
class ReversibleArrayList<T> extends ArrayList<T> { 
  public ReversibleArrayList(Collection<T> c) { super(c); } 
  public Iterable<T> reversed() { 
    return new Iterable<T>() { 
      public Iterator<T> iterator() { 
        return new Iterator<T>() { 
          int current = size() - 1; 
          public boolean hasNext() { return current > -1; } 
          public T next() { return get(current--); } 
          public void remove() { // Not implemented 
            throw new UnsupportedOperationException(); 
          } 
        }; 
      } 
    }; 
  } 
}  
 
public class AdapterMethodIdiom { 
  public static void main(String[] args) { 
    ReversibleArrayList<String> ral = 
      new ReversibleArrayList<String>( 
        Arrays.asList("To be or not to be".split(" "))); 
    // Grabs the ordinary iterator via iterator(): 
    for(String s : ral) 
      System.out.print(s + " "); 
    System.out.println(); 
    // Hand it the Iterable of your choice 
    for(String s : ral.reversed()) 
      System.out.print(s + " "); 
  } 
} /* Output: 
To be or not to be 
be to not or be To 
*///:~ 

If you simply put the ral object in the foreach statement, you get the (default) forward 
iterator. But if you call reversed( ) on the object, it produces different behavior.  

306 Thinking in Java Bruce Eckel 



Using this approach, I can add two adapter methods to the IterableClass.java example:  

//: holding/MultiIterableClass.java 
// Adding several Adapter Methods. 
import java.util.*; 
 
public class MultiIterableClass extends IterableClass { 
  public Iterable<String> reversed() { 
    return new Iterable<String>() { 
      public Iterator<String> iterator() { 
        return new Iterator<String>() { 
          int current = words.length - 1; 
          public boolean hasNext() { return current > -1; } 
          public String next() { return words[current--]; } 
          public void remove() { // Not implemented 
            throw new UnsupportedOperationException(); 
          } 
        }; 
      } 
    }; 
  }  
  public Iterable<String> randomized() { 
    return new Iterable<String>() { 
      public Iterator<String> iterator() { 
        List<String> shuffled = 
          new ArrayList<String>(Arrays.asList(words)); 
        Collections.shuffle(shuffled, new Random(47)); 
        return shuffled.iterator(); 
      } 
    }; 
  }  
  public static void main(String[] args) { 
    MultiIterableClass mic = new MultiIterableClass(); 
    for(String s : mic.reversed()) 
      System.out.print(s + " "); 
    System.out.println(); 
    for(String s : mic.randomized()) 
      System.out.print(s + " "); 
    System.out.println(); 
    for(String s : mic) 
      System.out.print(s + " "); 
  } 
} /* Output: 
banana-shaped. be to Earth the know we how is that And 
is banana-shaped. Earth that how the be And we know to 
And that is how we know the Earth to be banana-shaped. 
*///:~ 

Notice that the second method, random( ), doesn’t create its own Iterator but simply 
returns the one from the shuffled List.  

You can see from the output that the Collections.shuffle( ) method doesn’t affect the 
original array, but only shuffles the references in shuffled. This is only true because the 
randomized( ) method wraps an ArrayList around the result of Arrays.asList( ). If the 
List produced by Arrays.asList( ) is shuffled directly, it will modify the underlying array, as 
you can see here:  

//: holding/ModifyingArraysAsList.java 
import java.util.*; 
 
public class ModifyingArraysAsList { 
  public static void main(String[] args) { 

Holding Your Objects 307 



    Random rand = new Random(47); 
    Integer[] ia = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; 
    List<Integer> list1 = 
      new ArrayList<Integer>(Arrays.asList(ia)); 
    System.out.println("Before shuffling: " + list1); 
    Collections.shuffle(list1, rand); 
    System.out.println("After shuffling: " + list1); 
    System.out.println("array: " + Arrays.toString(ia)); 
 
    List<Integer> list2 = Arrays.asList(ia); 
    System.out.println("Before shuffling: " + list2); 
    Collections.shuffle(list2, rand); 
    System.out.println("After shuffling: " + list2); 
    System.out.println("array: " + Arrays.toString(ia)); 
  } 
} /* Output: 
Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
After shuffling: [4, 6, 3, 1, 8, 7, 2, 5, 10, 9] 
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
Before shuffling: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
After shuffling: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8] 
array: [9, 1, 6, 3, 7, 2, 5, 10, 4, 8] 
*///:~ 

In the first case, the output of Arrays.asList( ) is handed to the ArrayList( ) constructor, 
and this creates an ArrayList that references the elements of ia. Shuffling these references 
doesn’t modify the array. However, if you use the result of Arrays.asList(ia) directly, 
shuffling modifies the order of ia. It’s important to be aware that Arrays.asList( ) produces 
a List object that uses the underlying array as its physical implementation. If you do 
anything to that List that modifies it, and you don’t want the original array modified, you 
should make a copy into another container.  

Exercise 32:   (2) Following the example of MultilterableClass, add reversed( ) and 
randomized( ) methods to NonCollectionSequence.java, as well as making 
NonCollectionSequence implement Iterable, and show that all the approaches work in 
foreach statements.  

Summary  
Java provides a number of ways to hold objects:  

1. An array associates numerical indexes to objects. It holds objects of a known type so 
that you don’t have to cast the result when you’re looking up an object. It can be 
multidimensional, and it can hold primitives. However, its size cannot be changed 
once you create it.  
 

2. A Collection holds single elements, and a Map holds associated pairs. With Java 
generics, you specify the type of object to be held in the containers, so you can’t put 
the wrong type into a container and you don’t have to cast elements when you fetch 
them out of a container. Both Collections and Maps automatically resize themselves 
as you add more elements. A container won’t hold primitives, but autoboxing takes 
care of translating primitives back and forth to the wrapper types held in the 
container.  

 
3. Like an array, a List also associates numerical indexes to objects— thus, arrays and 

Lists are ordered containers.  
 

308 Thinking in Java Bruce Eckel 



4. Use an ArrayList if you’re doing a lot of random accesses, but a LinkedList if you 
will be doing a lot of insertions and removals in the middle of the list.  

 
5. The behavior of Queues and stacks is provided via the LinkedList.  

 
6. A Map is a way to associate not integral values, but objects with other objects. 

HashMaps are designed for rapid access, whereas a TreeMap keeps its keys in 
sorted order, and thus is not as fast as a HashMap. A LinkedHashMap keeps its 
elements in insertion order, but provides rapid access with hashing.  

 
7. A Set only accepts one of each type of object. HashSets provide maximally fast 

lookups, whereas TreeSets keep the elements in sorted order. LinkedHashSets 
keep elements in insertion order.  

 
8. There’s no need to use the legacy classes Vector, Hashtable, and Stack in new 

code.  
 

It’s helpful to look at a simplified diagram of the Java containers (without the abstract classes 
or legacy components). This only includes the interfaces and classes that you will encounter 
on a regular basis.  

 

Simple Container Taxonomy 

You’ll see that there are really only four basic container components—Map, List, Set, and 
Queue—and only two or three implementations of each one (the java.util.concurrent 
implementations of Queue are not included in this diagram). The containers that you will 
use most often have heavy black lines around them.  

The dotted boxes represent interfaces, and the solid boxes are regular (concrete) classes. 
The dotted lines with hollow arrows indicate that a particular class is implementing an 
interface. The solid arrows show that a class can produce objects of the class the arrow is 
pointing to. For example, any Collection can produce an Iterator, and a List can produce 
a ListIterator (as well as an ordinary Iterator, since List is inherited from Collection).  

Here’s an example that shows the difference in methods between the various classes. The 
actual code is from the Generics chapter; I’m just calling it here to produce the output. The 
output also shows the interfaces that are implemented in each class or interface:  

//: holding/ContainerMethods.java 
import net.mindview.util.*; 

Holding Your Objects 309 



 
public class ContainerMethods { 
  public static void main(String[] args) { 
    ContainerMethodDifferences.main(args); 
  } 
} /* Output: (Sample) 
Collection: [add, addAll, clear, contains, containsAll, equals, 
hashCode, isEmpty, iterator, remove, removeAll, retainAll, size, 
toArray] 
Interfaces in Collection: [Iterable] 
Set extends Collection, adds: [] 
Interfaces in Set: [Collection] 
HashSet extends Set, adds: [] 
Interfaces in HashSet: [Set, Cloneable, Serializable] 
LinkedHashSet extends HashSet, adds: [] 
Interfaces in LinkedHashSet: [Set, Cloneable, Serializable] 
TreeSet extends Set, adds: [pollLast, navigableHeadSet, 
descendingIterator, lower, headSet, ceiling, pollFirst, subSet, 
navigableTailSet, comparator, first, floor, last, navigableSubSet, 
higher, tailSet] 
Interfaces in TreeSet: [NavigableSet, Cloneable, Serializable] 
List extends Collection, adds: [listIterator, indexOf, get, subList, 
set, lastIndexOf] 
Interfaces in List: [Collection] 
ArrayList extends List, adds: [ensureCapacity, trimToSize] 
Interfaces in ArrayList: [List, RandomAccess, Cloneable, Serializable] 
LinkedList extends List, adds: [pollLast, offer, descendingIterator, 
addFirst, peekLast, removeFirst, peekFirst, removeLast, getLast, 
pollFirst, pop, poll, addLast, removeFirstOccurrence, getFirst, element, 
peek, offerLast, push, offerFirst, removeLastOccurrence] 
Interfaces in LinkedList: [List, Deque, Cloneable, Serializable] 
Queue extends Collection, adds: [offer, element, peek, poll] 
Interfaces in Queue: [Collection] 
PriorityQueue extends Queue, adds: [comparator] 
Interfaces in PriorityQueue: [Serializable] 
Map: [clear, containsKey, containsValue, entrySet, equals, get, 
hashCode, isEmpty, keySet, put, putAll, remove, size, values] 
HashMap extends Map, adds: [] 
Interfaces in HashMap: [Map, Cloneable, Serializable] 
LinkedHashMap extends HashMap, adds: [] 
Interfaces in LinkedHashMap: [Map] 
SortedMap extends Map, adds: [subMap, comparator, firstKey, lastKey, 
headMap, tailMap] 
Interfaces in SortedMap: [Map] 
TreeMap extends Map, adds: [descendingEntrySet, subMap, pollLastEntry, 
lastKey, floorEntry, lastEntry, lowerKey, navigableHeadMap, 
navigableTailMap, descendingKeySet, tailMap, ceilingEntry, higherKey, 
pollFirstEntry, comparator, firstKey, floorKey, higherEntry, firstEntry, 
navigableSubMap, headMap, lowerEntry, ceilingKey] 
Interfaces in TreeMap: [NavigableMap, Cloneable, Serializable] 
*///:~ 

You can see that all Sets except TreeSet have exactly the same interface as Collection. List 
and Collection differ significantly, although List requires methods that are in Collection. 
On the other hand, the methods in the Queue interface stand alone; the Collection 
methods are not required to create a functioning Queue implementation. Finally, the only 
intersection between Map and Collection is the fact that a Map can produce Collections 
using the entrySet( ) and values( ) methods.  

Notice the tagging interface java.util.RandomAccess, which is attached to ArrayList but 
not to LinkedList. This provides information for algorithms that might want to dynamically 
change their behavior depending on the use of a particular List.  

310 Thinking in Java Bruce Eckel 



Holding Your Objects 311 

It’s true that this organization is somewhat odd, as object-oriented hierarchies go. However, 
as you learn more about the containers in java.util (in particular, in the Containers in Depth 
chapter), you’ll see that there are more issues than just a slightly odd inheritance structure. 
Container libraries have always been difficult design problems—solving these problems 
involves satisfying a set of forces that often oppose each other. So you should be prepared for 
some compromises here and there. Despite these issues, the Java containers are fundamental 
tools that you can use on a day-to-day basis to make your programs simpler, more powerful, 
and more effective. It might take you a little while to get comfortable with some aspects of the 
library, but I think you’ll find yourself rapidly acquiring and using the classes in this library.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated 
Solution Guide, available for sale from www.MindView.net.   





Error Handling 
 with Exceptions 

The basic philosophy of Java is that "badly formed code will not be 
run."  

The ideal time to catch an error is at compile time, before you even try to run the program. 
However, not all errors can be detected at compile time. The rest of the problems must be 
handled at run time through some formality that allows the originator of the error to pass 
appropriate information to a recipient who will know how to handle the difficulty properly.  

Improved error recovery is one of the most powerful ways that you can increase the 
robustness of your code. Error recovery is a fundamental concern for every program you 
write, but it’s especially important in Java, where one of the primary goals is to create 
program components for others to use. To create a robust system, each component must be 
robust. By providing a consistent error-reporting model using exceptions, Java allows 
components to reliably communicate problems to client code.  

The goals for exception handling in Java are to simplify the creation of large, reliable 
programs using less code than currently possible, and to do so with more confidence that 
your application doesn’t have an unhandled error. Exceptions are not terribly difficult to 
learn, and are one of those features that provide immediate and significant benefits to your 
project.  

Because exception handling is the only official way that Java reports errors, and it is enforced 
by the Java compiler, there are only so many examples that can be written in this book 
without learning about exception handling. This chapter introduces you to the code that you 
need to write to properly handle exceptions, and shows how you can generate your own 
exceptions if one of your methods gets into trouble.  

Concepts  
C and other earlier languages often had multiple error-handling schemes, and these were 
generally established by convention and not as part of the programming language. Typically, 
you returned a special value or set a flag, and the recipient was supposed to look at the value 
or the flag and determine that something was amiss. However, as the years passed, it was 
discovered that programmers who use a library tend to think of themselves as invincible—as 
in "Yes, errors might happen to others, but not in my code." So, not too surprisingly, they 
wouldn’t check for the error conditions (and sometimes the error conditions were too silly to 
check for1). If you were thorough enough to check for an error every time you called a 
method, your code could turn into an unreadable nightmare. Because programmers could 
still coax systems out of these languages, they were resistant to admitting the truth: that this 
approach to handling errors was a major limitation to creating large, robust, maintainable 
programs.  

The solution is to take the casual nature out of error handling and to enforce formality. This 
actually has a long history, because implementations of exception handling go back to 
operating systems in the 1960s, and even to BASIC’S "on error goto." But C++ exception 

                                                            
1 The C programmer can look up the return value of printf( ) for an example of this. 

 



 

handling was based on Ada, and Java’s is based primarily on C++ (although it looks more 
like Object Pascal).  

The word "exception" is meant in the sense of "I take exception to that." At the point where 
the problem occurs, you might not know what to do with it, but you do know that you can’t 
just continue on merrily; you must stop, and somebody, somewhere, must figure out what to 
do. But you don’t have enough information in the current context to fix the problem. So you 
hand the problem out to a higher context where someone is qualified to make the proper 
decision.  

The other rather significant benefit of exceptions is that they tend to reduce the complexity of 
error-handling code. Without exceptions, you must check for a particular error and deal with 
it at multiple places in your program. With exceptions, you no longer need to check for errors 
at the point of the method call, since the exception will guarantee that someone catches it. 
You only need to handle the problem in one place, in the so-called exception handler. This 
saves you code, and it separates the code that describes what you want to do during normal 
execution from the code that is executed when things go awry. In general, reading, writing, 
and debugging code becomes much clearer with exceptions than when using the old way of 
error handling.  

Basic exceptions  
An exceptional condition is a problem that prevents the continuation of the current method 
or scope. It’s important to distinguish an exceptional condition from a normal problem, in 
which you have enough information in the current context to somehow cope with the 
difficulty. With an exceptional condition, you cannot continue processing because you don’t 
have the information necessary to deal with the problem in the current context. All you can 
do is jump out of the current context and relegate that problem to a higher context. This is 
what happens when you throw an exception.  
 
Division is a simple example. If you’re about to divide by zero, it’s worth checking for that 
condition. But what does it mean that the denominator is zero? Maybe you know, in the 
context of the problem you’re trying to solve in that particular method, how to deal with a 
zero denominator. But if it’s an unexpected value, you can’t deal with it and so must throw an 
exception rather than continuing along that execution path.  

When you throw an exception, several things happen. First, the exception object is created in 
the same way that any Java object is created: on the heap, with new. Then the current path 
of execution (the one you couldn’t continue) is stopped and the reference for the exception 
object is ejected from the current context. At this point the exception-handling mechanism 
takes over and begins to look for an appropriate place to continue executing the program. 
This appropriate place is the exception handler, whose job is to recover from the problem so 
the program can either try another tack or just continue.  

As a simple example of throwing an exception, consider an object reference called t. It’s 
possible that you might be passed a reference that hasn’t been initialized, so you might want 
to check before trying to call a method using that object reference. You can send information 
about the error into a larger context by creating an object representing your information and 
"throwing" it out of your current context. This is called throwing an exception. Here’s what it 
looks like:  

if(t == null)  
  throw new NullPointerException(); 

This throws the exception, which allows you—in the current context—to abdicate 
responsibility for thinking about the issue further. It’s just magically handled somewhere 
else. Precisely where will be shown shortly.  

314 Thinking in Java Bruce Eckel 



 

Error Handling with Exceptions 315 

Exceptions allow you to think of everything that you do as a transaction, and the exceptions 
guard those transactions: "...the fundamental premise of transactions is that we needed 
exception handling in distributed computations. Transactions are the computer equivalent of 
contract law. If anything goes wrong, we’ll just blow away the whole computation."2

 You can 
also think about exceptions as a built-in undo system, because (with some care) you can have 
various recovery points in your program. If a part of the program fails, the exception will 
"undo" back to a known stable point in the program.  

One of the most important aspects of exceptions is that if something bad happens, they don’t 
allow a program to continue along its ordinary path. This has been a real problem in 
languages like C and C++; especially C, which had no way to force a program to stop going 
down a path if a problem occurred, so it was possible to ignore problems for a long time and 
get into a completely inappropriate state. Exceptions allow you to (if nothing else) force the 
program to stop and tell you what went wrong, or (ideally) force the program to deal with the 
problem and return to a stable state.  

Exception arguments  

As with any object in Java, you always create exceptions on the heap using new, which 
allocates storage and calls a constructor. There are two constructors in all standard 
exceptions: The first is the default constructor, and the second takes a string argument so 
that you can place pertinent information in the exception:  

  throw new NullPointerException("t = null"); 

This string can later be extracted using various methods, as you’ll see.  

The keyword throw produces a number of interesting results. After creating an exception 
object with new, you give the resulting reference to throw. The object is, in effect, 
"returned" from the method, even though that object type isn’t normally what the method is 
designed to return. A simplistic way to think about exception handling is as a different kind 
of return mechanism, although you get into trouble if you take that analogy too far. You can 
also exit from ordinary scopes by throwing an exception. In either case, an exception object is 
returned, and the method or scope exits.  

Any similarity to an ordinary return from a method ends here, because where you return is 
someplace completely different from where you return for a normal method call. (You end up 
in an appropriate exception handler that might be far away—many levels on the call stack—
from where the exception was thrown.)  

In addition, you can throw any type of Throwable, which is the exception root class. 
Typically, you’ll throw a different class of exception for each different type of error. The 
information about the error is represented both inside the exception object and implicitly in 
the name of the exception class, so someone in the bigger context can figure out what to do 
with your exception. (Often, the only information is the type of exception, and nothing 
meaningful is stored within the exception object.)  

Catching an exception  
To see how an exception is caught, you must first understand the concept of a guarded 
region. This is a section of code that might produce exceptions and is followed by the code to 
handle those exceptions.  

                                                            
2 Jim Gray, Turing Award winner for his team’s contributions on transactions, in an interview on www.acmqueue.org. 



 

The try block  

If you’re inside a method and you throw an exception (or another method that you call within 
this method throws an exception), that method will exit in the process of throwing. If you 
don’t want a throw to exit the method, you can set up a special block within that method to 
capture the exception. This is called the try block because you "try" your various method calls 
there. The try block is an ordinary scope preceded by the keyword try:  

try {  
  // Code that might generate exceptions  
}  

If you were checking for errors carefully in a programming language that didn’t support 
exception handling, you’d have to surround every method call with setup and error-testing 
code, even if you call the same method several times. With exception handling, you put 
everything in a try block and capture all the exceptions in one place. This means your code is 
much easier to write and read because the goal of the code is not confused with the error 
checking.  

Exception handlers  

Of course, the thrown exception must end up someplace. This "place" is the exception 
handler, and there’s one for every exception type you want to catch. Exception handlers 
immediately follow the try block and are denoted by the keyword catch:  

try {  
  // Code that might generate exceptions  
} catch(Type1 id1)|{  
  // Handle exceptions of Type1  
} catch(Type2 id2) {  
  // Handle exceptions of Type2  
} catch(Type3 id3) {  
  // Handle exceptions of Type3  
}  
 
// etc... 

Each catch clause (exception handler) is like a little method that takes one and only one 
argument of a particular type. The identifier (id1, id2, and so on) can be used inside the 
handler, just like a method argument. Sometimes you never use the identifier because the 
type of the exception gives you enough information to deal with the exception, but the 
identifier must still be there.  

The handlers must appear directly after the try block. If an exception is thrown, the 
exception-handling mechanism goes hunting for the first handler with an argument that 
matches the type of the exception. Then it enters that catch clause, and the exception is 
considered handled. The search for handlers stops once the catch clause is finished. Only the 
matching catch clause executes; it’s not like a switch statement in which you need a break 
after each case to prevent the remaining ones from executing. Note that within the try 
block, a number of different method calls might generate the same exception, but you need 
only one handler.  

 

 

316 Thinking in Java Bruce Eckel 



 

Error Handling with Exceptions 317 

Termination vs. resumption  

There are two basic models in exception-handling theory. Java supportst termination,3 in 
which you assume that the error is so critical that there’s no way to get back to where the 
exception occurred. Whoever threw the exception decided that there was no way to salvage 
the situation, and they don’t want to come back.  

The alternative is called resumption. It means that the exception handler is expected to do 
something to rectify the situation, and then the faulting method is retried, presuming success 
the second time. If you want resumption, it means you still hope to continue execution after 
the exception is handled.  

If you want resumption-like behavior in Java, don’t throw an exception when you encounter 
an error. Instead, call a method that fixes the problem. Alternatively, place your try block 
inside a while loop that keeps reentering the try block until the result is satisfactory.  

Historically, programmers using operating systems that supported resumptive exception 
handling eventually ended up using termination-like code and skipping resumption. So 
although resumption sounds attractive at first, it isn’t quite so useful in practice. The 
dominant reason is probably the coupling that results: A resumptive handler would need to 
be aware of where the exception is thrown, and contain non-generic code specific to the 
throwing location. This makes the code difficult to write and maintain, especially for large 
systems where the exception can be generated from many points.  

Creating your own exceptions  
You’re not stuck using the existing Java exceptions. The Java exception hierarchy can’t 
foresee all the errors you might want to report, so you can create your own to denote a special 
problem that your library might encounter.  

To create your own exception class, you must inherit from an existing exception class, 
preferably one that is close in meaning to your new exception (although this is often not 
possible). The most trivial way to create a new type of exception is just to let the compiler 
create the default constructor for you, so it requires almost no code at all:  

//: exceptions/InheritingExceptions.java 
// Creating your own exceptions. 
 
class SimpleException extends Exception {} 
 
public class InheritingExceptions { 
  public void f() throws SimpleException { 
    System.out.println("Throw SimpleException from f()"); 
    throw new SimpleException(); 
  } 
  public static void main(String[] args) { 
    InheritingExceptions sed = new InheritingExceptions(); 
    try { 
      sed.f(); 
    } catch(SimpleException e) { 
      System.out.println("Caught it!"); 
    } 
  } 
} /* Output: 
Throw SimpleException from f() 

                                                            
3 As do most languages, including C++, C#, Python, D, etc. 



 

Caught it! 
*///:~ 

The compiler creates a default constructor, which automatically (and invisibly) calls the base-
class default constructor. Of course, in this case you don’t get a SimpleException(String) 
constructor, but in practice that isn’t used much. As you’ll see, the most important thing 
about an exception is the class name, so most of the time an exception like the one shown 
here is satisfactory.  

Here, the result is printed to the console, where it is automatically captured and tested with 
this book’s output-display system. However, you may want to send error output to the 
standard error stream by writing to System.err. This is usually a better place to send error 
information than System.out, which may be redirected. If you send output to System.err, 
it will not be redirected along with System.out so the user is more likely to notice it. You 
can also create an exception class that has a constructor with a String argument:  

//: exceptions/FullConstructors.java 
 
class MyException extends Exception { 
  public MyException() {} 
  public MyException(String msg) { super(msg); } 
} 
 
public class FullConstructors { 
  public static void f() throws MyException { 
    System.out.println("Throwing MyException from f()"); 
    throw new MyException(); 
  } 
  public static void g() throws MyException { 
    System.out.println("Throwing MyException from g()"); 
    throw new MyException("Originated in g()"); 
  } 
  public static void main(String[] args) { 
    try { 
      f(); 
    } catch(MyException e) { 
      e.printStackTrace(System.out); 
    } 
    try { 
      g(); 
    } catch(MyException e) { 
      e.printStackTrace(System.out); 
    } 
  } 
} /* Output: 
Throwing MyException from f() 
MyException 
        at FullConstructors.f(FullConstructors.java:11) 
        at FullConstructors.main(FullConstructors.java:19) 
Throwing MyException from g() 
MyException: Originated in g() 
        at FullConstructors.g(FullConstructors.java:15) 
        at FullConstructors.main(FullConstructors.java:24) 
*///:~ 

The added code is small: two constructors that define the way MyException is created. In 
the second constructor, the base-class constructor with a String argument is explicitly 
invoked by using the super keyword.  

In the handlers, one of the Throwable (from which Exception is inherited) methods is 
called: printStackTrace( ). As you can see from the output, this produces information 

318 Thinking in Java Bruce Eckel 



 

about the sequence of methods that were called to get to the point where the exception 
happened. Here, the information is sent to System.out, and automatically captured and 
displayed in the output. However, if you call the default version:  

e.printStackTrace(); 

the information goes to the standard error stream.  

Exercise 1:   (2) Create a class with a main( ) that throws an object of class Exception 
inside a try block. Give the constructor for Exception a String argument. Catch the 
exception inside a catch clause and print the String argument. Add a finally clause and 
print a message to prove you were there.  

Exercise 2:   (1) Define an object reference and initialize it to null. Try to call a method 
through this reference. Now wrap the code in a try-catch clause to catch the exception.  

Exercise 3:   (1) Write code to generate and catch an 
ArraylndexOutOfBoundsException.  

Exercise 4:   (2) Create your own exception class using the extends keyword. Write a 
constructor for this class that takes a String argument and stores it inside the object with a 
String reference. Write a method that displays the stored String. Create a try-catch clause 
to exercise your new exception.  

Exercise 5:   (3) Create your own resumption-like behavior using a while loop that 
repeats until an exception is no longer thrown.  

Exceptions and logging  

You may also want to log the output using the java.util.logging facility. Although full 
details of logging are introduced in the supplement at 
http://MindView.net/Books/BetterJava, basic logging is straightforward enough to be used 
here.  

//: exceptions/LoggingExceptions.java 
// An exception that reports through a Logger. 
import java.util.logging.*; 
import java.io.*; 
 
class LoggingException extends Exception { 
  private static Logger logger = 
    Logger.getLogger("LoggingException"); 
  public LoggingException() { 
    StringWriter trace = new StringWriter(); 
    printStackTrace(new PrintWriter(trace)); 
    logger.severe(trace.toString()); 
  } 
} 
 
public class LoggingExceptions { 
  public static void main(String[] args) { 
    try { 
      throw new LoggingException(); 
    } catch(LoggingException e) { 
      System.err.println("Caught " + e); 
    } 
    try { 
      throw new LoggingException(); 

Error Handling with Exceptions 319 



 

    } catch(LoggingException e) { 
      System.err.println("Caught " + e); 
    } 
  } 
} /* Output: (85% match) 
Aug 30, 2005 4:02:31 PM LoggingException <init> 
SEVERE: LoggingException 
        at LoggingExceptions.main(LoggingExceptions.java:19) 
 
Caught LoggingException 
Aug 30, 2005 4:02:31 PM LoggingException <init> 
SEVERE: LoggingException 
        at LoggingExceptions.main(LoggingExceptions.java:24) 
 
Caught LoggingException 
*///:~ 

The static Logger.getLogger( ) method creates a Logger object associated with the 
String argument (usually the name of the package and class that the errors are about) which 
sends its output to System.err. The easiest way to write to a Logger is just to call the 
method associated with the level of logging message; here, severe( ) is used. To produce the 
String for the logging message, we’d like to have the stack trace where the exception is 
thrown, but printStackTrace( ) doesn’t produce a String by default. To get a String, we 
need to use the overloaded printStackTrace( ) that takes a java.io.PrintWriter object as 
an argument (all of this will be fully explained in the I/O chapter). If we hand the Print 
Writer constructor a java.io.StringWriter object, the output can be extracted as a String 
by calling toString( ).  

Although the approach used by LoggingException is very convenient because it builds all 
the logging infrastructure into the exception itself, and thus it works automatically without 
client programmer intervention, it’s more common that you will be catching and logging 
someone else’s exception, so you must generate the log message in the exception handler:  

//: exceptions/LoggingExceptions2.java 
// Logging caught exceptions. 
import java.util.logging.*; 
import java.io.*; 
 
public class LoggingExceptions2 { 
  private static Logger logger = 
    Logger.getLogger("LoggingExceptions2"); 
  static void logException(Exception e) { 
    StringWriter trace = new StringWriter(); 
    e.printStackTrace(new PrintWriter(trace)); 
    logger.severe(trace.toString()); 
  } 
  public static void main(String[] args) { 
    try { 
      throw new NullPointerException(); 
    } catch(NullPointerException e) { 
      logException(e); 
    } 
  } 
} /* Output: (90% match) 
Aug 30, 2005 4:07:54 PM LoggingExceptions2 logException 
SEVERE: java.lang.NullPointerException 
        at LoggingExceptions2.main(LoggingExceptions2.java:16) 
*///:~ 

The process of creating your own exceptions can be taken further. You can add extra 
constructors and members:  

320 Thinking in Java Bruce Eckel 



 

//: exceptions/ExtraFeatures.java 
// Further embellishment of exception classes. 
import static net.mindview.util.Print.*; 
 
class MyException2 extends Exception { 
  private int x; 
  public MyException2() {} 
  public MyException2(String msg) { super(msg); } 
  public MyException2(String msg, int x) { 
    super(msg); 
    this.x = x; 
  } 
  public int val() { return x; } 
  public String getMessage() { 
    return "Detail Message: "+ x + " "+ super.getMessage(); 
  } 
} 
 
public class ExtraFeatures { 
  public static void f() throws MyException2 { 
    print("Throwing MyException2 from f()"); 
    throw new MyException2(); 
  } 
  public static void g() throws MyException2 { 
    print("Throwing MyException2 from g()"); 
    throw new MyException2("Originated in g()"); 
  } 
  public static void h() throws MyException2 { 
    print("Throwing MyException2 from h()"); 
    throw new MyException2("Originated in h()", 47); 
  } 
  public static void main(String[] args) { 
    try { 
      f(); 
    } catch(MyException2 e) { 
      e.printStackTrace(System.out); 
    } 
    try { 
      g(); 
    } catch(MyException2 e) { 
      e.printStackTrace(System.out); 
    } 
    try { 
      h(); 
    } catch(MyException2 e) { 
      e.printStackTrace(System.out); 
      System.out.println("e.val() = " + e.val()); 
    } 
  } 
} /* Output: 
Throwing MyException2 from f() 
MyException2: Detail Message: 0 null 
        at ExtraFeatures.f(ExtraFeatures.java:22) 
        at ExtraFeatures.main(ExtraFeatures.java:34) 
Throwing MyException2 from g() 
MyException2: Detail Message: 0 Originated in g() 
        at ExtraFeatures.g(ExtraFeatures.java:26) 
        at ExtraFeatures.main(ExtraFeatures.java:39) 
Throwing MyException2 from h() 
MyException2: Detail Message: 47 Originated in h() 
        at ExtraFeatures.h(ExtraFeatures.java:30) 
        at ExtraFeatures.main(ExtraFeatures.java:44) 
e.val() = 47 

Error Handling with Exceptions 321 



 

*///:~ 

A field x has been added, along with a method that reads that value and an additional 
constructor that sets it. In addition, Throwable.getMessage( ) has been overridden to 
produce a more interesting detail message. getMessage( ) is something like toString( ) for 
exception classes.  

Since an exception is just another kind of object, you can continue this process of 
embellishing the power of your exception classes. Keep in mind, however, that all this 
dressing-up might be lost on the client programmers using your packages, since they might 
simply look for the exception to be thrown and nothing more. (That’s the way most of the 
Java library exceptions are used.)  

Exercise 6:   (1) Create two exception classes, each of which performs its own logging 
automatically. Demonstrate that these work.  

Exercise 7:   (1) Modify Exercise 3 so that the catch clause logs the results.  

The exception specification  
In Java, you’re encouraged to inform the client programmer, who calls your method, of the 
exceptions that might be thrown from your method. This is civilized, because the caller can 
then know exactly what code to write to catch all potential exceptions. Of course, if the source 
code is available, the client programmer could hunt through and look for throw statements, 
but a library might not come with sources. To prevent this from being a problem, Java 
provides syntax (and forces you to use that syntax) to allow you to politely tell the client 
programmer what exceptions this method throws, so the client programmer can handle 
them. This is the exception specification and it’s part of the method declaration, appearing 
after the argument list.  

The exception specification uses an additional keyword, throws, followed by a list of all the 
potential exception types. So your method definition might look like this:  

void f() throws TooBig, TooSmall, DivZero { //... 

However, if you say  

void f() { //... 

it means that no exceptions are thrown from the method {except for the exceptions inherited 
from RuntimeException, which can be thrown anywhere without exception 
specifications—these will be described later).  

You can’t lie about an exception specification. If the code within your method causes 
exceptions, but your method doesn’t handle them, the compiler will detect this and tell you 
that you must either handle the exception or indicate with an exception specification that it 
may be thrown from your method. By enforcing exception specifications from top to bottom, 
Java guarantees that a certain level of exception correctness can be ensured at compile time.  

There is one place you can lie: You can claim to throw an exception that you really don’t. The 
compiler takes your word for it, and forces the users of your method to treat it as if it really 
does throw that exception. This has the beneficial effect of being a placeholder for that 
exception, so you can actually start throwing the exception later without requiring changes to 
existing code. It’s also important for creating abstract base classes and interfaces whose 
derived classes or implementations may need to throw exceptions.  

322 Thinking in Java Bruce Eckel 



 

Exceptions that are checked and enforced at compile time are called checked exceptions.  

Exercise 8:   (1) Write a class with a method that throws an exception of the type created 
in Exercise 4. Try compiling it without an exception specification to see what the compiler 
says. Add the appropriate exception specification. Try out your class and its exception inside 
a try-catch clause.  

Catching any exception  
It is possible to create a handler that catches any type of exception. You do this by catching 
the base-class exception type Exception (there are other types of base exceptions, but 
Exception is the base that’s pertinent to virtually all programming activities):  

catch(Exception e) { 
  System.out.println("Caught an exception"); 
} 

This will catch any exception, so if you use it you’ll want to put it at the end of your list of 
handlers to avoid preempting any exception handlers that might otherwise follow it.  

Since the Exception class is the base of all the exception classes that are important to the 
programmer, you don’t get much specific information about the exception, but you can call 
the methods that come from its base type Throwable:  

String getMessage( ) 
String getLocalizedMessage( ) 
Gets the detail message, or a message adjusted for this particular locale.  

String toString( )  
Returns a short description of the Throwable, including the detail message if there is one.  

void printStackTrace( )  
voidprintStackTrace(PrintStream)  
voidprintStackTrace(java.io.PrintWriter)  
Prints the Throwable and the Throwable’s call stack trace. The call stack shows the 
sequence of method calls that brought you to the point at which the exception was thrown. 
The first version prints to standard error, the second and third print to a stream of your 
choice (in the I/O chapter, you’ll understand why there are two types of streams).  

Throwable fillInStackTrace( )  
Records information within this Throwable object about the current state of the stack 
frames. Useful when an application is rethrowing an error or exception (more about this 
shortly).  

In addition, you get some other methods from Throwable’s base type Object (everybody’s 
base type). The one that might come in handy for exceptions is getClass( ), which returns an 
object representing the class of this object. You can in turn query this Class object for its 
name with getName( ), which includes package information, or getSimpleName( ), 
which produces the class name alone.  

Here’s an example that shows the use of the basic Exception methods:  

//: exceptions/ExceptionMethods.java 
// Demonstrating the Exception Methods. 
import static net.mindview.util.Print.*; 
 

Error Handling with Exceptions 323 



 

public class ExceptionMethods { 
  public static void main(String[] args) { 
    try { 
      throw new Exception("My Exception"); 
    } catch(Exception e) { 
      print("Caught Exception"); 
      print("getMessage():" + e.getMessage()); 
      print("getLocalizedMessage():" + 
        e.getLocalizedMessage()); 
      print("toString():" + e); 
      print("printStackTrace():"); 
      e.printStackTrace(System.out); 
    } 
  } 
} /* Output: 
Caught Exception 
getMessage():My Exception 
getLocalizedMessage():My Exception 
toString():java.lang.Exception: My Exception 
printStackTrace(): 
java.lang.Exception: My Exception 
        at ExceptionMethods.main(ExceptionMethods.java:8) 
*///:~ 

You can see that the methods provide successively more information—each is effectively a 
superset of the previous one.  

Exercise 9:   (2) Create three new types of exceptions. Write a class with a method that 
throws all three. In main( ), call the method but only use a single catch clause that will 
catch all three types of exceptions.  

The stack trace  

The information provided by printStackTrace( ) can also be accessed directly using 
getStackTrace( ). This method returns an array of stack trace elements, each representing 
one stack frame. Element zero is the top of the stack, and is the last method invocation in the 
sequence (the point this Throwable was created and thrown). The last element of the array 
and the bottom of the stack is the first method invocation in the sequence. This program 
provides a simple demonstration:  

//: exceptions/WhoCalled.java 
// Programmatic access to stack trace information. 
 
public class WhoCalled { 
  static void f() { 
    // Generate an exception to fill in the stack trace 
    try { 
      throw new Exception(); 
    } catch (Exception e) { 
      for(StackTraceElement ste : e.getStackTrace()) 
        System.out.println(ste.getMethodName()); 
    } 
  } 
  static void g() { f(); } 
  static void h() { g(); } 
  public static void main(String[] args) { 
    f(); 
    System.out.println("--------------------------------"); 
    g(); 
    System.out.println("--------------------------------"); 

324 Thinking in Java Bruce Eckel 



 

    h(); 
  } 
} /* Output: 
f 
main 
-------------------------------- 
f 
g 
main 
-------------------------------- 
f 
g 
h 
main 
*///:~ 

Here, we just print the method name, but you can also print the entire 
StackTraceElement, which contains additional information.  

Rethrowing an exception  

Sometimes you’ll want to rethrow the exception that you just caught, particularly when you 
use Exception to catch any exception. Since you already have the reference to the current 
exception, you can simply rethrow that reference:  

catch(Exception e) { 
System.out.println("An exception was thrown"); 
throw e; 
} 

Rethrowing an exception causes it to go to the exception handlers in the nexthigher context. 
Any further catch clauses for the same try block are still ignored. In addition, everything 
about the exception object is preserved, so the handler at the higher context that catches the 
specific exception type can extract all the information from that object.  

If you simply rethrow the current exception, the information that you print about that 
exception in printStackTrace( ) will pertain to the exception’s origin, not the place where 
you rethrow it. If you want to install new stack trace information, you can do so by calling 
fillInStackTrace( ), which returns a Throwable object that it creates by stuffing the 
current stack information into the old exception object. Here’s what it looks like:  

//: exceptions/Rethrowing.java 
// Demonstrating fillInStackTrace() 
 
public class Rethrowing { 
  public static void f() throws Exception { 
    System.out.println("originating the exception in f()"); 
    throw new Exception("thrown from f()"); 
  } 
  public static void g() throws Exception { 
    try { 
      f(); 
    } catch(Exception e) { 
      System.out.println("Inside g(),e.printStackTrace()"); 
      e.printStackTrace(System.out); 
      throw e; 
    } 
  } 
  public static void h() throws Exception { 

Error Handling with Exceptions 325 



 

    try { 
      f(); 
    } catch(Exception e) { 
      System.out.println("Inside h(),e.printStackTrace()"); 
      e.printStackTrace(System.out); 
      throw (Exception)e.fillInStackTrace(); 
    } 
  } 
  public static void main(String[] args) { 
    try { 
      g(); 
    } catch(Exception e) { 
      System.out.println("main: printStackTrace()"); 
      e.printStackTrace(System.out); 
    } 
    try { 
      h(); 
    } catch(Exception e) { 
      System.out.println("main: printStackTrace()"); 
      e.printStackTrace(System.out); 
    } 
  } 
} /* Output: 
originating the exception in f() 
Inside g(),e.printStackTrace() 
java.lang.Exception: thrown from f() 
        at Rethrowing.f(Rethrowing.java:7) 
        at Rethrowing.g(Rethrowing.java:11) 
        at Rethrowing.main(Rethrowing.java:29) 
main: printStackTrace() 
java.lang.Exception: thrown from f() 
        at Rethrowing.f(Rethrowing.java:7) 
        at Rethrowing.g(Rethrowing.java:11) 
        at Rethrowing.main(Rethrowing.java:29) 
originating the exception in f() 
Inside h(),e.printStackTrace() 
java.lang.Exception: thrown from f() 
        at Rethrowing.f(Rethrowing.java:7) 
        at Rethrowing.h(Rethrowing.java:20) 
        at Rethrowing.main(Rethrowing.java:35) 
main: printStackTrace() 
java.lang.Exception: thrown from f() 
        at Rethrowing.h(Rethrowing.java:24) 
        at Rethrowing.main(Rethrowing.java:35) 
*///:~ 

The line where fillInStackTrace( ) is called becomes the new point of origin of the 
exception.  

It’s also possible to rethrow a different exception from the one you caught. If you do this, you 
get a similar effect as when you use fillInStackTrace( )— the information about the 
original site of the exception is lost, and what you’re left with is the information pertaining to 
the new throw:  

//: exceptions/RethrowNew.java 
// Rethrow a different object from the one that was caught. 
 
class OneException extends Exception { 
  public OneException(String s) { super(s); } 
} 
 
class TwoException extends Exception { 

326 Thinking in Java Bruce Eckel 



 

  public TwoException(String s) { super(s); } 
} 
 
public class RethrowNew { 
  public static void f() throws OneException { 
    System.out.println("originating the exception in f()"); 
    throw new OneException("thrown from f()"); 
  } 
  public static void main(String[] args) { 
    try { 
      try { 
        f(); 
      } catch(OneException e) { 
        System.out.println( 
          "Caught in inner try, e.printStackTrace()"); 
        e.printStackTrace(System.out); 
        throw new TwoException("from inner try"); 
      } 
    } catch(TwoException e) { 
      System.out.println( 
        "Caught in outer try, e.printStackTrace()"); 
      e.printStackTrace(System.out); 
    } 
  } 
} /* Output: 
originating the exception in f() 
Caught in inner try, e.printStackTrace() 
OneException: thrown from f() 
        at RethrowNew.f(RethrowNew.java:15) 
        at RethrowNew.main(RethrowNew.java:20) 
Caught in outer try, e.printStackTrace() 
TwoException: from inner try 
        at RethrowNew.main(RethrowNew.java:25) 
*///:~ 

The final exception knows only that it came from the inner try block and not from f( ).  

You never have to worry about cleaning up the previous exception, or any exceptions for that 
matter. They’re all heap-based objects created with new, so the garbage collector 
automatically cleans them all up.  

Exception chaining  

Often you want to catch one exception and throw another, but still keep the information 
about the originating exception—this is called exception chaining. Prior to JDK 1.4, 
programmers had to write their own code to preserve the original exception information, but 
now all Throwable subclasses have the option to take a cause object in their constructor. 
The cause is intended to be the originating exception, and by passing it in you maintain the 
stack trace back to its origin, even though you’re creating and throwing a new exception.  

It’s interesting to note that the only Throwable subclasses that provide the cause argument 
in the constructor are the three fundamental exception classes Error (used by the JVM to 
report system errors), Exception, and RuntimeException. If you want to chain any other 
exception types, you do it through the initCause( ) method rather than the constructor.  

Here’s an example that allows you to dynamically add fields to a DynamicFields object at 
run time:  

//: exceptions/DynamicFields.java 

Error Handling with Exceptions 327 



 

// A Class that dynamically adds fields to itself. 
// Demonstrates exception chaining. 
import static net.mindview.util.Print.*; 
 
class DynamicFieldsException extends Exception {} 
 
public class DynamicFields { 
  private Object[][] fields; 
  public DynamicFields(int initialSize) { 
    fields = new Object[initialSize][2]; 
    for(int i = 0; i < initialSize; i++) 
      fields[i] = new Object[] { null, null }; 
  } 
  public String toString() { 
    StringBuilder result = new StringBuilder(); 
    for(Object[] obj : fields) { 
      result.append(obj[0]); 
      result.append(": "); 
      result.append(obj[1]); 
      result.append("\n"); 
    } 
    return result.toString(); 
  } 
  private int hasField(String id) { 
    for(int i = 0; i < fields.length; i++) 
      if(id.equals(fields[i][0])) 
        return i; 
    return -1; 
  } 
  private int 
  getFieldNumber(String id) throws NoSuchFieldException { 
    int fieldNum = hasField(id); 
    if(fieldNum == -1) 
      throw new NoSuchFieldException(); 
    return fieldNum; 
  } 
  private int makeField(String id) { 
    for(int i = 0; i < fields.length; i++) 
      if(fields[i][0] == null) { 
        fields[i][0] = id; 
        return i; 
      } 
    // No empty fields. Add one: 
    Object[][] tmp = new Object[fields.length + 1][2]; 
    for(int i = 0; i < fields.length; i++) 
      tmp[i] = fields[i]; 
    for(int i = fields.length; i < tmp.length; i++) 
      tmp[i] = new Object[] { null, null }; 
    fields = tmp; 
    // Recursive call with expanded fields: 
    return makeField(id); 
  } 
  public Object 
  getField(String id) throws NoSuchFieldException { 
    return fields[getFieldNumber(id)][1]; 
  } 
  public Object setField(String id, Object value) 
  throws DynamicFieldsException { 
    if(value == null) { 
      // Most exceptions don’t have a "cause" constructor. 
      // In these cases you must use initCause(), 
      // available in all Throwable subclasses. 
      DynamicFieldsException dfe = 

328 Thinking in Java Bruce Eckel 



 

        new DynamicFieldsException(); 
      dfe.initCause(new NullPointerException()); 
      throw dfe; 
    } 
    int fieldNumber = hasField(id); 
    if(fieldNumber == -1) 
      fieldNumber = makeField(id); 
    Object result = null; 
    try { 
      result = getField(id); // Get old value 
    } catch(NoSuchFieldException e) { 
      // Use constructor that takes "cause": 
      throw new RuntimeException(e); 
    } 
    fields[fieldNumber][1] = value; 
    return result; 
  } 
  public static void main(String[] args) { 
    DynamicFields df = new DynamicFields(3); 
    print(df); 
    try { 
      df.setField("d", "A value for d"); 
      df.setField("number", 47); 
      df.setField("number2", 48); 
      print(df); 
      df.setField("d", "A new value for d"); 
      df.setField("number3", 11); 
      print("df: " + df); 
      print("df.getField(\"d\") : " + df.getField("d")); 
      Object field = df.setField("d", null); // Exception 
    } catch(NoSuchFieldException e) { 
      e.printStackTrace(System.out); 
    } catch(DynamicFieldsException e) { 
      e.printStackTrace(System.out); 
    } 
  } 
} /* Output: 
null: null 
null: null 
null: null 
 
d: A value for d 
number: 47 
number2: 48 
 
df: d: A new value for d 
number: 47 
number2: 48 
number3: 11 
 
df.getField("d") : A new value for d 
DynamicFieldsException 
        at DynamicFields.setField(DynamicFields.java:64) 
        at DynamicFields.main(DynamicFields.java:94) 
Caused by: java.lang.NullPointerException 
        at DynamicFields.setField(DynamicFields.java:66) 
        ... 1 more 
*///:~ 

Each DynamicFields object contains an array of Object-Object pairs. The first object is 
the field identifier (a String), and the second is the field value, which can be any type except 
an unwrapped primitive. When you create the object, you make an educated guess about how 
many fields you need. When you call setField( ), it either finds the existing field by that 

Error Handling with Exceptions 329 



 

name or creates a new one, and puts in your value. If it runs out of space, it adds new space 
by creating an array of length one longer and copying the old elements in. If you try to put in 
a null value, then it throws a DynamicFieldsException by creating one and using 
initCause( ) to insert a NullPointerException as the cause.  

As a return value, setField( ) also fetches out the old value at that field location using 
getField( ), which could throw a NoSuchFieldException. If the client programmer calls 
getField( ), then they are responsible for handling NoSuchFieldException, but if this 
exception is thrown inside setField( ), it’s a programming error, so the 
NoSuchFieldException is converted to a RuntimeException using the constructor that 
takes a cause argument.  

You’ll notice that toString( ) uses a StringBuilder to create its result. You’ll learn more 
about StringBuilder in the Strings chapter, but in general you’ll want to use it whenever 
you’re writing a toString( ) that involves looping, as is the case here.  

Exercise 10:   (2) Create a class with two methods, f( ) and g( ). In g( ), throw an 
exception of a new type that you define. In f( ), call g( ), catch its exception and, in the catch 
clause, throw a different exception (of a second type that you define). Test your code in 
main( ).  

Exercise 11:   (1) Repeat the previous exercise, but inside the catch clause, wrap g( )’s 
exception in a RuntimeException.  

Standard Java exceptions  
The Java class Throwable describes anything that can be thrown as an exception. There are 
two general types of Throwable objects ("types of = "inherited from"). Error represents 
compile-time and system errors that you don’t worry about catching (except in very special 
cases). Exception is the basic type that can be thrown from any of the standard Java library 
class methods and from your methods and runtime accidents. So the Java programmer’s 
base type of interest is usually Exception.  

The best way to get an overview of the exceptions is to browse the JDK documentation. It’s 
worth doing this once just to get a feel for the various exceptions, but you’ll soon see that 
there isn’t anything special between one exception and the next except for the name. Also, 
the number of exceptions in Java keeps expanding; basically, it’s pointless to print them in a 
book. Any new library you get from a third-party vendor will probably have its own 
exceptions as well. The important thing to understand is the concept and what you should do 
with the exceptions.  

The basic idea is that the name of the exception represents the problem that occurred, and 
the exception name is intended to be relatively selfexplanatory. The exceptions are not all 
defined in java.lang; some are created to support other libraries such as util, net, and io, 
which you can see from their full class names or what they are inherited from. For example, 
all I/O exceptions are inherited from java.io.IOException.  

Special case: RuntimeException  

The first example in this chapter was  

if(t == null) 
  throw new NullPointerException(); 

330 Thinking in Java Bruce Eckel 



 

It can be a bit horrifying to think that you must check for null on every reference that is 
passed into a method (since you can’t know if the caller has passed you a valid reference). 
Fortunately, you don’t—this is part of the standard runtime checking that Java performs for 
you, and if any call is made to a null reference, Java will automatically throw a 
NullPointerException. So the above bit of code is always superfluous, although you may 
want to perform other checks in order to guard against the appearance of a 
NullPointerException.  

There’s a whole group of exception types that are in this category. They’re always thrown 
automatically by Java and you don’t need to include them in your exception specifications. 
Conveniently enough, they’re all grouped together by putting them under a single base class 
called RuntimeException, which is a perfect example of inheritance: It establishes a family 
of types that have some characteristics and behaviors in common. Also, you never need to 
write an exception specification saying that a method might throw a RuntimeException 
(or any type inherited from RuntimeException), because they are unchecked exceptions. 
Because they indicate bugs, you don’t usually catch a RuntimeException—it’s dealt with 
automatically. If you were forced to check for RuntimeExceptions, your code could get too 
messy. Even though you don’t typically catch RuntimeExceptions, in your own packages 
you might choose to throw some of the RuntimeExceptions.  

What happens when you don’t catch such exceptions? Since the compiler doesn’t enforce 
exception specifications for these, it’s quite plausible that a RuntimeException could 
percolate all the way out to your main( ) method without being caught. To see what happens 
in this case, try the following example:  

//: exceptions/NeverCaught.java 
// Ignoring RuntimeExceptions. 
// {ThrowsException} 
 
public class NeverCaught { 
  static void f() { 
    throw new RuntimeException("From f()"); 
  } 
  static void g() { 
    f(); 
  } 
  public static void main(String[] args) { 
    g(); 
  } 
} ///:~ 

You can already see that a RuntimeException (or anything inherited from it) is a special 
case, since the compiler doesn’t require an exception specification for these types. The output 
is reported to System.err:  

Exception in thread "main" Java.lang.RuntimeException: From f() 
        at NeverCaught.f(NeverCaught.Java:7) 
        at NeverCaught.g(NeverCaught.Java:10) 
        at NeverCaught.main(NeverCaught.Java:13) 

So the answer is: If a RuntimeException gets all the way out to main( ) without being 
caught, printStackTrace( ) is called for that exception as the program exits.  

Keep in mind that only exceptions of type RuntimeException (and subclasses) can be 
ignored in your coding, since the compiler carefully enforces the handling of all checked 
exceptions. The reasoning is that a RuntimeException represents a programming error, 
which is:  

Error Handling with Exceptions 331 



 

332 Thinking in Java Bruce Eckel 

1. An error you cannot anticipate. For example, a null reference that is outside of your 
control. 

 
2.  An error that you, as a programmer, should have checked for in your code (such as 

ArraylndexOutOfBoundsException where you should have paid attention to the 
size of the array). An exception that happens from point #1 often becomes an issue for 
point #2. 

 
You can see what a tremendous benefit it is to have exceptions in this case, since they help in 
the debugging process.  

It’s interesting to notice that you cannot classify Java exception handling as a single-purpose 
tool. Yes, it is designed to handle those pesky runtime errors that will occur because of forces 
outside your code’s control, but it’s also essential for certain types of programming bugs that 
the compiler cannot detect.  

Exercise 12:   (3) Modify innerclasses/Sequence.java so that it throws an appropriate 
exception if you try to put in too many elements.  

Performing cleanup  
     with finally  

There’s often some piece of code that you want to execute whether or not an exception is 
thrown within a try block. This usually pertains to some operation other than memory 
recovery (since that’s taken care of by the garbage collector). To achieve this effect, you use a 
finally clause4 at the end of all the exception handlers. The full picture of an exception-
handling section is thus:  

try { 
  // The guarded region: Dangerous activities 
  // that might throw A, B, or C 
} catch(A a1) { 
  // Handler for situation A 
} catch(B b1) { 
  // Handler for situation B 
} catch(C c1) { 
  // Handler for situation C 
} finally { 
  // Activities that happen every time 
} 

To demonstrate that the finally clause always runs, try this program: 

//: exceptions/FinallyWorks.java 
// The finally clause is always executed. 
 
class ThreeException extends Exception {} 
 
public class FinallyWorks { 
  static int count = 0; 
  public static void main(String[] args) { 
    while(true) { 
      try { 

                                                            
4 C++ exception handling does not have the finally clause because it relies on destructors to accomplish this sort of 
cleanup. 



 

Error Handling with Exceptions 333 

        // Post-increment is zero first time: 
        if(count++ == 0) 
          throw new ThreeException(); 
        System.out.println("No exception"); 
      } catch(ThreeException e) { 
        System.out.println("ThreeException"); 
      } finally { 
        System.out.println("In finally clause"); 
        if(count == 2) break; // out of "while" 
      } 
    } 
  } 
} /* Output: 
ThreeException 
In finally clause 
No exception 
In finally clause 
*///:~ 

From the output, you can see that the finally clause is executed whether or not an exception 
is thrown.  

This program also gives a hint for how you can deal with the fact that exceptions in Java do 
not allow you to resume back to where the exception was thrown, as discussed earlier. If you 
place your try block in a loop, you can establish a condition that must be met before you 
continue the program. You can also add a static counter or some other device to allow the 
loop to try several different approaches before giving up. This way you can build a greater 
level of robustness into your programs.  

What’s finally for? 

In a language without garbage collection and without automatic destructor calls,5
 finally is 

important because it allows the programmer to guarantee the release of memory regardless 
of what happens in the try block. But Java has garbage collection, so releasing memory is 
virtually never a problem. Also, it has no destructors to call. So when do you need to use 
finally in Java?  

The finally clause is necessary when you need to set something other than memory back to 
its original state. This is some kind of cleanup like an open file or network connection, 
something you’ve drawn on the screen, or even a switch in the outside world, as modeled in 
the following example:  

//: exceptions/Switch.java 
import static net.mindview.util.Print.*; 
 
public class Switch { 
  private boolean state = false; 
  public boolean read() { return state; } 
  public void on() { state = true; print(this); } 
  public void off() { state = false; print(this); } 
  public String toString() { return state ? "on" : "off"; } 
} ///:~ 
 
//: exceptions/OnOffException1.java 
public class OnOffException1 extends Exception {} ///:~ 

                                                            
5 A destructor is a function that’s always called when an object becomes unused. You always know exactly where and when 
the destructor gets called. C++ has automatic destructor calls, and C# (which is much more like Java) has a way that 
automatic destruction can occur. 



 

 
//: exceptions/OnOffException2.java 
public class OnOffException2 extends Exception {} ///:~ 
 
//: exceptions/OnOffSwitch.java 
// Why use finally? 
 
public class OnOffSwitch { 
  private static Switch sw = new Switch(); 
  public static void f() 
  throws OnOffException1,OnOffException2 {} 
  public static void main(String[] args) { 
    try { 
      sw.on(); 
      // Code that can throw exceptions... 
      f(); 
      sw.off(); 
    } catch(OnOffException1 e) { 
      System.out.println("OnOffException1"); 
      sw.off(); 
    } catch(OnOffException2 e) { 
      System.out.println("OnOffException2"); 
      sw.off(); 
    } 
  } 
} /* Output: 
on 
off 
*///:~ 

The goal here is to make sure that the switch is off when main( ) is completed, so sw.off( ) 
is placed at the end of the try block and at the end of each exception handler. But it’s possible 
that an exception might be thrown that isn’t caught here, so sw.off( ) would be missed. 
However, with finally you can place the cleanup code from a try block in just one place:  

//: exceptions/WithFinally.java 
// Finally Guarantees cleanup. 
 
public class WithFinally { 
  static Switch sw = new Switch(); 
  public static void main(String[] args) { 
    try { 
      sw.on(); 
      // Code that can throw exceptions... 
      OnOffSwitch.f(); 
    } catch(OnOffException1 e) { 
      System.out.println("OnOffException1"); 
    } catch(OnOffException2 e) { 
      System.out.println("OnOffException2"); 
    } finally { 
      sw.off(); 
    } 
  } 
} /* Output: 
on 
off 
*///:~ 

Here the sw.off( ) has been moved to just one place, where it’s guaranteed to run no matter 
what happens.  

334 Thinking in Java Bruce Eckel 



 

Even in cases in which the exception is not caught in the current set of catch clauses, finally 
will be executed before the exception-handling mechanism continues its search for a handler 
at the next higher level:  

//: exceptions/AlwaysFinally.java 
// Finally is always executed. 
import static net.mindview.util.Print.*; 
 
class FourException extends Exception {} 
 
public class AlwaysFinally { 
  public static void main(String[] args) { 
    print("Entering first try block"); 
    try { 
      print("Entering second try block"); 
      try { 
        throw new FourException(); 
      } finally { 
        print("finally in 2nd try block"); 
      } 
    } catch(FourException e) { 
      System.out.println( 
        "Caught FourException in 1st try block"); 
    } finally { 
      System.out.println("finally in 1st try block"); 
    } 
  } 
} /* Output: 
Entering first try block 
Entering second try block 
finally in 2nd try block 
Caught FourException in 1st try block 
finally in 1st try block 
*///:~ 

The finally statement will also be executed in situations in which break and continue 
statements are involved. Note that, along with the labeled break and labeled continue, 
finally eliminates the need for a goto statement in Java.  

Exercise 13:   (2) Modify Exercise 9 by adding a finally clause. Verify that your finally 
clause is executed, even if a NullPointerException is thrown.  

Exercise 14:   (2) Show that OnOffSwitch.java can fail by throwing a 
RuntimeException inside the try block.  

Exercise 15:   (2) Show that WithFinally.java doesn’t fail by throwing a 
RuntimeException inside the try block.  

Using finally during return  

Because a finally clause is always executed, it’s possible to return from multiple points 
within a method and still guarantee that important cleanup will be performed:  

//: exceptions/MultipleReturns.java 
import static net.mindview.util.Print.*; 
 
public class MultipleReturns { 
  public static void f(int i) { 
    print("Initialization that requires cleanup"); 

Error Handling with Exceptions 335 



 

    try { 
      print("Point 1"); 
      if(i == 1) return; 
      print("Point 2"); 
      if(i == 2) return; 
      print("Point 3"); 
      if(i == 3) return; 
      print("End"); 
      return; 
    } finally { 
      print("Performing cleanup"); 
    } 
  } 
  public static void main(String[] args) { 
    for(int i = 1; i <= 4; i++) 
      f(i); 
  } 
} /* Output: 
Initialization that requires cleanup 
Point 1 
Performing cleanup 
Initialization that requires cleanup 
Point 1 
Point 2 
Performing cleanup 
Initialization that requires cleanup 
Point 1 
Point 2 
Point 3 
Performing cleanup 
Initialization that requires cleanup 
Point 1 
Point 2 
Point 3 
End 
Performing cleanup 
*///:~ 

You can see from the output that it doesn’t matter where you return from inside the finally 
class.  

Exercise 16:   (2) Modify reusing/CADSystem.java to demonstrate that returning 
from the middle of a try-finally will still perform proper cleanup.  

Exercise 17:   (3) Modify polymorphism/Frog.java so that it uses try-finally to 
guarantee proper cleanup, and show that this works even if you return from the middle of 
the try-finally.  

Pitfall: the lost exception  

Unfortunately, there’s a flaw in Java’s exception implementation. Although exceptions are an 
indication of a crisis in your program and should never be ignored, it’s possible for an 
exception to simply be lost. This happens with a particular configuration using a finally 
clause:  

//: exceptions/LostMessage.java 
// How an exception can be lost. 
 
class VeryImportantException extends Exception { 
  public String toString() { 

336 Thinking in Java Bruce Eckel 



 

    return "A very important exception!"; 
  } 
} 
 
class HoHumException extends Exception { 
  public String toString() { 
    return "A trivial exception"; 
  } 
} 
 
public class LostMessage { 
  void f() throws VeryImportantException { 
    throw new VeryImportantException(); 
  } 
  void dispose() throws HoHumException { 
    throw new HoHumException(); 
  } 
  public static void main(String[] args) { 
    try { 
      LostMessage lm = new LostMessage(); 
      try { 
        lm.f(); 
      } finally { 
        lm.dispose(); 
      } 
    } catch(Exception e) { 
      System.out.println(e); 
    } 
  } 
} /* Output: 
A trivial exception 
*///:~ 

You can see from the output that there’s no evidence of the VerylmportantException, 
which is simply replaced by the HoHumException in the finally clause. This is a rather 
serious pitfall, since it means that an exception can be completely lost, and in a far more 
subtle and difficult-to-detect fashion than the preceding example. In contrast, C++ treats the 
situation in which a second exception is thrown before the first one is handled as a dire 
programming error. Perhaps a future version of Java will repair this problem (on the other 
hand, you will typically wrap any method that throws an exception, such as dispose( ) in the 
example above, inside a try-catch clause).  

An even simpler way to lose an exception is just to return from inside a finally clause: 

//: exceptions/ExceptionSilencer.java 
 
public class ExceptionSilencer { 
  public static void main(String[] args) { 
    try { 
      throw new RuntimeException(); 
    } finally { 
      // Using ‘return’ inside the finally block 
      // will silence any thrown exception. 
      return; 
    } 
  } 
} ///:~ 

If you run this program you’ll see that it produces no output, even though an exception is 
thrown.  

Error Handling with Exceptions 337 



 

Exercise 18:   (3) Add a second level of exception loss to LostMessage.java so that the 
HoHumException is itself replaced by a third exception.  

Exercise 19:   (2) Repair the problem in LostMessage.java by guarding the call in the 
finally clause.  

Exception restrictions  
When you override a method, you can throw only the exceptions that have been specified in 
the base-class version of the method. This is a useful restriction, since it means that code that 
works with the base class will automatically work with any object derived from the base class 
(a fundamental OOP concept, of course), including exceptions.  

This example demonstrates the kinds of restrictions imposed (at compile time) for 
exceptions:  

//: exceptions/StormyInning.java 
// Overridden methods may throw only the exceptions 
// specified in their base-class versions, or exceptions 
// derived from the base-class exceptions. 
 
class BaseballException extends Exception {} 
class Foul extends BaseballException {} 
class Strike extends BaseballException {} 
 
abstract class Inning { 
  public Inning() throws BaseballException {} 
  public void event() throws BaseballException { 
    // Doesn’t actually have to throw anything 
  } 
  public abstract void atBat() throws Strike, Foul; 
  public void walk() {} // Throws no checked exceptions 
} 
 
class StormException extends Exception {} 
class RainedOut extends StormException {} 
class PopFoul extends Foul {} 
 
interface Storm { 
  public void event() throws RainedOut; 
  public void rainHard() throws RainedOut; 
} 
 
public class StormyInning extends Inning implements Storm { 
  // OK to add new exceptions for constructors, but you 
  // must deal with the base constructor exceptions: 
  public StormyInning() 
    throws RainedOut, BaseballException {} 
  public StormyInning(String s) 
    throws Foul, BaseballException {} 
  // Regular methods must conform to base class: 
//! void walk() throws PopFoul {} //Compile error 
  // Interface CANNOT add exceptions to existing 
  // methods from the base class: 
//! public void event() throws RainedOut {} 
  // If the method doesn’t already exist in the 
  // base class, the exception is OK: 
  public void rainHard() throws RainedOut {} 
  // You can choose to not throw any exceptions, 

338 Thinking in Java Bruce Eckel 



 

  // even if the base version does: 
  public void event() {} 
  // Overridden methods can throw inherited exceptions: 
  public void atBat() throws PopFoul {} 
  public static void main(String[] args) { 
    try { 
      StormyInning si = new StormyInning(); 
      si.atBat(); 
    } catch(PopFoul e) { 
      System.out.println("Pop foul"); 
    } catch(RainedOut e) { 
      System.out.println("Rained out"); 
    } catch(BaseballException e) { 
      System.out.println("Generic baseball exception"); 
    } 
    // Strike not thrown in derived version. 
    try { 
      // What happens if you upcast? 
      Inning i = new StormyInning(); 
      i.atBat(); 
      // You must catch the exceptions from the 
      // base-class version of the method: 
    } catch(Strike e) { 
      System.out.println("Strike"); 
    } catch(Foul e) { 
      System.out.println("Foul"); 
    } catch(RainedOut e) { 
      System.out.println("Rained out"); 
    } catch(BaseballException e) { 
      System.out.println("Generic baseball exception"); 
    } 
  } 
} ///:~ 

In Inning, you can see that both the constructor and the event( ) method say that they will 
throw an exception, but they never do. This is legal because it allows you to force the user to 
catch any exceptions that might be added in overridden versions of event( ). The same idea 
holds for abstract methods, as seen in atBat( ).  

The interface Storm is interesting because it contains one method (event( )) that is defined 
in Inning, and one method that isn’t. Both methods throw a new type of exception, 
RainedOut. When Stormylnning extends Inning and implements Storm, you’ll see 
that the event( ) method in Storm cannot change the exception interface of event( ) in 
Inning. Again, this makes sense because otherwise you’d never know if you were catching 
the correct thing when working with the base class. Of course, if a method described in an 
interface is not in the base class, such as rainHard( ), then there’s no problem if it throws 
exceptions.  

The restriction on exceptions does not apply to constructors. You can see in Stormylnning 
that a constructor can throw anything it wants, regardless of what the base-class constructor 
throws. However, since a base-class constructor must always be called one way or another 
(here, the default constructor is called automatically), the derived-class constructor must 
declare any base-class constructor exceptions in its exception specification.  

A derived-class constructor cannot catch exceptions thrown by its base-class constructor.  

The reason StormyInning.walk( ) will not compile is that it throws an exception, but 
Inning.walk( ) does not. If this were allowed, then you could write code that called 
Inning.walk( ) and that didn’t have to handle any exceptions, but then when you 
substituted an object of a class derived from Inning, exceptions would be thrown so your 

Error Handling with Exceptions 339 



 

340 Thinking in Java Bruce Eckel 

code would break. By forcing the derived-class methods to conform to the exception 
specifications of the base-class methods, substitutability of objects is maintained.  

The overridden event( ) method shows that a derived-class version of a method may choose 
not to throw any exceptions, even if the base-class version does. Again, this is fine since it 
doesn’t break code that is written assuming the base-class version throws exceptions. Similar 
logic applies to atBat( ), which throws PopFoul, an exception that is derived from Foul 
thrown by the base-class version of atBat( ). This way, if you write code that works with 
Inning and calls atBat( ), you must catch the Foul exception. Since PopFoul is derived 
from Foul, the exception handler will also catch PopFoul.  

The last point of interest is in main( ). Here, you can see that if you’re dealing with exactly a 
StormyInning object, the compiler forces you to catch only the exceptions that are specific 
to that class, but if you upcast to the base type, then the compiler (correctly) forces you to 
catch the exceptions for the base type. All these constraints produce much more robust 
exceptionhandling code.6

  

Although exception specifications are enforced by the compiler during inheritance, the 
exception specifications are not part of the type of a method, which comprises only the 
method name and argument types. Therefore, you cannot overload methods based on 
exception specifications. In addition, just because an exception specification exists in a base-
class version of a method doesn’t mean that it must exist in the derived-class version of the 
method. This is quite different from inheritance rules, where a method in the base class must 
also exist in the derived class. Put another way, the "exception specification interface" for a 
particular method may narrow during inheritance and overriding, but it may not widen—this 
is precisely the opposite of the rule for the class interface during inheritance.  

Exercise 20:   (3) Modify StormyInning.java by adding an UmpireArgument 
exception type and methods that throw this exception. Test the modified hierarchy.  

Constructors  
It’s important that you always ask, "If an exception occurs, will everything be properly 
cleaned up?" Most of the time you’re fairly safe, but with constructors there’s a problem. The 
constructor puts the object into a safe starting state, but it might perform some operation—
such as opening a filethat doesn’t get cleaned up until the user is finished with the object and 
calls a special cleanup method. If you throw an exception from inside a constructor, these 
cleanup behaviors might not occur properly. This means that you must be especially diligent 
while you write your constructor.  

You might think that finally is the solution. But it’s not quite that simple, because finally 
performs the cleanup code every time. If a constructor fails partway through its execution, it 
might not have successfully created some part of the object that will be cleaned up in the 
finally clause.  

In the following example, a class called InputFile is created that opens a file and allows you 
to read it one line at a time. It uses the classes FileReader and BufferedReader from the 
Java standard I/O library that will be discussed in the I/O chapter. These classes are simple 
enough that you probably won’t have any trouble understanding their basic use:  

//: exceptions/InputFile.java 
// Paying attention to exceptions in constructors. 
import java.io.*; 
                                                            
6 ISO C++ added similar constraints that require derived-method exceptions to be the same as, or derived from, the 
exceptions thrown by the base-class method. This is one case in which C++ is actually able to check exception 
specifications at compile time. 



 

 
public class InputFile { 
  private BufferedReader in; 
  public InputFile(String fname) throws Exception { 
    try { 
      in = new BufferedReader(new FileReader(fname)); 
      // Other code that might throw exceptions 
    } catch(FileNotFoundException e) { 
      System.out.println("Could not open " + fname); 
      // Wasn’t open, so don’t close it 
      throw e; 
    } catch(Exception e) { 
      // All other exceptions must close it 
      try { 
        in.close(); 
      } catch(IOException e2) { 
        System.out.println("in.close() unsuccessful"); 
      } 
      throw e; // Rethrow 
    } finally { 
      // Don’t close it here!!! 
    } 
  } 
  public String getLine() { 
    String s; 
    try { 
      s = in.readLine(); 
    } catch(IOException e) { 
      throw new RuntimeException("readLine() failed"); 
    } 
    return s; 
  } 
  public void dispose() { 
    try { 
      in.close(); 
      System.out.println("dispose() successful"); 
    } catch(IOException e2) { 
      throw new RuntimeException("in.close() failed"); 
    } 
  } 
} ///:~ 

The constructor for InputFile takes a String argument, which is the name of the file you 
want to open. Inside a try block, it creates a FileReader using the file name. A FileReader 
isn’t particularly useful until you use it to create a BufferedReader. One of the benefits of 
InputFile is that it combines these two actions.  

If the FileReader constructor is unsuccessful, it throws a FileNotFoundException. This 
is the one case in which you don’t want to close the file, because it wasn’t successfully 
opened. Any other catch clauses must close the file because it was opened by the time those 
catch clauses are entered. (Of course, this gets trickier if more than one method can throw a 
FileNotFoundException. In that case, you’ll usually have to break things into several try 
blocks.) The close( ) method might throw an exception so it is tried and caught even though 
it’s within the block of another catch clause—it’s just another pair of curly braces to the Java 
compiler. After performing local operations, the exception is rethrown, which is appropriate 
because this constructor failed, and you don’t want the calling method to assume that the 
object has been properly created and is valid.  

In this example, the finally clause is definitely not the place to close( ) the file, since that 
would close it every time the constructor completed. We want the file to be open for the 
useful lifetime of the InputFile object.  

Error Handling with Exceptions 341 



 

The getLine( ) method returns a String containing the next line in the file. It calls 
readLine( ), which can throw an exception, but that exception is caught so that getLine( ) 
doesn’t throw any exceptions. One of the design issues with exceptions is whether to handle 
an exception completely at this level, to handle it partially and pass the same exception (or a 
different one) on, or whether to simply pass it on. Passing it on, when appropriate, can 
certainly simplify coding. In this situation, the getLine( ) method converts the exception to 
a RuntimeException to indicate a programming error.  

The dispose( ) method must be called by the user when the InputFile object is no longer 
needed. This will release the system resources (such as file handles) that are used by the 
BufferedReader and/or FileReader objects. You don’t want to do this until you’re 
finished with the InputFile object. You might think of putting such functionality into a 
finalize( ) method, but as mentioned in the Initialization & Cleanup chapter, you can’t 
always be sure that finalize( ) will be called (even if you can be sure that it will be called, 
you don’t know when). This is one of the downsides to Java: All cleanupother than memory 
cleanup—doesn’t happen automatically, so you must inform the client programmers that 
they are responsible.  

The safest way to use a class which might throw an exception during construction and which 
requires cleanup is to use nested try blocks:  

//: exceptions/Cleanup.java 
// Guaranteeing proper cleanup of a resource. 
 
public class Cleanup { 
  public static void main(String[] args) { 
    try { 
      InputFile in = new InputFile("Cleanup.java"); 
      try { 
        String s; 
        int i = 1; 
        while((s = in.getLine()) != null) 
          ; // Perform line-by-line processing here... 
      } catch(Exception e) { 
        System.out.println("Caught Exception in main"); 
        e.printStackTrace(System.out); 
      } finally { 
        in.dispose(); 
      } 
    } catch(Exception e) { 
      System.out.println("InputFile construction failed"); 
    } 
  } 
} /* Output: 
dispose() successful 
*///:~ 

Look carefully at the logic here: The construction of the InputFile object is effectively in its 
own try block. If that construction fails, the outer catch clause is entered and dispose( ) is 
not called. However, if construction succeeds then you want to make sure the object is 
cleaned up, so immediately after construction you create a new try block. The finally that 
performs cleanup is associated with the inner try block; this way, the finally clause is not 
executed if construction fails, and it is always executed if construction succeeds.  

This general cleanup idiom should still be used if the constructor throws no exceptions. The 
basic rule is: Right after you create an object that requires cleanup, begin a try-finally:  

//: exceptions/CleanupIdiom.java 
// Each disposable object must be followed by a try-finally 
 

342 Thinking in Java Bruce Eckel 



 

class NeedsCleanup { // Construction can’t fail 
  private static long counter = 1; 
  private final long id = counter++; 
  public void dispose() { 
    System.out.println("NeedsCleanup " + id + " disposed"); 
  } 
} 
 
class ConstructionException extends Exception {} 
 
class NeedsCleanup2 extends NeedsCleanup { 
  // Construction can fail: 
  public NeedsCleanup2() throws ConstructionException {} 
} 
 
public class CleanupIdiom { 
  public static void main(String[] args) { 
    // Section 1: 
    NeedsCleanup nc1 = new NeedsCleanup(); 
    try { 
      // ... 
    } finally { 
      nc1.dispose(); 
    } 
 
    // Section 2: 
    // If construction cannot fail you can group objects: 
    NeedsCleanup nc2 = new NeedsCleanup(); 
    NeedsCleanup nc3 = new NeedsCleanup(); 
    try { 
      // ... 
    } finally { 
      nc3.dispose(); // Reverse order of construction 
      nc2.dispose(); 
    } 
 
    // Section 3: 
    // If construction can fail you must guard each one: 
    try { 
      NeedsCleanup2 nc4 = new NeedsCleanup2(); 
      try { 
        NeedsCleanup2 nc5 = new NeedsCleanup2(); 
        try { 
          // ... 
        } finally { 
          nc5.dispose(); 
        } 
      } catch(ConstructionException e) { // nc5 constructor 
        System.out.println(e); 
      } finally { 
        nc4.dispose(); 
      } 
    } catch(ConstructionException e) { // nc4 constructor 
      System.out.println(e); 
    } 
  } 
} /* Output: 
NeedsCleanup 1 disposed 
NeedsCleanup 3 disposed 
NeedsCleanup 2 disposed 
NeedsCleanup 5 disposed 
NeedsCleanup 4 disposed 
*///:~ 

Error Handling with Exceptions 343 



 

In main( ), section 1 is fairly straightforward: You follow a disposable object with a try-
finally. If the object construction cannot fail, no catch is necessary. In section 2, you can see 
that objects with constructors that cannot fail can be grouped together for both construction 
and cleanup.  

Section 3 shows how to deal with objects whose constructors can fail and which need 
cleanup. To properly handle this situation, things get messy, because you must surround 
each construction with its own try-catch, and each object construction must be followed by 
a try-finally to guarantee cleanup.  

The messiness of exception handling in this case is a strong argument for creating 
constructors that cannot fail, although this is not always possible.  

Note that if dispose( ) can throw an exception you might need additional try blocks. 
Basically, you must think carefully about all the possibilities and guard for each one.  

Exercise 21:   (2) Demonstrate that a derived-class constructor cannot catch exceptions 
thrown by its base-class constructor.  

Exercise 22:   (2) Create a class called FailingConstructor with a constructor that 
might fail partway through the construction process and throw an exception. In main( ), 
write code that properly guards against this failure.  

Exercise 23:   (4) Add a class with a dispose( ) method to the previous exercise. Modify 
FailingConstructor so that the constructor creates one of these disposable objects as a 
member object, after which the constructor might throw an exception, after which it creates a 
second disposable member object. Write code to properly guard against failure, and in 
main( ) verify that all possible failure situations are covered.  

Exercise 24:   (3) Add a dispose( ) method to the FailingConstructor class and write 
code to properly use this class.  

Exception matching  
When an exception is thrown, the exception-handling system looks through the "nearest" 
handlers in the order they are written. When it finds a match, the exception is considered 
handled, and no further searching occurs.  

Matching an exception doesn’t require a perfect match between the exception and its 
handler. A derived-class object will match a handler for the base class, as shown in this 
example:  

//: exceptions/Human.java 
// Catching exception hierarchies. 
 
class Annoyance extends Exception {} 
class Sneeze extends Annoyance {} 
 
public class Human { 
  public static void main(String[] args) { 
    // Catch the exact type: 
    try { 
      throw new Sneeze(); 
    } catch(Sneeze s) { 
      System.out.println("Caught Sneeze"); 
    } catch(Annoyance a) { 
      System.out.println("Caught Annoyance"); 

344 Thinking in Java Bruce Eckel 



 

    } 
    // Catch the base type: 
    try { 
      throw new Sneeze(); 
    } catch(Annoyance a) { 
      System.out.println("Caught Annoyance"); 
    } 
  } 
} /* Output: 
Caught Sneeze 
Caught Annoyance 
*///:~ 

The Sneeze exception will be caught by the first catch clause that it matches, which is the 
first one, of course. However, if you remove the first catch clause, leaving only the catch 
clause for Annoyance, the code still works because it’s catching the base class of Sneeze. 
Put another way, catch(Annoyance a) will catch an Annoyance or any class derived 
from it. This is useful because if you decide to add more derived exceptions to a method, then 
the client programmer’s code will not need changing as long as the client catches the base-
class exceptions.  

If you try to "mask" the derived-class exceptions by putting the base-class catch clause first, 
like this:  

try { 
  throw new Sneeze(); 
} catch(Annoyance a) { 
// ... 
} catch(Sneeze s) { 
// ... 
} 

the compiler will give you an error message, since it sees that the Sneeze catch clause can 
never be reached.  

Exercise 25:   (2) Create a three-level hierarchy of exceptions. Now create a base-class A 
with a method that throws an exception at the base of your hierarchy. Inherit B from A and 
override the method so it throws an exception at level two of your hierarchy. Repeat by 
inheriting class C from B. In main( ), create a C and upcast it to A, then call the method.  

Alternative approaches  
An exception-handling system is a trapdoor that allows your program to abandon execution 
of the normal sequence of statements. The trapdoor is used when an "exceptional condition" 
occurs, such that normal execution is no longer possible or desirable. Exceptions represent 
conditions that the current method is unable to handle. The reason exception-handling 
systems were developed is because the approach of dealing with each possible error condition 
produced by each function call was too onerous, and programmers simply weren’t doing it. 
As a result, they were ignoring the errors. It’s worth observing that the issue of programmer 
convenience in handling errors was a prime motivation for exceptions in the first place.  

One of the important guidelines in exception handling is "Don’t catch an exception unless 
you know what to do with it." In fact, one of the important goals of exception handling is to 
move the error-handling code away from the point where the errors occur. This allows you to 
focus on what you want to accomplish in one section of your code, and how you’re going to 
deal with problems in a distinct separate section of your code. As a result, your mainline code 
is not cluttered with error-handling logic, and it’s much easier to understand and maintain. 

Error Handling with Exceptions 345 



 

346 Thinking in Java Bruce Eckel 

Exception handling also tends to reduce the amount of error-handling code, by allowing one 
handler to deal with many error sites.  

Checked exceptions complicate this scenario a bit, because they force you to add catch 
clauses in places where you may not be ready to handle an error. This results in the "harmful 
if swallowed" problem:  

try { 
// ... to do something useful 
} catch(ObligatoryException e) {} // Gulp! 

Programmers (myself included, in the 1st edition of this book) would just do the simplest 
thing, and "swallow" the exception—often unintentionally, but once you do it, the compiler 
has been satisfied, so unless you remember to revisit and correct the code, the exception will 
be lost. The exception happens, but it vanishes completely when swallowed. Because the 
compiler forces you to write code right away to handle the exception, this seems like the 
easiest solution even though it’s probably the worst thing you can do.  

Horrified upon realizing that I had done this, in the 2nd edition I "fixed" the problem by 
printing the stack trace inside the handler (as is still seen— appropriately—in a number of 
examples in this chapter). While this is useful to trace the behavior of exceptions, it still 
indicates that you don’t really know what to do with the exception at that point in your code. 
In this section you’ll learn about some of the issues and complications arising from checked 
exceptions, and options that you have when dealing with them.  

This topic seems simple. But it is not only complicated, it is also an issue of some volatility. 
There are people who are staunchly rooted on either side of the fence and who feel that the 
correct answer (theirs) is blatantly obvious. I believe the reason for one of these positions is 
the distinct benefit seen in going from a poorly typed language like pre-ANSI C to a strong, 
statically typed language (that is, checked at compile time) like C++ or Java. When you make 
that transition (as I did), the benefits are so dramatic that it can seem like static type 
checking is always the best answer to most problems. My hope is to relate a little bit of my 
own evolution that has brought the absolute value of static type checking into question; 
clearly, it’s very helpful much of the time, but there’s a fuzzy line we cross when it begins to 
get in the way and become a hindrance (one of my favorite quotes is "All models are wrong. 
Some are useful.").  

History  

Exception handling originated in systems like PL/1 and Mesa, and later appeared in CLU, 
Smalltalk, Modula-3, Ada, Eiffel, C++, Python, Java, and the post-Java languages Ruby and 
C#. The Java design is similar to C++, except in places where the Java designers felt that the 
C++ approach caused problems. To provide programmers with a framework that they were 
more likely to use for error handling and recovery, exception handling was added to C++ 
rather late in the standardization process, promoted by Bjarne Stroustrup, the language’s 
original author. The model for C++ exceptions came primarily from CLU. However, other 
languages existed at that time that also supported exception handling: Ada, Smalltalk (both 
of these had exceptions but no exception specifications) and Modula-3 (which included both 
exceptions and specifications).  

In their seminal paper7 on the subject, Liskov and Snyder observe that a major defect of 
languages like C, which report errors in a transient fashion, is that:  

                                                            
7 Barbara Liskov and Alan Snyder, Exception Handling in CLU, IEEE Transactions on Software Engineering, Vol. SE-5, 
No. 6, November 1979. This paper is not available on the Internet, only in print form, so you’ll have to contact a library to 
get a copy. 



 

"...every invocation must be followed by a conditional test to determine what the 
outcome was. This requirement leads to programs that are difficult to read, and 
probably inefficient as well, thus discouraging programmers from signaling and 
handling exceptions."  

Thus one of the original motivations of exception handling was to prevent this requirement, 
but with checked exceptions in Java we commonly see exactly this kind of code. They go on to 
say:  

"...requiring that the text of a handler be attached to the invocation that raises the 
exception would lead to unreadable programs in which expressions were broken up with 
handlers."  

Following the CLU approach when designing C++ exceptions, Stroustrup stated that the goal 
was to reduce the amount of code required to recover from errors. I believe that he was 
observing that programmers were typically not writing error-handling code in C because the 
amount and placement of such code was daunting and distracting. As a result, they were used 
to doing it the C way, ignoring errors in code and using debuggers to track down problems. 
To use exceptions, these C programmers had to be convinced to write "additional" code that 
they weren’t normally writing. Thus, to draw them into a better way of handling errors, the 
amount of code they would need to "add" must not be onerous. I think it’s important to keep 
this goal in mind when looking at the effects of checked exceptions in Java.  

C++ brought an additional idea over from CLU: the exception specification, to 
programmatically state in the method signature the exceptions that could result from calling 
that method. The exception specification really has two purposes. It can say, "I’m originating 
this exception in my code; you handle it." But it can also mean, "I’m ignoring this exception 
that can occur as a result of my code; you handle it." We’ve been focusing on the "you handle 
it" part when looking at the mechanics and syntax of exceptions, but here I’m particularly 
interested in the fact that we often ignore exceptions and that’s what the exception 
specification can state.  

In C++ the exception specification is not part of the type information of a function. The only 
compile-time checking is to ensure that exception specifications are used consistently; for 
example, if a function or method throws exceptions, then the overloaded or derived versions 
must also throw those exceptions. Unlike Java, however, no compile-time checking occurs to 
determine whether or not the function or method will actually throw that exception, or 
whether the exception specification is complete (that is, whether it accurately describes all 
exceptions that maybe thrown). That validation does happen, but only at run time. If an 
exception is thrown that violates the exception specification, the C++ program will call the 
standard library function unexpected( ).  

It is interesting to note that, because of the use of templates, exception specifications are not 
used at all in the Standard C++ Library. In Java, there are restrictions on the way that Java 
generics can be used with exception specifications.  

Perspectives  

First, it’s worth noting that Java effectively invented the checked exception (clearly inspired 
by C++ exception specifications and the fact that C++ programmers typically don’t bother 
with them). However, it was an experiment which no subsequent language has chosen to 
duplicate.  

Secondly, checked exceptions appear to be an "obvious good thing" when seen in 
introductory examples and in small programs. It has been suggested that the subtle 
difficulties begin to appear when programs start to get large. Of course, largeness usually 
doesn’t happen overnight; it creeps. Languages that may not be suited for large-scale projects 

Error Handling with Exceptions 347 



 

348 Thinking in Java Bruce Eckel 

are used for small projects. These projects grow, and at some point we realize that things 
have gone from "manageable" to "difficult." This is what I’m suggesting may be the case with 
too much type checking; in particular, with checked exceptions.  

The scale of the program seems to be a significant issue. This is a problem because most 
discussions tend to use small programs as demonstrations. One of the C# designers observed 
that:  

"Examination of small programs leads to the conclusion that requiring exception 
specifications could both enhance developer productivity and enhance code quality, but 
experience with large software projects suggests a different result—decreased 
productivity and little or no increase in code quality."8

  

In reference to uncaught exceptions, the CLU creators stated:  

"We felt it was unrealistic to require the programmer to provide handlers in situations 
where no meaningful action can be taken."9  

When explaining why a function declaration with no specification means that it can throw 
any exception, rather than no exceptions, Stroustrup states:  

"However, that would require exception specifications for essentially every function, 
would be a significant cause for recompilation, and would inhibit cooperation with 
software written in other languages. This would encourage programmers to subvert the 
exception-handling mechanisms and to write spurious code to suppress exceptions. It 
would provide a false sense of security to people who failed to notice the exception."10  

We see this very behavior—subverting the exceptions—happening with checked exceptions in 
Java.  

Martin Fowler (author of UML Distilled, Refactoring, and Analysis Patterns) wrote the 
following to me:  

"...on the whole I think that exceptions are good, but Java checked exceptions are more 
trouble than they are worth."  

I now think that Java’s important step was to unify the error-reporting model, so that all 
errors are reported using exceptions. This wasn’t happening with C++, because for backward 
compatibility with C the old model of just ignoring errors was still available. But if you have 
consistent reporting with exceptions, then exceptions can be used if desired, and if not, they 
will propagate out to the highest level (the console or other container program). When Java 
modified the C++ model so that exceptions were the only way to report errors, the extra 
enforcement of checked exceptions may have become less necessary.  

In the past, I have been a strong believer that both checked exceptions and static type 
checking were essential to robust program development. However, both anecdotal and direct 
experience11

 with languages that are more dynamic than static has led me to think that the 
great benefits actually come from:  

                                                            
8 http://discuss.develop.com/archives/wa.exe?A2=indoonA&L=DOTNET&P=R32820 

9 Exception Handling in CLU, Liskov & Snyder. 

10 Bjarne Stroustrup, The C++ Programming Language, 3rd Edition (Addison-Wesley, 1997), P- 376. 

11 Indirectly with Smalltalk via conversations with many experienced programmers in that language; directly with Python 
(www.Python.org). 



 

Error Handling with Exceptions 349 

1. A unified error-reporting model via exceptions, regardless of whether the programmer 
is forced by the compiler to handle them.  
 

2. Type checking, regardless of when it takes place. That is, as long as proper use of a 
type is enforced, it often doesn’t matter if it happens at compile time or run time.  

 
On top of this, there are very significant productivity benefits to reducing the compile-time 
constraints upon the programmer. Indeed, reflection and generics are required to 
compensate for the overconstraining nature of static typing, as you shall see in a number of 
examples throughout the book.  

I’ve already been told by some that what I say here constitutes blasphemy, and by uttering 
these words my reputation will be destroyed, civilizations will fall, and a higher percentage of 
programming projects will fail. The belief that the compiler can save your project by pointing 
out errors at compile time runs strong, but it’s even more important to realize the limitation 
of what the compiler is able to do; in the supplement you will find at 
http://MindView.net/Books/BetterJava, I emphasize the value of an automated build 
process and unit testing, which give you far more leverage than you get by trying to turn 
everything into a syntax error. It’s worth keeping in mind that:  

"A good programming language is one that helps programmers write good programs. 
No programming language will prevent its users from writing bad programs."12

  

In any event, the likelihood of checked exceptions ever being removed from Java seems dim. 
It would be too radical of a language change, and proponents within Sun appear to be quite 
strong. Sun has a history and policy of absolute backwards compatibility—to give you a sense 
of this, virtually all Sun software runs on all Sun hardware, no matter how old. However, if 
you find that some checked exceptions are getting in your way, or especially if you find 
yourself being forced to catch exceptions, but you don’t know what to do with them, there are 
some alternatives.  

Passing exceptions to the console  

In simple programs, like many of those in this book, the easiest way to preserve the 
exceptions without writing a lot of code is to pass them out of main( ) to the console. For 
example, if you want to open a file for reading (something you’ll learn about in detail in the 
I/O chapter), you must open and close a FilelnputStream, which throws exceptions. For a 
simple program, you can do this (you’ll see this approach used in numerous places 
throughout this book):  

//: exceptions/MainException.java 
import java.io.*; 
 
public class MainException { 
  // Pass all exceptions to the console: 
  public static void main(String[] args) throws Exception { 
    // Open the file: 
    FileInputStream file = 
      new FileInputStream("MainException.java"); 
    // Use the file ... 
    // Close the file: 
    file.close(); 
  } 
} ///:~ 

                                                            
12 Kees Koster, designer of the CDL language, as quoted by Bertrand Meyer, designer of the Eiffel language, 
www.elj.com/elj/vi/ni/bm/right/. 



 

Note that main( ) is also a method that may have an exception specification, and here the 
type of exception is Exception, the root class of all checked exceptions. By passing it out to 
the console, you are relieved from writing try-catch clauses within the body of main( ). 
(Unfortunately, file I/O is significantly more complex than it would appear to be from this 
example, so don’t get too excited until after you’ve read the I/O chapter).  

Exercise 26:   (1) Change the file name string in MainException.java to name a file 
that doesn’t exist. Run the program and note the result.  

Converting checked to unchecked exceptions  

Throwing an exception from main( ) is convenient when you’re writing simple programs for 
your own consumption, but is not generally useful. The real problem is when you are writing 
an ordinary method body, and you call another method and realize, "I have no idea what to 
do with this exception here, but I don’t want to swallow it or print some banal message." 
With chained exceptions, a new and simple solution prevents itself. You simply "wrap" a 
checked exception inside a RuntimeException by passing it to the RuntimeException 
constructor, like this:  

t r y { 
  // ... to do something useful 
} catch(IDontKnowWhatToDoWithThisCheckedException e) { 
  throw new RuntimeException(e); 
} 

This seems to be an ideal solution if you want to "turn off the checked exception—you don’t 
swallow it, and you don’t have to put it in your method’s exception specification, but because 
of exception chaining you don’t lose any information from the original exception.  

This technique provides the option to ignore the exception and let it bubble up the call stack 
without being required to write try-catch clauses and/or exception specifications. However, 
you may still catch and handle the specific exception by using getCause( ), as seen here:  

//: exceptions/TurnOffChecking.java 
// "Turning off" Checked exceptions. 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
class WrapCheckedException { 
  void throwRuntimeException(int type) { 
    try { 
      switch(type) { 
        case 0: throw new FileNotFoundException(); 
        case 1: throw new IOException(); 
        case 2: throw new RuntimeException("Where am I?"); 
        default: return; 
      } 
    } catch(Exception e) { // Adapt to unchecked: 
      throw new RuntimeException(e); 
    } 
  } 
} 
 
class SomeOtherException extends Exception {} 
 
public class TurnOffChecking { 
  public static void main(String[] args) { 
    WrapCheckedException wce = new WrapCheckedException(); 
    // You can call throwRuntimeException() without a try 

350 Thinking in Java Bruce Eckel 



 

    // block, and let RuntimeExceptions leave the method: 
    wce.throwRuntimeException(3); 
    // Or you can choose to catch exceptions: 
    for(int i = 0; i < 4; i++) 
      try { 
        if(i < 3) 
          wce.throwRuntimeException(i); 
        else 
          throw new SomeOtherException(); 
      } catch(SomeOtherException e) { 
          print("SomeOtherException: " + e); 
      } catch(RuntimeException re) { 
        try { 
          throw re.getCause(); 
        } catch(FileNotFoundException e) { 
          print("FileNotFoundException: " + e); 
        } catch(IOException e) { 
          print("IOException: " + e); 
        } catch(Throwable e) { 
          print("Throwable: " + e); 
        } 
      } 
  } 
} /* Output: 
FileNotFoundException: java.io.FileNotFoundException 
IOException: java.io.IOException 
Throwable: java.lang.RuntimeException: Where am I? 
SomeOtherException: SomeOtherException 
*///:~ 

WrapCheckedException.throwRuntimeException( ) contains code that generates 
different types of exceptions. These are caught and wrapped inside RuntimeException 
objects, so they become the "cause" of those exceptions.  

In TurnOffChecking, you can see that it’s possible to call throwRuntimeException( ) 
with no try block because the method does not throw any checked exceptions. However, 
when you’re ready to catch exceptions, you still have the ability to catch any exception you 
want by putting your code inside a try block. You start by catching all the exceptions you 
explicitly know might emerge from the code in your try block—in this case, 
SomeOtherException is caught first. Lastly, you catch RuntimeException and throw 
the result of getCause( ) (the wrapped exception). This extracts the originating exceptions, 
which can then be handled in their own catch clauses.  

The technique of wrapping a checked exception in a RuntimeException will be used when 
appropriate throughout the rest of this book. Another solution is to create your own subclass 
of RuntimeException. This way, it doesn’t need to be caught, but someone can catch it if 
they want to.  

Exercise 27:   (1) Modify Exercise 3 to convert the exception to a RuntimeException. 

Exercise 28:   (1) Modify Exercise 4 so that the custom exception class inherits from 
RuntimeException, and show that the compiler allows you to leave out the try block.  

Exercise 29:   (1) Modify all the exception types in Stormylnning.java so that they 
extend RuntimeException, and show that no exception specifications or try blocks are 
necessary. Remove the ‘//!’ comments and show how the methods can be compiled without 
specifications.  

Error Handling with Exceptions 351 



 

Exercise 30:   (2) Modify Human.java so that the exceptions inherit from 
RuntimeException. Modify main( ) so that the technique in TurnOffChecking.java is 
used to handle the different types of exceptions.  

Exception guidelines  
Use exceptions to:  

1. Handle problems at the appropriate level. (Avoid catching exceptions unless you know 
what to do with them.)  
 

2. Fix the problem and call the method that caused the exception again.  
 

3. Patch things up and continue without retrying the method.  
 

4. Calculate some alternative result instead of what the method was supposed to 
produce.  

 
5. Do whatever you can in the current context and rethrow the same exception to a 

higher context.  
 

6. Do whatever you can in the current context and throw a different exception to a higher 
context.  

 
7. Terminate the program.  

 
8. Simplify. (If your exception scheme makes things more complicated, then it is painful 

and annoying to use.)  
 

9. Make your library and program safer. (This is a short-term investment for debugging, 
and a long-term investment for application robustness.)  

Summary  
Exceptions are integral to programming with Java; you can accomplish only so much 
without knowing how to work with them. For that reason, exceptions are introduced at 
this point in the book—there are many libraries (like I/O, mentioned earlier) that you 
can’t use without handling exceptions.  

One of the advantages of exception handling is that it allows you to concentrate on the 
problem you’re trying to solve in one place, and then deal with the errors from that code 
in another place. And although exceptions are generally explained as tools that allow you 
to report and recover from errors at run time, I have come to wonder how often the 
"recovery" aspect is implemented, or even possible. My perception is that it is less than 10 
percent of the time, and even then it probably amounts to unwinding the stack to a known 
stable state rather than actually performing any kind of resumptive behavior. Whether or 
not this is true, I have come to believe that the "reporting" function is where the essential 
value of exceptions lie. The fact that Java effectively insists that all errors be reported in 
the form of exceptions is what gives it a great advantage over languages like C++, which 
allow you to report errors in a number of different ways, or not at all. A consistent error-
reporting system means that you no longer have to ask the question "Are errors slipping 
through the cracks?" with each piece of code you write (as long as you don’t "swallow" the 
exceptions, that is!).  

352 Thinking in Java Bruce Eckel 



 

Error Handling with Exceptions 353 

As you will see in future chapters, by laying this question to rest—even if you do so by 
throwing a RuntimeException—your design and implementation efforts can be focused 
on more interesting and challenging issues.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution 
Guide, available for sale from www.MindView.net.   





Strings 
String manipulation is arguably one of the most common 
activities in computer programming.  

This is especially true in Web systems, where Java is heavily used. In this chapter, we’ll look 
more deeply at what is certainly the most commonly used class in the language, String, 
along with some of its associated classes and utilities.  

Immutable Strings  
Objects of the String class are immutable. If you examine the JDK documentation for the 
String class, you’ll see that every method in the class that appears to modify a String 
actually creates and returns a brand new String object containing the modification. The 
original String is left untouched.  

Consider the following code:  

//: strings/Immutable.java 
import static net.mindview.util.Print.*; 
 
public class Immutable { 
  public static String upcase(String s) { 
    return s.toUpperCase(); 
  } 
  public static void main(String[] args) { 
    String q = "howdy"; 
    print(q); // howdy 
    String qq = upcase(q); 
    print(qq); // HOWDY 
    print(q); // howdy 
  } 
} /* Output: 
howdy 
HOWDY 
howdy 
*///:~ 

When q is passed in to upcase( ) it’s actually a copy of the reference to q. The object this 
reference is connected to stays in a single physical location. The references are copied as they 
are passed around.  

Looking at the definition for upcase( ), you can see that the reference that’s passed in has 
the name s, and it exists for only as long as the body of upcase( ) is being executed. When 
upcase( ) completes, the local reference s vanishes. upcase( ) returns the result, which is 
the original string with all the characters set to uppercase. Of course, it actually returns a 
reference to the result. But it turns out that the reference that it returns is for a new object, 
and the original q is left alone.  

This behavior is usually what you want. Suppose you say:  

String s = "asdf"; 
String x = Immutable.upcase(s); 

 



 

356 Thinking in Java Bruce Eckel 

Do you really want the upcase( ) method to change the argument? To the reader of the 
code, an argument usually looks like a piece of information provided to the method, not 
something to be modified. This is an important guarantee, since it makes code easier to write 
and understand.  

Overloading ‘+’ vs. StringBuilder  
Since String objects are immutable, you can alias to a particular String as many times as 
you want. Because a String is read-only, there’s no possibility that one reference will change 
something that will affect the other references.  

Immutability can have efficiency issues. A case in point is the operator ‘+’ that has been 
overloaded for String objects. Overloading means that an operation has been given an extra 
meaning when used with a particular class. (The ‘+’ and ‘+=‘ for String are the only 
operators that are overloaded in Java, and Java does not allow the programmer to overload 
any others.)1 The’+’ operator allows you to concatenate Strings:  

//: strings/Concatenation.java 
 
public class Concatenation { 
  public static void main(String[] args) { 
    String mango = "mango"; 
    String s = "abc" + mango + "def" + 47; 
    System.out.println(s); 
  } 
} /* Output: 
abcmangodef47 
*///:~ 

You could imagine how this might work. The String "abc" could have a method append( ) 
that creates a new String object containing "abc" concatenated with the contents of mango. 
The new String object would then create another new String that added "def," and so on.  

This would certainly work, but it requires the creation of a lot of String objects just to put 
together this new String, and then you have a bunch of intermediate String objects that 
need to be garbage collected. I suspect that the Java designers tried this approach first (which 
is a lesson in software design—you don’t really know anything about a system until you try it 
out in code and get something working). I also suspect that they discovered it delivered 
unacceptable performance.  

To see what really happens, you can decompile the above code using the javap tool that 
comes as part of the JDK. Here’s the command line:  

javap -c Concatenation 

The -c flag will produce the JVM bytecodes. After we strip out the parts we’re not interested 
in and do a bit of editing, here are the relevant bytecodes:  

public static void main(java.lang.String[]); 
  Code: 
   Stack=2, Locals=3, Args_size=1 
   0:    ldc #2; //String mango 
                                                            
1 C++ allows the programmer to overload operators at will. Because this can often be a complicated process (see Chapter 
10 of Thinking in C++, 2nd Edition, Prentice Hall, 2000), the Java designers deemed it a "bad" feature that shouldn’t be 
included in Java. It wasn’t so bad that they didn’t end up doing it themselves, and ironically enough, operator overloading 
would be much easier to use in Java than in C++. This can be seen in Python (see www.Python.org) and C#, which have 
garbage collection and straightforward operator overloading. 



 

   2:    astore_1 
   3:    new #3; //class StringBuilder 
   6:    dup 
   7:    invokespecial #4; //StringBuilder."<init>":() 
   10:   ldc #5; // String abc 
   12    invokevirtual #6; //StringBuilder.append:(String) 
   15    aload_1 
   16    invokevirtual #6; //StringBuilder.append:(String) 
   19    ldc #7; //String def 
   21    invokevirtual #6; //StringBuilder.append:(String) 
   24    bipush 47 
   26    invokevirtual #8; //StringBuilder.append:(I) 
   29    invokevirtual #9; //StringBuilder.toString:() 
   32    astore_2 
   33    getstatic #10; //Field System.out:PrintStream; 
   36    aload_2 
   37    invokevirtual #11; // PrintStream.println:(String) 
   40    return 

If you’ve had experience with assembly language, this may look familiar to you—statements 
like dup and invokevirtual are the Java Virtual Machine (JVM) equivalent of assembly 
language. If you’ve never seen assembly language, don’t worry about it—the important part to 
notice is the introduction by the compiler of the java.lang.StringBuilder class. There was 
no mention of StringBuilder in the source code, but the compiler decided to use it anyway, 
because it is much more efficient.  

In this case, the compiler creates a StringBuilder object to build the String s, and calls 
append( ) four times, one for each of the pieces. Finally, it calls toString( ) to produce the 
result, which it stores (with astore_2) as s.  

Before you assume that you should just use Strings everywhere and that the compiler will 
make everything efficient, let’s look a little more closely at what the compiler is doing. Here’s 
an example that produces a String result in two ways: using Strings, and by hand-coding 
with StringBuilder:  

//: strings/WhitherStringBuilder.java 
 
public class WhitherStringBuilder { 
  public String implicit(String[] fields) { 
    String result = ""; 
    for(int i = 0; i < fields.length; i++) 
      result += fields[i]; 
    return result; 
  } 
  public String explicit(String[] fields) { 
    StringBuilder result = new StringBuilder(); 
    for(int i = 0; i < fields.length; i++) 
      result.append(fields[i]); 
    return result.toString(); 
  } 
} ///:~ 

Now if you run javap -c WitherStringBuilder, you can see the (simplified) code for the 
two different methods. First, implicit( ): 

public java.lang.String implicit(java.lang.String[]); 
  Code: 
   0:    ldc #2; //String 
   2:    astore_2 
   3:    iconst_0 
   4:    istore_3 

Strings 357 



 

   5:    iload_3 
   6:    aload_1 
   7:    arraylength 
   8:    if_icmpge 38 
   11:   new #3; //class StringBuilder 
   14:   dup 
   15:   invokespecial #4; // StringBuilder.”<init>”:() 
   18:   aload_2 
   19:   invokevirtual #5; // StringBuilder.append:() 
   22:   aload_1 
   23    iload_3 
   24    aaload 
   25:   invokevirtual #5; // StringBuilder.append:() 
   28:   invokevirtual #6; // StringBuiIder.toString:() 
   31:   astore_2 
   32:   iinc 3, 1 
   35:   goto 5 
   38:   aload_2 
   39    areturn 

Notice 8: and 35:, which together form a loop. 8: does an "integer compare greater than or 
equal to" of the operands on the stack and jumps to 38: when the loop is done. 35: is a goto 
back to the beginning of the loop, at 5:. The important thing to note is that the 
StringBuilder construction happens inside this loop, which means you’re going to get a 
new StringBuilder object every time you pass through the loop.  

Here are the bytecodes for explicit( ):  

public java.lang.String explicit(java.lang.String[]); 
  Code: 
   0:    new #3; //class StringBuilder 
   3:    dup 
   4:    invokespecial #4; // StringBuilder.”<init>”:() 
   7:    astore_2 
   8:    iconst_0 
   9:    istore_3 
   10:   iload_3 
   11:   aload_1 
   12:   arraylength 
   13:   if_icmpge 30 
   16:   aload_2 
   17:   aload_1 
   18:   iload_3 
   19:   aaload 
   20    invokevirtual #5; // StringBuilder.append:() 
   23    pop 
   24:   iinc 3,1 
   27:   goto 10 
   30:   aload_2 
   31:   invokevirtual #6; // StringBuiIder.toString:() 
   34:   areturn 

Not only is the loop code shorter and simpler, the method only creates a single 
StringBuilder object. Creating an explicit StringBuilder also allows you to preallocate its 
size if you have extra information about how big it might need to be, so that it doesn’t need to 
constantly reallocate the buffer.  

 

 

358 Thinking in Java Bruce Eckel 



 

Thus, when you create a toString( ) method, if the operations are simple ones that the 
compiler can figure out on its own, you can generally rely on the compiler to build the result 
in a reasonable fashion. But if looping is involved, you should explicitly use a StringBuilder 
in your toString( ), like this:  

//: strings/UsingStringBuilder.java 
import java.util.*; 
 
public class UsingStringBuilder { 
  public static Random rand = new Random(47); 
  public String toString() { 
    StringBuilder result = new StringBuilder("["); 
    for(int i = 0; i < 25; i++) { 
      result.append(rand.nextInt(100)); 
      result.append(", "); 
    } 
    result.delete(result.length()-2, result.length()); 
    result.append("]"); 
    return result.toString(); 
  } 
  public static void main(String[] args) { 
    UsingStringBuilder usb = new UsingStringBuilder(); 
    System.out.println(usb); 
  } 
} /* Output: 
[58, 55, 93, 61, 61, 29, 68, 0, 22, 7, 88, 28, 51, 89, 9, 78, 98, 61, 
20, 58, 16, 40, 11, 22, 4] 
*///:~ 

Notice that each piece of the result is added with an append( ) statement. If you try to take 
shortcuts and do something like append(a + ": " + c), the compiler will jump in and start 
making more StringBuilder objects again.  

If you are in doubt about which approach to use, you can always run javap to double-check.  

Although StringBuilder has a full complement of methods, including insert( ), replace( 
), substring( ) and even reverse( ), the ones you will generally use are append( ) and 
toString( ). Note the use of delete( ) to remove the last comma and space before adding 
the closing square bracket.  

StringBuilder was introduced in Java SE5. Prior to this, Java used StringBuffer, which 
ensured thread safety (see the Concurrency chapter) and so was significantly more 
expensive. Thus, string operations in Java SE5/6 should be faster.  

Exercise 1:   (2) Analyze SprinklerSystem.toString( ) in 
reusing/SprinklerSystem.java to discover whether writing the toString( ) with an 
explicit StringBuilder will save any StringBuilder creations.  

Unintended recursion  
Because (like every other class) the Java standard containers are ultimately inherited from 
Object, they contain a toString( ) method. This has been overridden so that they can 
produce a String representation of themselves, including the objects they hold. 
ArrayList.toString( ), for example, steps through the elements of the Array List and calls 
toString( ) for each one:  

//: strings/ArrayListDisplay.java 
import generics.coffee.*; 

Strings 359 



 

import java.util.*; 
 
public class ArrayListDisplay { 
  public static void main(String[] args) { 
    ArrayList<Coffee> coffees = new ArrayList<Coffee>(); 
    for(Coffee c : new CoffeeGenerator(10)) 
      coffees.add(c); 
    System.out.println(coffees); 
  } 
} /* Output: 
[Americano 0, Latte 1, Americano 2, Mocha 3, Mocha 4, Breve 5, Americano 
6, Latte 7, Cappuccino 8, Cappuccino 9] 
*///:~ 

Suppose you’d like your toString( ) to print the address of your class. It seems to make 
sense to simply refer to this: 

//: strings/InfiniteRecursion.java 
// Accidental recursion. 
// {RunByHand} 
import java.util.*; 
 
public class InfiniteRecursion { 
  public String toString() { 
    return " InfiniteRecursion address: " + this + "\n"; 
  } 
  public static void main(String[] args) { 
    List<InfiniteRecursion> v = 
      new ArrayList<InfiniteRecursion>(); 
    for(int i = 0; i < 10; i++) 
      v.add(new InfiniteRecursion()); 
    System.out.println(v); 
  } 
} ///:~ 

If you create an InfiniteRecursion object and then print it, you’ll get a very long sequence 
of exceptions. This is also true if you place the InfiniteRecursion objects in an ArrayList 
and print that ArrayList as shown here. What’s happening is automatic type conversion for 
Strings. When you say:  

"InfiniteRecursion address: " + this 

The compiler sees a String followed by a’+’ and something that’s not a String, so it tries to 
convert this to a String. It does this conversion by calling toString( ), which produces a 
recursive call.  

If you really do want to print the address of the object, the solution is to call the 
ObjecttoString( ) method, which does just that. So instead of saying this, you’d say 
super.toString( ).  

Exercise 2:   (1) Repair InfiniteRecursion.java.  

 

 

360 Thinking in Java Bruce Eckel 



 

Operations on Strings  
Here are some of the basic methods available for String objects. Methods that are 
overloaded are summarized in a single row:  

Method Arguments, Overloading Use 

Constructor Overloaded: default, String, 
StringBuilder, 
StringBuffer, char arrays, 
byte arrays. 

Creating String objects. 

length( )  Number of characters in the 
String. 

charAt( ) int Index The char at a location in the 
String. 

getChars( ), getBytes( ) The beginning and end from 
which to copy, the array to 
copy into, an index into the 
destination array. 

Copy chars or bytes into an 
external array. 

toCharArray( )  Produces a char[] 
containing the characters in 
the String. 

equals( ), equals-
IgnoreCase( ) 

A String to compare with. An equality check on the 
contents of the two Strings. 

compareTo( ) A String to compare with. Result is negative, zero, or 
positive depending on the 
lexicographical ordering of 
the String and the 
argument. Uppercase and 
lowercase are not equal! 

contains( ) A CharSequence to search 
for. 

Result is true if the 
argument is contained in the 
String. 

contentEquals( ) A CharSequence or 
StringBuffer to compare 
to. 

Result is true if there’s an 
exact match with the 
argument. 

equalsIgnoreCase( ) A String to compare with. Result is true if the contents 
are equal, ignoring case. 

regionMatches( ) Offset into this String, the 
other String and its offset 
and length to compare. 
Overload adds "ignore case." 

boolean result indicates 
whether the region matches. 

startsWith( ) String that it might start 
with. Overload adds offset 
into argument. 

boolean result indicates 
whether the String starts 
with the argument. 

endsWith( ) String that might be a suffix 
of this String. 

boolean result indicates 
whether the argument is a 
suffix. 

indexOf( ), 

lastIndexOf( ) 

Overloaded: char, char and 
starting index, String, 

Returns -1 if the argument is 
not found within this 
String; otherwise, returns 

Strings 361 



 

362 Thinking in Java Bruce Eckel 

Method Arguments, Overloading Use 

String and starting index. the index where the 
argument starts. 
lastIndexOf( ) searches 
backward from end. 

substring( ) (also 
subSequence( )) 

Overloaded: starting index; 
starting index + ending 
index. 

Returns a new String object 
containing the specified 
character set. 

concat( ) The String to concatenate. Returns a new String object 
containing the original 
String’s characters followed 
by the characters in the 
argument. 

replace() The old character to search 
for, the new 

character to replace it with. 
Can also replace a 
CharSequence with a 
CharSequence. 

Returns a new String object 
with the 

replacements made. Uses the 
old String if no match is 
found. 

toLowerCase( ) 
toUpperCase( ) 

 Returns a new String object 
with the case of all letters 
changed. Uses the old 
String if no changes need to 
be made. 

trim( )  Returns a new String object 
with the whitespace removed 
from each end. Uses the old 
String if no changes need to 
be made. 

valueOf( ) Overloaded: Object, 
char[], char[] and offset 
and count, boolean, char, 
int, long, float, double. 

Returns a String containing 
a character representation of 
the argument. 

intern( )  Produces one and only one 
String reference per unique 
character sequence. 

You can see that every String method carefully returns a new String object when it’s 
necessary to change the contents. Also notice that if the contents don’t need changing, the 
method will just return a reference to the original String. This saves storage and overhead.  

The String methods involving regular expressions will be explained later in this chapter.  

Formatting output  
One of the long-awaited features that has finally appeared in Java SE5 is output formatting in 
the style of C’s printf( ) statement. Not only does this allow for simplified output code, but it 
also gives Java developers powerful control over output formatting and alignment.2 

                                                            
2 Mark Welsh assisted in the creation of this section, and the "Scanning input" section. 



 

printf()  

C’s printf( ) doesn’t assemble strings the way Java does, but takes a single format string 
and inserts values into it, formatting as it goes. Instead of using the overloaded ‘+’ operator 
(which C doesn’t overload) to concatenate quoted text and variables, printf( ) uses special 
placeholders to show where the data should go. The arguments that are inserted into the 
format string follow in a comma-separated list.  

For example:  

printf("Row 1: [%d %f]\n", x, y); 

At run time, the value of x is inserted into %d and the value of y is inserted into %f. These 
placeholders are called/ormaf specifiers and, in addition to telling where to insert the value, 
they also tell what kind of variable is to be inserted and how to format it. For instance, the 
‘%d’ above says that x is an integer and the ‘%f says y is a floating point value (a float or 
double).  

System.out.format()  

Java SE5 introduced the format( ) method, available to PrintStream or PrintWriter 
objects (which you’ll learn more about in the I/O chapter), which includes System.out. The 
format( ) method is modeled after C’s printf( ). There’s even a convenience printf( ) 
method that you can use if you’re feeling nostalgic, which just calls format( ). Here’s a 
simple example:  

//: strings/SimpleFormat.java 
 
public class SimpleFormat { 
  public static void main(String[] args) { 
    int x = 5; 
    double y = 5.332542; 
    // The old way: 
    System.out.println("Row 1: [" + x + " " + y + "]"); 
    // The new way: 
    System.out.format("Row 1: [%d %f]\n", x, y); 
    // or 
    System.out.printf("Row 1: [%d %f]\n", x, y); 
  } 
} /* Output: 
Row 1: [5 5.332542] 
Row 1: [5 5.332542] 
Row 1: [5 5.332542] 
*///:~ 

You can see that format( ) and printf( ) are equivalent. In both cases, there’s only a single 
format string, followed by one argument for each format specifier.  

The Formatter class  

All of Java’s new formatting functionality is handled by the Formatter class in the java.util 
package. You can think of Formatter as a translator that converts your format string and 
data into the desired result. When you create a Formatter object, you tell it where you want 
this result to go by passing that information to the constructor:  

//: strings/Turtle.java 

Strings 363 



 

import java.io.*; 
import java.util.*; 
 
public class Turtle { 
  private String name; 
  private Formatter f; 
  public Turtle(String name, Formatter f) { 
    this.name = name; 
    this.f = f; 
  } 
  public void move(int x, int y) { 
    f.format("%s The Turtle is at (%d,%d)\n", name, x, y); 
  } 
  public static void main(String[] args) { 
    PrintStream outAlias = System.out; 
    Turtle tommy = new Turtle("Tommy", 
      new Formatter(System.out)); 
    Turtle terry = new Turtle("Terry", 
      new Formatter(outAlias)); 
    tommy.move(0,0); 
    terry.move(4,8); 
    tommy.move(3,4); 
    terry.move(2,5); 
    tommy.move(3,3); 
    terry.move(3,3); 
  } 
} /* Output: 
Tommy The Turtle is at (0,0) 
Terry The Turtle is at (4,8) 
Tommy The Turtle is at (3,4) 
Terry The Turtle is at (2,5) 
Tommy The Turtle is at (3,3) 
Terry The Turtle is at (3,3) 
*///:~ 

All the tommy output goes to System.out and all the terry output goes to an alias of 
System.out. The constructor is overloaded to take a range of output locations, but the most 
useful are PrintStreams (as above), OutputStreams, and Files. You’ll learn more about 
these in the I/O chapter.  

Exercise 3:   (1) Modify Turtle.java so that it sends all output to System.err.  

The previous example uses a new format specifier, ‘%s’. This indicates a String argument 
and is an example of the simplest kind of format specifier-one that has only a conversion 
type.  

Format specifiers  

To control spacing and alignment when data is inserted, you need more elaborate format 
specifiers. Here’s the general syntax:  

%[argument_index$][flags][width][.precision]conversion  

Often, you’ll need to control the minimum size of a field. This can be accomplished by 
specifying a width. The Formatter guarantees that a field is at least a certain number of 
characters wide by padding it with spaces if necessary. By default, the data is right justified, 
but this can be overridden by including a ‘-’ in the flags section.  

364 Thinking in Java Bruce Eckel 



 

The opposite of width is precision, which is used to specify a maximum. Unlike the width, 
which is applicable to all of the data conversion types and behaves the same with each, 
precision has a different meaning for different types. For Strings, the precision specifies the 
maximum number of characters from the String to print. For floating point numbers, 
precision specifies the number of decimal places to display (the default is 6), rounding if 
there are too many or adding trailing zeroes if there are too few. Since integers have no 
fractional part, precision isn’t applicable to them and you’ll get an exception if you use 
precision with an integer conversion type.  

This example uses format specifiers to print a shopping receipt:  

//: strings/Receipt.java 
import java.util.*; 
 
public class Receipt { 
  private double total = 0; 
  private Formatter f = new Formatter(System.out); 
  public void printTitle() { 
    f.format("%-15s %5s %10s\n", "Item", "Qty", "Price"); 
    f.format("%-15s %5s %10s\n", "----", "---", "-----"); 
  } 
  public void print(String name, int qty, double price) { 
    f.format("%-15.15s %5d %10.2f\n", name, qty, price); 
    total += price; 
  } 
  public void printTotal() { 
    f.format("%-15s %5s %10.2f\n", "Tax", "", total*0.06); 
    f.format("%-15s %5s %10s\n", "", "", "-----"); 
    f.format("%-15s %5s %10.2f\n", "Total", "", 
      total * 1.06); 
  } 
  public static void main(String[] args) { 
    Receipt receipt = new Receipt(); 
    receipt.printTitle(); 
    receipt.print("Jack’s Magic Beans", 4, 4.25); 
    receipt.print("Princess Peas", 3, 5.1); 
    receipt.print("Three Bears Porridge", 1, 14.29); 
    receipt.printTotal(); 
  } 
} /* Output: 
Item              Qty      Price 
----              ---      ----- 
Jack’s Magic Be     4       4.25 
Princess Peas       3       5.10 
Three Bears Por     1      14.29 
Tax                         1.42 
                           ----- 
Total                      25.06 
*///:~ 

As you can see, the Formatter provides powerful control over spacing and alignment with 
fairly concise notation. Here, the format strings are simply copied in order to produce the 
appropriate spacing.  

Exercise 4:   (3) Modify Receipt.java so that the widths are all controlled by a single set of 
constant values. The goal is to allow you to easily change a width by changing a single value 
in one place.  

 

Strings 365 



 

Formatter conversions  

These are the conversions you’ll come across most frequently:  

      Conversion Characters  

      d     Integral (as decimal) 

      c     Unicode character 

      b     Boolean value 

      s     String 

      f     Floating point (as decimal) 

      e     Floating point (in scientific notation) 

      x     Integral (as hex) 

      h     Hash code (as hex) 

    %     Literal "%" 

Here’s an example that shows these conversions in action: 

//: strings/Conversion.java 
import java.math.*; 
import java.util.*; 
 
public class Conversion { 
  public static void main(String[] args) { 
    Formatter f = new Formatter(System.out); 
 
    char u = ‘a’; 
    System.out.println("u = ‘a’"); 
    f.format("s: %s\n", u); 
    // f.format("d: %d\n", u); 
    f.format("c: %c\n", u); 
    f.format("b: %b\n", u); 
    // f.format("f: %f\n", u); 
    // f.format("e: %e\n", u); 
    // f.format("x: %x\n", u); 
    f.format("h: %h\n", u); 
 
    int v = 121; 
    System.out.println("v = 121"); 
    f.format("d: %d\n", v); 
    f.format("c: %c\n", v); 
    f.format("b: %b\n", v); 
    f.format("s: %s\n", v); 
    // f.format("f: %f\n", v); 
    // f.format("e: %e\n", v); 
    f.format("x: %x\n", v); 
    f.format("h: %h\n", v); 
 
    BigInteger w = new BigInteger("50000000000000"); 
    System.out.println( 
      "w = new BigInteger(\"50000000000000\")"); 

366 Thinking in Java Bruce Eckel 



 

    f.format("d: %d\n", w); 
    // f.format("c: %c\n", w); 
    f.format("b: %b\n", w); 
    f.format("s: %s\n", w); 
    // f.format("f: %f\n", w); 
    // f.format("e: %e\n", w); 
    f.format("x: %x\n", w); 
    f.format("h: %h\n", w); 
 
    double x = 179.543; 
    System.out.println("x = 179.543"); 
    // f.format("d: %d\n", x); 
    // f.format("c: %c\n", x); 
    f.format("b: %b\n", x); 
    f.format("s: %s\n", x); 
    f.format("f: %f\n", x); 
    f.format("e: %e\n", x); 
    // f.format("x: %x\n", x); 
    f.format("h: %h\n", x); 
 
    Conversion y = new Conversion(); 
    System.out.println("y = new Conversion()"); 
    // f.format("d: %d\n", y); 
    // f.format("c: %c\n", y); 
    f.format("b: %b\n", y); 
    f.format("s: %s\n", y); 
    // f.format("f: %f\n", y); 
    // f.format("e: %e\n", y); 
    // f.format("x: %x\n", y); 
    f.format("h: %h\n", y); 
 
    boolean z = false; 
    System.out.println("z = false"); 
    // f.format("d: %d\n", z); 
    // f.format("c: %c\n", z); 
    f.format("b: %b\n", z); 
    f.format("s: %s\n", z); 
    // f.format("f: %f\n", z); 
    // f.format("e: %e\n", z); 
    // f.format("x: %x\n", z); 
    f.format("h: %h\n", z); 
  } 
} /* Output: (Sample) 
u = ‘a’ 
s: a 
c: a 
b: true 
h: 61 
v = 121 
d: 121 
c: y 
b: true 
s: 121 
x: 79 
h: 79 
w = new BigInteger("50000000000000") 
d: 50000000000000 
b: true 
s: 50000000000000 
x: 2d79883d2000 
h: 8842a1a7 
x = 179.543 
b: true 

Strings 367 



 

s: 179.543 
f: 179.543000 
e: 1.795430e+02 
h: 1ef462c 
y = new Conversion() 
b: true 
s: Conversion@9cab16 
h: 9cab16 
z = false 
b: false 
s: false 
h: 4d5 
*///:~ 

The commented lines show conversions that are invalid for that particular variable type; 
executing them will trigger an exception.  

Notice that the ‘b’ conversion works for each variable above. Although it’s valid for any 
argument type, it might not behave as you’d expect. For boolean primitives or Boolean 
objects, the result will be true or false, accordingly. However, for any other argument, as 
long as the argument type is not null the result is always true. Even the numeric value of 
zero, which is synonymous with false in many languages (including C), will produce true, so 
be careful when using this conversion with non-boolean types.  

There are more obscure conversion types and other format specifier options. You can read 
about these in the JDK documentation for the Formatter class.  

Exercise 5:   (5) For each of the basic conversion types in the above table, write the most 
complex formatting expression possible. That is, use all the possible format specifiers 
available for that conversion type.  

String.format()  

Java SE5 also took a cue from C’s sprintf( ), which is used to create Strings. 
String.format( ) is a static method which takes all the same arguments as Formatter’s 
format( ) but returns a String. It can come in handy when you only need to call format( ) 
once:  

//: strings/DatabaseException.java 
 
public class DatabaseException extends Exception { 
  public DatabaseException(int transactionID, int queryID, 
    String message) { 
    super(String.format("(t%d, q%d) %s", transactionID, 
        queryID, message)); 
  } 
  public static void main(String[] args) { 
    try { 
      throw new DatabaseException(3, 7, "Write failed"); 
    } catch(Exception e) { 
      System.out.println(e); 
    } 
  } 
} /* Output: 
DatabaseException: (t3, q7) Write failed 
*///:~ 

368 Thinking in Java Bruce Eckel 



 

Under the hood, all String.format( ) does is instantiate a Formatter and pass your 
arguments to it, but using this convenience method can often be clearer and easier than 
doing it by hand.  

A hex dump tool  

As a second example, often you want to look at the bytes inside a binary file using hex format. 
Here’s a small utility that displays a binary array of bytes in a readable hex format, using 
String.format( ):  

//: net/mindview/util/Hex.java 
package net.mindview.util; 
import java.io.*; 
 
public class Hex { 
  public static String format(byte[] data) { 
    StringBuilder result = new StringBuilder(); 
    int n = 0; 
    for(byte b : data) { 
      if(n % 16 == 0) 
        result.append(String.format("%05X: ", n)); 
      result.append(String.format("%02X ", b)); 
      n++; 
      if(n % 16 == 0) result.append("\n"); 
    } 
    result.append("\n"); 
    return result.toString(); 
  } 
  public static void main(String[] args) throws Exception { 
    if(args.length == 0) 
      // Test by displaying this class file: 
      System.out.println( 
        format(BinaryFile.read("Hex.class"))); 
    else 
      System.out.println( 
        format(BinaryFile.read(new File(args[0])))); 
  } 
} /* Output: (Sample) 
00000: CA FE BA BE 00 00 00 31 00 52 0A 00 05 00 22 07 
00010: 00 23 0A 00 02 00 22 08 00 24 07 00 25 0A 00 26 
00020: 00 27 0A 00 28 00 29 0A 00 02 00 2A 08 00 2B 0A 
00030: 00 2C 00 2D 08 00 2E 0A 00 02 00 2F 09 00 30 00 
00040: 31 08 00 32 0A 00 33 00 34 0A 00 15 00 35 0A 00 
00050: 36 00 37 07 00 38 0A 00 12 00 39 0A 00 33 00 3A 
... 
*///:~ 

To open and read the binary file, this uses another utility that will be introduced in the I/O 
chapter: net.mindview.util.BinaryFile. The read( ) method returns the entire file as a 
byte array.  

Exercise 6:   (2) Create a class that contains int, long, float and double fields. Create a 
toString( ) method for this class that uses String.format( ), and demonstrate that your 
class works correctly.  

Strings 369 



 

Regular expressions  
Regular expressions have long been integral to standard Unix utilities like sed and awk, and 
languages like Python and Perl (some would argue that they are the predominant reason for 
Perl’s success). String manipulation tools were previously delegated to the String, 
StringBuffer, and StringTokenizer classes in Java, which had relatively simple facilities 
compared to regular expressions.  

Regular expressions are powerful and flexible text-processing tools. They allow you to 
specify, programmatically, complex patterns of text that can be discovered in an input string. 
Once you discover these patterns, you can then react to them any way you want. Although the 
syntax of regular expressions can be intimidating at first, they provide a compact and 
dynamic language that can be employed to solve all sorts of string processing, matching and 
selection, editing, and verification problems in a completely general way.  

Basics  

A regular expression is a way to describe strings in general terms, so that you can say, "If a 
string has these things in it, then it matches what I’m looking for." For example, to say that a 
number might or might not be preceded by a minus sign, you put in the minus sign followed 
by a question mark, like this:  

-? 

To describe an integer, you say that it’s one or more digits. In regular expressions, a digit is 
described by saying ‘\d’. If you have any experience with regular expressions in other 
languages, you’ll immediately notice a difference in the way backslashes are handled. In 
other languages, ‘\\’ means "I want to insert a plain old (literal) backslash in the regular 
expression. Don’t give it any special meaning." In Java, ‘ \ \ ‘ means "I’m inserting a regular 
expression backslash, so that the following character has special meaning." For example, if 
you want to indicate a digit, your regular expression string will be ‘\\d’. If you want to insert 
a literal backslash, you say ‘\\\\’- However, things like newlines and tabs just use a single 
backslash: ‘\n\t’.  

To indicate "one or more of the preceding expression," you use a ‘+’. So to say, "possibly a 
minus sign, followed by one or more digits," you write:  

-?\\d+ 

The simplest way to use regular expressions is to use the functionality built into the String 
class. For example, we can see whether a String matches the regular expression above:  

//: strings/IntegerMatch.java 
 
public class IntegerMatch { 
  public static void main(String[] args) { 
    System.out.println("-1234".matches("-?\\d+")); 
    System.out.println("5678".matches("-?\\d+")); 
    System.out.println("+911".matches("-?\\d+")); 
    System.out.println("+911".matches("(-|\\+)?\\d+")); 
  } 
} /* Output: 
true 
true 
false 
true 
*///:~ 

370 Thinking in Java Bruce Eckel 



 

The first two expressions match, but the third one starts with a ‘+’, which is a legitimate sign 
but means the number doesn’t match the regular expression. So we need a way to say, "may 
start with a + or a -." In regular expressions, parentheses have the effect of grouping an 
expression, and the vertical bar ‘|’ means OR. So  

(-I\\+)? 

means that this part of the string may be either a ‘-’ or a ‘+’ or nothing (because of the ‘?’). 
Because the ‘+’ character has special meaning in regular expressions, it must be escaped with 
a ‘\\’ in order to appear as an ordinary character in the expression.  

A useful regular expression tool that’s built into String is split( ), which means, "Split this 
string around matches of the given regular expression."  

//: strings/Splitting.java 
import java.util.*; 
 
public class Splitting { 
  public static String knights = 
    "Then, when you have found the shrubbery, you must " + 
    "cut down the mightiest tree in the forest... " + 
    "with... a herring!"; 
  public static void split(String regex) { 
    System.out.println( 
      Arrays.toString(knights.split(regex))); 
  } 
  public static void main(String[] args) { 
    split(" "); // Doesn’t have to contain regex chars 
    split("\\W+"); // Non-word characters 
    split("n\\W+"); // ‘n’ followed by non-word characters 
  } 
} /* Output: 
[Then,, when, you, have, found, the, shrubbery,, you, must, cut, down, 
the, mightiest, tree, in, the, forest..., with..., a, herring!] 
[Then, when, you, have, found, the, shrubbery, you, must, cut, down, 
the, mightiest, tree, in, the, forest, with, a, herring] 
[The, whe, you have found the shrubbery, you must cut dow, the mightiest 
tree i, the forest... with... a herring!] 
*///:~ 

First, note that you may use ordinary characters as regular expressions—a regular expression 
doesn’t have to contain special characters, as you can see in the first call to split( ), which 
just splits on whitespace.  

The second and third calls to split( ) use ‘\W’, which means a non-word character (the 
lowercase version, ‘\w’, means a word character)—you can see that the punctuation has been 
removed in the second case. The third call to split( ) says, "the letter n followed by one or 
more non-word characters." You can see that the split patterns do not appear in the result.  

An overloaded version of String. split( ) allows you to limit the number of splits that occur.  

The final regular expression tool built into String is replacement. You can either replace the 
first occurrence, or all of them:  

//: strings/Replacing.java 
import static net.mindview.util.Print.*; 
 
public class Replacing { 
  static String s = Splitting.knights; 
  public static void main(String[] args) { 

Strings 371 



 

    print(s.replaceFirst("f\\w+", "located")); 
    print(s.replaceAll("shrubbery|tree|herring","banana")); 
  } 
} /* Output: 
Then, when you have located the shrubbery, you must cut down the 
mightiest tree in the forest... with... a herring! 
Then, when you have found the banana, you must cut down the mightiest 
banana in the forest... with... a banana! 
*///:~ 

The first expression matches the letter f followed by one or more word characters (note that 
the w is lowercase this time). It only replaces the first match that it finds, so the word "found" 
is replaced by the word "located."  

The second expression matches any of the three words separated by the OR vertical bars, and 
it replaces all matches that it finds.  

You’ll see that the non-String regular expressions have more powerful replacement tools—
for example, you can call methods to perform replacements. Non-String regular expressions 
are also significantly more efficient if you need to use the regular expression more than once.  

Exercise 7:   (5) Using the documentation for java.util.regex.Pattern as a resource, 
write and test a regular expression that checks a sentence to see that it begins with a capital 
letter and ends with a period.  

Exercise 8:   (2) Split the string Splitting.knights on the words "the" or “you."  

Exercise 9:   (4) Using the documentation for java.util.regex.Pattern as a resource, 
replace all the vowels in Splitting.knights with underscores.  

Creating regular expressions  

You can begin learning regular expressions with a subset of the possible constructs. A 
complete list of constructs for building regular expressions can be found in the JDK 
documentation for the Pattern class for package java.util.regex.  

Characters  

B The specific character B 

\xhh Character with hex value oxhh 

\uhhhh The Unicode character with hex representation 0xhhhh 

\t Tab 

\n Newline 

\r Carriage return 

\f Form feed 

\e Escape 

 

 

372 Thinking in Java Bruce Eckel 



 

The power of regular expressions begins to appear when you are defining character classes. 
Here are some typical ways to create character classes, and some predefined classes:  

Character Classes  

. Any character 

[abc] Any of the characters a, b, or c (same as a|b|c) 

[^abc] Any character except a, b, and c (negation) 

[a-zA-Z] Any character a through z or A through Z (range) 

[abc[hij]] Any of a,b,c,h,I,j (same as a|b|c|h|i|j) (union) 

[a-z&&[hij]] Either h, i, or j (intersection) 

\s A whitespace character (space, tab, newline, form 
feed, carriage return) 

\S A non-whitespace character ([^\s]) 

\d A numeric digit [0-9] 

\D A non-digit [^o-9] 

\w A word character [a-zA-Z_0-9] 

\W A non-word character [^\w] 

What’s shown here is only a sample; you’ll want to bookmark the JDK documentation page 
for java.util.regex.Pattern so you can easily access all the possible regular expression 
patterns.  

Logical Operators  

XY X followed by Y 

X|Y X or Y 

(X) A capturing group. You can refer to the ith captured group 
later in the expression with \i. 

 

Boundary Matchers  

^ Beginning of a line 

$ End of a line 

\b Word boundary 

\B Non-word boundary 

\G End of the previous match 

As an example, each of the following successfully matches the character sequence "Rudolph": 

//: strings/Rudolph.java 
 
public class Rudolph { 
  public static void main(String[] args) { 
    for(String pattern : new String[]{ "Rudolph", 
      "[rR]udolph", "[rR][aeiou][a-z]ol.*", "R.*" }) 
      System.out.println("Rudolph".matches(pattern)); 

Strings 373 



 

  } 
} /* Output: 
true 
true 
true 
true 
*///:~ 

Of course, your goal should not be to create the most obfuscated regular expression, but 
rather the simplest one necessary to do the job. You’ll find that, once you start writing regular 
expressions, you’ll often use your code as a reference when writing new regular expressions.  

Quantifiers  

A quantifier describes the way that a pattern absorbs input text:  

• Greedy: Quantifiers are greedy unless otherwise altered. A greedy expression finds as 
many possible matches for the pattern as possible. A typical cause of problems is to 
assume that your pattern will only match the first possible group of characters, when 
it’s actually greedy and will keep going until it’s matched the largest possible string.  
 

• Reluctant: Specified with a question mark, this quantifier matches the minimum 
number of characters necessary to satisfy the pattern. Also called lazy, minimal 
matching, non-greedy, or ungreedy. 

 
• Possessive: Currently this is only available in Java (not in other languages) and is 

more advanced, so you probably won’t use it right away. As a regular expression is 
applied to a string, it generates many states so that it can backtrack if the match fails. 
Possessive quantifiers do not keep those intermediate states, and thus prevent 
backtracking. They can be used to prevent a regular expression from running away 
and also to make it execute more efficiently.  

 
Greedy Reluctant Possessive Matches 

X? X?? X?+ X, one or none 

X* X*? x*+ X, zero or more 

x+ x+? X++ X, one or more 

X{n} X{n}? X{n}+ X, exactly n times 

X{n,} X{n,}? X{n,}+ X, at least n times 

X{n,m} X{n,m}? X{n,m}+ X, at least n but not more 
than m times 

Keep in mind that the expression ‘X’ will often need to be surrounded in parentheses for it to 
work the way you desire. For example:  

abc+ 

might seem like it would match the sequence ‘abc’ one or more times, and if you apply it to 
the input string ‘abcabcabc’, you will in fact get three matches. However, the expression 
actually says, "Match ‘ab’ followed by one or more occurrences of ‘c’." To match the entire 
string ‘abc’ one or more times, you must say:  

374 Thinking in Java Bruce Eckel 



 

(abc)+ 

You can easily be fooled when using regular expressions; it’s an orthogonal language, on top 
of Java.  

CharSequence  

The interface called CharSequence establishes a generalized definition of a character 
sequence abstracted from the CharBuffer, String, StringBuffer, or StringBuilder 
classes:  

interface CharSequence { 
  charAt(int i); 
  length(); 
  subSequence(int start,| int end); 
  toString(); 
} 

The aforementioned classes implement this interface. Many regular expression operations 
take CharSequence arguments.  

Pattern and Matcher  

In general, you’ll compile regular expression objects rather than using the fairly limited 
String utilities. To do this, you import java.util.regex, then compile a regular expression 
by using the static Pattern.compile( ) method. This produces a Pattern object based on 
its String argument. You use the Pattern by calling the matcher( ) method, passing the 
string that you want to search. The matcher( ) method produces a Matcher object, which 
has a set of operations to choose from (you can see all of these in the JDK documentation for 
java.util.regex.Matcher). For example, the replaceAll( ) method replaces all the 
matches with its argument.  

As a first example, the following class can be used to test regular expressions against an input 
string. The first command-line argument is the input string to match against, followed by one 
or more regular expressions to be applied to the input. Under Unix/Linux, the regular 
expressions must be quoted on the command line. This program can be useful in testing 
regular expressions as you construct them to see that they produce your intended matching 
behavior.  

//: strings/TestRegularExpression.java 
// Allows you to easily try out regular expressions. 
// {Args: abcabcabcdefabc "abc+" "(abc)+" "(abc){2,}" } 
import java.util.regex.*; 
import static net.mindview.util.Print.*; 
 
public class TestRegularExpression { 
  public static void main(String[] args) { 
    if(args.length < 2) { 
      print("Usage:\njava TestRegularExpression " + 
        "characterSequence regularExpression+"); 
      System.exit(0); 
    } 
    print("Input: \"" + args[0] + "\""); 
    for(String arg : args) { 
      print("Regular expression: \"" + arg + "\""); 
      Pattern p = Pattern.compile(arg); 
      Matcher m = p.matcher(args[0]); 
      while(m.find()) { 

Strings 375 



 

        print("Match \"" + m.group() + "\" at positions " + 
          m.start() + "-" + (m.end() - 1)); 
      } 
    } 
  } 
} /* Output: 
Input: "abcabcabcdefabc" 
Regular expression: "abcabcabcdefabc" 
Match "abcabcabcdefabc" at positions 0-14 
Regular expression: "abc+" 
Match "abc" at positions 0-2 
Match "abc" at positions 3-5 
Match "abc" at positions 6-8 
Match "abc" at positions 12-14 
Regular expression: "(abc)+" 
Match "abcabcabc" at positions 0-8 
Match "abc" at positions 12-14 
Regular expression: "(abc){2,}" 
Match "abcabcabc" at positions 0-8 
*///:~ 

A Pattern object represents the compiled version of a regular expression. As seen in the 
preceding example, you can use the matcher( ) method and the input string to produce a 
Matcher object from the compiled Pattern object. Pattern also has a static method:  

static boolean matches(String regex, CharSequence input) 

to check whether regex matches the entire input CharSequence, and a split( ) method 
that produces an array of String that has been broken around matches of the regex.  

A Matcher object is generated by calling Pattern.matcher( ) with the input string as an 
argument. The Matcher object is then used to access the results, using methods to evaluate 
the success or failure of different types of matches:  

boolean matches() 
boolean lookingAt() 
boolean find() 
boolean find(int start) 

The matches ( ) method is successful if the pattern matches the entire input string, while 
lookingAt( ) is successful if the input string, starting at the beginning, is a match to the 
pattern.  

Exercise 10:   (2) For the phrase "Java now has regular expressions" evaluate whether the 
following expressions will find a match:  

^Java 
\Breg.* 
n.w\s+h(a|i)s 
s? 
s* 
s+ 
s{4} 
S{1}. 
s{0,3} 

 

 

376 Thinking in Java Bruce Eckel 



 

Exercise 11:   (2) Apply the regular expression  

(?i)((^[aeiou])|(\s+[aeiou]))\w+?[aeiou]\b  

to  

"Arline ate eight apples and one orange while Anita hadn’t any" 

find() 

Matcher.find( ) can be used to discover multiple pattern matches in the CharSequence to 
which it is applied. For example:  

//: strings/Finding.java 
import java.util.regex.*; 
import static net.mindview.util.Print.*; 
 
public class Finding { 
  public static void main(String[] args) { 
    Matcher m = Pattern.compile("\\w+") 
      .matcher("Evening is full of the linnet’s wings"); 
    while(m.find()) 
      printnb(m.group() + " "); 
    print(); 
    int i = 0; 
    while(m.find(i)) { 
      printnb(m.group() + " "); 
      i++; 
    } 
  } 
} /* Output: 
Evening is full of the linnet s wings 
Evening vening ening ning ing ng g is is s full full ull ll l of of f 
the the he e linnet linnet innet nnet net et t s s wings wings ings ngs 
gs s 
*///:~ 

The pattern ‘\\w+’ splits the input into words. find( ) is like an iterator, moving forward 
through the input string. However, the second version of find( ) can be given an integer 
argument that tells it the character position for the beginning of the search—this version 
resets the search position to the value of the argument, as you can see from the output.  

Groups  

Groups are regular expressions set off by parentheses that can be called up later with their 
group number. Group o indicates the whole expression match, group l is the first 
parenthesized group, etc. Thus in  

A(B(C))D 

there are three groups: Group 0 is ABCD, group 1 is BC, and group 2 is C.  

The Matcher object has methods to give you information about groups:  

public int groupCount( ) returns the number of groups in this matcher’s pattern. Group o 
is not included in this count.  

Strings 377 



 

public String group( ) returns group 0 (the entire match) from the previous match 
operation (find( ), for example).  

public String group(int i) returns the given group number during the previous match 
operation. If the match was successful, but the group specified failed to match any part of the 
input string, then null is returned.  

public int start(int group) returns the start index of the group found in the previous 
match operation.  

public int end(int group) returns the index of the last character, plus one, of the group 
found in the previous match operation.  

Here’s an example:  

//: strings/Groups.java 
import java.util.regex.*; 
import static net.mindview.util.Print.*; 
 
public class Groups { 
  static public final String POEM = 
    "Twas brillig, and the slithy toves\n" + 
    "Did gyre and gimble in the wabe.\n" + 
    "All mimsy were the borogoves,\n" + 
    "And the mome raths outgrabe.\n\n" + 
    "Beware the Jabberwock, my son,\n" + 
    "The jaws that bite, the claws that catch.\n" + 
    "Beware the Jubjub bird, and shun\n" + 
    "The frumious Bandersnatch."; 
  public static void main(String[] args) { 
    Matcher m = 
      Pattern.compile("(?m)(\\S+)\\s+((\\S+)\\s+(\\S+))$") 
        .matcher(POEM); 
    while(m.find()) { 
      for(int j = 0; j <= m.groupCount(); j++) 
        printnb("[" + m.group(j) + "]"); 
      print(); 
    } 
  } 
} /* Output: 
[the slithy toves][the][slithy toves][slithy][toves] 
[in the wabe.][in][the wabe.][the][wabe.] 
[were the borogoves,][were][the borogoves,][the][borogoves,] 
[mome raths outgrabe.][mome][raths outgrabe.][raths][outgrabe.] 
[Jabberwock, my son,][Jabberwock,][my son,][my][son,] 
[claws that catch.][claws][that catch.][that][catch.] 
[bird, and shun][bird,][and shun][and][shun] 
[The frumious Bandersnatch.][The][frumious 
Bandersnatch.][frumious][Bandersnatch.] 
*///:~ 

The poem is the first part of Lewis Carroll’s "Jabberwocky," from Through the Looking Glass. 
You can see that the regular expression pattern has a number of parenthesized groups, 
consisting of any number of non-whitespace characters (‘\S+’) followed by any number of 
whitespace characters (‘\s+’). The goal is to capture the last three words on each line; the end 
of a line is delimited by ‘$’. However, the normal behavior is to match ‘$’ with the end of the 
entire input sequence, so you must explicitly tell the regular expression to pay attention to 
newlines within the input. This is accomplished with the ‘(?m)’ pattern flag at the beginning 
of the sequence (pattern flags will be shown shortly).  

378 Thinking in Java Bruce Eckel 



 

Strings 379 

Exercise 12:   (5) Modify Groups.java to count all of the unique words that do not start 
with a capital letter.  

start() and end()  

Following a successful matching operation, start( ) returns the start index of the previous 
match, and end( ) returns the index of the last character matched, plus one. Invoking either 
start( ) or end( ) following an unsuccessful matching operation (or before attempting a 
matching operation) produces an IllegalStateException. The following program also 
demonstrates matches( ) and lookingAt( ):3  

//: strings/StartEnd.java 
import java.util.regex.*; 
import static net.mindview.util.Print.*; 
 
public class StartEnd { 
  public static String input = 
    "As long as there is injustice, whenever a\n" + 
    "Targathian baby cries out, wherever a distress\n" + 
    "signal sounds among the stars ... We’ll be there.\n" + 
    "This fine ship, and this fine crew ...\n" + 
    "Never give up! Never surrender!"; 
  private static class Display { 
    private boolean regexPrinted = false; 
    private String regex; 
    Display(String regex) { this.regex = regex; } 
    void display(String message) { 
      if(!regexPrinted) { 
        print(regex); 
        regexPrinted = true; 
      } 
      print(message); 
    } 
  } 
  static void examine(String s, String regex) { 
    Display d = new Display(regex); 
    Pattern p = Pattern.compile(regex); 
    Matcher m = p.matcher(s); 
    while(m.find()) 
      d.display("find() ‘" + m.group() + 
        "‘ start = "+ m.start() + " end = " + m.end()); 
    if(m.lookingAt()) // No reset() necessary 
      d.display("lookingAt() start = " 
        + m.start() + " end = " + m.end()); 
    if(m.matches()) // No reset() necessary 
      d.display("matches() start = " 
        + m.start() + " end = " + m.end()); 
  } 
  public static void main(String[] args) { 
    for(String in : input.split("\n")) { 
      print("input : " + in); 
      for(String regex : new String[]{"\\w*ere\\w*", 
        "\\w*ever", "T\\w+", "Never.*?!"}) 
        examine(in, regex); 
    } 
  } 
} /* Output: 
input : As long as there is injustice, whenever a 

                                                            
3 Quote from one of Commander Taggart’s speeches on Galaxy Quest. 



 

380 Thinking in Java Bruce Eckel 

\w*ere\w* 
find() ‘there’ start = 11 end = 16 
\w*ever 
find() ‘whenever’ start = 31 end = 39 
input : Targathian baby cries out, wherever a distress 
\w*ere\w* 
find() ‘wherever’ start = 27 end = 35 
\w*ever 
find() ‘wherever’ start = 27 end = 35 
T\w+ 
find() ‘Targathian’ start = 0 end = 10 
lookingAt() start = 0 end = 10 
input : signal sounds among the stars ... We’ll be there. 
\w*ere\w* 
find() ‘there’ start = 43 end = 48 
input : This fine ship, and this fine crew ... 
T\w+ 
find() ‘This’ start = 0 end = 4 
lookingAt() start = 0 end = 4 
input : Never give up! Never surrender! 
\w*ever 
find() ‘Never’ start = 0 end = 5 
find() ‘Never’ start = 15 end = 20 
lookingAt() start = 0 end = 5 
Never.*?! 
find() ‘Never give up!’ start = 0 end = 14 
find() ‘Never surrender!’ start = 15 end = 31 
lookingAt() start = 0 end = 14 
matches() start = 0 end = 31 
*///:~ 

Notice that find( ) will locate the regular expression anywhere in the input, but 
lookingAt( ) and matches( ) only succeed if the regular expression starts matching at the 
very beginning of the input. While matches( ) only succeeds if the entire input matches the 
regular expression, lookingAt( )4 succeeds if only the first part of the input matches.  

Exercise 13:   (2) Modify StartEnd.java so that it uses Groups.POEM as input, but 
still produces positive outputs for find( ), lookingAt( ) and matches( ).  

Pattern flags  

An alternative compile( ) method accepts flags that affect matching behavior:  

Pattern Pattern.compile(String regex, int flag) 

where flag is drawn from among the following Pattern class constants:  

 

 

 

                                                            
4 I have no idea how they came up with this method name, or what it’s supposed to refer to. But it’s reassuring to know 
that whoever comes up with nonintuitive method names is still employed at Sun. And that their apparent policy of not 
reviewing code designs is still in place. Sorry for the sarcasm, but this kind of thing gets tiresome after a few years. 



 

Compile Flag Effect 

Pattern.CANON_EQ Two characters will be considered to 
match if, and only if, their full canonical 
decompositions match. The expression 
‘\u003F’, for example, will match the 
string ‘?’ when this flag is specified. By 
default, matching does not take canonical 
equivalence into account. 

Pattern.CASE INSENSITIVE 

(?i) 

By default, case-insensitive matching 
assumes that only characters in the US-
ASCII character set are being matched. 
This flag allows your pattern to match 
without regard to case (upper or lower). 
Unicode-aware case-insensitive matching 
can be enabled by specifying the 
UNICODE_CASE flag in conjunction 
with this flag. 

Pattern.COMMENTS 

(?x) 

In this mode, whitespace is ignored, and 
embedded comments starting with # are 
ignored until the end of a line. Unix lines 
mode can also be enabled via the 
embedded flag expression. 

Pattern.DOTALL 

(?s) 

In dotall mode, the expression’.’ matches 
any character, including a line terminator. 
By default, the ‘.’ expression does not 
match line terminators. 

Pattern.MULTILINE 

(?m) 

In multiline mode, the expressions ‘^’ and 
‘$’ match the beginning and ending of a 
line, respectively.’^’ also matches the 
beginning of the input string, and ‘$’ also 
matches the end of the input string. By 
default, these expressions only match at 
the beginning and the end of the entire 
input string. 

Pattern.UNICODE CASE 

(?u) 

Case-insensitive matching, when enabled 
by the CASE_INSENSITIVE flag, is 
done in a manner consistent with the 
Unicode Standard. By default, case-
insensitive matching assumes that only 
characters in the US-ASCII character set 
are being matched. 

Pattern.UNIX LINES 

(?d) 

In this mode, only the ‘\n’ line terminator 
is recognized in the behavior of ‘.’, ‘^’, and 
‘$’. 

Particularly useful among these flags are Pattern.CASE_INSENSITIVE, 
Pattern.MULTILINE, and Pattern.COMMENTS (which is helpful for clarity and/or 
documentation). Note that the behavior of most of the flags can also be obtained by inserting 
the parenthesized characters, shown beneath the flags in the table, into your regular 
expression preceding the place where you want the mode to take effect.  

Strings 381 



 

You can combine the effect of these and other flags through an "OR" (‘|’) operation:  

//: strings/ReFlags.java 
import java.util.regex.*; 
 
public class ReFlags { 
  public static void main(String[] args) { 
    Pattern p =  Pattern.compile("^java", 
      Pattern.CASE_INSENSITIVE | Pattern.MULTILINE); 
    Matcher m = p.matcher( 
      "java has regex\nJava has regex\n" + 
      "JAVA has pretty good regular expressions\n" + 
      "Regular expressions are in Java"); 
    while(m.find()) 
      System.out.println(m.group()); 
  } 
} /* Output: 
java 
Java 
JAVA 
*///:~ 

This creates a pattern that will match lines starting with "Java," "Java," "JAVA," etc., and 
attempt a match for each line within a multiline set (matches starting at the beginning of the 
character sequence and following each line terminator within the character sequence). Note 
that the group( ) method only produces the matched portion.  

split()  

split( ) divides an input string into an array of String objects, delimited by the regular 
expression.  

String[] split(CharSequence input)  
String[] split(CharSequence input, int limit)  

This is a handy way to break input text on a common boundary: 

//: strings/SplitDemo.java 
import java.util.regex.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class SplitDemo { 
  public static void main(String[] args) { 
    String input = 
      "This!!unusual use!!of exclamation!!points"; 
    print(Arrays.toString( 
      Pattern.compile("!!").split(input))); 
    // Only do the first three: 
    print(Arrays.toString( 
      Pattern.compile("!!").split(input, 3))); 
  } 
} /* Output: 
[This, unusual use, of exclamation, points] 
[This, unusual use, of exclamation!!points] 
*///:~ 

The second form of split( ) limits the number of splits that occur.  

382 Thinking in Java Bruce Eckel 



 

Exercise 14:   (1) Rewrite SplitDemo using String.split( ).  

Replace operations  

Regular expressions are especially useful to replace text. Here are the available methods:  

replaceFirst(String replacement) replaces the first matching part of the input string 
with replacement.  

replaceAll(String replacement) replaces every matching part of the input string with 
replacement.  

appendReplacement(StringBuffer sbuf, String replacement) performs step-by-step 
replacements into sbuf, rather than replacing only the first one or all of them, as in 
replaceFirst( ) and replaceAll( ), respectively. This is a very important method, because 
it allows you to call methods and perform other processing in order to produce 
replacement (replaceFirst( ) and replaceAll( ) are only able to put in fixed strings). 
With this method, you can programmatically pick apart the groups and create powerful 
replacements.  

appendTail(StringBuffer sbuf, String replacement) is invoked after one or more 
invocations of the appendReplacement( ) method in order to copy the remainder of the 
input string.  

Here’s an example that shows the use of all the replace operations. The block of commented 
text at the beginning is extracted and processed with regular expressions for use as input in 
the rest of the example:  

//: strings/TheReplacements.java 
import java.util.regex.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
/*! Here’s a block of text to use as input to 
    the regular expression matcher. Note that we’ll 
    first extract the block of text by looking for 
    the special delimiters, then process the 
    extracted block. !*/ 
 
public class TheReplacements { 
  public static void main(String[] args) throws Exception { 
    String s = TextFile.read("TheReplacements.java"); 
    // Match the specially commented block of text above: 
    Matcher mInput = 
      Pattern.compile("/\\*!(.*)!\\*/", Pattern.DOTALL) 
        .matcher(s); 
    if(mInput.find()) 
      s = mInput.group(1); // Captured by parentheses 
    // Replace two or more spaces with a single space: 
    s = s.replaceAll(" {2,}", " "); 
    // Replace one or more spaces at the beginning of each 
    // line with no spaces. Must enable MULTILINE mode: 
    s = s.replaceAll("(?m)^ +", ""); 
    print(s); 
    s = s.replaceFirst("[aeiou]", "(VOWEL1)"); 
    StringBuffer sbuf = new StringBuffer(); 
    Pattern p = Pattern.compile("[aeiou]"); 
    Matcher m = p.matcher(s); 
    // Process the find information as you 

Strings 383 



 

    // perform the replacements: 
    while(m.find()) 
      m.appendReplacement(sbuf, m.group().toUpperCase()); 
    // Put in the remainder of the text: 
    m.appendTail(sbuf); 
    print(sbuf); 
  } 
} /* Output: 
Here’s a block of text to use as input to 
the regular expression matcher. Note that we’ll 
first extract the block of text by looking for 
the special delimiters, then process the 
extracted block. 
H(VOWEL1)rE’s A blOck Of tExt tO UsE As InpUt tO 
thE rEgUlAr ExprEssIOn mAtchEr. NOtE thAt wE’ll 
fIrst ExtrAct thE blOck Of tExt by lOOkIng fOr 
thE spEcIAl dElImItErs, thEn prOcEss thE 
ExtrActEd blOck. 
*///:~ 

The file is opened and read using the TextFile class in the net.mindview.util library (the 
code for this will be shown in the I/O chapter). The static read( ) method reads the entire 
file and returns it as a String. mInput is created to match all the text (notice the grouping 
parentheses) between ‘/*!’ and ‘!*/’. Then, more than two spaces are reduced to a single 
space, and any space at the beginning of each line is removed (in order to do this on all lines 
and not just the beginning of the input, multiline mode must be enabled). These two 
replacements are performed with the equivalent (but more convenient, in this case) 
replaceAll( ) that’s part of String. Note that since each replacement is only used once in 
the program, there’s no extra cost to doing it this way rather than precompiling it as a 
Pattern.  

replaceFirst( ) only performs the first replacement that it finds. In addition, the 
replacement strings in replaceFirst( ) and replaceAll( ) are just literals, so if you want to 
perform some processing on each replacement, they don’t help. In that case, you need to use 
appendReplacement( ), which allows you to write any amount of code in the process of 
performing the replacement. In the preceding example, a group( ) is selected and 
processed—in this situation, setting the vowel found by the regular expression to uppercase—
as the resulting sbuf is being built. Normally, you step through and perform all the 
replacements and then call appendTail( ), but if you want to simulate replaceFirst( ) (or 
"replace n"), you just do the replacement one time and then call appendTail( ) to put the 
rest into sbuf.  

appendReplacement( ) also allows you to refer to captured groups directly in the 
replacement string by saying "$g", where ‘g’ is the group number. However, this is for 
simpler processing and wouldn’t give you the desired results in the preceding program.  

reset()  

An existing Matcher object can be applied to a new character sequence using the reset( ) 
methods:  

//: strings/Resetting.java 
import java.util.regex.*; 
 
public class Resetting { 
  public static void main(String[] args) throws Exception { 
    Matcher m = Pattern.compile("[frb][aiu][gx]") 
      .matcher("fix the rug with bags"); 
    while(m.find()) 

384 Thinking in Java Bruce Eckel 



 

      System.out.print(m.group() + " "); 
    System.out.println(); 
    m.reset("fix the rig with rags"); 
    while(m.find()) 
      System.out.print(m.group() + " "); 
  } 
} /* Output: 
fix rug bag 
fix rig rag 
*///:~ 

reset( ) without any arguments sets the Matcher to the beginning of the current sequence.  

Regular expressions and Java I/O  

Most of the examples so far have shown regular expressions applied to static strings. The 
following example shows one way to apply regular expressions to search for matches in a file. 
Inspired by Unix’s grep, JGrep.java takes two arguments: a file name and the regular 
expression that you want to match. The output shows each line where a match occurs and the 
match position(s) within the line.  

//: strings/JGrep.java 
// A very simple version of the "grep" program. 
// {Args: JGrep.java "\\b[Ssct]\\w+"} 
import java.util.regex.*; 
import net.mindview.util.*; 
 
public class JGrep { 
  public static void main(String[] args) throws Exception { 
    if(args.length < 2) { 
      System.out.println("Usage: java JGrep file regex"); 
      System.exit(0); 
    } 
    Pattern p = Pattern.compile(args[1]); 
    // Iterate through the lines of the input file: 
    int index = 0; 
    Matcher m = p.matcher(""); 
    for(String line : new TextFile(args[0])) { 
      m.reset(line); 
      while(m.find()) 
        System.out.println(index++ + ": " + 
          m.group() + ": " + m.start()); 
    } 
  } 
} /* Output: (Sample) 
0: strings: 4 
1: simple: 10 
2: the: 28 
3: Ssct: 26 
4: class: 7 
5: static: 9 
6: String: 26 
7: throws: 41 
8: System: 6 
9: System: 6 
10: compile: 24 
11: through: 15 
12: the: 23 
13: the: 36 
14: String: 8 
15: System: 8 

Strings 385 



 

16: start: 31 
*///:~ 

The file is opened as a net.mindview.util.TextFile object (which will be shown in the I/O 
chapter), which reads the lines of the file into an ArrayList. This means that the foreach 
syntax can iterate through the lines in the TextFile object.  

Although it’s possible to create a new Matcher object within the for loop, it is slightly more 
optimal to create an empty Matcher object outside the loop and use the reset( ) method to 
assign each line of the input to the Matcher. The result is scanned with find( ).  

The test arguments open the JGrep.java file to read as input, and search for words starting 
with [Ssct].  

You can learn much more about regular expressions in Mastering Regular Expressions, 2nd 

Edition, by Jeffrey E. F. Friedl (O’Reilly, 2002). There are also numerous introductions to 
regular expressions on the Internet, and you can often find helpful information in the 
documentation for languages like Perl and Python.  

Exercise 15:   (5) Modify JGrep.java to accept flags as arguments (e.g., 
Pattern.CASE_INSENSITIVE, Pattern.MULTILINE).  

Exercise 16:   (5) Modify JGrep.java to accept a directory name or a file name as 
argument (if a directory is provided, search should include all files in the directory). Hint: 
You can generate a list of file names with:  

File[] files = new File(".").listFiles(); 

Exercise 17:   (8) Write a program that reads a Java source-code file (you provide the file 
name on the command line) and displays all the comments.  

Exercise 18:   (8) Write a program that reads a Java source-code file (you provide the file 
name on the command line) and displays all the string literals in the code.  

Exercise 19:   (8) Building on the previous two exercises, write a program that examines 
Java source code and produces all the class names used in a particular program.  

Scanning input  
Until now it has been relatively painful to read data from a human-readable file or from 
standard input. The usual solution is to read in a line of text, tokenize it, and then use the 
various parse methods of Integer, Double, etc., to parse the data:  

//: strings/SimpleRead.java 
import java.io.*; 
 
public class SimpleRead { 
  public static BufferedReader input = new BufferedReader( 
    new StringReader("Sir Robin of Camelot\n22 1.61803")); 
  public static void main(String[] args) { 
    try { 
      System.out.println("What is your name?"); 
      String name = input.readLine(); 
      System.out.println(name); 
      System.out.println( 
        "How old are you? What is your favorite double?"); 

386 Thinking in Java Bruce Eckel 



 

      System.out.println("(input: <age> <double>)"); 
      String numbers = input.readLine(); 
      System.out.println(numbers); 
      String[] numArray = numbers.split(" "); 
      int age = Integer.parseInt(numArray[0]); 
      double favorite = Double.parseDouble(numArray[1]); 
      System.out.format("Hi %s.\n", name); 
      System.out.format("In 5 years you will be %d.\n", 
        age + 5); 
      System.out.format("My favorite double is %f.", 
        favorite / 2); 
    } catch(IOException e) { 
      System.err.println("I/O exception"); 
    } 
  } 
} /* Output: 
What is your name? 
Sir Robin of Camelot 
How old are you? What is your favorite double? 
(input: <age> <double>) 
22 1.61803 
Hi Sir Robin of Camelot. 
In 5 years you will be 27. 
My favorite double is 0.809015. 
*///:~ 

The input field uses classes from java.io, which will not officially be introduced until the 
I/O chapter. A StringReader turns a String into a readable stream, and this object is used 
to create a BufferedReader because BufferedReader has a readLine( ) method. The 
result is that the input object can be read a line at a time, just as if it were standard input 
from the console.  

readLine( ) is used to get the String for each line of input. It’s fairly straightforward when 
you want to get one input for each line of data, but if two input values are on a single line, 
things get messy—the line must be split so we can parse each input separately. Here, the 
splitting takes place when creating numArray, but note that the split( ) method was 
introduced in J2SE1.4, so before that you had to do something else.  

The Scanner class, added in Java SE5, relieves much of the burden of scanning input:  

//: strings/BetterRead.java 
import java.util.*; 
 
public class BetterRead { 
  public static void main(String[] args) { 
    Scanner stdin = new Scanner(SimpleRead.input); 
    System.out.println("What is your name?"); 
    String name = stdin.nextLine(); 
    System.out.println(name); 
    System.out.println( 
      "How old are you? What is your favorite double?"); 
    System.out.println("(input: <age> <double>)"); 
    int age = stdin.nextInt(); 
    double favorite = stdin.nextDouble(); 
    System.out.println(age); 
    System.out.println(favorite); 
    System.out.format("Hi %s.\n", name); 
    System.out.format("In 5 years you will be %d.\n", 
      age + 5); 
    System.out.format("My favorite double is %f.", 
      favorite / 2); 

Strings 387 



 

  } 
} /* Output: 
What is your name? 
Sir Robin of Camelot 
How old are you? What is your favorite double? 
(input: <age> <double>) 
22 
1.61803 
Hi Sir Robin of Camelot. 
In 5 years you will be 27. 
My favorite double is 0.809015. 
*///:~ 

The Scanner constructor can take just about any kind of input object, including a File 
object (which will also be covered in the I/O chapter), an InputStream, a String, or in this 
case a Readable, which is an interface introduced in Java SE5 to describe "something that 
has a read( ) method." The BufferedReader from the previous example falls into this 
category.  

With Scanner, the input, tokenizing, and parsing are all ensconced in various different 
kinds of "next" methods. A plain next( ) returns the next String token, and there are "next" 
methods for all the primitive types (except char) as well as for BigDecimal and 
Biglnteger. All of the "next" methods block, meaning they will return only after a complete 
data token is available for input. There are also corresponding "hasNext" methods that return 
true if the next input token is of the correct type.  

An interesting difference between the two previous examples above is the lack of a try block 
for IOExceptions in BetterRead.java. One of the assumptions made by the Scanner is 
that an IOException signals the end of input, and so these are swallowed by the Scanner. 
However, the most recent exception is available through the ioException( ) method, so you 
are able to examine it if necessary.  

Exercise 20:   (2) Create a class that contains int, long, float and double and String 
fields. Create a constructor for this class that takes a single String argument, and scans that 
string into the various fields. Add a toString( ) method and demonstrate that your class 
works correctly.  

Scanner delimiters  

By default, a Scanner splits input tokens along whitespace, but you can also specify your 
own delimiter pattern in the form of a regular expression:  

//: strings/ScannerDelimiter.java 
import java.util.*; 
 
public class ScannerDelimiter { 
  public static void main(String[] args) { 
    Scanner scanner = new Scanner("12, 42, 78, 99, 42"); 
    scanner.useDelimiter("\\s*,\\s*"); 
    while(scanner.hasNextInt()) 
      System.out.println(scanner.nextInt()); 
  } 
} /* Output: 
12 
42 
78 
99 
42 
*///:~ 

388 Thinking in Java Bruce Eckel 



 

This example uses commas (surrounded by arbitrary amounts of whitespace) as the delimiter 
when reading from the given String. This same technique can be used to read from comma-
delimited files. In addition to useDelimiter( ) for setting the delimiter pattern, there is also 
delimiter( ), which returns the current Pattern being used as a delimiter.  

Scanning with regular expressions  

In addition to scanning for predefined primitive types, you can also scan for your own user-
defined patterns, which is helpful when scanning more complex data. This example scans 
threat data from a log like your firewall might produce:  

//: strings/ThreatAnalyzer.java 
import java.util.regex.*; 
import java.util.*; 
 
public class ThreatAnalyzer { 
  static String threatData = 
    "58.27.82.161@02/10/2005\n" + 
    "204.45.234.40@02/11/2005\n" + 
    "58.27.82.161@02/11/2005\n" + 
    "58.27.82.161@02/12/2005\n" + 
    "58.27.82.161@02/12/2005\n" + 
    "[Next log section with different data format]"; 
  public static void main(String[] args) { 
    Scanner scanner = new Scanner(threatData); 
    String pattern = "(\\d+[.]\\d+[.]\\d+[.]\\d+)@" + 
      "(\\d{2}/\\d{2}/\\d{4})"; 
    while(scanner.hasNext(pattern)) { 
      scanner.next(pattern); 
      MatchResult match = scanner.match(); 
      String ip = match.group(1); 
      String date = match.group(2); 
      System.out.format("Threat on %s from %s\n", date,ip); 
    } 
  } 
} /* Output: 
Threat on 02/10/2005 from 58.27.82.161 
Threat on 02/11/2005 from 204.45.234.40 
Threat on 02/11/2005 from 58.27.82.161 
Threat on 02/12/2005 from 58.27.82.161 
Threat on 02/12/2005 from 58.27.82.161 
*///:~ 

When you use next( ) with a specific pattern, that pattern is matched against the next input 
token. The result is made available by the match( ) method, and as you can see above, it 
works just like the regular expression matching you saw earlier.  

There’s one caveat when scanning with regular expressions. The pattern is matched against 
the next input token only, so if your pattern contains a delimiter it will never be matched.  

StringTokenizer  
Before regular expressions (in J2SE1.4) or the Scanner class (in Java SE5), the way to split a 
string into parts was to "tokenize" it with StringTokenizer. But now it’s much easier and 
more succinct to do the same thing with regular expressions or the Scanner class. Here’s a 
simple comparison of StringTokenizer to the other two techniques:  

//: strings/ReplacingStringTokenizer.java 

Strings 389 



 

import java.util.*; 
 
public class ReplacingStringTokenizer { 
  public static void main(String[] args) { 
    String input = "But I’m not dead yet! I feel happy!"; 
    StringTokenizer stoke = new StringTokenizer(input); 
    while(stoke.hasMoreElements()) 
      System.out.print(stoke.nextToken() + " "); 
    System.out.println(); 
    System.out.println(Arrays.toString(input.split(" "))); 
    Scanner scanner = new Scanner(input); 
    while(scanner.hasNext()) 
      System.out.print(scanner.next() + " "); 
  } 
} /* Output: 
But I’m not dead yet! I feel happy! 
[But, I’m, not, dead, yet!, I, feel, happy!] 
But I’m not dead yet! I feel happy! 
*///:~ 

With regular expressions or Scanner objects, you can also split a string into parts using 
more complex patterns—something that’s difficult with StringTokenizer. It seems safe to 
say that the StringTokenizer is obsolete.  

   

390 Thinking in Java Bruce Eckel 



 

Strings 391 

Summary  
In the past, Java support for string manipulation was rudimentary, but in recent editions of 
the language we’ve seen far more sophisticated support adopted from other languages. At 
this point, the support for strings is reasonably complete, although you must sometimes pay 
attention to efficiency details such as the appropriate use of StringBuilder.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.   





 

Type Information  
Runtime type information (RTTI) allows you to discover and use 
type information while a program is running.  

It frees you from the constraint of doing type-oriented things only at compile time, and can 
enable some very powerful programs. The need for RTTI uncovers a plethora of interesting 
(and often perplexing) 0 0 design issues, and raises fundamental questions about how you 
should structure your programs. This chapter looks at the ways that Java allows you to 
discover information about objects and classes at run time. This takes two forms: 
"traditional" RTTI, which assumes that you have all the types available at compile time, and 
the reflection mechanism, which allows you to discover and use class information solely at 
run time.  

The need for RTTI  
Consider the now-familiar example of a class hierarchy that uses polymorphism. The generic 
type is the base class Shape, and the specific derived types are Circle, Square, and 
Triangle:  

 

This is a typical class hierarchy diagram, with the base class at the top and the derived classes 
growing downward. The normal goal in object-oriented programming is for your code to 
manipulate references to the base type (Shape, in this case), so if you decide to extend the 
program by adding a new class (such as Rhomboid, derived from Shape), the bulk of the 
code is not affected. In this example, the dynamically bound method in the Shape interface 
is draw( ), so the intent is for the client programmer to call draw( ) through a generic 
Shape reference. In all of the derived classes, draw( ) is overridden, and because it is a 
dynamically bound method, the proper behavior will occur even though it is called through a 
generic Shape reference. That’s polymorphism.  

Thus, you generally create a specific object (Circle, Square, or Triangle), upcast it to a 
Shape (forgetting the specific type of the object), and use that anonymous Shape reference 
in the rest of the program.  

You might code the Shape hierarchy as follows:  

//: typeinfo/Shapes.java 
import java.util.*; 
 
abstract class Shape { 
  void draw() { System.out.println(this + ".draw()"); } 
  abstract public String toString(); 

 



 

} 
 
class Circle extends Shape { 
  public String toString() { return "Circle"; } 
} 
 
class Square extends Shape { 
  public String toString() { return "Square"; } 
} 
 
class Triangle extends Shape { 
  public String toString() { return "Triangle"; } 
}  
 
public class Shapes { 
  public static void main(String[] args) { 
    List<Shape> shapeList = Arrays.asList( 
      new Circle(), new Square(), new Triangle() 
    ); 
    for(Shape shape : shapeList) 
      shape.draw(); 
  } 
} /* Output: 
Circle.draw() 
Square.draw() 
Triangle.draw() 
*///:~ 

The base class contains a draw( ) method that indirectly uses toString( ) to print an 
identifier for the class by passing this to System.out.println( ) (notice that toString( ) is 
declared abstract to force inheritors to override it, and to prevent the instantiation of a 
plain Shape). If an object appears in a string concatenation expression (involving ‘+’ and 
String objects), the toString( ) method is automatically called to produce a String 
representation for that object. Each of the derived classes overrides the toString( ) method 
(from Object) so that draw( ) ends up (polymorphically) printing something different in 
each case.  

In this example, the upcast occurs when the shape is placed into the List<Shape>. During 
the upcast to Shape, the fact that the objects are specific types of Shape is lost. To the array, 
they are just Shapes.  

At the point that you fetch an element out of the array, the container—which is actually 
holding everything as an Object—automatically casts the result back to a Shape. This is the 
most basic form of RTTI, because all casts are checked at run time for correctness. That’s 
what RTTI means: At run time, the type of an object is identified.  

In this case, the RTTI cast is only partial: The Object is cast to a Shape, and not all the way 
to a Circle, Square, or Triangle. That’s because the only thing you know at this point is 
that the List<Shape> is full of Shapes. At compile time, this is enforced by the container 
and the Java generic system, but at run time the cast ensures it.  

Now polymorphism takes over and the exact code that’s executed for the Shape is 
determined by whether the reference is for a Circle, Square, or Triangle. And in general, 
this is how it should be; you want the bulk of your code to know as little as possible about 
specific types of objects, and to just deal with the general representation of a family of objects 
(in this case, Shape). As a result, your code will be easier to write, read, and maintain, and 
your designs will be easier to implement, understand, and change. So polymorphism is a 
general goal in object-oriented programming.  

394 Thinking in Java Bruce Eckel 



 

But what if you have a special programming problem that’s easiest to solve if you know the 
exact type of a generic reference? For example, suppose you want to allow your users to 
highlight all the shapes of any particular type by turning them a special color. This way, they 
can find all the triangles on the screen by highlighting them. Or perhaps your method needs 
to "rotate" a list of shapes, but it makes no sense to rotate a circle so you’d like to skip the 
circles. With RTTI, you can ask a Shape reference the exact type that it’s referring to, and 
thus select and isolate special cases.  

The Class object  
To understand how RTTI works in Java, you must first know how type information is 
represented at run time. This is accomplished through a special kind of object called the 
Class object, which contains information about the class. In fact, the Class object is used to 
create all of the "regular" objects of your class. Java performs its RTTI using the Class 
object, even if you’re doing something like a cast. The class Class also has a number of other 
ways you can use RTTI.  

There’s one Class object for each class that is part of your program. That is, each time you 
write and compile a new class, a single Class object is also created (and stored, appropriately 
enough, in an identically named .class file). To make an object of that class, the Java Virtual 
Machine (JVM) that’s executing your program uses a subsystem called a class loader.  

The class loader subsystem can actually comprise a chain of class loaders, but there’s only 
one primordial class loader, which is part of the JVM implementation. The primordial class 
loader loads so-called trusted classes, including Java API classes, typically from the local 
disk. It’s usually not necessary to have additional class loaders in the chain, but if you have 
special needs (such as loading classes in a special way to support Web server applications, or 
downloading classes across a network), then you have a way to hook in additional class 
loaders.  

All classes are loaded into the JVM dynamically, upon the first use of a class. This happens 
when the program makes the first reference to a static member of that class. It turns out that 
the constructor is also a static method of a class, even though the static keyword is not used 
for a constructor. Therefore, creating a new object of that class using the new operator also 
counts as a reference to a static member of the class.  

Thus, a Java program isn’t completely loaded before it begins, but instead pieces of it are 
loaded when necessary. This is different from many traditional languages. Dynamic loading 
enables behavior that is difficult or impossible to duplicate in a statically loaded language like 
C++.  

The class loader first checks to see if the Class object for that type is loaded. If not, the 
default class loader finds the .class file with that name (an add-on class loader might, for 
example, look for the bytecodes in a database instead). As the bytes for the class are loaded, 
they are verified to ensure that they have not been corrupted and that they do not comprise 
bad Java code (this is one of the lines of defense for security in Java).  

Once the Class object for that type is in memory, it is used to create all objects of that type. 
Here’s a program to prove it:  

//: typeinfo/SweetShop.java 
// Examination of the way the class loader works. 
import static net.mindview.util.Print.*; 
 
class Candy { 
  static { print("Loading Candy"); } 
} 

Type Information 395 



 

 
class Gum { 
  static { print("Loading Gum"); } 
} 
 
class Cookie { 
  static { print("Loading Cookie"); } 
} 
 
public class SweetShop { 
  public static void main(String[] args) {  
    print("inside main"); 
    new Candy(); 
    print("After creating Candy"); 
    try { 
      Class.forName("Gum"); 
    } catch(ClassNotFoundException e) { 
      print("Couldn’t find Gum"); 
    } 
    print("After Class.forName(\"Gum\")"); 
    new Cookie(); 
    print("After creating Cookie"); 
  } 
} /* Output: 
inside main 
Loading Candy 
After creating Candy 
Loading Gum 
After Class.forName("Gum") 
Loading Cookie 
After creating Cookie 
*///:~ 

Each of the classes Candy, Gum, and Cookie has a static clause that is executed as the 
class is loaded for the first time. Information will be printed to tell you when loading occurs 
for that class. In main( ), the object creations are spread out between print statements to 
help detect the time of loading.  

You can see from the output that each Class object is loaded only when it’s needed, and the 
static initialization is performed upon class loading.  

A particularly interesting line is:  

Class.forName("Gum");  

All Class objects belong to the class Class. A Class object is like any other object, so you 
can get and manipulate a reference to it (that’s what the loader does). One of the ways to get 
a reference to the Class object is the static forName( ) method, which takes a String 
containing the textual name (watch the spelling and capitalization!) of the particular class 
you want a reference for. It returns a Class reference, which is being ignored here; the call to 
forName( ) is being made for its side effect, which is to load the class Gum if it isn’t already 
loaded. In the process of loading, Gum’s static clause is executed.  

In the preceding example, if Class.forName( ) fails because it can’t find the class you’re 
trying to load, it will throw a ClassNotFoundException. Here, we simply report the 
problem and move on, but in more sophisticated programs, you might try to fix the problem 
inside the exception handler.  

 

396 Thinking in Java Bruce Eckel 



 

Anytime you want to use type information at run time, you must first get a reference to the 
appropriate Class object. Class.forName( ) is one convenient way to do this, because you 
don’t need an object of that type in order to get the Class reference. However, if you already 
have an object of the type you’re interested in, you can fetch the Class reference by calling a 
method that’s part of the Object root class: getClass( ). This returns the Class reference 
representing the actual type of the object. Class has many interesting methods; here are a 
few of them:  

//: typeinfo/toys/ToyTest.java 
// Testing class Class. 
package typeinfo.toys; 
import static net.mindview.util.Print.*; 
 
interface HasBatteries {} 
interface Waterproof {} 
interface Shoots {} 
 
class Toy { 
  // Comment out the following default constructor 
  // to see NoSuchMethodError from (*1*) 
  Toy() {} 
  Toy(int i) {} 
} 
 
class FancyToy extends Toy 
implements HasBatteries, Waterproof, Shoots { 
  FancyToy() { super(1); } 
} 
 
public class ToyTest { 
  static void printInfo(Class cc) { 
    print("Class name: " + cc.getName() + 
      " is interface? [" + cc.isInterface() + "]"); 
    print("Simple name: " + cc.getSimpleName()); 
    print("Canonical name : " + cc.getCanonicalName()); 
  } 
  public static void main(String[] args) { 
    Class c = null; 
    try { 
      c = Class.forName("typeinfo.toys.FancyToy"); 
    } catch(ClassNotFoundException e) { 
      print("Can’t find FancyToy"); 
      System.exit(1); 
    } 
    printInfo(c);  
    for(Class face : c.getInterfaces()) 
      printInfo(face); 
    Class up = c.getSuperclass(); 
    Object obj = null; 
    try { 
      // Requires default constructor: 
      obj = up.newInstance(); 
    } catch(InstantiationException e) { 
      print("Cannot instantiate"); 
      System.exit(1); 
    } catch(IllegalAccessException e) { 
      print("Cannot access"); 
      System.exit(1); 
    } 
    printInfo(obj.getClass()); 
  } 
} /* Output: 

Type Information 397 



 

Class name: typeinfo.toys.FancyToy is interface? [false] 
Simple name: FancyToy 
Canonical name : typeinfo.toys.FancyToy 
Class name: typeinfo.toys.HasBatteries is interface? [true] 
Simple name: HasBatteries 
Canonical name : typeinfo.toys.HasBatteries 
Class name: typeinfo.toys.Waterproof is interface? [true] 
Simple name: Waterproof 
Canonical name : typeinfo.toys.Waterproof 
Class name: typeinfo.toys.Shoots is interface? [true] 
Simple name: Shoots 
Canonical name : typeinfo.toys.Shoots 
Class name: typeinfo.toys.Toy is interface? [false] 
Simple name: Toy 
Canonical name : typeinfo.toys.Toy 
*///:~ 

FancyToy inherits from Toy and implements the interfaces HasBatteries, 
Waterproof, and Shoots. In main( ), a Class reference is created and initialized to the 
FancyToy Class using forName( ) inside an appropriate try block. Notice that you must 
use the fully qualified name (including the package name) in the string that you pass to 
forName( ).  

printInfo( ) uses getName( ) to produce the fully qualified class name, and 
getSimpleName( ) and getCanonicalName( ) (introduced in Java SE5) to produce the 
name without the package, and the fully qualified name, respectively. As its name implies, 
islnterface( ) tells you whether this Class object represents an interface. Thus, with the 
Class object you can find out just about everything you want to know about a type.  

The Class.getlnterfaces( ) method called in main( ) returns an array of Class objects 
representing the interfaces that are contained in the Class object of interest.  

If you have a Class object, you can also ask it for its direct base class using getSuperclass( 
). This returns a Class reference that you can further query. Thus you can discover an 
object’s entire class hierarchy at run time.  

The newlnstance( ) method of Class is a way to implement a "virtual constructor," which 
allows you to say, "I don’t know exactly what type you are, but create yourself properly 
anyway." In the preceding example, up is just a Class reference with no further type 
information known at compile time. And when you create a new instance, you get back an 
Object reference. But that reference is pointing to a Toy object. Of course, before you can 
send any messages other than those accepted by Object, you must investigate it a bit and do 
some casting. In addition, the class that’s being created with newlnstance( ) must have a 
default constructor. Later in this chapter, you’ll see how to dynamically create objects of 
classes using any constructor, with the Java reflection API.  

Exercise 1:   (1) In ToyTest.java, comment out Toy’s default constructor and explain 
what happens.  

Exercise 2:   (2) Incorporate a new kind of interface into ToyTest.java and verify that it 
is detected and displayed properly.  

Exercise 3:   (2) Add Rhomboid to Shapes.java. Create a Rhomboid, upcast it to a 
Shape, then downcast it back to a Rhomboid. Try downcasting to a Circle and see what 
happens.  

Exercise 4:   (2) Modify the previous exercise so that it uses instanceof to check the type 
before performing the downcast.  

398 Thinking in Java Bruce Eckel 



 

Exercise 5:   (3) Implement a rotate(Shape) method in Shapes.java, such that it 
checks to see if it is rotating a Circle (and, if so, doesn’t perform the operation).  

Exercise 6:   (4) Modify Shapes.java so that it can "highlight" (set a flag in) all shapes of 
a particular type. The toString( ) method for each derived Shape should indicate whether 
that Shape is "highlighted."  

Exercise 7:   (3) Modify SweetShop.java so that each type of object creation is 
controlled by a command-line argument. That is, if your command line is "Java Sweetshop 
Candy," then only the Candy object is created. Notice how you can control which Class 
objects are loaded via the commandline argument.  

Exercise 8:   (5) Write a method that takes an object and recursively prints all the classes 
in that object’s hierarchy.  

Exercise 9:   (5) Modify the previous exercise so that it uses 
Class.getDeclaredFields( ) to also display information about the fields in a class.  

Exercise 10:   (3) Write a program to determine whether an array of char is a primitive 
type or a true Object.  

Class literals 

Java provides a second way to produce the reference to the Class object: the class literal. In 
the preceding program this would look like:  

FancyToy.class;  

which is not only simpler, but also safer since it’s checked at compile time (and thus does not 
need to be placed in a try block). Because it eliminates the forName( ) method call, it’s also 
more efficient.  

Class literals work with regular classes as well as interfaces, arrays, and primitive types. In 
addition, there’s a standard field called TYPE that exists for each of the primitive wrapper 
classes. The TYPE field produces a reference to the Class object for the associated primitive 
type, such that:   

... is equivalent to ... 

boolean.class Boolean.TYPE 

char.class Character.TYPE 

byte.class Byte.TYPE 

short.class Short.TYPE 

int.class Integer.TYPE 

long.class Long.TYPE 

float.class Float.TYPE 

double.class Double.TYPE 

void.class Void.TYPE 

My preference is to use the ".class" versions if you can, since they’re more consistent with 
regular classes.  

Type Information 399 



 

It’s interesting to note that creating a reference to a Class object using ".class" doesn’t 
automatically initialize the Class object. There are actually three steps in preparing a class 
for use:  

1. Loading, which is performed by the class loader. This finds the bytecodes (usually, but 
not necessarily, on your disk in your classpath) and creates a Class object from those 
bytecodes.  
 

2. Linking. The link phase verifies the bytecodes in the class, allocates storage for static 
fields, and if necessary, resolves all references to other classes made by this class.  

 
3. Initialization. If there’s a superclass, initialize that. Execute static initializers and 

static initialization blocks.  
 

Initialization is delayed until the first reference to a static method (the constructor is 
implicitly static) or to a non-constant static field:  

//: typeinfo/ClassInitialization.java 
import java.util.*; 
 
class Initable { 
  static final int staticFinal = 47; 
  static final int staticFinal2 = 
    ClassInitialization.rand.nextInt(1000); 
  static { 
    System.out.println("Initializing Initable"); 
  } 
} 
 
class Initable2 { 
  static int staticNonFinal = 147; 
  static { 
    System.out.println("Initializing Initable2"); 
  } 
} 
 
class Initable3 { 
  static int staticNonFinal = 74; 
  static { 
    System.out.println("Initializing Initable3"); 
  } 
} 
 
public class ClassInitialization { 
  public static Random rand = new Random(47); 
  public static void main(String[] args) throws Exception { 
    Class initable = Initable.class; 
    System.out.println("After creating Initable ref"); 
    // Does not trigger initialization: 
    System.out.println(Initable.staticFinal); 
    // Does trigger initialization: 
    System.out.println(Initable.staticFinal2); 
    // Does trigger initialization: 
    System.out.println(Initable2.staticNonFinal); 
    Class initable3 = Class.forName("Initable3"); 
    System.out.println("After creating Initable3 ref"); 
    System.out.println(Initable3.staticNonFinal); 
  } 
} /* Output: 
After creating Initable ref 
47 

400 Thinking in Java Bruce Eckel 



 

Initializing Initable 
258 
Initializing Initable2 
147 
Initializing Initable3 
After creating Initable3 ref 
74 
*///:~ 

Effectively, initialization is "as lazy as possible." From the creation of the initable reference, 
you can see that just using the .class syntax to get a reference to the class doesn’t cause 
initialization. However, Class.forName( ) initializes the class immediately in order to 
produce the Class reference, as you can see in the creation of initable3.  

If a static final value is a "compile-time constant," such as Initable.staticFinal, that 
value can be read without causing the Initable class to be initialized. Making a field static 
and final, however, does not guarantee this behavior: accessing Initable.staticFinal2 
forces class initialization because it cannot be a compile-time constant.  

If a static field is not final, accessing it always requires linking (to allocate storage for the 
field) and initialization (to initialize that storage) before it can be read, as you can see in the 
access to Initable2.staticNonFinal.  

Generic class references 

A Class reference points to a Class object, which manufactures instances of classes and 
contains all the method code for those instances. It also contains the statics for that class. So 
a Class reference really does indicate the exact type of what it’s pointing to: an object of the 
class Class.  

However, the designers of Java SE5 saw an opportunity to make this a bit more specific by 
allowing you to constrain the type of Class object that the Class reference is pointing to, 
using the generic syntax. In the following example, both syntaxes are correct:  

//: typeinfo/GenericClassReferences.java 
 
public class GenericClassReferences { 
  public static void main(String[] args) { 
    Class intClass = int.class; 
    Class<Integer> genericIntClass = int.class; 
    genericIntClass = Integer.class; // Same thing 
    intClass = double.class; 
    // genericIntClass = double.class; // Illegal 
  } 
} ///:~ 

The ordinary class reference does not produce a warning. However, you can see that the 
ordinary class reference can be reassigned to any other Class object, whereas the generic 
class reference can only be assigned to its declared type. By using the generic syntax, you 
allow the compiler to enforce extra type checking.  

What if you’d like to loosen the constraint a little? Initially, it seems like you ought to be able 
to do something like:  

Class<Number> genericNumberClass = int.class;  

This would seem to make sense because Integer is inherited from Number. But this 
doesn’t work, because the Integer Class object is not a subclass of the Number Class 

Type Information 401 



 

object (this may seem like a subtle distinction; we’ll look into it more deeply in the Generics 
chapter).  

To loosen the constraints when using generic Class references, I employ the wildcard, which 
is part of Java generics. The wildcard symbol is ‘?’, and it indicates "anything." So we can add 
wildcards to the ordinary Class reference in the above example and produce the same 
results:  

//: typeinfo/WildcardClassReferences.java 
 
public class WildcardClassReferences { 
  public static void main(String[] args) { 
    Class<?> intClass = int.class; 
    intClass = double.class; 
  } 
} ///:~ 

In Java SE5, Class<?> is preferred over plain Class, even though they are equivalent and 
the plain Class, as you saw, doesn’t produce a compiler warning. The benefit of Class<?> is 
that it indicates that you aren’t just using a non-specific class reference by accident, or out of 
ignorance. You chose the non-specific version.  

In order to create a Class reference that is constrained to a type or any subtype, you 
combine the wildcard with the extends keyword to create a bound. So instead of just saying 
Class<Number>, you say:  

//: typeinfo/BoundedClassReferences.java 
 
public class BoundedClassReferences { 
  public static void main(String[] args) { 
    Class<? extends Number> bounded = int.class; 
    bounded = double.class; 
    bounded = Number.class; 
    // Or anything else derived from Number. 
  } 
} ///:~ 

The reason for adding the generic syntax to Class references is only to provide compile-time 
type checking, so that if you do something wrong you find out about it a little sooner. You 
can’t actually go astray with ordinary Class references, but if you make a mistake you won’t 
find out until run time, which can be inconvenient.  

Here’s an example that uses the generic class syntax. It stores a class reference, and later 
produces a List filled with objects that it generates using newlnstance( ):  

//: typeinfo/FilledList.java 
import java.util.*; 
 
class CountedInteger { 
  private static long counter; 
  private final long id = counter++; 
  public String toString() { return Long.toString(id); } 
} 
 
public class FilledList<T> { 
  private Class<T> type; 
  public FilledList(Class<T> type) { this.type = type; }  
  public List<T> create(int nElements) { 
    List<T> result = new ArrayList<T>(); 
    try { 

402 Thinking in Java Bruce Eckel 



 

      for(int i = 0; i < nElements; i++) 
        result.add(type.newInstance()); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
    return result; 
  } 
  public static void main(String[] args) { 
    FilledList<CountedInteger> fl = 
      new FilledList<CountedInteger>(CountedInteger.class); 
    System.out.println(fl.create(15)); 
  } 
} /* Output: 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] 
*///:~ 

Notice that this class must assume that any type that it works with has a default constructor 
(one without arguments), and you’ll get an exception if that isn’t the case. The compiler does 
not issue any warnings for this program.  

An interesting thing happens when you use the generic syntax for Class objects: 
newlnstance( ) will return the exact type of the object, rather than just a basic Object as 
you saw in ToyTest.java. This is somewhat limited:  

//: typeinfo/toys/GenericToyTest.java 
// Testing class Class. 
package typeinfo.toys; 
 
public class GenericToyTest { 
  public static void main(String[] args) throws Exception { 
    Class<FancyToy> ftClass = FancyToy.class; 
    // Produces exact type: 
    FancyToy fancyToy = ftClass.newInstance(); 
    Class<? super FancyToy> up = ftClass.getSuperclass(); 
    // This won’t compile: 
    // Class<Toy> up2 = ftClass.getSuperclass(); 
    // Only produces Object: 
    Object obj = up.newInstance(); 
  } 
} ///:~ 

If you get the superclass, the compiler will only allow you to say that the superclass reference 
is "some class that is a superclass of FancyToy" as seen in the expression Class <? super 
FancyToy >. It will not accept a declaration of Class<Toy>. This seems a bit strange 
because getSuperclass( ) returns the base class (not interface) and the compiler knows 
what that class is at compile time—in this case, Toy.class, not just "some superclass of 
FancyToy." In any event, because of the vagueness, the return value of up.newlnstance( ) 
is not a precise type, but just an Object.  

New cast syntax 

Java SE5 also adds a casting syntax for use with Class references, which is the cast( ) 
method: 

//: typeinfo/ClassCasts.java 
 
class Building {} 
class House extends Building {} 
 

Type Information 403 



 

public class ClassCasts { 
  public static void main(String[] args) { 
    Building b = new House(); 
    Class<House> houseType = House.class; 
    House h = houseType.cast(b); 
    h = (House)b; // ... or just do this. 
  } 
} ///:~ 

The cast( ) method takes the argument object and casts it to the type of the Class reference. 
Of course, if you look at the above code it seems like a lot of extra work compared to the last 
line in main( ), which does the same thing.  

The new casting syntax is useful for situations where you can’t just use an ordinary cast. This 
usually happens when you’re writing generic code (which you’ll learn about in the Generics 
chapter), and you’ve stored a Class reference that you want to use to cast with at a later time. 
It turns out to be a rare thing—I found only one instance where cast( ) was used in the entire 
Java SE5 library (it was in com.sun.mirror.util.DeclarationFilter).  

Another new feature had no usage in the Java SE5 library: Class.asSubclass( ). This allows 
you to cast the class object to a more specific type.  

Checking before a cast 
So far, you’ve seen forms of RTTI, including:  

1. The classic cast; e.g., "(Shape)," which uses RTTI to make sure the cast is correct. 
This will throw a ClassCastException if you’ve performed a bad cast.  

 
2. The Class object representing the type of your object. The Class object can be 

queried for useful runtime information.  
 

In C++, the classic cast "(Shape)" does not perform RTTI. It simply tells the compiler to 
treat the object as the new type. In Java, which does perform the type check, this cast is often 
called a "type-safe downcast." The reason for the term "downcast" is the historical 
arrangement of the class hierarchy diagram. If casting a Circle to a Shape is an upcast, then 
casting a Shape to a Circle is a downcast. However, because it knows that a Circle is also a 
Shape, the compiler freely allows an upcast assignment, without requiring any explicit cast 
syntax. The compiler cannot know, given a Shape, what that Shape actually is—it could be 
exactly a Shape, or it could be a subtype of Shape, such as a Circle, Square, Triangle or 
some other type. At compile time, the compiler only sees a Shape. Thus, it won’t allow you to 
perform a downcast assignment without using an explicit cast, to tell it that you have extra 
information that allows you to know that it is a particular type (the compiler will check to see 
if that downcast is reasonable, so it won’t let you downcast to a type that’s not actually a 
subclass).  

There’s a third form of RTTI in Java. This is the keyword instanceof, which tells you if an 
object is an instance of a particular type. It returns a boolean so you use it in the form of a 
question, like this:  

if(x instanceof Dog)  
  ((Dog)x).bark(); 

The if statement checks to see if the object x belongs to the class Dog before casting x to a 
Dog. It’s important to use instanceof before a downcast when you don’t have other 
information that tells you the type of the object; otherwise, you’ll end up with a 
ClassCastException.  

404 Thinking in Java Bruce Eckel 



 

Ordinarily, you might be hunting for one type (triangles to turn purple, for example), but you 
can easily tally all of the objects by using instanceof. For example, suppose you have a 
family of classes to describe Pets (and their people, a feature which will come in handy in a 
later example). Each Individual in the hierarchy has an id and an optional name. Although 
the classes that follow inherit from Individual, there are some complexities in the 
Individual class, so that code will be shown and explained in the Containers in Depth 
chapter. As you can see, it’s not really necessary to see the code for Individual at this 
point—you only need to know that you can create it with or without a name, and that each 
Individual has a method id( ) that returns a unique identifier (created by counting each 
object). There’s also a toString( ) method; if you don’t provide a name for an Individual, 
toString( ) only produces the simple type name.  

Here is the class hierarchy that inherits from Individual:  

//: typeinfo/pets/Person.java 
package typeinfo.pets; 
 
public class Person extends Individual { 
  public Person(String name) { super(name); } 
} ///:~ 
 
//: typeinfo/pets/Pet.java 
package typeinfo.pets; 
 
public class Pet extends Individual { 
  public Pet(String name) { super(name); } 
  public Pet() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Dog.java 
package typeinfo.pets; 
 
public class Dog extends Pet { 
  public Dog(String name) { super(name); } 
  public Dog() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Mutt.java 
package typeinfo.pets; 
 
public class Mutt extends Dog { 
  public Mutt(String name) { super(name); } 
  public Mutt() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Pug.java 
package typeinfo.pets; 
 
public class Pug extends Dog { 
  public Pug(String name) { super(name); } 
  public Pug() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Cat.java 
package typeinfo.pets; 
 
public class Cat extends Pet { 
  public Cat(String name) { super(name); } 
  public Cat() { super(); } 
} ///:~ 
 
//: typeinfo/pets/EgyptianMau.java 

Type Information 405 



 

package typeinfo.pets; 
 
public class EgyptianMau extends Cat { 
  public EgyptianMau(String name) { super(name); } 
  public EgyptianMau() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Manx.java 
package typeinfo.pets; 
 
public class Manx extends Cat { 
  public Manx(String name) { super(name); } 
  public Manx() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Cymric.java 
package typeinfo.pets; 
 
public class Cymric extends Manx { 
  public Cymric(String name) { super(name); } 
  public Cymric() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Rodent.java 
package typeinfo.pets; 
 
public class Rodent extends Pet { 
  public Rodent(String name) { super(name); } 
  public Rodent() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Rat.java 
package typeinfo.pets; 
 
public class Rat extends Rodent { 
  public Rat(String name) { super(name); } 
  public Rat() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Mouse.java 
package typeinfo.pets; 
 
public class Mouse extends Rodent { 
  public Mouse(String name) { super(name); } 
  public Mouse() { super(); } 
} ///:~ 
 
//: typeinfo/pets/Hamster.java 
package typeinfo.pets; 
 
public class Hamster extends Rodent { 
  public Hamster(String name) { super(name); } 
  public Hamster() { super(); } 
} ///:~ 

Next, we need a way to randomly create different types of pets, and for convenience, to create 
arrays and Lists of pets. To allow this tool to evolve through several different 
implementations, we’ll define it as an abstract class:  

//: typeinfo/pets/PetCreator.java 
// Creates random sequences of Pets. 
package typeinfo.pets; 

406 Thinking in Java Bruce Eckel 



 

import java.util.*; 
 
public abstract class PetCreator { 
  private Random rand = new Random(47); 
  // The List of the different types of Pet to create: 
  public abstract List<Class<? extends Pet>> types(); 
  public Pet randomPet() { // Create one random Pet 
    int n = rand.nextInt(types().size()); 
    try { 
      return types().get(n).newInstance(); 
    } catch(InstantiationException e) { 
      throw new RuntimeException(e); 
    } catch(IllegalAccessException e) { 
      throw new RuntimeException(e); 
    } 
  }  
  public Pet[] createArray(int size) { 
    Pet[] result = new Pet[size]; 
    for(int i = 0; i < size; i++) 
      result[i] = randomPet(); 
    return result; 
  } 
  public ArrayList<Pet> arrayList(int size) { 
    ArrayList<Pet> result = new ArrayList<Pet>(); 
    Collections.addAll(result, createArray(size)); 
    return result; 
  } 
} ///:~ 

The abstract getTypes( ) method defers to a derived class to get the List of Class objects 
(this is a variation of the Template Method design pattern). Notice that the type of class is 
specified to be "anything derived from Pet," so that newlnstance( ) produces a Pet without 
requiring a cast. randomPet( ) randomly indexes into the List and uses the selected Class 
object to generate a new instance of that class with Class.newlnstance( ). The 
createArray( ) method uses randomPet( ) to fill an array, and arrayList( ) uses 
createArray( ) in turn.  

You can get two kinds of exceptions when calling newlnstance( ). You can see these 
handled in the catch clauses following the try block. Again, the names of the exceptions are 
relatively useful explanations of what went wrong (IllegalAccessException relates to a 
violation of the Java security mechanism, in this case if the default constructor is private).  

When you derive a subclass of PetCreator, the only thing you need to supply is the List of 
the types of pet that you want to create using randomPet( ) and the other methods. The 
getTypes( ) method will normally just return a reference to a static List. Here’s an 
implementation using forName( ):  

//: typeinfo/pets/ForNameCreator.java 
package typeinfo.pets; 
import java.util.*; 
 
public class ForNameCreator extends PetCreator { 
  private static List<Class<? extends Pet>> types = 
    new ArrayList<Class<? extends Pet>>(); 
  // Types that you want to be randomly created: 
  private static String[] typeNames = { 
    "typeinfo.pets.Mutt", 
    "typeinfo.pets.Pug", 
    "typeinfo.pets.EgyptianMau", 
    "typeinfo.pets.Manx", 
    "typeinfo.pets.Cymric", 

Type Information 407 



 

    "typeinfo.pets.Rat", 
    "typeinfo.pets.Mouse", 
    "typeinfo.pets.Hamster" 
  };  
  @SuppressWarnings("unchecked") 
  private static void loader() { 
    try { 
      for(String name : typeNames) 
        types.add( 
          (Class<? extends Pet>)Class.forName(name)); 
    } catch(ClassNotFoundException e) { 
      throw new RuntimeException(e); 
    } 
  } 
  static { loader(); } 
  public List<Class<? extends Pet>> types() {return types;} 
} ///:~ 

The loader( ) method creates the List of Class objects using Class.forName( ). This may 
generate a ClassNotFoundException, which makes sense since you’re passing it a String 
which cannot be validated at compile time. Since the Pet objects are in package typeinfo, 
the package name must be used when referring to the classes.  

In order to produce a typed List of Class objects, a cast is required, which produces a 
compile-time warning. The loader( ) method is defined separately and then placed inside a 
static initialization clause because the @SuppressWarnings annotation cannot be placed 
directly onto the static initialization clause. To count Pets, we need a tool that keeps track of 
the quantities of various different types of Pets. A Map is perfect for this; the keys are the Pet 
type names and the values are Integers to hold the Pet quantities. This way, you can say, 
"How many Hamster objects are there?" We can use instanceof to count Pets:  

//: typeinfo/PetCount.java 
// Using instanceof. 
import typeinfo.pets.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class PetCount { 
  static class PetCounter extends HashMap<String,Integer> { 
    public void count(String type) { 
      Integer quantity = get(type); 
      if(quantity == null) 
        put(type, 1); 
      else 
        put(type, quantity + 1); 
    } 
  }  
  public static void 
  countPets(PetCreator creator) { 
    PetCounter counter= new PetCounter(); 
    for(Pet pet : creator.createArray(20)) { 
      // List each individual pet: 
      printnb(pet.getClass().getSimpleName() + " "); 
      if(pet instanceof Pet) 
        counter.count("Pet"); 
      if(pet instanceof Dog) 
        counter.count("Dog"); 
      if(pet instanceof Mutt) 
        counter.count("Mutt"); 
      if(pet instanceof Pug) 
        counter.count("Pug"); 
      if(pet instanceof Cat) 

408 Thinking in Java Bruce Eckel 



 

        counter.count("Cat"); 
      if(pet instanceof Manx) 
        counter.count("EgyptianMau"); 
      if(pet instanceof Manx) 
        counter.count("Manx"); 
      if(pet instanceof Manx) 
        counter.count("Cymric"); 
      if(pet instanceof Rodent) 
        counter.count("Rodent"); 
      if(pet instanceof Rat) 
        counter.count("Rat"); 
      if(pet instanceof Mouse) 
        counter.count("Mouse"); 
      if(pet instanceof Hamster) 
        counter.count("Hamster"); 
    } 
    // Show the counts: 
    print(); 
    print(counter); 
  }  
  public static void main(String[] args) { 
    countPets(new ForNameCreator()); 
  } 
} /* Output: 
Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat EgyptianMau Hamster 
EgyptianMau Mutt Mutt Cymric Mouse Pug Mouse Cymric 
{Pug=3, Cat=9, Hamster=1, Cymric=7, Mouse=2, Mutt=3, Rodent=5, Pet=20, 
Manx=7, EgyptianMau=7, Dog=6, Rat=2} 
*///:~ 

In countPets( ), an array is randomly filled with Pets using a PetCreator. Then each Pet 
in the array is tested and counted using instanceof. There’s a rather narrow restriction on 
instanceof: You can compare it to a named type only, and not to a Class object. In the 
preceding example you might feel that it’s tedious to write out all of those instanceof 
expressions, and you’re right. But there is no way to cleverly automate instanceof by 
creating an array of Class objects and comparing it to those instead (stay tuned—you’ll see 
an alternative). This isn’t as great a restriction as you might think, because you’ll eventually 
understand that your design is probably flawed if you end up writing a lot of instanceof 
expressions.  

Using class literals 

If we reimplement the PetCreator using class literals, the result is cleaner in many ways: 

//: typeinfo/pets/LiteralPetCreator.java 
// Using class literals. 
package typeinfo.pets; 
import java.util.*; 
 
public class LiteralPetCreator extends PetCreator { 
  // No try block needed. 
  @SuppressWarnings("unchecked") 
  public static final List<Class<? extends Pet>> allTypes = 
    Collections.unmodifiableList(Arrays.asList( 
      Pet.class, Dog.class, Cat.class,  Rodent.class, 
      Mutt.class, Pug.class, EgyptianMau.class, Manx.class, 
      Cymric.class, Rat.class, Mouse.class,Hamster.class)); 
  // Types for random creation: 
  private static final List<Class<? extends Pet>> types = 
    allTypes.subList(allTypes.indexOf(Mutt.class), 

Type Information 409 



 

      allTypes.size()); 
  public List<Class<? extends Pet>> types() { 
    return types; 
  }  
  public static void main(String[] args) { 
    System.out.println(types); 
  } 
} /* Output: 
[class typeinfo.pets.Mutt, class typeinfo.pets.Pug, class 
typeinfo.pets.EgyptianMau, class typeinfo.pets.Manx, class 
typeinfo.pets.Cymric, class typeinfo.pets.Rat, class 
typeinfo.pets.Mouse, class typeinfo.pets.Hamster] 
*///:~ 

In the upcoming PetCount3.java example, we need to pre-load a Map with all the Pet 
types (not just the ones that are to be randomly generated), so the allTypes List is 
necessary. The types list is the portion of allTypes (created using List.subList( )) that 
includes the exact pet types, so it is used for random Pet generation.  

This time, the creation of types does not need to be surrounded by a try block since it’s 
evaluated at compile time and thus won’t throw any exceptions, unlike Class.forName( ).  

We now have two implementations of PetCreator in the typeinfo.pets library. In order to 
provide the second one as a default implementation, we can create a Faqade that utilizes 
LiteralPetCreator:  

//: typeinfo/pets/Pets.java 
// Facade to produce a default PetCreator. 
package typeinfo.pets; 
import java.util.*; 
 
public class Pets { 
  public static final PetCreator creator = 
    new LiteralPetCreator(); 
  public static Pet randomPet() { 
    return creator.randomPet(); 
  } 
  public static Pet[] createArray(int size) { 
    return creator.createArray(size); 
  } 
  public static ArrayList<Pet> arrayList(int size) { 
    return creator.arrayList(size); 
  } 
} ///:~ 

This also provides indirection to randomPet( ), createArray( ) and arrayList( ).  

Because PetCount.countPets( ) takes a PetCreator argument, we can easily test the 
LiteralPetCreator (via the above Facade):  

//: typeinfo/PetCount2.java 
import typeinfo.pets.*; 
 
public class PetCount2 { 
  public static void main(String[] args) { 
    PetCount.countPets(Pets.creator); 
  } 
} /* (Execute to see output) *///:~ 

The output is the same as that of PetCount.java.  

410 Thinking in Java Bruce Eckel 



 

A dynamic instanceof  

The Class.islnstance( ) method provides a way to dynamically test the type of an object. 
Thus, all those tedious instanceof statements can be removed from PetCount.java: 

//: typeinfo/PetCount3.java 
// Using isInstance() 
import typeinfo.pets.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class PetCount3 { 
  static class PetCounter 
  extends LinkedHashMap<Class<? extends Pet>,Integer> { 
    public PetCounter() { 
      super(MapData.map(LiteralPetCreator.allTypes, 0)); 
    } 
    public void count(Pet pet) { 
      // Class.isInstance() eliminates instanceofs: 
      for(Map.Entry<Class<? extends Pet>,Integer> pair 
          : entrySet()) 
        if(pair.getKey().isInstance(pet)) 
          put(pair.getKey(), pair.getValue() + 1); 
    }  
    public String toString() { 
      StringBuilder result = new StringBuilder("{"); 
      for(Map.Entry<Class<? extends Pet>,Integer> pair 
          : entrySet()) { 
        result.append(pair.getKey().getSimpleName()); 
        result.append("="); 
        result.append(pair.getValue()); 
        result.append(", "); 
      } 
      result.delete(result.length()-2, result.length()); 
      result.append("}"); 
      return result.toString(); 
    } 
  }  
  public static void main(String[] args) { 
    PetCounter petCount = new PetCounter(); 
    for(Pet pet : Pets.createArray(20)) { 
      printnb(pet.getClass().getSimpleName() + " "); 
      petCount.count(pet); 
    } 
    print(); 
    print(petCount); 
  } 
} /* Output: 
Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat EgyptianMau Hamster 
EgyptianMau Mutt Mutt Cymric Mouse Pug Mouse Cymric 
{Pet=20, Dog=6, Cat=9, Rodent=5, Mutt=3, Pug=3, EgyptianMau=2, Manx=7, 
Cymric=5, Rat=2, Mouse=2, Hamster=1} 
*///:~ 

In order to count all the different types of Pet, the PetCounter Map is preloaded with the 
types from LiteralPetCreator.allTypes. This uses the net.mindview.util.MapData 
class, which takes an Iterable (the allTypes List) and a constant value (zero, in this case), 
and fills the Map with keys taken from allTypes and values of zero). Without pre-loading 
the Map, you would only end up counting the types that are randomly generated, and not the 
base types like Pet and Cat.  

Type Information 411 



 

You can see that the isInstance( ) method has eliminated the need for the instanceof 
expressions. In addition, this means that you can add new types of Pet simply by changing 
the LiteralPetCreator.types array; the rest of the program does not need modification (as 
it did when using the instanceof expressions).  

The toString( ) method has been overloaded for easier-to-read output that still matches the 
typical output that you see when printing a Map.  

Counting recursively  

The Map in PetCount3.PetCounter was pre-loaded with all the different Pet classes. Instead of 
pre-loading the map, we can use Class.isAssignableFrom( ) and create a general-purpose tool 
that is not limited to counting Pets: 

//: net/mindview/util/TypeCounter.java 
// Counts instances of a type family. 
package net.mindview.util; 
import java.util.*; 
 
public class TypeCounter extends HashMap<Class<?>,Integer>{ 
  private Class<?> baseType; 
  public TypeCounter(Class<?> baseType) { 
    this.baseType = baseType; 
  } 
  public void count(Object obj) { 
    Class<?> type = obj.getClass(); 
    if(!baseType.isAssignableFrom(type)) 
      throw new RuntimeException(obj + " incorrect type: " 
        + type + ", should be type or subtype of " 
        + baseType); 
    countClass(type); 
  }  
  private void countClass(Class<?> type) { 
    Integer quantity = get(type); 
    put(type, quantity == null ? 1 : quantity + 1); 
    Class<?> superClass = type.getSuperclass(); 
    if(superClass != null && 
       baseType.isAssignableFrom(superClass)) 
      countClass(superClass); 
  } 
  public String toString() { 
    StringBuilder result = new StringBuilder("{"); 
    for(Map.Entry<Class<?>,Integer> pair : entrySet()) { 
      result.append(pair.getKey().getSimpleName()); 
      result.append("="); 
      result.append(pair.getValue()); 
      result.append(", "); 
    } 
    result.delete(result.length()-2, result.length()); 
    result.append("}"); 
    return result.toString(); 
  } 
} ///:~ 

The count( ) method gets the Class of its argument, and uses isAssignableFrom( ) to 
perform a runtime check to verify that the object that you’ve passed actually belongs to the 
hierarchy of interest. countClass( ) first counts the exact type of the class. Then, if 
baseType is assignable from the superclass, countClass( ) is called recursively on the 
superclass.  

412 Thinking in Java Bruce Eckel 



 

//: typeinfo/PetCount4.java 
import typeinfo.pets.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class PetCount4 { 
  public static void main(String[] args) { 
    TypeCounter counter = new TypeCounter(Pet.class); 
    for(Pet pet : Pets.createArray(20)) { 
      printnb(pet.getClass().getSimpleName() + " "); 
      counter.count(pet); 
    } 
    print(); 
    print(counter); 
  } 
} /* Output: (Sample) 
Rat Manx Cymric Mutt Pug Cymric Pug Manx Cymric Rat EgyptianMau Hamster 
EgyptianMau Mutt Mutt Cymric Mouse Pug Mouse Cymric 
{Mouse=2, Dog=6, Manx=7, EgyptianMau=2, Rodent=5, Pug=3, Mutt=3, 
Cymric=5, Cat=9, Hamster=1, Pet=20, Rat=2} 
*///:~ 

As you can see from the output, both base types as well as exact types are counted.  

Exercise 11:   (2) Add Gerbil to the typeinfo.pets library and modify all the examples in 
this chapter to adapt to this new class.  

Exercise 12:   (3) Use TypeCounter with the CoffeeGenerator.java class in the Generics 
chapter.  

Exercise 13:   (3) Use TypeCounter with the RegisteredFactories.java example in this 
chapter.  

Registered factories 
A problem with generating objects of the Pets hierarchy is the fact that every time you add a 
new type of Pet to the hierarchy you must remember to add it to the entries in 
LiteralPetCreator.java. In a system where you add more classes on a regular basis this 
can become problematic.  

You might think of adding a static initializer to each subclass, so that the initializer would 
add its class to a list somewhere. Unfortunately, static initializers are only called when the 
class is first loaded, so you have a chicken-and-egg problem: The generator doesn’t have the 
class in its list, so it can never create an object of that class, so the class won’t get loaded and 
placed in the list.  

Basically, you’re forced to create the list yourself, by hand (unless you want to write a tool 
that searches through and analyzes your source code, then creates and compiles the list). So 
the best you can probably do is to put the list in one central, obvious place. The base class for 
the hierarchy of interest is probably the best place.  

The other change we’ll make here is to defer the creation of the object to the class itself, using 
the Factory Method design pattern. A factory method can be called polymorphically, and 
creates an object of the appropriate type for you. In this very simple version, the factory 
method is the create( ) method in the Factory interface:  

 

Type Information 413 



 

//: typeinfo/factory/Factory.java 
package typeinfo.factory; 
public interface Factory<T> { T create(); } ///:~ 

The generic parameter T allows create( ) to return a different type for each implementation 
of Factory. This also makes use of covariant return types. In this example, the base class 
Part contains a List of factory objects. Factories for types that should be produced by the 
createRandom( ) method are "registered" with the base class by adding them to the 
partFactories List:  

//: typeinfo/RegisteredFactories.java 
// Registering Class Factories in the base class. 
import typeinfo.factory.*; 
import java.util.*; 
 
class Part { 
  public String toString() { 
    return getClass().getSimpleName(); 
  } 
  static List<Factory<? extends Part>> partFactories = 
    new ArrayList<Factory<? extends Part>>();  
  static { 
    // Collections.addAll() gives an "unchecked generic 
    // array creation ... for varargs parameter" warning. 
    partFactories.add(new FuelFilter.Factory()); 
    partFactories.add(new AirFilter.Factory()); 
    partFactories.add(new CabinAirFilter.Factory()); 
    partFactories.add(new OilFilter.Factory()); 
    partFactories.add(new FanBelt.Factory()); 
    partFactories.add(new PowerSteeringBelt.Factory()); 
    partFactories.add(new GeneratorBelt.Factory()); 
  } 
  private static Random rand = new Random(47); 
  public static Part createRandom() { 
    int n = rand.nextInt(partFactories.size()); 
    return partFactories.get(n).create(); 
  } 
}  
 
class Filter extends Part {} 
 
class FuelFilter extends Filter { 
  // Create a Class Factory for each specific type: 
  public static class Factory 
  implements typeinfo.factory.Factory<FuelFilter> { 
    public FuelFilter create() { return new FuelFilter(); } 
  } 
} 
 
class AirFilter extends Filter { 
  public static class Factory 
  implements typeinfo.factory.Factory<AirFilter> { 
    public AirFilter create() { return new AirFilter(); } 
  } 
}  
 
class CabinAirFilter extends Filter { 
  public static class Factory 
  implements typeinfo.factory.Factory<CabinAirFilter> { 
    public CabinAirFilter create() { 
      return new CabinAirFilter(); 
    } 

414 Thinking in Java Bruce Eckel 



 

  } 
} 
 
class OilFilter extends Filter { 
  public static class Factory 
  implements typeinfo.factory.Factory<OilFilter> { 
    public OilFilter create() { return new OilFilter(); } 
  } 
}  
 
class Belt extends Part {} 
 
class FanBelt extends Belt { 
  public static class Factory 
  implements typeinfo.factory.Factory<FanBelt> { 
    public FanBelt create() { return new FanBelt(); } 
  } 
} 
 
class GeneratorBelt extends Belt { 
  public static class Factory 
  implements typeinfo.factory.Factory<GeneratorBelt> { 
    public GeneratorBelt create() { 
      return new GeneratorBelt(); 
    } 
  } 
}  
 
class PowerSteeringBelt extends Belt { 
  public static class Factory 
  implements typeinfo.factory.Factory<PowerSteeringBelt> { 
    public PowerSteeringBelt create() { 
      return new PowerSteeringBelt(); 
    } 
  } 
}  
 
public class RegisteredFactories { 
  public static void main(String[] args) { 
    for(int i = 0; i < 10; i++) 
      System.out.println(Part.createRandom()); 
  } 
} /* Output: 
GeneratorBelt 
CabinAirFilter 
GeneratorBelt 
AirFilter 
PowerSteeringBelt 
CabinAirFilter 
FuelFilter 
PowerSteeringBelt 
PowerSteeringBelt 
FuelFilter 
*///:~ 

Not all classes in the hierarchy should be instantiated; in this case Filter and Belt are just 
classifiers so you do not create an instance of either one, but only of their subclasses. If a 
class should be created by createRandom( ), it contains an inner Factory class. The only 
way to reuse the name Factory as seen above is by qualifying typeinfo.factory.Factory.  

Although you can use Collections.addAll( ) to add the factories to the list, the compiler 
expresses its unhappiness with a warning about a "generic array creation" (which is supposed 

Type Information 415 



 

to be impossible, as you’ll see in the Generics chapter), so I reverted to calling add( ). The 
createRandom( ) method randomly selects a factory object from partFactories and calls 
its create( ) to produce a new Part.  

Exercise 14:   (4) A constructor is a kind of factory method. Modify 
RegisteredFactories.java so that instead of using an explicit factory, the class object is 
stored in the List, and newlnstance( ) is used to create each object.  

Exercise 15:   (4) Implement a new PetCreator using Registered Factories, and modify 
the Pets Facade so that it uses this one instead of the other two. Ensure that the rest of the 
examples that use Pets .Java still work correctly.  

Exercise 16:   (4) Modify the Coffee hierarchy in the Generics chapter to use Registered 
Factories.  

instanceof vs. Class equivalence 
When you are querying for type information, there’s an important difference between either 
form of instanceof (that is, instanceof or islnstance( ), which produce equivalent 
results) and the direct comparison of the Class objects. Here’s an example that demonstrates 
the difference:  

//: typeinfo/FamilyVsExactType.java 
// The difference between instanceof and class 
package typeinfo; 
import static net.mindview.util.Print.*; 
 
class Base {} 
class Derived extends Base {}  
 
public class FamilyVsExactType { 
  static void test(Object x) { 
    print("Testing x of type " + x.getClass()); 
    print("x instanceof Base " + (x instanceof Base)); 
    print("x instanceof Derived "+ (x instanceof Derived)); 
    print("Base.isInstance(x) "+ Base.class.isInstance(x)); 
    print("Derived.isInstance(x) " + 
      Derived.class.isInstance(x)); 
    print("x.getClass() == Base.class " + 
      (x.getClass() == Base.class)); 
    print("x.getClass() == Derived.class " + 
      (x.getClass() == Derived.class)); 
    print("x.getClass().equals(Base.class)) "+ 
      (x.getClass().equals(Base.class))); 
    print("x.getClass().equals(Derived.class)) " + 
      (x.getClass().equals(Derived.class))); 
  } 
  public static void main(String[] args) { 
    test(new Base()); 
    test(new Derived()); 
  }  
} /* Output: 
Testing x of type class typeinfo.Base 
x instanceof Base true 
x instanceof Derived false 
Base.isInstance(x) true 
Derived.isInstance(x) false 
x.getClass() == Base.class true 
x.getClass() == Derived.class false 

416 Thinking in Java Bruce Eckel 



 

x.getClass().equals(Base.class)) true 
x.getClass().equals(Derived.class)) false 
Testing x of type class typeinfo.Derived 
x instanceof Base true 
x instanceof Derived true 
Base.isInstance(x) true 
Derived.isInstance(x) true 
x.getClass() == Base.class false 
x.getClass() == Derived.class true 
x.getClass().equals(Base.class)) false 
x.getClass().equals(Derived.class)) true 
*///:~ 

The test( ) method performs type checking with its argument using both forms of 
instanceof. It then gets the Class reference and uses == and equals( ) to test for equality 
of the Class objects. Reassuringly, instanceof and islnstance( ) produce exactly the same 
results, as do equals( ) and ==. But the tests themselves draw different conclusions. In 
keeping with the concept of type, instanceof says, "Are you this class, or a class derived 
from this class?" On the other hand, if you compare the actual Class objects using ==, there 
is no concern with inheritance—it’s either the exact type or it isn’t.  

Reflection: runtime 
      class information 

If you don’t know the precise type of an object, RTTI will tell you. However, there’s a 
limitation: The type must be known at compile time in order for you to detect it using RTTI 
and to do something useful with the information. Put another way, the compiler must know 
about all the classes you’re working with.  

This doesn’t seem like that much of a limitation at first, but suppose you’re given a reference 
to an object that’s not in your program space. In fact, the class of the object isn’t even 
available to your program at compile time. For example, suppose you get a bunch of bytes 
from a disk file or from a network connection, and you’re told that those bytes represent a 
class. Since this class shows up long after the compiler generates the code for your program, 
how can you possibly use such a class?  

In a traditional programming environment, this seems like a far-fetched scenario. But as we 
move into a larger programming world, there are important cases in which this happens. The 
first is component-based programming, in which you build projects using Rapid Application 
Development (RAD) in an Application Builder Integrated Development Environment, which 
I shall refer to simply as an IDE. This is a visual approach to creating a program by moving 
icons that represent components onto a form. These components are then configured by 
setting some of their values at program time. This design-time configuration requires that 
any component be instantiable, that it exposes parts of itself, and that it allows its properties 
to be read and modified. In addition, components that handle Graphical User Interface 
(GUI) events must expose information about appropriate methods so that the IDE can assist 
the programmer in overriding these event-handling methods. Reflection provides the 
mechanism to detect the available methods and produce the method names. Java provides a 
structure for component-based programming through JavaBeans (described in the 
Graphical User Interfaces chapter).  

Another compelling motivation for discovering class information at run time is to provide the 
ability to create and execute objects on remote platforms, across a network. This is called 
Remote Method Invocation (RMI), and it allows a Java program to have objects distributed 
across many machines. This distribution can happen for a number of reasons. For example, 
perhaps you’re doing a computation-intensive task, and in order to speed things up, you want 
to break it up and put pieces on machines that are idle. In other situations you might want to 

Type Information 417 



 

418 Thinking in Java Bruce Eckel 

place code that handles particular types of tasks (e.g., "Business Rules" in a multitier 
client/server architecture) on a particular machine, so the machine becomes a common 
repository describing those actions, and it can be easily changed to affect everyone in the 
system. (This is an interesting development, since the machine exists solely to make software 
changes easy!) Along these lines, distributed computing also supports specialized hardware 
that might be good at a particular task—matrix inversions, for example—but inappropriate or 
too expensive for generalpurpose programming.  

The class Class supports the concept of reflection, along with the java.lang.reflect library 
which contains the classes Field, Method, and Constructor (each of which implements 
the Member interface). Objects of these types are created by the JVM at run time to 
represent the corresponding member in the unknown class. You can then use the 
Constructors to create new objects, the get( ) and set( ) methods to read and modify the 
fields associated with Field objects, and the invoke( ) method to call a method associated 
with a Method object. In addition, you can call the convenience methods getFields( ), 
getMethods( ), getConstructors( ), etc., to return arrays of the objects representing the 
fields, methods, and constructors. (You can find out more by looking up the class Class in 
the JDK documentation.) Thus, the class information for anonymous objects can be 
completely determined at run time, and nothing need be known at compile time.  

It’s important to realize that there’s nothing magic about reflection. When you’re using 
reflection to interact with an object of an unknown type, the JVM will simply look at the 
object and see that it belongs to a particular class (just like ordinary RTTI). Before anything 
can be done with it, the Class object must be loaded. Thus, the .class file for that particular 
type must still be available to the JVM, either on the local machine or across the network. So 
the true difference between RTTI and reflection is that with RTTI, the compiler opens and 
examines the .class file at compile time. Put another way, you can call all the methods of an 
object in the "normal" way. With reflection, the .class file is unavailable at compile time; it is 
opened and examined by the runtime environment.  

A class method extractor 

Normally you won’t need to use the reflection tools directly, but they can be helpful when you 
need to create more dynamic code. Reflection is in the language to support other Java 
features, such as object serialization and JavaBeans (both covered later in the book). 
However, there are times when it’s quite useful to dynamically extract information about a 
class.  

Consider a class method extractor. Looking at a class definition source code or JDK 
documentation shows only the methods that are defined or overridden within that class 
definition. But there might be dozens more available to you that have come from base 
classes. To locate these is both tedious and time consuming.1 Fortunately, reflection provides 
a way to write a simple tool that will automatically show you the entire interface. Here’s the 
way it works:  

//: typeinfo/ShowMethods.java 
// Using reflection to show all the methods of a class, 
// even if the methods are defined in the base class. 
// {Args: ShowMethods} 
import java.lang.reflect.*; 
import java.util.regex.*; 
import static net.mindview.util.Print.*; 
 
public class ShowMethods { 
  private static String usage = 
                                                            
1 Especially in the past. However, Sun has greatly improved its HTML Java documentation so that it’s easier to see base-
class methods. 



 

    "usage:\n" + 
    "ShowMethods qualified.class.name\n" + 
    "To show all methods in class or:\n" + 
    "ShowMethods qualified.class.name word\n" + 
    "To search for methods involving ‘word’"; 
  private static Pattern p = Pattern.compile("\\w+\\."); 
  public static void main(String[] args) { 
    if(args.length < 1) { 
      print(usage); 
      System.exit(0); 
    } 
    int lines = 0; 
    try { 
      Class<?> c = Class.forName(args[0]); 
      Method[] methods = c.getMethods(); 
      Constructor[] ctors = c.getConstructors(); 
      if(args.length == 1) { 
        for(Method method : methods) 
          print( 
            p.matcher(method.toString()).replaceAll("")); 
        for(Constructor ctor : ctors) 
          print(p.matcher(ctor.toString()).replaceAll("")); 
        lines = methods.length + ctors.length; 
      } else { 
        for(Method method : methods) 
          if(method.toString().indexOf(args[1]) != -1) { 
            print( 
              p.matcher(method.toString()).replaceAll("")); 
            lines++; 
          } 
        for(Constructor ctor : ctors) 
          if(ctor.toString().indexOf(args[1]) != -1) { 
            print(p.matcher( 
              ctor.toString()).replaceAll("")); 
            lines++; 
          } 
      } 
    } catch(ClassNotFoundException e) { 
      print("No such class: " + e); 
    } 
  } 
} /* Output: 
public static void main(String[]) 
public native int hashCode() 
public final native Class getClass() 
public final void wait(long,int) throws InterruptedException 
public final void wait() throws InterruptedException 
public final native void wait(long) throws InterruptedException 
public boolean equals(Object) 
public String toString() 
public final native void notify() 
public final native void notifyAll() 
public ShowMethods() 
*///:~ 

The Class methods getMethods( ) and getConstructors( ) return an array of Method 
and array of Constructor, respectively. Each of these classes has further methods to dissect 
the names, arguments, and return values of the methods they represent. But you can also just 
use toString( ), as is done here, to produce a String with the entire method signature. The 
rest of the code extracts the command-line information, determines if a particular signature 
matches your target string (using indexOf( )), and strips off the name qualifiers using 
regular expressions (introduced in the Strings chapter).  

Type Information 419 



 

The result produced by Class.forName( ) cannot be known at compile time, and therefore 
all the method signature information is being extracted at run time. If you investigate the 
JDK reflection documentation, you’ll see that there is enough support to actually set up and 
make a method call on an object that’s totally unknown at compile time (there will be 
examples of this later in this book). Although initially this is something you may not think 
you’ll ever need, the value of full reflection can be quite surprising.  

The output above is produced from the command line:  

java ShowMethods ShowMethods  

You can see that the output includes a public default constructor, even though no 
constructor was defined. The constructor you see is the one that’s automatically synthesized 
by the compiler. If you then make ShowMethods a non-public class (that is, package 
access), the synthesized default constructor no longer shows up in the output. The 
synthesized default constructor is automatically given the same access as the class.  

Another interesting experiment is to invoke Java ShowMethods java.lang.String with 
an extra argument of char, int, String, etc.  

This tool can be a real time-saver while you’re programming, when you can’t remember if a 
class has a particular method and you don’t want to go hunting through the index or class 
hierarchy in the JDK documentation, or if you don’t know whether that class can do anything 
with, for example, Color objects.  

The Graphical User Interfaces chapter contains a GUI version of this program (customized 
to extract information for Swing components) so you can leave it running while you’re 
writing code, to allow quick lookups.  

Exercise 17:   (2) Modify the regular expression in ShowMethods.java to additionally 
strip off the keywords native and final (hint: use the OR operator’|’)-  

Exercise 18:   (1) Make ShowMethods a non-public class and verify that the 
synthesized default constructor no longer shows up in the output.  

Exercise 19:   (4) In ToyTest.java, use reflection to create a Toy object using the non-
default constructor.  

Exercise 20:   (5) Look up the interface for java.lang.Class in the JDK documentation 
from http://java.sun.com. Write a program that takes the name of a class as a command-line 
argument, then uses the Class methods to dump all the information available for that class. 
Test your program with a standard library class and a class you create.  

Dynamic proxies 
Proxy is one of the basic design patterns. It is an object that you insert in place of the "real" 
object in order to provide additional or different operations—these usually involve 
communication with a "real" object, so a proxy typically acts as a go-between. Here’s a trivial 
example to show the structure of a proxy:  

//: typeinfo/SimpleProxyDemo.java 
import static net.mindview.util.Print.*; 
 
interface Interface { 
  void doSomething(); 
  void somethingElse(String arg); 

420 Thinking in Java Bruce Eckel 



 

} 
 
class RealObject implements Interface { 
  public void doSomething() { print("doSomething"); } 
  public void somethingElse(String arg) { 
    print("somethingElse " + arg); 
  } 
}  
 
class SimpleProxy implements Interface { 
  private Interface proxied; 
  public SimpleProxy(Interface proxied) { 
    this.proxied = proxied; 
  } 
  public void doSomething() { 
    print("SimpleProxy doSomething"); 
    proxied.doSomething(); 
  } 
  public void somethingElse(String arg) { 
    print("SimpleProxy somethingElse " + arg); 
    proxied.somethingElse(arg); 
  } 
}  
 
class SimpleProxyDemo { 
  public static void consumer(Interface iface) { 
    iface.doSomething(); 
    iface.somethingElse("bonobo"); 
  } 
  public static void main(String[] args) { 
    consumer(new RealObject()); 
    consumer(new SimpleProxy(new RealObject())); 
  } 
} /* Output: 
doSomething 
somethingElse bonobo 
SimpleProxy doSomething 
doSomething 
SimpleProxy somethingElse bonobo 
somethingElse bonobo 
*///:~ 

Because consumer( ) accepts an Interface, it can’t know if it’s getting a RealObject or a 
SimpleProxy, because both implement Interface. But the SimpleProxy inserted 
between the client and the RealObject performs operations and then calls the identical 
method on a RealObject.  

A proxy can be helpful anytime you’d like to separate extra operations into a different place 
than the "real object," and especially when you want to easily change from not using the extra 
operations to using them, and vice versa (the point of design patterns is to encapsulate 
change—so you need to be changing things in order to justify the pattern). For example, what 
if you wanted to track calls to the methods in the RealObject, or to measure the overhead of 
such calls? This is not code you want to have incorporated in your application, so a proxy 
allows you to add and remove it easily.  

Java’s dynamic proxy takes the idea of a proxy one step further, by both creating the proxy 
object dynamically and handling calls to the proxied methods dynamically. All calls made on a 
dynamic proxy are redirected to a single invocation handler, which has the job of discovering 
what the call is and deciding what to do about it. Here’s SimpleProxyDemo.java rewritten to 
use a dynamic proxy:  

Type Information 421 



 

//: typeinfo/SimpleDynamicProxy.java 
import java.lang.reflect.*; 
 
class DynamicProxyHandler implements InvocationHandler { 
  private Object proxied; 
  public DynamicProxyHandler(Object proxied) { 
    this.proxied = proxied; 
  } 
  public Object 
  invoke(Object proxy, Method method, Object[] args) 
  throws Throwable { 
    System.out.println("**** proxy: " + proxy.getClass() + 
      ", method: " + method + ", args: " + args); 
    if(args != null) 
      for(Object arg : args) 
        System.out.println("  " + arg); 
    return method.invoke(proxied, args); 
  } 
}  
 
class SimpleDynamicProxy { 
  public static void consumer(Interface iface) { 
    iface.doSomething(); 
    iface.somethingElse("bonobo"); 
  } 
  public static void main(String[] args) { 
    RealObject real = new RealObject(); 
    consumer(real); 
    // Insert a proxy and call again: 
    Interface proxy = (Interface)Proxy.newProxyInstance( 
      Interface.class.getClassLoader(), 
      new Class[]{ Interface.class }, 
      new DynamicProxyHandler(real)); 
    consumer(proxy); 
  } 
} /* Output: (95% match)  
doSomething 
somethingElse bonobo 
**** proxy: class $Proxy0, method: public abstract void 
Interface.doSomething(), args: null 
doSomething 
**** proxy: class $Proxy0, method: public abstract void 
Interface.somethingElse(java.lang.String), args: 
[Ljava.lang.Object;@42e816 
  bonobo 
somethingElse bonobo 
*///:~ 

You create a dynamic proxy by calling the static method Proxy.newProxyInstance( ), 
which requires a class loader (you can generally just hand it a class loader from an object that 
has already been loaded), a list of interfaces (not classes or abstract classes) that you wish the 
proxy to implement, and an implementation of the interface InvocationHandler. The 
dynamic proxy will redirect all calls to the invocation handler, so the constructor for the 
invocation handler is usually given the reference to the "real" object so that it can forward 
requests once it performs its intermediary task.  

The invoke( ) method is handed the proxy object, in case you need to distinguish where the 
request came from—but in many cases you won’t care. However, be careful when calling 
methods on the proxy inside invoke( ), because calls through the interface are redirected 
through the proxy.  

422 Thinking in Java Bruce Eckel 



 

In general you will perform the proxied operation and then use Method.invoke( ) to 
forward the request to the proxied object, passing the necessary arguments. This may initially 
seem limiting, as if you can only perform generic operations. However, you can filter for 
certain method calls, while passing others through:  

//: typeinfo/SelectingMethods.java 
// Looking for particular methods in a dynamic proxy. 
import java.lang.reflect.*; 
import static net.mindview.util.Print.*; 
 
class MethodSelector implements InvocationHandler { 
  private Object proxied; 
  public MethodSelector(Object proxied) { 
    this.proxied = proxied; 
  } 
  public Object 
  invoke(Object proxy, Method method, Object[] args) 
  throws Throwable { 
    if(method.getName().equals("interesting")) 
      print("Proxy detected the interesting method"); 
    return method.invoke(proxied, args); 
  } 
}  
 
interface SomeMethods { 
  void boring1(); 
  void boring2(); 
  void interesting(String arg); 
  void boring3(); 
} 
 
class Implementation implements SomeMethods { 
  public void boring1() { print("boring1"); } 
  public void boring2() { print("boring2"); } 
  public void interesting(String arg) { 
    print("interesting " + arg); 
  } 
  public void boring3() { print("boring3"); } 
}  
 
class SelectingMethods { 
  public static void main(String[] args) { 
    SomeMethods proxy= (SomeMethods)Proxy.newProxyInstance( 
      SomeMethods.class.getClassLoader(), 
      new Class[]{ SomeMethods.class }, 
      new MethodSelector(new Implementation())); 
    proxy.boring1(); 
    proxy.boring2(); 
    proxy.interesting("bonobo"); 
    proxy.boring3(); 
  } 
} /* Output: 
boring1 
boring2 
Proxy detected the interesting method 
interesting bonobo 
boring3 
*///:~ 

Here, we are just looking for method names, but you could also be looking for other aspects 
of the method signature, and you could even search for particular argument values.  

Type Information 423 



 

424 Thinking in Java Bruce Eckel 

The dynamic proxy is not a tool that you’ll use every day, but it can solve certain types of 
problems very nicely. You can learn more about Proxy and other design patterns in Thinking 
in Patterns (see www.MindView.net) and Design Patterns, by Erich Gamma et al. (Addison-
Wesley, 1995).  

Exercise 21:   (3) Modify SimpleProxyDemo.java so that it measures method-call 
times.  

Exercise 22:   (3) Modify SimpleDynamicProxy.java so that it measures method-call 
times.  

Exercise 23:   (3) Inside invoke( ) in SimpleDynamicProxy.java, try to print the 
proxy argument and explain what happens.  

Project:2 Write a system using dynamic proxies to implement transactions, where the proxy 
performs a commit if the proxied call is successful (doesn’t throw any exceptions) and a 
rollback if it fails. Your commit and rollback should work on an external text file, which is 
outside the control of Java exceptions. You will have to pay attention to the atomicity of 
operations.  

Null Objects 
When you use the built-in null to indicate the absence of an object, you must test a reference 
for null-ness every time you use it. This can get very tedious and produce ponderous code. 
The problem is that null has no behavior of its own except for producing a 
NullPointerException if you try to do anything with it. Sometimes it is useful to introduce 
the idea of a Null Object3 that will accept messages for the object that it’s "standing in" for, 
but will return values indicating that no "real" object is actually there. This way, you can 
assume that all objects are valid and you don’t have to waste programming time checking for 
null (and reading the resulting code).  

Although it’s fun to imagine a programming language that would automatically create Null 
Objects for you, in practice it doesn’t make sense to use them everywhere—sometimes 
checking for null is fine, and sometimes you can reasonably assume that you won’t 
encounter null, and sometimes even detecting aberrations via NullPointerException is 
acceptable. The place where Null Objects seem to be most useful is "closer to the data," with 
objects that represent entities in the problem space. As a simple example, many systems will 
have a Person class, and there are situations in the code where you don’t have an actual 
person (or you do, but you don’t have all the information about that person yet), so 
traditionally you’d use a null reference and test for it. Instead, we can make a Null Object. 
But even though the Null Object will respond to all messages that the "real" object will 
respond to, you still need a way to test for nullness. The simplest way to do this is to create a 
tagging interface:  

//: net/mindview/util/Null.java 
package net.mindview.util; 
public interface Null {} ///:~ 

                                                            
2 Projects are suggestions to be used (for example) as term projects. Solutions to projects are not included in the solution 
guide. 
3 Discovered by Bobby Woolf and Bruce Anderson. This can be seen as a special case of the Strategy pattern. A variant of 
Null Object is the Null Iterator pattern, which makes iteration over the nodes in a composite hierarchy transparent to the 
client (the client can then use the same logic for iterating over the composite and leaf nodes). 



 

This allows instanceof to detect the Null Object, and more importantly, does not require 
you to add an isNull( ) method to all your classes (which would be, after all, just a different 
way of performing RTTI—why not use the built-in facility instead?).  

//: typeinfo/Person.java 
// A class with a Null Object. 
import net.mindview.util.*; 
 
class Person { 
  public final String first; 
  public final String last; 
  public final String address; 
  // etc. 
  public Person(String first, String last, String address){ 
    this.first = first; 
    this.last = last; 
    this.address = address; 
  }  
  public String toString() { 
    return "Person: " + first + " " + last + " " + address; 
  } 
  public static class NullPerson 
  extends Person implements Null { 
    private NullPerson() { super("None", "None", "None"); } 
    public String toString() { return "NullPerson"; } 
  } 
  public static final Person NULL = new NullPerson(); 
} ///:~ 

In general, the Null Object will be a Singleton, so here it is created as a static final instance. 
This works because Person is immutable—you can only set the values in the constructor, 
and then read those values, but you can’t modify them (because Strings themselves are 
inherently immutable). If you want to change a NullPerson, you can only replace it with a 
new Person object. Notice that you have the option of detecting the generic Null or the 
more specific NullPerson using instanceof, but with the Singleton approach you can also 
just use equals( ) or even == to compare to Person.NULL.  

Now suppose you’re back in the high-flying days of Internet startups and you’ve been given a 
big pile of venture funding for your Amazing Idea. You’re ready to staff up, but while you’re 
waiting for positions to be filled, you can use Person Null Objects as placeholders for each 
Position:  

//: typeinfo/Position.java 
 
class Position { 
  private String title; 
  private Person person; 
  public Position(String jobTitle, Person employee) { 
    title = jobTitle; 
    person = employee; 
    if(person == null) 
      person = Person.NULL; 
  } 
  public Position(String jobTitle) { 
    title = jobTitle; 
    person = Person.NULL; 
  }  
  public String getTitle() { return title; } 
  public void setTitle(String newTitle) { 
    title = newTitle; 
  } 

Type Information 425 



 

426 Thinking in Java Bruce Eckel 

  public Person getPerson() { return person; } 
  public void setPerson(Person newPerson) { 
    person = newPerson; 
    if(person == null) 
      person = Person.NULL; 
  } 
  public String toString() { 
    return "Position: " + title + " " + person; 
  } 
} ///:~ 

With Position, we don’t need to make a Null Object because the existence of 
Person.NULL implies a null Position (it’s possible that, later, you’ll discover the need to 
add an explicit Null Object for Position, but YAGNI4 (You Aren’t Going to Need It) says to 
try "the simplest thing that could possibly work" for your first draft, and to wait until some 
aspect of the program requires you to add in the extra feature, rather than assuming it’s 
necessary).  

The Staff class can now look for Null Objects when you are filling positions:  

//: typeinfo/Staff.java 
import java.util.*; 
 
public class Staff extends ArrayList<Position> { 
  public void add(String title, Person person) { 
    add(new Position(title, person)); 
  } 
  public void add(String... titles) { 
    for(String title : titles) 
      add(new Position(title)); 
  } 
  public Staff(String... titles) { add(titles); } 
  public boolean positionAvailable(String title) { 
    for(Position position : this) 
      if(position.getTitle().equals(title) && 
         position.getPerson() == Person.NULL) 
        return true; 
    return false; 
  }  
  public void fillPosition(String title, Person hire) { 
    for(Position position : this) 
      if(position.getTitle().equals(title) && 
         position.getPerson() == Person.NULL) { 
        position.setPerson(hire); 
        return; 
      } 
    throw new RuntimeException( 
      "Position " + title + " not available"); 
  }  
  public static void main(String[] args) { 
    Staff staff = new Staff("President", "CTO", 
      "Marketing Manager", "Product Manager", 
      "Project Lead", "Software Engineer", 
      "Software Engineer", "Software Engineer", 
      "Software Engineer", "Test Engineer", 
      "Technical Writer"); 
    staff.fillPosition("President", 
      new Person("Me", "Last", "The Top, Lonely At")); 
    staff.fillPosition("Project Lead", 

                                                            
4 A tenet of Extreme Programming (XP), as is "Do the simplest thing that could possibly work." 



 

      new Person("Janet", "Planner", "The Burbs")); 
    if(staff.positionAvailable("Software Engineer")) 
      staff.fillPosition("Software Engineer", 
        new Person("Bob", "Coder", "Bright Light City")); 
    System.out.println(staff); 
  } 
} /* Output:  
[Position: President Person: Me Last The Top, Lonely At, Position: CTO 
NullPerson, Position: Marketing Manager NullPerson, Position: Product 
Manager NullPerson, Position: Project Lead Person: Janet Planner The 
Burbs, Position: Software Engineer Person: Bob Coder Bright Light City, 
Position: Software Engineer NullPerson, Position: Software Engineer 
NullPerson, Position: Software Engineer NullPerson, Position: Test 
Engineer NullPerson, Position: Technical Writer NullPerson] 
*///:~ 

Notice that you must still test for Null Objects in some places, which is not that different 
from checking for null, but in other places (such as toString( ) conversions, in this case), 
you don’t have to perform extra tests; you can just assume that all object references are valid.  

If you are working with interfaces instead of concrete classes, it’s possible to use a 
DynamicProxy to automatically create the Null Objects. Suppose we have a Robot 
interface that defines a name, model, and a List < Operation > that describes what the 
Robot is capable of doing. Operation contains a description and a command (it’s a type of 
Command pattern):  

//: typeinfo/Operation.java 
 
public interface Operation { 
  String description(); 
  void command(); 
} ///:~ 

You can access a Robot’s services by calling operations( ): 

//: typeinfo/Robot.java 
import java.util.*; 
import net.mindview.util.*; 
 
public interface Robot { 
  String name(); 
  String model(); 
  List<Operation> operations(); 
  class Test { 
    public static void test(Robot r) { 
      if(r instanceof Null) 
        System.out.println("[Null Robot]"); 
      System.out.println("Robot name: " + r.name()); 
      System.out.println("Robot model: " + r.model()); 
      for(Operation operation : r.operations()) { 
        System.out.println(operation.description()); 
        operation.command(); 
      } 
    } 
  } 
} ///:~ 

This also incorporates a nested class to perform tests.  

We can now create a Robot that removes snow:  

Type Information 427 



 

//: typeinfo/SnowRemovalRobot.java 
import java.util.*; 
 
public class SnowRemovalRobot implements Robot { 
  private String name; 
  public SnowRemovalRobot(String name) {this.name = name;} 
  public String name() { return name; } 
  public String model() { return "SnowBot Series 11"; } 
  public List<Operation> operations() { 
    return Arrays.asList( 
      new Operation() { 
        public String description() { 
          return name + " can shovel snow"; 
        } 
        public void command() { 
          System.out.println(name + " shoveling snow"); 
        } 
      },  
      new Operation() { 
        public String description() { 
          return name + " can chip ice"; 
        } 
        public void command() { 
          System.out.println(name + " chipping ice"); 
        } 
      }, 
      new Operation() { 
        public String description() { 
          return name + " can clear the roof"; 
        } 
        public void command() { 
          System.out.println(name + " clearing roof"); 
        } 
      } 
    ); 
  }  
  public static void main(String[] args) { 
    Robot.Test.test(new SnowRemovalRobot("Slusher")); 
  } 
} /* Output: 
Robot name: Slusher 
Robot model: SnowBot Series 11 
Slusher can shovel snow 
Slusher shoveling snow 
Slusher can chip ice 
Slusher chipping ice 
Slusher can clear the roof 
Slusher clearing roof 
*///:~ 

There will presumably be many different types of Robot, and we’d like to have each Null 
Object do something special for each Robot type—in this case, incorporate information 
about the exact type of Robot the Null Object is standing for. This information will be 
captured by the dynamic proxy:  

//: typeinfo/NullRobot.java 
// Using a dynamic proxy to create a Null Object. 
import java.lang.reflect.*; 
import java.util.*; 
import net.mindview.util.*; 
 
class NullRobotProxyHandler implements InvocationHandler { 

428 Thinking in Java Bruce Eckel 



 

  private String nullName; 
  private Robot proxied = new NRobot(); 
  NullRobotProxyHandler(Class<? extends Robot> type) { 
    nullName = type.getSimpleName() + " NullRobot"; 
  } 
  private class NRobot implements Null, Robot { 
    public String name() { return nullName; } 
    public String model() { return nullName; } 
    public List<Operation> operations() { 
      return Collections.emptyList(); 
    } 
  }  
  public Object 
  invoke(Object proxy, Method method, Object[] args) 
  throws Throwable { 
    return method.invoke(proxied, args); 
  } 
} 
 
public class NullRobot { 
  public static Robot 
  newNullRobot(Class<? extends Robot> type) { 
    return (Robot)Proxy.newProxyInstance( 
      NullRobot.class.getClassLoader(), 
      new Class[]{ Null.class, Robot.class }, 
      new NullRobotProxyHandler(type)); 
  }  
  public static void main(String[] args) { 
    Robot[] bots = { 
      new SnowRemovalRobot("SnowBee"), 
      newNullRobot(SnowRemovalRobot.class) 
    }; 
    for(Robot bot : bots) 
      Robot.Test.test(bot); 
  } 
} /* Output: 
Robot name: SnowBee 
Robot model: SnowBot Series 11 
SnowBee can shovel snow 
SnowBee shoveling snow 
SnowBee can chip ice 
SnowBee chipping ice 
SnowBee can clear the roof 
SnowBee clearing roof 
[Null Robot] 
Robot name: SnowRemovalRobot NullRobot 
Robot model: SnowRemovalRobot NullRobot 
*///:~ 

Whenever you need a null Robot object, you just call newNullRobot( ), passing the type of 
Robot you want a proxy for. The proxy fulfills the requirements of the Robot and Null 
interfaces, and provides the specific name of the type that it proxies.  

Mock Objects & Stubs 

Logical variations of the Null Object are the MocA: Object and the Stub. Like Null Object, 
both of these are stand-ins for the "real" object that will be used in the finished program. 
However, both Mock Object and Stub pretend to be live objects that deliver real information, 
rather than being a more intelligent placeholder for null, as Null Object is.  

Type Information 429 



 

The distinction between Mock Object and Stub is one of degree. Mock Objects tend to be 
lightweight and self-testing, and usually many of them are created to handle various testing 
situations. Stubs just return stubbed data, are typically heavyweight and are often reused 
between tests. Stubs can be configured to change depending on how they are called. So a Stub 
is a sophisticated object that does lots of things, whereas you usually create lots of small, 
simple Mock Objects if you need to do many things.  

Exercise 24:   (4) Add Null Objects to RegisteredFactories.java.  

Interfaces and type information 
An important goal of the interface keyword is to allow the programmer to isolate 
components, and thus reduce coupling. If you write to interfaces, you accomplish this, but 
with type information it’s possible to get around that— interfaces are not airtight guarantees 
of decoupling. Here’s an example, starting with an interface:  

//: typeinfo/interfacea/A.java 
package typeinfo.interfacea; 
 
public interface A { 
  void f(); 
} ///:~ 

This interface is then implemented, and you can see how to sneak around to the actual 
implementation type:  

//: typeinfo/InterfaceViolation.java 
// Sneaking around an interface. 
import typeinfo.interfacea.*; 
 
class B implements A { 
  public void f() {} 
  public void g() {} 
} 
 
public class InterfaceViolation { 
  public static void main(String[] args) { 
    A a = new B(); 
    a.f(); 
    // a.g(); // Compile error 
    System.out.println(a.getClass().getName()); 
    if(a instanceof B) { 
      B b = (B)a; 
      b.g(); 
    } 
  } 
} /* Output: 
B 
*///:~ 

Using RTTI, we discover that a has been implemented as a B. By casting to B, we can call a 
method that’s not in A.  

 

 

430 Thinking in Java Bruce Eckel 



 

Type Information 431 

This is perfectly legal and acceptable, but you may not want client programmers to do this, 
because it gives them an opportunity to couple more closely to your code than you’d like. 
That is, you may think that the interface keyword is protecting you, but it isn’t, and the fact 
that you’re using B to implement A in this case is effectively a matter of public record.5  

One solution is to simply say that programmers are on their own if they decide to use the 
actual class rather than the interface. This is probably reasonable in many cases, but if 
"probably" isn’t enough, you might want to apply more stringent controls.  

The easiest approach is to use package access for the implementation, so that clients outside 
the package may not see it:  

//: typeinfo/packageaccess/HiddenC.java 
package typeinfo.packageaccess; 
import typeinfo.interfacea.*; 
import static net.mindview.util.Print.*; 
 
class C implements A { 
  public void f() { print("public C.f()"); } 
  public void g() { print("public C.g()"); } 
  void u() { print("package C.u()"); } 
  protected void v() { print("protected C.v()"); } 
  private void w() { print("private C.w()"); } 
} 
 
public class HiddenC { 
  public static A makeA() { return new C(); } 
} ///:~ 

The only public part of this package, HiddenC, produces an A interface when you call it. 
What’s interesting about this is that even if you were to return a C from makeA( ), you still 
couldn’t use anything but an A from outside the package, since you cannot name C outside 
the package.  

Now if you try to downcast to C, you can’t do it because there is no ‘C type available outside the 
package:  

//: typeinfo/HiddenImplementation.java 
// Sneaking around package access. 
import typeinfo.interfacea.*; 
import typeinfo.packageaccess.*; 
import java.lang.reflect.*; 
 
public class HiddenImplementation { 
  public static void main(String[] args) throws Exception { 
    A a = HiddenC.makeA(); 
    a.f(); 
    System.out.println(a.getClass().getName()); 
    // Compile error: cannot find symbol ‘C’: 
    /* if(a instanceof C) { 
      C c = (C)a; 
      c.g(); 
    } */ 
    // Oops! Reflection still allows us to call g(): 
    callHiddenMethod(a, "g"); 

                                                            
5 The most famous case of this is the Windows operating system, which had a published API that you were supposed to 
write to, and an unpublished but visible set of functions that you could discover and call. To solve problems, programmers 
used the hidden API functions, which forced Microsoft to maintain them as if they were part of the public API. This 
became a source of great cost and effort for the company. 



 

    // And even methods that are less accessible! 
    callHiddenMethod(a, "u"); 
    callHiddenMethod(a, "v"); 
    callHiddenMethod(a, "w"); 
  } 
  static void callHiddenMethod(Object a, String methodName) 
  throws Exception { 
    Method g = a.getClass().getDeclaredMethod(methodName); 
    g.setAccessible(true); 
    g.invoke(a); 
  } 
} /* Output: 
public C.f() 
typeinfo.packageaccess.C 
public C.g() 
package C.u() 
protected C.v() 
private C.w() 
*///:~ 

As you can see, it’s still possible to reach in and call all of the methods using reflection, even 
private methods! If you know the name of the method, you can call setAccessible(true) 
on the Method object to make it callable, as seen in callHiddenMethod( ).  

You may think that you can prevent this by only distributing compiled code, but that’s no 
solution. All you must do is run javap, which is the decompiler that comes with the JDK. 
Here’s the command line:  

javap -private C  

The -private flag indicates that all members should be displayed, even private ones. Here’s 
the output:  

class typeinfo.packageaccess.C extends 
java.lang.Object implements typeinfo.interfacea.A { 
    typeinfo.packageaccess.C(); 
    public void f( ); 
    public void g( ); 
    void u( ); 
    protected void v( ); 
    private void w(); 
} 

So anyone can get the names and signatures of your most private methods, and call them.  

What if you implement the interface as a private inner class? Here’s what it looks like:  

//: typeinfo/InnerImplementation.java 
// Private inner classes can’t hide from reflection. 
import typeinfo.interfacea.*; 
import static net.mindview.util.Print.*; 
 
class InnerA { 
  private static class C implements A { 
    public void f() { print("public C.f()"); } 
    public void g() { print("public C.g()"); } 
    void u() { print("package C.u()"); } 
    protected void v() { print("protected C.v()"); } 
    private void w() { print("private C.w()"); } 
  } 

432 Thinking in Java Bruce Eckel 



 

  public static A makeA() { return new C(); } 
}  
 
public class InnerImplementation { 
  public static void main(String[] args) throws Exception { 
    A a = InnerA.makeA(); 
    a.f(); 
    System.out.println(a.getClass().getName()); 
    // Reflection still gets into the private class: 
    HiddenImplementation.callHiddenMethod(a, "g"); 
    HiddenImplementation.callHiddenMethod(a, "u"); 
    HiddenImplementation.callHiddenMethod(a, "v"); 
    HiddenImplementation.callHiddenMethod(a, "w"); 
  } 
} /* Output: 
public C.f() 
InnerA$C 
public C.g() 
package C.u() 
protected C.v() 
private C.w() 
*///:~ 

That didn’t hide anything from reflection. What about an anonymous class? 

//: typeinfo/AnonymousImplementation.java 
// Anonymous inner classes can’t hide from reflection. 
import typeinfo.interfacea.*; 
import static net.mindview.util.Print.*; 
 
class AnonymousA { 
  public static A makeA() { 
    return new A() { 
      public void f() { print("public C.f()"); } 
      public void g() { print("public C.g()"); } 
      void u() { print("package C.u()"); } 
      protected void v() { print("protected C.v()"); } 
      private void w() { print("private C.w()"); } 
    }; 
  } 
}  
 
public class AnonymousImplementation { 
  public static void main(String[] args) throws Exception { 
    A a = AnonymousA.makeA(); 
    a.f(); 
    System.out.println(a.getClass().getName()); 
    // Reflection still gets into the anonymous class: 
    HiddenImplementation.callHiddenMethod(a, "g"); 
    HiddenImplementation.callHiddenMethod(a, "u"); 
    HiddenImplementation.callHiddenMethod(a, "v"); 
    HiddenImplementation.callHiddenMethod(a, "w"); 
  } 
} /* Output: 
public C.f() 
AnonymousA$1 
public C.g() 
package C.u() 
protected C.v() 
private C.w() 
*///:~ 

Type Information 433 



 

There doesn’t seem to be any way to prevent reflection from reaching in and calling methods 
that have non-public access. This is also true for fields, even private fields:  

//: typeinfo/ModifyingPrivateFields.java 
import java.lang.reflect.*; 
 
class WithPrivateFinalField { 
  private int i = 1; 
  private final String s = "I’m totally safe"; 
  private String s2 = "Am I safe?"; 
  public String toString() { 
    return "i = " + i + ", " + s + ", " + s2; 
  } 
} 
 
public class ModifyingPrivateFields { 
  public static void main(String[] args) throws Exception { 
    WithPrivateFinalField pf = new WithPrivateFinalField(); 
    System.out.println(pf); 
    Field f = pf.getClass().getDeclaredField("i"); 
    f.setAccessible(true); 
    System.out.println("f.getInt(pf): " + f.getInt(pf)); 
    f.setInt(pf, 47); 
    System.out.println(pf); 
    f = pf.getClass().getDeclaredField("s"); 
    f.setAccessible(true); 
    System.out.println("f.get(pf): " + f.get(pf)); 
    f.set(pf, "No, you’re not!"); 
    System.out.println(pf); 
    f = pf.getClass().getDeclaredField("s2"); 
    f.setAccessible(true); 
    System.out.println("f.get(pf): " + f.get(pf)); 
    f.set(pf, "No, you’re not!"); 
    System.out.println(pf); 
  } 
} /* Output: 
i = 1, I’m totally safe, Am I safe? 
f.getInt(pf): 1 
i = 47, I’m totally safe, Am I safe? 
f.get(pf): I’m totally safe 
i = 47, I’m totally safe, Am I safe? 
f.get(pf): Am I safe? 
i = 47, I’m totally safe, No, you’re not! 
*///:~ 

However, final fields are actually safe from change. The runtime system accepts any 
attempts at change without complaint, but nothing actually happens.  

In general, all these access violations are not the worst thing in the world. If someone uses 
such a technique to call methods that you marked with private or package access (thus 
clearly indicating they should not call them), then it’s difficult for them to complain if you 
change some aspect of those methods. On the other hand, the fact that you always have a 
back door into a class may allow you to solve certain types of problems that could otherwise 
be difficult or impossible, and the benefits of reflection in general are undeniable.  

 

 

 

434 Thinking in Java Bruce Eckel 



 

Exercise 25:   (2) Create a class containing private, protected and package-access 
methods. Write code to access these methods from outside of the class’s package.  

   

Type Information 435 



 

Summary  
RTTI allows you to discover type information from an anonymous base-class reference. Thus, 
it’s ripe for misuse by the novice, since it might make sense before polymorphic method calls 
do. For people coming from a procedural background, it’s difficult not to organize programs 
into sets of switch statements. You can accomplish this with RTTI and thus lose the 
important value of polymorphism in code development and maintenance. The intent of 0 0 
programming is to use polymorphic method calls everywhere you can, and RTTI only when 
you must.  

However, using polymorphic method calls as they are intended requires that you have 
control of the base-class definition, because at some point in the extension of your program 
you might discover that the base class doesn’t include the method you need. If the base class 
comes from someone else’s library, one solution is RTTI: You can inherit a new type and add 
your extra method. Elsewhere in the code you can detect your particular type and call that 
special method. This doesn’t destroy the polymorphism and extensibility of the program, 
because adding a new type will not require you to hunt for switch statements in your 
program. However, when you add code that requires your new feature, you must use RTTI to 
detect your particular type.  

Putting a feature in a base class might mean that, for the benefit of one particular class, all of 
the other classes derived from that base require some meaningless stub of a method. This 
makes the interface less clear and annoys those who must override abstract methods when 
they derive from that base class. For example, consider a class hierarchy representing 
musical instruments. Suppose you want to clear the spit valves of all the appropriate 
instruments in your orchestra. One option is to put a clearSpitValve( ) method in the base 
class Instrument, but this is confusing because it implies that Percussion, Stringed and 
Electronic instruments also have spit valves. RTTI provides a much more reasonable 
solution because you can place the method in the specific class where it’s appropriate (Wind, 
in this case). At the same time, you may discover that there’s a more sensible solution—here, 
a preparelnstrument( ) method in the base class. However, you might not see such a 
solution when you’re first solving the problem and could mistakenly assume that you must 
use RTTI.  

Finally, RTTI will sometimes solve efficiency problems. Suppose your code nicely uses 
polymorphism, but it turns out that one of your objects reacts to this general-purpose code in 
a horribly inefficient way. You can pick out that type using RTTI and write case-specific code 
to improve the efficiency. Be wary, however, of programming for efficiency too soon. It’s a 
seductive trap. It’s best to get the program working/jrsf, then decide if it’s running fast 
enough, and only then should you attack efficiency issues—with a profiler (see the 
supplement at http://MindView.net/Books/BetterJava).  

We’ve also seen that reflection opens up a new world of programming possibilities by 
allowing a much more dynamic style of programming. There are some for whom the dynamic 
nature of reflection is disturbing. The fact that you can do things that can only be checked at 
run time and reported with exceptions seems, to a mind grown comfortable with the security 
of static type checking, to be the wrong direction. Some people go so far as to say that 
introducing the possibility of a runtime exception is a clear indicator that such code should 
be avoided. I find that this sense of security is an illusionthere are always things that can 
happen at run time and throw exceptions, even in a program that contains no try blocks or 
exception specifications. Instead, I think that the existence of a consistent error-reporting 
model empowers us to write dynamic code using reflection. Of course it’s worth trying to 
write code that can be statically checked ... when you can. But I believe that dynamic code is 
one of the important facilities that separate Java from languages like C++.  

Exercise 26:   (3) Implement clearSpitValve( ) as described in the summary.  

436 Thinking in Java Bruce Eckel 



 

Type Information 437 

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  





 

Generics 
Ordinary classes and methods work with specific types: either 
primitives or class types. If you are writing code that might be used 
across more types, this rigidity can be overconstraining.1  

One way that object-oriented languages allow generalization is through polymorphism. You 
can write (for example) a method that takes a base class object as an argument, and then use 
that method with any class derived from that base class. Now your method is a little more 
general and can be used in more places. The same is true within classes—anyplace you use a 
specific type, a base type provides more flexibility. Of course, anything but a final class2

 can 
be extended, so this flexibility is automatic much of the time.  

Sometimes, being constrained to a single hierarchy is too limiting. If a method argument is 
an interface instead of a class, the limitations are loosened to include anything that 
implements the interface—including classes that haven’t been created yet. This gives the 
client programmer the option of implementing an interface in order to conform to your class 
or method. So interfaces allow you to cut across class hierarchies, as long as you have the 
option to create a new class in order to do so.  

Sometimes even an interface is too restrictive. An interface still requires that your code work 
with that particular interface. You could write even more general code if you could say that 
your code works with "some unspecified type," rather than a specific interface or class.  

This is the concept of generics, one of the more significant changes in Java SE5. Generics 
implement the concept of parameterized types, which allow multiple types. The term 
"generic" means "pertaining or appropriate to large groups of classes." The original intent of 
generics in programming languages was to allow the programmer the greatest amount of 
expressiveness possible when writing classes or methods, by loosening the constraints on the 
types that those classes or methods work with. As you will see in this chapter, the Java 
implementation of generics is not that broad reaching—indeed, you may question whether 
the term "generic" is even appropriate for this feature.  

If you’ve never seen any kind of parameterized type mechanism before, Java generics will 
probably seem like a convenient addition to the language. When you create an instance of a 
parameterized type, casts will be taken care of for you and the type correctness will be 
ensured at compile time. This seems like an improvement.  

However, if you’ve had experience with a parameterized type mechanism, in C++, for 
example, you will find that you can’t do everything that you might expect when using Java 
generics. While using someone else’s generic type is fairly easy, when creating your own you 
will encounter a number of surprises. One of the things I shall try to explain is how the 
feature came to be like it is.  

This is not to say that Java generics are useless. In many cases they make code more 
straightforward and even elegant. But if you’re coming from a language that has 
implemented a more pure version of generics, you may be disappointed. In this chapter, we 
will examine both the strengths and the limitations of Java generics so that you can use this 
new feature more effectively. 

                                                            
1 Angelika Langer’s Java Generics FAQ (see www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html) as well as 
her other writings (together with Klaus Kreft) have been invaluable during the preparation of this chapter. 
2 Or a class with all private constructors. 

 



 

Comparison with C++ 
The Java designers stated that much of the inspiration for the language came as a reaction to 
C++. Despite this, it is possible to teach Java largely without reference to C++, and I have 
endeavored to do so except when the comparison will give you greater depth of 
understanding.  

Generics require more comparison with C++ for two reasons. First, understanding certain 
aspects of C++ templates (the main inspiration for generics, including the basic syntax) will 
help you understand the foundations of the concept, as well as—and this is very important—
the limitations of what you can do with Java generics and why. The ultimate goal is to give 
you a clear understanding of where the boundaries lie, because my experience is that by 
understanding the boundaries, you become a more powerful programmer. By knowing what 
you can’t do, you can make better use of what you can do (partly because you don’t waste 
time bumping up against walls).  

The second reason is that there is significant misunderstanding in the Java community about 
C++ templates, and this misunderstanding may further confuse you about the intent of 
generics.  

So although I will introduce a few C++ template examples in this chapter, I will keep them to 
a minimum.  

Simple generics 
One of the most compelling initial motivations for generics is to create container classes, 
which you saw in the Holding Your Objects chapter (you’ll learn more about these in the 
Containers in Depth chapter). A container is a place to hold objects while you’re working 
with them. Although this is also true of arrays, containers tend to be more flexible and have 
different characteristics than simple arrays. Virtually all programs require that you hold a 
group of objects while you use them, so containers are one of the most reusable of class 
libraries.  

Let’s look at a class that holds a single object. Of course, the class could specify the exact type 
of the object, like this:  

//: generics/Holder1.java 
 
class Automobile {} 
 
public class Holder1 { 
  private Automobile a; 
  public Holder1(Automobile a) { this.a = a; } 
  Automobile get() { return a; } 
} ///:~ 

But this is not a very reusable tool, since it can’t be used to hold anything else. We would 
prefer not to write a new one of these for every type we encounter.  

Before Java SE5, we would simply make it hold an Object:  

//: generics/Holder2.java 
 
public class Holder2 { 
  private Object a; 
  public Holder2(Object a) { this.a = a; } 

440 Thinking in Java Bruce Eckel 



 

  public void set(Object a) { this.a = a; } 
  public Object get() { return a; } 
  public static void main(String[] args) { 
    Holder2 h2 = new Holder2(new Automobile()); 
    Automobile a = (Automobile)h2.get(); 
    h2.set("Not an Automobile"); 
    String s = (String)h2.get(); 
    h2.set(1); // Autoboxes to Integer 
    Integer x = (Integer)h2.get(); 
  } 
} ///:~ 

Now a Holder2 can hold anything—and in this example, a single Holder2 holds three 
different types of objects.  

There are some cases where you want a container to hold multiple types of objects, but 
typically you only put one type of object into a container. One of the primary motivations for 
generics is to specify what type of object a container holds, and to have that specification 
backed up by the compiler.  

So instead of Object, we’d like to use an unspecified type, which can be decided at a later 
time. To do this, you put a type parameter inside angle brackets after the class name, and 
then substitute an actual type when you use the class. For the "holder" class, it looks like this, 
where T is the type parameter:  

//: generics/Holder3.java 
 
public class Holder3<T> { 
  private T a; 
  public Holder3(T a) { this.a = a; } 
  public void set(T a) { this.a = a; } 
  public T get() { return a; } 
  public static void main(String[] args) { 
    Holder3<Automobile> h3 = 
      new Holder3<Automobile>(new Automobile()); 
    Automobile a = h3.get(); // No cast needed 
    // h3.set("Not an Automobile"); // Error 
    // h3.set(1); // Error 
  } 
} ///:~ 

Now when you create a Holders, you must specify what type you want to put into it using 
the same angle-bracket syntax, as you can see in main( ). You are only allowed to put objects 
of that type (or a subtype, since the substitution principle still works with generics) into the 
holder. And when you get a value out, it is automatically the right type.  

That’s the core idea of Java generics: You tell it what type you want to use, and it takes care of 
the details.  

In general, you can treat generics as if they are any other type—they just happen to have type 
parameters. But as you’ll see, you can use generics just by naming them along with their type 
argument list.  

Exercise 1:   (1) Use Holders with the typeinfo.pets library to show that a Holders 
that is specified to hold a base type can also hold a derived type.  

Exercise 2:   (1) Create a holder class that holds three objects of the same type, along with 
the methods to store and fetch those objects and a constructor to initialize all three.  

Generics 441 



 

A tuple library 

One of the things you often want to do is return multiple objects from a method call. The 
return statement only allows you to specify a single object, so the answer is to create an 
object that holds the multiple objects that you want to return. Of course, you can write a 
special class every time you encounter the situation, but with generics it’s possible to solve 
the problem once and save yourself the effort in the future. At the same time, you are 
ensuring compile-time type safety.  

This concept is called a tuple, and it is simply a group of objects wrapped together into a 
single object. The recipient of the object is allowed to read the elements but not put new ones 
in. (This concept is also called a Data Transfer Object (or Messenger.)  

Tuples can typically be any length, but each object in the tuple can be of a different type. 
However, we want to specify the type of each object and ensure that when the recipient reads 
the value, they get the right type. To deal with the problem of multiple lengths, we create 
multiple different tuples. Here’s one that holds two objects:  

//: net/mindview/util/TwoTuple.java 
package net.mindview.util; 
 
public class TwoTuple<A,B> { 
  public final A first; 
  public final B second; 
  public TwoTuple(A a, B b) { first = a; second = b; } 
  public String toString() { 
    return "(" + first + ", " + second + ")"; 
  } 
} ///:~ 

The constructor captures the object to be stored, and toString( ) is a convenience function 
to display the values in a list. Note that a tuple implicitly keeps its elements in order.  

Upon first reading, you may think that this could violate common safety principles of Java 
programming. Shouldn’t first and second be private, and only accessed with methods 
named getFirst( ) and getSecond( )? Consider the safety that you would get in that case: 
Clients could still read the objects and do whatever they want with them, but they could not 
assign first or second to anything else. The final declaration buys you the same safety, but 
the above form is shorter and simpler.  

Another design observation is that you might want to allow a client programmer to point 
first or second to another object. However, it’s safer to leave it in the above form, and just 
force the user to create a new TwoTuple if they want one that has different elements.  

The longer-length tuples can be created with inheritance. You can see that adding more type 
parameters is a simple matter:  

//: net/mindview/util/ThreeTuple.java 
package net.mindview.util; 
 
public class ThreeTuple<A,B,C> extends TwoTuple<A,B> { 
  public final C third; 
  public ThreeTuple(A a, B b, C c) { 
    super(a, b); 
    third = c; 
  } 
  public String toString() { 
    return "(" + first + ", " + second + ", " + third +")"; 

442 Thinking in Java Bruce Eckel 



 

  } 
} ///:~ 
 
//: net/mindview/util/FourTuple.java 
package net.mindview.util; 
 
public class FourTuple<A,B,C,D> extends ThreeTuple<A,B,C> { 
  public final D fourth; 
  public FourTuple(A a, B b, C c, D d) { 
    super(a, b, c); 
    fourth = d; 
  } 
  public String toString() { 
    return "(" + first + ", " + second + ", " + 
      third + ", " + fourth + ")"; 
  } 
} ///:~ 
 
//: net/mindview/util/FiveTuple.java 
package net.mindview.util; 
 
public class FiveTuple<A,B,C,D,E> 
extends FourTuple<A,B,C,D> { 
  public final E fifth; 
  public FiveTuple(A a, B b, C c, D d, E e) { 
    super(a, b, c, d); 
    fifth = e; 
  } 
  public String toString() { 
    return "(" + first + ", " + second + ", " + 
      third + ", " + fourth + ", " + fifth + ")"; 
  } 
} ///:~ 

To use a tuple, you simply define the appropriate-length tuple as the return value for your 
function, and then create and return it in your return statement:  

//: generics/TupleTest.java 
import net.mindview.util.*; 
 
class Amphibian {} 
class Vehicle {} 
 
public class TupleTest { 
  static TwoTuple<String,Integer> f() { 
    // Autoboxing converts the int to Integer: 
    return new TwoTuple<String,Integer>("hi", 47); 
  } 
  static ThreeTuple<Amphibian,String,Integer> g() { 
    return new ThreeTuple<Amphibian, String, Integer>( 
      new Amphibian(), "hi", 47); 
  } 
  static 
  FourTuple<Vehicle,Amphibian,String,Integer> h() { 
    return 
      new FourTuple<Vehicle,Amphibian,String,Integer>( 
        new Vehicle(), new Amphibian(), "hi", 47); 
  } 
  static 
  FiveTuple<Vehicle,Amphibian,String,Integer,Double> k() { 
    return new 
      FiveTuple<Vehicle,Amphibian,String,Integer,Double>( 

Generics 443 



 

        new Vehicle(), new Amphibian(), "hi", 47, 11.1); 
  } 
  public static void main(String[] args) { 
    TwoTuple<String,Integer> ttsi = f(); 
    System.out.println(ttsi); 
    // ttsi.first = "there"; // Compile error: final 
    System.out.println(g()); 
    System.out.println(h()); 
    System.out.println(k()); 
  } 
} /* Output: (80% match) 
(hi, 47) 
(Amphibian@1f6a7b9, hi, 47) 
(Vehicle@35ce36, Amphibian@757aef, hi, 47) 
(Vehicle@9cab16, Amphibian@1a46e30, hi, 47, 11.1) 
*///:~ 

Because of generics, you can easily create any tuple to return any group of types, just by 
writing the expression.  

You can see how the final specification on the public fields prevents them from being 
reassigned after construction, in the failure of the statement ttsi.first = "there".  

The new expressions are a little verbose. Later in this chapter you’ll see how to simplify them 
using generic methods.  

Exercise 3 :   (1) Create and test a SixTuple generic.  

Exercise 4:   (3) "Generify" innerclasses/Sequence.java.  

A stack class 

Let’s look at something slightly more complicated: the traditional pushdown stack. In the 
Holding Your Objects chapter, you saw this implemented using a LinkedList as the 
net.mindview.util.Stack class (page 412). In that example, you can see that a LinkedList 
already has the necessary methods to create a stack. The Stack was constructed by 
composing one generic class (Stack<T>) with another generic class (LinkedList<T>). In 
that example, notice that (with a few exceptions that we shall look at later) a generic type is 
just another type.  

Instead of using LinkedList, we can implement our own internal linked storage mechanism.  

//: generics/LinkedStack.java 
// A stack implemented with an internal linked structure. 
 
public class LinkedStack<T> { 
  private static class Node<U> { 
    U item; 
    Node<U> next; 
    Node() { item = null; next = null; } 
    Node(U item, Node<U> next) { 
      this.item = item; 
      this.next = next; 
    } 
    boolean end() { return item == null && next == null; } 
  } 
  private Node<T> top = new Node<T>(); // End sentinel 
  public void push(T item) { 
    top = new Node<T>(item, top); 

444 Thinking in Java Bruce Eckel 



 

  }  
  public T pop() { 
    T result = top.item; 
    if(!top.end()) 
      top = top.next; 
    return result; 
  } 
  public static void main(String[] args) { 
    LinkedStack<String> lss = new LinkedStack<String>(); 
    for(String s : "Phasers on stun!".split(" ")) 
      lss.push(s); 
    String s; 
    while((s = lss.pop()) != null) 
      System.out.println(s); 
  } 
} /* Output: 
stun! 
on 
Phasers 
*///:~ 

The inner class Node is also a generic, and has its own type parameter.  

This example makes use of an end sentinel to determine when the stack is empty. The end 
sentinel is created when the LinkedStack is constructed, and each time you call push( ) a 
new Node<T> is created and linked to the previous Node<T>. When you call pop( ), you 
always return the top.item, and then you discard the current Node<T> and move to the 
next one— except when you hit the end sentinel, in which case you don’t move. That way, if 
the client keeps calling pop( ), they keep getting null back to indicate that the stack is 
empty.  

Exercise 5:   (2) Remove the type parameter on the Node class and modify the rest of the 
code in LinkedStack.java to show that an inner class has access to the generic type 
parameters of its outer class.  

RandomList 

For another example of a holder, suppose you’d like a special type of list that randomly 
selects one of its elements each time you call select( ). When doing this you want to build a 
tool that works with all objects, so you use generics:  

//: generics/RandomList.java 
import java.util.*; 
 
public class RandomList<T> { 
  private ArrayList<T> storage = new ArrayList<T>(); 
  private Random rand = new Random(47); 
  public void add(T item) { storage.add(item); } 
  public T select() { 
    return storage.get(rand.nextInt(storage.size())); 
  } 
  public static void main(String[] args) { 
    RandomList<String> rs = new RandomList<String>(); 
    for(String s: ("The quick brown fox jumped over " + 
        "the lazy brown dog").split(" ")) 
      rs.add(s); 
    for(int i = 0; i < 11; i++) 
      System.out.print(rs.select() + " "); 
  } 
} /* Output: 

Generics 445 



 

brown over fox quick quick dog brown The brown lazy brown 
*///:~ 

Exercise 6:   (1) Use RandomList with two more types in addition to the one shown in 
main( ).  

Generic interfaces 
Generics also work with interfaces. For example, a generator is a class that creates objects. 
It’s actually a specialization of the Factory Method design pattern, but when you ask a 
generator for new object, you don’t pass it any arguments, whereas you typically do pass 
arguments to a Factory Method. The generator knows how to create new objects without any 
extra information.  

Typically, a generator just defines one method, the method that produces new objects. Here, 
we’ll call it next( ), and include it in the standard utilities:  

//: net/mindview/util/Generator.java 
// A generic interface. 
package net.mindview.util; 
public interface Generator<T> { T next(); } ///:~ 

The return type of next( ) is parameterized to T. As you can see, using generics with 
interfaces is no different than using generics with classes.  

To demonstrate the implementation of a Generator, we’ll need some classes. Here’s a coffee 
hierarchy:  

//: generics/coffee/Coffee.java 
package generics.coffee; 
 
public class Coffee { 
  private static long counter = 0; 
  private final long id = counter++; 
  public String toString() { 
    return getClass().getSimpleName() + " " + id; 
  } 
} ///:~ 
 
//: generics/coffee/Latte.java 
package generics.coffee; 
public class Latte extends Coffee {} ///:~ 
 
//: generics/coffee/Mocha.java 
package generics.coffee; 
public class Mocha extends Coffee {} ///:~ 
 
//: generics/coffee/Cappuccino.java 
package generics.coffee; 
public class Cappuccino extends Coffee {} ///:~ 
 
//: generics/coffee/Americano.java 
package generics.coffee; 
public class Americano extends Coffee {} ///:~ 
 
//: generics/coffee/Breve.java 
package generics.coffee; 
public class Breve extends Coffee {} ///:~ 

446 Thinking in Java Bruce Eckel 



 

Now we can implement a Generator < Coffee > that produces random different types of 
Coffee objects:  

//: generics/coffee/CoffeeGenerator.java 
// Generate different types of Coffee: 
package generics.coffee; 
import java.util.*; 
import net.mindview.util.*; 
 
public class CoffeeGenerator 
implements Generator<Coffee>, Iterable<Coffee> { 
  private Class[] types = { Latte.class, Mocha.class, 
    Cappuccino.class, Americano.class, Breve.class, }; 
  private static Random rand = new Random(47); 
  public CoffeeGenerator() {} 
  // For iteration: 
  private int size = 0; 
  public CoffeeGenerator(int sz) { size = sz; }  
  public Coffee next() { 
    try { 
      return (Coffee) 
        types[rand.nextInt(types.length)].newInstance(); 
      // Report programmer errors at run time: 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
  class CoffeeIterator implements Iterator<Coffee> { 
    int count = size; 
    public boolean hasNext() { return count > 0; } 
    public Coffee next() { 
      count--; 
      return CoffeeGenerator.this.next(); 
    } 
    public void remove() { // Not implemented 
      throw new UnsupportedOperationException(); 
    } 
  };  
  public Iterator<Coffee> iterator() { 
    return new CoffeeIterator(); 
  } 
  public static void main(String[] args) { 
    CoffeeGenerator gen = new CoffeeGenerator(); 
    for(int i = 0; i < 5; i++) 
      System.out.println(gen.next()); 
    for(Coffee c : new CoffeeGenerator(5)) 
      System.out.println(c); 
  } 
} /* Output: 
Americano 0 
Latte 1 
Americano 2 
Mocha 3 
Mocha 4 
Breve 5 
Americano 6 
Latte 7 
Cappuccino 8 
Cappuccino 9 
*///:~ 

Generics 447 



 

The parameterized Generator interface ensures that next( ) returns the parameter type. 
CoffeeGenerator also implements the Iterable interface, so it can be used in a foreach 
statement. However, it requires an "end sentinel" to know when to stop, and this is produced 
using the second constructor.  

Here’s a second implementation of Generator<T>, this time to produce Fibonacci 
numbers:  

//: generics/Fibonacci.java 
// Generate a Fibonacci sequence. 
import net.mindview.util.*; 
 
public class Fibonacci implements Generator<Integer> { 
  private int count = 0; 
  public Integer next() { return fib(count++); } 
  private int fib(int n) { 
    if(n < 2) return 1; 
    return fib(n-2) + fib(n-1); 
  } 
  public static void main(String[] args) { 
    Fibonacci gen = new Fibonacci(); 
    for(int i = 0; i < 18; i++) 
      System.out.print(gen.next() + " "); 
  } 
} /* Output: 
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 
*///:~ 

Although we are working with ints both inside and outside the class, the type parameter is 
Integer. This brings up one of the limitations of Java generics: You cannot use primitives as 
type parameters. However, Java SE5 conveniently added autoboxing and autounboxing to 
convert from primitive types to wrapper types and back. You can see the effect here because 
ints are seamlessly used and produced by the class.  

We can go one step further and make an Iterable Fibonacci generator. One option is to 
reimplement the class and add the Iterable interface, but you don’t always have control of 
the original code, and you don’t want to rewrite when you don’t have to. Instead, we can 
create an adapter to produce the desired interface—this design pattern was introduced 
earlier in the book.  

Adapters can be implemented in multiple ways. For example, you could use inheritance to 
generate the adapted class:  

//: generics/IterableFibonacci.java 
// Adapt the Fibonacci class to make it Iterable. 
import java.util.*; 
 
public class IterableFibonacci 
extends Fibonacci implements Iterable<Integer> { 
  private int n; 
  public IterableFibonacci(int count) { n = count; } 
  public Iterator<Integer> iterator() { 
    return new Iterator<Integer>() { 
      public boolean hasNext() { return n > 0; } 
      public Integer next() { 
        n--; 
        return IterableFibonacci.this.next(); 
      } 
      public void remove() { // Not implemented 
        throw new UnsupportedOperationException(); 

448 Thinking in Java Bruce Eckel 



 

      } 
    }; 
  }  
  public static void main(String[] args) { 
    for(int i : new IterableFibonacci(18)) 
      System.out.print(i + " "); 
  } 
} /* Output: 
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 
*///:~ 

To use IterableFibonacci in a foreach statement, you give the constructor a boundary so 
that hasNext( ) can know when to return false.  

Exercise 7:   (2) Use composition instead of inheritance to adapt Fibonacci to make it 
Iterable.  

Exercise 8:   (2) Following the form of the Coffee example, create a hierarchy of 
StoryCharacters from your favorite movie, dividing them into GoodGuys and BadGuys. 
Create a generator for StoryCharacters, following the form of CoffeeGenerator.  

Generic methods 
So far we’ve looked at parameterizing entire classes. You can also parameterize methods 
within a class. The class itself may or may not be generic—this is independent of whether you 
have a generic method.  

A generic method allows the method to vary independently of the class. As a guideline, you 
should use generic methods "whenever you can." That is, if it’s possible to make a method 
generic rather than the entire class, it’s probably going to be clearer to do so. In addition, if a 
method is static, it has no access to the generic type parameters of the class, so if it needs to 
use genericity it must be a generic method.  

To define a generic method, you simply place a generic parameter list before the return value, 
like this:  

//: generics/GenericMethods.java 
 
public class GenericMethods { 
  public <T> void f(T x) { 
    System.out.println(x.getClass().getName()); 
  } 
  public static void main(String[] args) { 
    GenericMethods gm = new GenericMethods(); 
    gm.f(""); 
    gm.f(1); 
    gm.f(1.0); 
    gm.f(1.0F); 
    gm.f(‘c’); 
    gm.f(gm); 
  } 
} /* Output: 
java.lang.String 
java.lang.Integer 
java.lang.Double 
java.lang.Float 
java.lang.Character 
GenericMethods 

Generics 449 



 

*///:~ 

The class GenericMethods is not parameterized, although both a class and its methods 
may be parameterized at the same time. But in this case, only the method f( ) has a type 
parameter, indicated by the parameter list before the method’s return type.  

Notice that with a generic class, you must specify the type parameters when you instantiate 
the class. But with a generic method, you don’t usually have to specify the parameter types, 
because the compiler can figure that out for you. This is called type argument inference. So 
calls to f( ) look like normal method calls, and it appears that f( ) has been infinitely 
overloaded. It will even take an argument of the type GenericMethods.  

For the calls to f( ) that use primitive types, autoboxing comes into play, automatically 
wrapping the primitive types in their associated objects. In fact, generic methods and 
autoboxing can eliminate some code that previously required hand conversion.  

Exercise 9:   (1) Modify GenericMethods.java so that f( ) accepts three arguments, all 
of which are of a different parameterized type.  

Exercise 10:   (1) Modify the previous exercise so that one of f( )’s arguments is non-
parameterized.  

Leveraging type argument inference 

One of the complaints about generics is that it adds even more text to your code. Consider 
holding/MapOfList.java from the Holding Your Objects chapter. The creation of the Map 
of List looks like this:  

Map<Person, List<? extends Pet>> petPeople =  
  new HashMap<Person, List<? extends Pet>>();  

(This use of extends and the question marks will be explained later in this chapter.) It 
appears that you are repeating yourself, and that the compiler should figure out one of the 
generic argument lists from the other. Alas, it cannot, but type argument inference in a 
generic method can produce some simplification. For example, we can create a utility 
containing various static methods, which produces the most commonly used 
implementations of the various containers:  

//: net/mindview/util/New.java 
// Utilities to simplify generic container creation 
// by using type argument inference. 
package net.mindview.util; 
import java.util.*; 
 
public class New { 
  public static <K,V> Map<K,V> map() { 
    return new HashMap<K,V>(); 
  } 
  public static <T> List<T> list() { 
    return new ArrayList<T>(); 
  } 
  public static <T> LinkedList<T> lList() { 
    return new LinkedList<T>(); 
  } 
  public static <T> Set<T> set() { 
    return new HashSet<T>(); 
  }  
  public static <T> Queue<T> queue() { 

450 Thinking in Java Bruce Eckel 



 

    return new LinkedList<T>(); 
  } 
  // Examples: 
  public static void main(String[] args) { 
    Map<String, List<String>> sls = New.map(); 
    List<String> ls = New.list(); 
    LinkedList<String> lls = New.lList(); 
    Set<String> ss = New.set(); 
    Queue<String> qs = New.queue(); 
  } 
} ///:~ 

In main( ) you can see examples of how this is used—type argument inference eliminates 
the need to repeat the generic parameter list. This can be applied to 
holding/MapOfList.java:  

//: generics/SimplerPets.java 
import typeinfo.pets.*; 
import java.util.*; 
import net.mindview.util.*; 
 
public class SimplerPets { 
  public static void main(String[] args) { 
    Map<Person, List<? extends Pet>> petPeople = New.map(); 
    // Rest of the code is the same... 
  } 
} ///:~ 

Although this is an interesting example of type argument inference, it’s difficult to say how 
much it actually buys you. The person reading the code is required to parse and understand 
this additional library and its implications, so it might be just as productive to leave the 
original (admittedly repetitious) definition in place—ironically, for simplicity. However, if the 
standard Java library were to add something like the New.java utility above, it would make 
sense to use it.  

Type inference doesn’t work for anything other than assignment. If you pass the result of a 
method call such as New.map( ) as an argument to another method, the compiler will not 
try to perform type inference. Instead it will treat the method call as though the return value 
is assigned to a variable of type Object. Here’s an example that fails:  

//: generics/LimitsOfInference.java 
import typeinfo.pets.*; 
import java.util.*; 
 
public class LimitsOfInference { 
  static void 
  f(Map<Person, List<? extends Pet>> petPeople) {} 
  public static void main(String[] args) { 
    // f(New.map()); // Does not compile 
  } 
} ///:~ 

Exercise 11:   (1) Test New.java by creating your own classes and ensuring that New will 
work properly with them.  

 

 

Generics 451 



 

Explicit type specification 

It is possible to explicitly specify the type in a generic method, although the syntax is rarely 
needed. To do so, you place the type in angle brackets after the dot and immediately 
preceding the method name. When calling a method from within the same class, you must 
use this before the dot, and when working with static methods, you must use the class name 
before the dot. The problem shown in LimitsOflnference.java can be solved using this 
syntax:  

//: generics/ExplicitTypeSpecification.java 
import typeinfo.pets.*; 
import java.util.*; 
import net.mindview.util.*; 
 
public class ExplicitTypeSpecification { 
  static void f(Map<Person, List<Pet>> petPeople) {} 
  public static void main(String[] args) { 
    f(New.<Person, List<Pet>>map()); 
  } 
} ///:~ 

Of course, this eliminates the benefit of using the New class to reduce the amount of typing, 
but the extra syntax is only required when you are not writing an assignment statement.  

Exercise 12:   (1) Repeat the previous exercise using explicit type specification.  

Varargs and generic methods 

Generic methods and variable argument lists coexist nicely:  

//: generics/GenericVarargs.java 
import java.util.*; 
 
public class GenericVarargs { 
  public static <T> List<T> makeList(T... args) { 
    List<T> result = new ArrayList<T>(); 
    for(T item : args) 
      result.add(item); 
    return result; 
  } 
  public static void main(String[] args) { 
    List<String> ls = makeList("A"); 
    System.out.println(ls); 
    ls = makeList("A", "B", "C"); 
    System.out.println(ls); 
    ls = makeList("ABCDEFFHIJKLMNOPQRSTUVWXYZ".split("")); 
    System.out.println(ls); 
  } 
} /* Output: 
[A] 
[A, B, C] 
[, A, B, C, D, E, F, F, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, 
X, Y, Z] 
*///:~ 

The makeList( ) method shown here produces the same functionality as the standard 
library’s java.util.Arrays.asList( ) method.  

452 Thinking in Java Bruce Eckel 



 

A generic method to use with 
Generators 

It is convenient to use a generator to fill a Collection, and it makes sense to "generify" this 
operation:  

//: generics/Generators.java 
// A utility to use with Generators. 
import generics.coffee.*; 
import java.util.*; 
import net.mindview.util.*; 
 
public class Generators { 
  public static <T> Collection<T> 
  fill(Collection<T> coll, Generator<T> gen, int n) { 
    for(int i = 0; i < n; i++) 
      coll.add(gen.next()); 
    return coll; 
  }  
  public static void main(String[] args) { 
    Collection<Coffee> coffee = fill( 
      new ArrayList<Coffee>(), new CoffeeGenerator(), 4); 
    for(Coffee c : coffee) 
      System.out.println(c); 
    Collection<Integer> fnumbers = fill( 
      new ArrayList<Integer>(), new Fibonacci(), 12); 
    for(int i : fnumbers) 
      System.out.print(i + ", "); 
  } 
} /* Output: 
Americano 0 
Latte 1 
Americano 2 
Mocha 3 
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 
*///:~ 

Notice how the generic method fill( ) can be transparently applied to both Coffee and 
Integer containers and generators.  

Exercise 13:   (4) Overload the fill( ) method so that the arguments and return types are 
the specific subtypes of Collection: List, Queue and Set. This way, you don’t lose the type 
of container. Can you overload to distinguish between List and LinkedList?  

A general-purpose Generator 

Here’s a class that produces a Generator for any class that has a default constructor. To 
reduce typing, it also includes a generic method to produce a BasicGenerator:  

//: net/mindview/util/BasicGenerator.java 
// Automatically create a Generator, given a class 
// with a default (no-arg) constructor. 
package net.mindview.util; 
 
public class BasicGenerator<T> implements Generator<T> { 
  private Class<T> type; 
  public BasicGenerator(Class<T> type){ this.type = type; } 
  public T next() { 

Generics 453 



 

    try { 
      // Assumes type is a public class: 
      return type.newInstance(); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
  // Produce a Default generator given a type token: 
  public static <T> Generator<T> create(Class<T> type) { 
    return new BasicGenerator<T>(type); 
  } 
} ///:~ 

This class provides a basic implementation that will produce objects of a class that (1) is 
public (because BasicGenerator is in a separate package, the class in question must have 
public and not just package access) and (2) has a default constructor (one that takes no 
arguments). To create one of these BasicGenerator objects, you call the create( ) method 
and pass it the type token for the type you want generated. The generic create( ) method 
allows you to say BasicGenerator.create(MyType.class) instead of the more awkward 
new BasicGenerator<MyType>(MyType.class).  

For example, here’s a simple class that has a default constructor:  

//: generics/CountedObject.java 
 
public class CountedObject { 
  private static long counter = 0; 
  private final long id = counter++; 
  public long id() { return id; } 
  public String toString() { return "CountedObject " + id;} 
} ///:~ 

The CountedObject class keeps track of how many instances of itself have been created, 
and reports these in its toString( ).  

Using BasicGenerator, you can easily create a Generator for CountedObject:  

//: generics/BasicGeneratorDemo.java 
import net.mindview.util.*; 
 
public class BasicGeneratorDemo { 
  public static void main(String[] args) { 
    Generator<CountedObject> gen = 
      BasicGenerator.create(CountedObject.class); 
    for(int i = 0; i < 5; i++) 
      System.out.println(gen.next()); 
  } 
} /* Output: 
CountedObject 0 
CountedObject 1 
CountedObject 2 
CountedObject 3 
CountedObject 4 
*///:~ 

You can see how the generic method reduces the amount of typing necessary to produce the 
Generator object. Java generics force you to pass in the Class object anyway, so you might 
as well use it for type inference in the create( ) method.  

454 Thinking in Java Bruce Eckel 



 

Exercise 14:   (1) Modify BasicGeneratorDemo.java to use the explicit form of 
creation for the Generator (that is, use the explicit constructor instead of the generic 
create( ) method).  

Simplifying tuple use 

Type argument inference, together with static imports, allows the tuples we saw earlier to be 
rewritten into a more general-purpose library. Here, tuples can be created using an 
overloaded static method:  

//: net/mindview/util/Tuple.java 
// Tuple library using type argument inference. 
package net.mindview.util; 
 
public class Tuple { 
  public static <A,B> TwoTuple<A,B> tuple(A a, B b) { 
    return new TwoTuple<A,B>(a, b); 
  } 
  public static <A,B,C> ThreeTuple<A,B,C> 
  tuple(A a, B b, C c) { 
    return new ThreeTuple<A,B,C>(a, b, c); 
  } 
  public static <A,B,C,D> FourTuple<A,B,C,D> 
  tuple(A a, B b, C c, D d) { 
    return new FourTuple<A,B,C,D>(a, b, c, d); 
  } 
  public static <A,B,C,D,E> 
  FiveTuple<A,B,C,D,E> tuple(A a, B b, C c, D d, E e) { 
    return new FiveTuple<A,B,C,D,E>(a, b, c, d, e); 
  } 
} ///:~ 

Here’s a modification of TupleTest.java to test Tuple.java: 

//: generics/TupleTest2.java 
import net.mindview.util.*; 
import static net.mindview.util.Tuple.*; 
 
public class TupleTest2 { 
  static TwoTuple<String,Integer> f() { 
    return tuple("hi", 47); 
  } 
  static TwoTuple f2() { return tuple("hi", 47); } 
  static ThreeTuple<Amphibian,String,Integer> g() { 
    return tuple(new Amphibian(), "hi", 47); 
  } 
  static 
  FourTuple<Vehicle,Amphibian,String,Integer> h() { 
    return tuple(new Vehicle(), new Amphibian(), "hi", 47); 
  } 
  static 
  FiveTuple<Vehicle,Amphibian,String,Integer,Double> k() { 
    return tuple(new Vehicle(), new Amphibian(), 
      "hi", 47, 11.1); 
  } 
  public static void main(String[] args) { 
    TwoTuple<String,Integer> ttsi = f(); 
    System.out.println(ttsi); 
    System.out.println(f2()); 
    System.out.println(g()); 

Generics 455 



 

    System.out.println(h()); 
    System.out.println(k()); 
  } 
} /* Output: (80% match) 
(hi, 47) 
(hi, 47) 
(Amphibian@7d772e, hi, 47) 
(Vehicle@757aef, Amphibian@d9f9c3, hi, 47) 
(Vehicle@1a46e30, Amphibian@3e25a5, hi, 47, 11.1) 
*///:~ 

Notice that f( ) returns a parameterized TwoTuple object, while f2( ) returns an 
unparameterized TwoTuple object. The compiler doesn’t warn about f2( ) in this case 
because the return value is not being used in a parameterized fashion; in a sense, it is being 
"upcast" to an unparameterized TwoTuple. However, if you were to try to capture the result 
of f2( ) into a parameterized TwoTuple, the compiler would issue a warning.  

Exercise 15:   (1) Verify the previous statement.  

Exercise 16:   (2) Add a SixTuple to Tuple.java, and test it in TupleTest2 .j ava.  

A Set utility 

For another example of the use of generic methods, consider the mathematical relationships 
that can be expressed using Sets. These can be conveniently defined as generic methods, to 
be used with all different types:  

//: net/mindview/util/Sets.java 
package net.mindview.util; 
import java.util.*; 
 
public class Sets { 
  public static <T> Set<T> union(Set<T> a, Set<T> b) { 
    Set<T> result = new HashSet<T>(a); 
    result.addAll(b); 
    return result; 
  } 
  public static <T> 
  Set<T> intersection(Set<T> a, Set<T> b) { 
    Set<T> result = new HashSet<T>(a); 
    result.retainAll(b); 
    return result; 
  }  
  // Subtract subset from superset: 
  public static <T> Set<T> 
  difference(Set<T> superset, Set<T> subset) { 
    Set<T> result = new HashSet<T>(superset); 
    result.removeAll(subset); 
    return result; 
  } 
  // Reflexive--everything not in the intersection: 
  public static <T> Set<T> complement(Set<T> a, Set<T> b) { 
    return difference(union(a, b), intersection(a, b)); 
  } 
} ///:~ 

The first three methods duplicate the first argument by copying its references into a new 
HashSet object, so the argument Sets are not directly modified. The return value is thus a 
new Set object.  

456 Thinking in Java Bruce Eckel 



 

The four methods represent mathematical set operations: union( ) returns a Set containing 
the combination of the two arguments, intersection( ) returns a Set containing the 
common elements between the two arguments, difference( ) performs a subtraction of the 
subset elements from the superset, and complement( ) returns a Set of all the elements 
that are not in the intersection. To create a simple example showing the effects of these 
methods, here’s an enum containing different names of watercolors:  

//: generics/watercolors/Watercolors.java 
package generics.watercolors; 
 
public enum Watercolors { 
  ZINC, LEMON_YELLOW, MEDIUM_YELLOW, DEEP_YELLOW, ORANGE, 
  BRILLIANT_RED, CRIMSON, MAGENTA, ROSE_MADDER, VIOLET, 
  CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE, 
  COBALT_BLUE_HUE, PERMANENT_GREEN, VIRIDIAN_HUE, 
  SAP_GREEN, YELLOW_OCHRE, BURNT_SIENNA, RAW_UMBER, 
  BURNT_UMBER, PAYNES_GRAY, IVORY_BLACK 
} ///:~ 

For convenience (so that all the names don’t have to be qualified), this is imported statically 
into the following example. This example uses the EnumSet, which is a Java SE5 tool for 
easy creation of Sets from enums. (You’ll learn more about EnumSet in the Enumerated 
Types chapter.) Here, the static method EnumSet.range( ) is given the first and last 
elements of the range to create in the resulting Set:  

//: generics/WatercolorSets.java 
import generics.watercolors.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
import static net.mindview.util.Sets.*; 
import static generics.watercolors.Watercolors.*; 
 
public class WatercolorSets { 
  public static void main(String[] args) { 
    Set<Watercolors> set1 = 
      EnumSet.range(BRILLIANT_RED, VIRIDIAN_HUE); 
    Set<Watercolors> set2 = 
      EnumSet.range(CERULEAN_BLUE_HUE, BURNT_UMBER); 
    print("set1: " + set1); 
    print("set2: " + set2); 
    print("union(set1, set2): " + union(set1, set2)); 
    Set<Watercolors> subset = intersection(set1, set2); 
    print("intersection(set1, set2): " + subset); 
    print("difference(set1, subset): " + 
      difference(set1, subset));  
    print("difference(set2, subset): " + 
      difference(set2, subset)); 
    print("complement(set1, set2): " + 
      complement(set1, set2)); 
  }  
} /* Output: (Sample) 
set1: [BRILLIANT_RED, CRIMSON, MAGENTA, ROSE_MADDER, VIOLET, 
CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE, COBALT_BLUE_HUE, 
PERMANENT_GREEN, VIRIDIAN_HUE] 
set2: [CERULEAN_BLUE_HUE, PHTHALO_BLUE, ULTRAMARINE, COBALT_BLUE_HUE, 
PERMANENT_GREEN, VIRIDIAN_HUE, SAP_GREEN, YELLOW_OCHRE, BURNT_SIENNA, 
RAW_UMBER, BURNT_UMBER] 
union(set1, set2): [SAP_GREEN, ROSE_MADDER, YELLOW_OCHRE, 
PERMANENT_GREEN, BURNT_UMBER, COBALT_BLUE_HUE, VIOLET, BRILLIANT_RED, 
RAW_UMBER, ULTRAMARINE, BURNT_SIENNA, CRIMSON, CERULEAN_BLUE_HUE, 
PHTHALO_BLUE, MAGENTA, VIRIDIAN_HUE] 

Generics 457 



 

intersection(set1, set2): [ULTRAMARINE, PERMANENT_GREEN, 
COBALT_BLUE_HUE, PHTHALO_BLUE, CERULEAN_BLUE_HUE, VIRIDIAN_HUE] 
difference(set1, subset): [ROSE_MADDER, CRIMSON, VIOLET, MAGENTA, 
BRILLIANT_RED] 
difference(set2, subset): [RAW_UMBER, SAP_GREEN, YELLOW_OCHRE, 
BURNT_SIENNA, BURNT_UMBER] 
complement(set1, set2): [SAP_GREEN, ROSE_MADDER, YELLOW_OCHRE, 
BURNT_UMBER, VIOLET, BRILLIANT_RED, RAW_UMBER, BURNT_SIENNA, CRIMSON, 
MAGENTA] 
*///:~ 

You can see the results of each operation from the output. The following example uses 
Sets.difference( ) to show the method differences between various Collection and Map 
classes in java.util:  

//: net/mindview/util/ContainerMethodDifferences.java 
package net.mindview.util; 
import java.lang.reflect.*; 
import java.util.*; 
 
public class ContainerMethodDifferences { 
  static Set<String> methodSet(Class<?> type) { 
    Set<String> result = new TreeSet<String>(); 
    for(Method m : type.getMethods()) 
      result.add(m.getName()); 
    return result; 
  } 
  static void interfaces(Class<?> type) { 
    System.out.print("Interfaces in " + 
      type.getSimpleName() + ": "); 
    List<String> result = new ArrayList<String>(); 
    for(Class<?> c : type.getInterfaces()) 
      result.add(c.getSimpleName()); 
    System.out.println(result); 
  } 
  static Set<String> object = methodSet(Object.class); 
  static { object.add("clone"); } 
  static void 
  difference(Class<?> superset, Class<?> subset) { 
    System.out.print(superset.getSimpleName() + 
      " extends " + subset.getSimpleName() + ", adds: "); 
    Set<String> comp = Sets.difference( 
      methodSet(superset), methodSet(subset)); 
    comp.removeAll(object); // Don’t show ‘Object’ methods 
    System.out.println(comp); 
    interfaces(superset); 
  } 
  public static void main(String[] args) { 
    System.out.println("Collection: " + 
      methodSet(Collection.class)); 
    interfaces(Collection.class); 
    difference(Set.class, Collection.class); 
    difference(HashSet.class, Set.class); 
    difference(LinkedHashSet.class, HashSet.class); 
    difference(TreeSet.class, Set.class); 
    difference(List.class, Collection.class); 
    difference(ArrayList.class, List.class); 
    difference(LinkedList.class, List.class); 
    difference(Queue.class, Collection.class); 
    difference(PriorityQueue.class, Queue.class); 
    System.out.println("Map: " + methodSet(Map.class)); 
    difference(HashMap.class, Map.class); 

458 Thinking in Java Bruce Eckel 



 

    difference(LinkedHashMap.class, HashMap.class); 
    difference(SortedMap.class, Map.class); 
    difference(TreeMap.class, Map.class); 
  } 
} ///:~ 

The output of this program was used in the "Summary" section of the Holding Your Objects 
chapter.  

Exercise 17:   (4) Study the JDK documentation for EnumSet. You’ll see that there’s a 
clone( ) method defined. However, you cannot clone( ) from the reference to the Set 
interface passed in Sets.java. Can you modify Sets.java to handle both the general case of a 
Set interface as shown, and the special case of an EnumSet, using clone( ) instead of 
creating a new HashSet?  

Anonymous inner classes 
Generics can also be used with inner classes and anonymous inner classes. Here’s an example 
that implements the Generator interface using anonymous inner classes:  

//: generics/BankTeller.java 
// A very simple bank teller simulation. 
import java.util.*; 
import net.mindview.util.*; 
 
class Customer { 
  private static long counter = 1; 
  private final long id = counter++; 
  private Customer() {} 
  public String toString() { return "Customer " + id; } 
  // A method to produce Generator objects: 
  public static Generator<Customer> generator() { 
    return new Generator<Customer>() { 
      public Customer next() { return new Customer(); } 
    }; 
  } 
}  
 
class Teller { 
  private static long counter = 1; 
  private final long id = counter++; 
  private Teller() {} 
  public String toString() { return "Teller " + id; } 
  // A single Generator object: 
  public static Generator<Teller> generator = 
    new Generator<Teller>() { 
      public Teller next() { return new Teller(); } 
    }; 
}  
 
public class BankTeller { 
  public static void serve(Teller t, Customer c) { 
    System.out.println(t + " serves " + c); 
  } 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    Queue<Customer> line = new LinkedList<Customer>(); 
    Generators.fill(line, Customer.generator(), 15); 
    List<Teller> tellers = new ArrayList<Teller>(); 
    Generators.fill(tellers, Teller.generator, 4); 

Generics 459 



 

    for(Customer c : line) 
      serve(tellers.get(rand.nextInt(tellers.size())), c); 
  }  
} /* Output: 
Teller 3 serves Customer 1 
Teller 2 serves Customer 2 
Teller 3 serves Customer 3 
Teller 1 serves Customer 4 
Teller 1 serves Customer 5 
Teller 3 serves Customer 6 
Teller 1 serves Customer 7 
Teller 2 serves Customer 8 
Teller 3 serves Customer 9 
Teller 3 serves Customer 10 
Teller 2 serves Customer 11 
Teller 4 serves Customer 12 
Teller 2 serves Customer 13 
Teller 1 serves Customer 14 
Teller 1 serves Customer 15 
*///:~ 

Both Customer and Teller have private constructors, thereby forcing you to use 
Generator objects. Customer has a generator( ) method that produces a new 
Generator<Customer> object each time you call it. You may not need multiple 
Generator objects, and Teller creates a single public generator object. You can see both 
of these approaches used in the fill( ) methods in main( ).  

Since both the generator( ) method in Customer and the Generator object in Teller are 
static, they cannot be part of an interface, so there is no way to "generify" this particular 
idiom. Despite that, it works reasonably well with the fill( ) method.  

We’ll look at other versions of this queuing problem in the Concurrency chapter.  

Exercise 18:   (3) Following the form of BankTeller.java, create an example where 
BigFish eat LittleFish in the Ocean.  

Building complex models 
An important benefit of generics is the ability to simply and safely create complex models. 
For example, we can easily create a List of tuples:  

//: generics/TupleList.java 
// Combining generic types to make complex generic types. 
import java.util.*; 
import net.mindview.util.*; 
 
public class TupleList<A,B,C,D> 
extends ArrayList<FourTuple<A,B,C,D>> { 
  public static void main(String[] args) { 
    TupleList<Vehicle, Amphibian, String, Integer> tl = 
      new TupleList<Vehicle, Amphibian, String, Integer>(); 
    tl.add(TupleTest.h()); 
    tl.add(TupleTest.h()); 
    for(FourTuple<Vehicle,Amphibian,String,Integer> i: tl) 
      System.out.println(i); 
  } 
} /* Output: (75% match) 
(Vehicle@11b86e7, Amphibian@35ce36, hi, 47) 
(Vehicle@757aef, Amphibian@d9f9c3, hi, 47) 

460 Thinking in Java Bruce Eckel 



 

*///:~ 

Although it gets somewhat verbose (especially the creation of the iterator), you end up with a 
fairly powerful data structure without too much code.  

Here’s another example showing how straightforward it is to build complex models using 
generic types. Even though each class is created as a building block, the total has many parts. 
In this case, the model is a retail store with aisles, shelves and products:  

//: generics/Store.java 
// Building up a complex model using generic containers. 
import java.util.*; 
import net.mindview.util.*; 
 
class Product { 
  private final int id; 
  private String description; 
  private double price; 
  public Product(int IDnumber, String descr, double price){ 
    id = IDnumber; 
    description = descr; 
    this.price = price; 
    System.out.println(toString()); 
  } 
  public String toString() { 
    return id + ": " + description + ", price: $" + price; 
  } 
  public void priceChange(double change) { 
    price += change; 
  } 
  public static Generator<Product> generator = 
    new Generator<Product>() { 
      private Random rand = new Random(47); 
      public Product next() { 
        return new Product(rand.nextInt(1000), "Test", 
          Math.round(rand.nextDouble() * 1000.0) + 0.99); 
      } 
    }; 
} 
 
class Shelf extends ArrayList<Product> { 
  public Shelf(int nProducts) { 
    Generators.fill(this, Product.generator, nProducts); 
  } 
}  
 
class Aisle extends ArrayList<Shelf> { 
  public Aisle(int nShelves, int nProducts) { 
    for(int i = 0; i < nShelves; i++) 
      add(new Shelf(nProducts)); 
  } 
} 
 
class CheckoutStand {} 
class Office {} 
 
public class Store extends ArrayList<Aisle> { 
  private ArrayList<CheckoutStand> checkouts = 
    new ArrayList<CheckoutStand>(); 
  private Office office = new Office(); 
  public Store(int nAisles, int nShelves, int nProducts) { 
    for(int i = 0; i < nAisles; i++) 

Generics 461 



 

      add(new Aisle(nShelves, nProducts)); 
  } 
  public String toString() { 
    StringBuilder result = new StringBuilder(); 
    for(Aisle a : this) 
      for(Shelf s : a) 
        for(Product p : s) { 
          result.append(p); 
          result.append("\n"); 
        } 
    return result.toString(); 
  } 
  public static void main(String[] args) { 
    System.out.println(new Store(14, 5, 10)); 
  } 
} /* Output: 
258: Test, price: $400.99 
861: Test, price: $160.99 
868: Test, price: $417.99 
207: Test, price: $268.99 
551: Test, price: $114.99 
278: Test, price: $804.99 
520: Test, price: $554.99 
140: Test, price: $530.99 
... 
*///:~ 

As you can see in Store.toString( ), the result is many layers of containers that are 
nonetheless type-safe and manageable. What’s impressive is that it is not intellectually 
prohibitive to assemble such a model.  

Exercise 19:   (2) Following the form of Store.java, build a model of a containerized 
cargo ship.  

The mystery of erasure 
As you begin to delve more deeply into generics, there are a number of things that won’t 
initially make sense. For example, although you can say ArrayList.class, you cannot say 
ArrayList<Integer>.class. And consider the following:  

//: generics/ErasedTypeEquivalence.java 
import java.util.*; 
 
public class ErasedTypeEquivalence { 
  public static void main(String[] args) { 
    Class c1 = new ArrayList<String>().getClass(); 
    Class c2 = new ArrayList<Integer>().getClass(); 
    System.out.println(c1 == c2); 
  } 
} /* Output: 
true 
*///:~ 

Array List < String > and Array List < Integer > could easily be argued to be distinct 
types. Different types behave differently, and if you try, for example, to put an Integer into 
an Array List < String >, you get different behavior (it fails) than if you put an Integer 
into an ArrayList< Integer > (it succeeds). And yet the above program suggests that they 
are the same type.  

462 Thinking in Java Bruce Eckel 



 

Here’s an example that adds to this puzzle:  

//: generics/LostInformation.java 
import java.util.*; 
 
class Frob {} 
class Fnorkle {} 
class Quark<Q> {} 
class Particle<POSITION,MOMENTUM> {} 
 
public class LostInformation { 
  public static void main(String[] args) { 
    List<Frob> list = new ArrayList<Frob>(); 
    Map<Frob,Fnorkle> map = new HashMap<Frob,Fnorkle>(); 
    Quark<Fnorkle> quark = new Quark<Fnorkle>(); 
    Particle<Long,Double> p = new Particle<Long,Double>(); 
    System.out.println(Arrays.toString( 
      list.getClass().getTypeParameters())); 
    System.out.println(Arrays.toString( 
      map.getClass().getTypeParameters())); 
    System.out.println(Arrays.toString( 
      quark.getClass().getTypeParameters())); 
    System.out.println(Arrays.toString( 
      p.getClass().getTypeParameters())); 
  } 
} /* Output: 
[E] 
[K, V] 
[Q] 
[POSITION, MOMENTUM] 
*///:~ 

According to the JDK documentation, Class.getTypeParameters( ) "returns an array of 
TypeVariable objects that represent the type variables declared by the generic 
declaration..." This seems to suggest that you might be able to find out what the parameter 
types are. However, as you can see from the output, all you find out is the identifiers that are 
used as the parameter placeholders, which is not such an interesting piece of information.  

The cold truth is:  

There’s no information about generic parameter types available inside generic code.  

Thus, you can know things like the identifier of the type parameter and the bounds of the 
generic type—you just can’t know the actual type parameter(s) used to create a particular 
instance. This fact, which is especially frustrating if you’re coming from C++, is the most 
fundamental issue that you must deal with when working with Java generics.  

Java generics are implemented using erasure. This means that any specific type information 
is erased when you use a generic. Inside the generic, the only thing that you know is that 
you’re using an object. So List<String> and List< Integer> are, in fact, the same type at 
run time. Both forms are "erased" to their raw type, List. Understanding erasure and how 
you must deal with it will be one of the biggest hurdles you will face when learning Java 
generics, and that’s what we’ll explore in this section.  

 

 

 

Generics 463 



 

The C++ approach 

Here’s a C++ example which uses templates. You’ll notice that the syntax for parameterized 
types is quite similar, because Java took inspiration from C++:  

//: generics/Templates.cpp 
#include <iostream> 
using namespace std; 
 
template<class T> class Manipulator { 
  T obj; 
public: 
  Manipulator(T x) { obj = x; } 
  void manipulate() { obj.f(); } 
}; 
 
class HasF { 
public: 
  void f() { cout << "HasF::f()" << endl; } 
}; 
 
int main() { 
  HasF hf; 
  Manipulator<HasF> manipulator(hf); 
  manipulator.manipulate(); 
} /* Output: 
HasF::f() 
///:~ 

The Manipulator class stores an object of type T. What’s interesting is the manipulate( ) 
method, which calls a method f( ) on obj. How can it know that the f( ) method exists for the 
type parameter T? The C++ compiler checks when you instantiate the template, so at the 
point of instantiation of Manipulator <HasF>, it sees that HasF has a method f( ). If it 
were not the case, you’d get a compile-time error, and thus type safety is preserved.  

Writing this kind of code in C++ is straightforward because when a template is instantiated, 
the template code knows the type of its template parameters. Java generics are different. 
Here’s the translation of HasF:  

//: generics/HasF.java 
 
public class HasF { 
  public void f() { System.out.println("HasF.f()"); } 
} ///:~ 

If we take the rest of the example and translate it to Java, it won’t compile: 

//: generics/Manipulation.java 
// {CompileTimeError} (Won’t compile) 
 
class Manipulator<T> { 
  private T obj; 
  public Manipulator(T x) { obj = x; } 
  // Error: cannot find symbol: method f(): 
  public void manipulate() { obj.f(); } 
} 
 
public class Manipulation { 
  public static void main(String[] args) { 
    HasF hf = new HasF(); 

464 Thinking in Java Bruce Eckel 



 

    Manipulator<HasF> manipulator = 
      new Manipulator<HasF>(hf); 
    manipulator.manipulate(); 
  } 
} ///:~ 

Because of erasure, the Java compiler can’t map the requirement that manipulate( ) must 
be able to call f( ) on obj to the fact that HasF has a method f( ). In order to call f( ), we 
must assist the generic class by giving it a bound that tells the compiler to only accept types 
that conform to that bound. This reuses the extends keyword. Because of the bound, the 
following compiles:  

//: generics/Manipulator2.java 
 
class Manipulator2<T extends HasF> { 
  private T obj; 
  public Manipulator2(T x) { obj = x; } 
  public void manipulate() { obj.f(); } 
} ///:~ 

The bound <T extends HasF> says that T must be of type HasF or something derived 
from HasF. If this is true, then it is safe to call f( ) on obj.  

We say that a generic type parameter erases to its first bound (it’s possible to have multiple 
bounds, as you shall see later). We also talk about the erasure of the type parameter. The 
compiler actually replaces the type parameter with its erasure, so in the above case, T erases 
to HasF, which is the same as replacing T with HasF in the class body.  

You may correctly observe that in Manipulations.Java, generics do not contribute 
anything. You could just as easily perform the erasure yourself and produce a class without 
generics:  

//: generics/Manipulator3.java 
 
class Manipulator3 { 
  private HasF obj; 
  public Manipulator3(HasF x) { obj = x; } 
  public void manipulate() { obj.f(); } 
} ///:~ 

This brings up an important point: Generics are only useful when you want to use type 
parameters that are more "generic" than a specific type (and all its subtypes)—that is, when 
you want code to work across multiple classes. As a result, the type parameters and their 
application in useful generic code will usually be more complex than simple class 
replacement. However, you can’t just say that anything of the form <T extends HasF> is 
therefore flawed. For example, if a class has a method that returns T, then generics are 
helpful, because they will then return the exact type:  

//: generics/ReturnGenericType.java 
 
class ReturnGenericType<T extends HasF> { 
  private T obj; 
  public ReturnGenericType(T x) { obj = x; } 
  public T get() { return obj; } 
} ///:~ 

You have to look at all the code and understand whether it is "complex enough" to warrant 
the use of generics.  

Generics 465 



 

We’ll look at bounds in more detail later in the chapter.  

Exercise 20:   (1) Create an interface with two methods, and a class that implements that 
interface and adds another method. In another class, create a generic method with an 
argument type that is bounded by the interface, and show that the methods in the interface 
are callable inside this generic method. In main( ), pass an instance of the implementing 
class to the generic method.  

Migration compatibility 

To allay any potential confusion about erasure, you must clearly understand that it is not a 
language feature. It is a compromise in the implementation of Java generics, necessary 
because generics were not made part of the language from the beginning. This compromise 
will cause you pain, so you need to get used to it early and to understand why it’s there.  

If generics had been part of Java l.o, the feature would not have been implemented using 
erasure—it would have used reification to retain the type parameters as first-class entities, so 
you would have been able to perform type-based language and reflective operations on type 
parameters. You’ll see later in this chapter that erasure reduces the "genericity" of generics. 
Generics are still useful in Java, just not as useful as they could be, and the reason is erasure.  

In an erasure-based implementation, generic types are treated as secondclass types that 
cannot be used in some important contexts. The generic types are present only during static 
type checking, after which every generic type in the program is erased by replacing it with a 
non-generic upper bound. For example, type annotations such as List<T> are erased to 
List, and ordinary type variables are erased to Object unless a bound is specified.  

The core motivation for erasure is that it allows generified clients to be used with non-
generified libraries, and vice versa. This is often called migration compatibility. In the ideal 
world, we would have had a single day when everything was generified at once. In reality, 
even if programmers are only writing generic code, they will have to deal with non-generic 
libraries that were written before Java SE5. The authors of those libraries may never have the 
incentive to generify their code, or they may just take their time in getting to it.  

So Java generics not only must support backwards compatibility—existing code and class 
files are still legal, and continue to mean what they meant before—but also must support 
migration compatibility, so that libraries can become generic at their own pace, and when a 
library does become generic, it doesn’t break code and applications that depend upon it. After 
deciding that this was the goal, the Java designers and the various groups working on the 
problem decided that erasure was the only feasible solution. Erasure enables this migration 
towards generics by allowing non-generic code to coexist with generic code.  

For example, suppose an application uses two libraries, X and Y, and Y uses library Z. With 
the advent of Java SE5, the creators of this application and these libraries will probably, 
eventually, want to migrate to generics. Each of them, however, will have different 
motivations and constraints as to when that migration happens. To achieve migration 
compatibility, each library and application must be independent of all the others regarding 
whether generics are used. Thus, they must not be able to detect whether other libraries are 
or are not using generics. Ergo, the evidence that a particular library is using generics must 
be "erased."  

Without some kind of migration path, all the libraries that had been built up over time stood 
the chance of being cut off from the developers that chose to move to Java generics. Libraries 
are arguably the part of a programming language that has the greatest productivity impact, 
so this was not an acceptable cost. Whether or not erasure was the best or only migration 
path is something that only time will tell.  

466 Thinking in Java Bruce Eckel 



 

The problem with erasure 

So the primary justification for erasure is the transition process from nongenerified code to 
generified code, and to incorporate generics into the language without breaking existing 
libraries. Erasure allows existing nongeneric client code to continue to be used without 
change, until clients are ready to rewrite code for generics. This is a noble motivation, 
because it doesn’t suddenly break all existing code.  

The cost of erasure is significant. Generic types cannot be used in operations that explicitly 
refer to runtime types, such as casts, instanceof operations, and new expressions. Because 
all the type information about the parameters is lost, whenever you’re writing generic code 
you must constantly be reminding yourself that it only appears that you have type 
information about a parameter. So when you write a piece of code like this:  

class Foo<T> {  
  T var;  
}  

it appears that when you create an instance of Foo:  

Foo<Cat> f = new Foo<Cat>(); 

the code in class Foo ought to know that it is now working with a Cat. The syntax strongly 
suggests that the type T is being substituted everywhere throughout the class. But it isn’t, and 
you must remind yourself, "No, it’s just an Object," whenever you’re writing the code for the 
class.  

In addition, erasure and migration compatibility mean that the use of generics is not 
enforced when you might want it to be:  

//: generics/ErasureAndInheritance.java 
 
class GenericBase<T> { 
  private T element; 
  public void set(T arg) { arg = element; } 
  public T get() { return element; } 
} 
 
class Derived1<T> extends GenericBase<T> {} 
 
class Derived2 extends GenericBase {} // No warning 
 
// class Derived3 extends GenericBase<?> {} 
// Strange error: 
//   unexpected type found : ? 
//   required: class or interface without bounds  
 
public class ErasureAndInheritance { 
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) { 
    Derived2 d2 = new Derived2(); 
    Object obj = d2.get(); 
    d2.set(obj); // Warning here! 
  } 
} ///:~ 

Derived2 inherits from GenericBase with no generic parameters, and the compiler 
doesn’t issue a warning. The warning doesn’t occur until set( ) is called.  

Generics 467 



 

To turn off the warning, Java provides an annotation, the one that you see in the listing (this 
annotation was not supported in earlier releases of Java SE5):  

@SuppressWarnings("unchecked")  

Notice that this is placed on the method that generates the warning, rather than the entire 
class. It’s best to be as "focused" as possible when you turn off a warning, so that you don’t 
accidentally cloak a real problem by turning off warnings too broadly.  

Presumably, the error produced by Derived3 means that the compiler expects a raw base 
class.  

Add to this the extra effort of managing bounds when you want to treat your type parameter 
as more than just an Object, and you have far more effort for much less payoff than you get 
in parameterized types in languages like C++, Ada or Eiffel. This is not to say that those 
languages in general buy you more than Java does for the majority of programming 
problems, but rather that their parameterized type mechanisms are more flexible and 
powerful than Java’s.  

The action at the boundaries 

Because of erasure, I find that the most confusing aspect of generics is the fact that you can 
represent things that have no meaning. For example:  

//: generics/ArrayMaker.java 
import java.lang.reflect.*; 
import java.util.*; 
 
public class ArrayMaker<T> { 
  private Class<T> kind; 
  public ArrayMaker(Class<T> kind) { this.kind = kind; } 
  @SuppressWarnings("unchecked") 
  T[] create(int size) { 
    return (T[])Array.newInstance(kind, size); 
  } 
  public static void main(String[] args) { 
    ArrayMaker<String> stringMaker = 
      new ArrayMaker<String>(String.class); 
    String[] stringArray = stringMaker.create(9); 
    System.out.println(Arrays.toString(stringArray)); 
  } 
} /* Output: 
[null, null, null, null, null, null, null, null, null] 
*///:~ 

Even though kind is stored as Class<T>, erasure means that it is actually just being stored 
as a Class, with no parameter. So, when you do something with it, as in creating an array, 
Array.newInstance( ) doesn’t actually have the type information that’s implied in kind; 
so it cannot produce the specific result, which must therefore be cast, which produces a 
warning that you cannot satisfy.  

Note that using Array.newInstance( ) is the recommended approach for creating arrays in 
generics.  

If we create a container instead of an array, things are different:  

//: generics/ListMaker.java 
import java.util.*; 

468 Thinking in Java Bruce Eckel 



 

 
public class ListMaker<T> { 
  List<T> create() { return new ArrayList<T>(); } 
  public static void main(String[] args) { 
    ListMaker<String> stringMaker= new ListMaker<String>(); 
    List<String> stringList = stringMaker.create(); 
  } 
} ///:~ 

The compiler gives no warnings, even though we know (from erasure) that the <T> in new 
ArrayList<T>( ) inside create( ) is removed—at run time there’s no <T> inside the class, 
so it seems meaningless. But if you follow this idea and change the expression to new 
ArrayList( ), the compiler gives a warning.  

Is it really meaningless in this case? What if you were to put some objects in the list before 
returning it, like this:  

//: generics/FilledListMaker.java 
import java.util.*; 
 
public class FilledListMaker<T> { 
  List<T> create(T t, int n) { 
    List<T> result = new ArrayList<T>(); 
    for(int i = 0; i < n; i++) 
      result.add(t); 
    return result; 
  } 
  public static void main(String[] args) { 
    FilledListMaker<String> stringMaker = 
      new FilledListMaker<String>(); 
    List<String> list = stringMaker.create("Hello", 4); 
    System.out.println(list); 
  } 
} /* Output: 
[Hello, Hello, Hello, Hello] 
*///:~ 

Even though the compiler is unable to know anything about T inside create( ), it can still 
ensure—at compile time—that what you put into result is of type T, so that it agrees with 
ArrayList<T>. Thus, even though erasure removes the information about the actual type 
inside a method or class, the compiler can still ensure internal consistency in the way that the 
type is used within the method or class.  

Because erasure removes type information in the body of a method, what matters at run time 
is the boundaries: the points where objects enter and leave a method. These are the points at 
which the compiler performs type checks at compile time, and inserts casting code. Consider 
the following nongeneric example:  

//: generics/SimpleHolder.java 
 
public class SimpleHolder { 
  private Object obj; 
  public void set(Object obj) { this.obj = obj; } 
  public Object get() { return obj; } 
  public static void main(String[] args) { 
    SimpleHolder holder = new SimpleHolder(); 
    holder.set("Item"); 
    String s = (String)holder.get(); 
  } 
} ///:~ 

Generics 469 



 

If we decompile the result with javap -c SimpleHolder, we get (after editing):  

public void set(java.lang.Object); 
   0:    aload_0 
   1:    aload_1 
   2:    putfield #2; //Field obj:Object; 
   5:    return 
 
public java.lang.Object get(); 
   0:    aload_0 
   1:    getfield #2; //Field obj:Object; 
   4:    areturn 
 
public static void main(java.lang.String[]); 
   0:    new #3; //class SimpleHolder 
   3:    dup 
   4:    invokespecial #4; //Method "<init>":()V 
   7:    astore_1 
   8:    aload_1 
   9:    ldc #5; //String Item 
   11:   invokevirtual #6; //Method set:(Object;)V 
   14:   aload_1 
   15:   invokevirtual #7; //Method get:()Object; 
   18:   checkcast #8; //class java/lang/String 
   21:   astore_2 
   22:   return 

The set( ) and get( ) methods simply store and produce the value, and the cast is checked at 
the point of the call to get( ).  

Now incorporate generics into the above code:  

//: generics/GenericHolder.java 
 
public class GenericHolder<T> { 
  private T obj; 
  public void set(T obj) { this.obj = obj; } 
  public T get() { return obj; } 
  public static void main(String[] args) { 
    GenericHolder<String> holder = 
      new GenericHolder<String>(); 
    holder.set("Item"); 
    String s = holder.get(); 
  } 
} ///:~ 

The need for the cast from get( ) has disappeared, but we also know that the value passed to 
set( ) is being type-checked at compile time. Here are the relevant bytecodes:  

public void set(java.lang.Object); 
   0:    aload_0 
   1:    aload_1 
   2:    putfield #2; //Field obj:Object; 
   5:    return 
 
public java.lang.Object get(); 
   0:    aload_0 
   1:    getfield #2; //Field obj:Object; 
   4:    areturn 
 
public static void main(java.lang.String[]); 

470 Thinking in Java Bruce Eckel 



 

   0:    new #3; //class GenericHolder 
   3:    dup 
   4:    invokespecial #4; //Method "<init>":()V 
   7:    astore_1 
   8:    aload_1 
   9:    ldc #5; //String Item 
   11:   invokevirtual #6; //Method set:(Object;)V 
   14:   aload_1 
   15:   invokevirtual #7; //Method get:()Object; 
   18:   checkcast #8; //class java/lang/String 
   21:   astore_2 
   22:   return 

The resulting code is identical. The extra work of checking the incoming type in set( ) is free, 
because it is performed by the compiler. And the cast for the outgoing value of get( ) is still 
there, but it’s no less than you’d have to do yourself—and it’s automatically inserted by the 
compiler, so the code you write (and read) is less noisy.  

Since get( ) and set( ) produce the same bytecodes, all the action in generics happens at the 
boundaries—the extra compile-time check for incoming values, and the inserted cast for 
outgoing values. It helps to counter the confusion of erasure to remember that "the 
boundaries are where the action takes place."  

Compensating for erasure 
As we’ve seen, erasure loses the ability to perform certain operations in generic code. 
Anything that requires the knowledge of the exact type at run time won’t work:  

//: generics/Erased.java 
// {CompileTimeError} (Won’t compile) 
 
public class Erased<T> { 
  private final int SIZE = 100; 
  public static void f(Object arg) { 
    if(arg instanceof T) {}          // Error 
    T var = new T();                 // Error 
    T[] array = new T[SIZE];         // Error 
    T[] array = (T)new Object[SIZE]; // Unchecked warning 
  } 
} ///:~ 

Occasionally you can program around these issues, but sometimes you must compensate for 
erasure by introducing a type tag. This means you explicitly pass in the Class object for your 
type so that you can use it in type expressions.  

For example, the attempt to use instanceof in the previous program fails because the type 
information has been erased. If you introduce a type tag, a dynamic islnstance( ) can be 
used instead:  

//: generics/ClassTypeCapture.java 
 
class Building {} 
class House extends Building {} 
 
public class ClassTypeCapture<T> { 
  Class<T> kind; 
  public ClassTypeCapture(Class<T> kind) { 
    this.kind = kind; 
  } 

Generics 471 



 

  public boolean f(Object arg) { 
    return kind.isInstance(arg); 
  }  
  public static void main(String[] args) { 
    ClassTypeCapture<Building> ctt1 = 
      new ClassTypeCapture<Building>(Building.class); 
    System.out.println(ctt1.f(new Building())); 
    System.out.println(ctt1.f(new House())); 
    ClassTypeCapture<House> ctt2 = 
      new ClassTypeCapture<House>(House.class); 
    System.out.println(ctt2.f(new Building())); 
    System.out.println(ctt2.f(new House())); 
  } 
} /* Output: 
true 
true 
false 
true 
*///:~ 

The compiler ensures that the type tag matches the generic argument.  

Exercise 21:   (4) Modify ClassTypeCapture.java by adding a 
Map<String,Class<?>>, a method addType(String typename, Class<?> kind), and 
a method createNew(String typename). createNew( ) will either produce a new 
instance of the class associated with its argument string, or produce an error message.  

Creating instances of types 

The attempt to create a new T( ) in Erased.java won’t work, partly because of erasure, and 
partly because the compiler cannot verify that T has a default (no-arg) constructor. But in 
C++ this operation is natural, straightforward, and safe (it’s checked at compile time):  

//: generics/InstantiateGenericType.cpp 
// C++, not Java! 
 
template<class T> class Foo { 
  T x; // Create a field of type T 
  T* y; // Pointer to T 
public: 
  // Initialize the pointer: 
  Foo() { y = new T(); } 
}; 
 
class Bar {}; 
 
int main() { 
  Foo<Bar> fb; 
  Foo<int> fi; // ... and it works with primitives 
} ///:~ 

 

 

 

472 Thinking in Java Bruce Eckel 



 

The solution in Java is to pass in a factory object, and use that to make the new instance. A 
convenient factory object is just the Class object, so if you use a type tag, you can use 
newlnstance( ) to create a new object of that type:  

//: generics/InstantiateGenericType.java 
import static net.mindview.util.Print.*; 
 
class ClassAsFactory<T> { 
  T x; 
  public ClassAsFactory(Class<T> kind) { 
    try { 
      x = kind.newInstance(); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
} 
 
class Employee {}  
 
public class InstantiateGenericType { 
  public static void main(String[] args) { 
    ClassAsFactory<Employee> fe = 
      new ClassAsFactory<Employee>(Employee.class); 
    print("ClassAsFactory<Employee> succeeded"); 
    try { 
      ClassAsFactory<Integer> fi = 
        new ClassAsFactory<Integer>(Integer.class); 
    } catch(Exception e) { 
      print("ClassAsFactory<Integer> failed"); 
    } 
  } 
} /* Output: 
ClassAsFactory<Employee> succeeded 
ClassAsFactory<Integer> failed 
*///:~ 

This compiles, but fails with ClassAsFactory<Integer> because Integer has no default 
constructor. Because the error is not caught at compile time, this approach is frowned upon 
by the Sun folks. They suggest instead that you use an explicit factory and constrain the type 
so that it only takes a class that implements this factory:  

//: generics/FactoryConstraint.java 
 
interface FactoryI<T> { 
  T create(); 
} 
 
class Foo2<T> { 
  private T x; 
  public <F extends FactoryI<T>> Foo2(F factory) { 
    x = factory.create(); 
  } 
  // ... 
} 
 
class IntegerFactory implements FactoryI<Integer> { 
  public Integer create() { 
    return new Integer(0); 
  } 
}  
 

Generics 473 



 

class Widget { 
  public static class Factory implements FactoryI<Widget> { 
    public Widget create() { 
      return new Widget(); 
    } 
  } 
} 
 
public class FactoryConstraint { 
  public static void main(String[] args) { 
    new Foo2<Integer>(new IntegerFactory()); 
    new Foo2<Widget>(new Widget.Factory()); 
  } 
} ///:~ 

Note that this is really just a variation of passing Class<T>. Both approaches pass factory 
objects; Class<T> happens to be the built-in factory object, whereas the above approach 
creates an explicit factory object. But you get compile-time checking.  

Another approach is the Template Method design pattern. In the following example, get( ) is 
the Template Method, and create( ) is defined in the subclass to produce an object of that 
type:  

//: generics/CreatorGeneric.java 
 
abstract class GenericWithCreate<T> { 
  final T element; 
  GenericWithCreate() { element = create(); } 
  abstract T create(); 
} 
 
class X {} 
 
class Creator extends GenericWithCreate<X> { 
  X create() { return new X(); } 
  void f() { 
    System.out.println(element.getClass().getSimpleName()); 
  } 
}  
 
public class CreatorGeneric { 
  public static void main(String[] args) { 
    Creator c = new Creator(); 
    c.f(); 
  } 
} /* Output: 
X 
*///:~ 

Exercise 22:   (6) Use a type tag along with reflection to create a method that uses the 
argument version of newInstance( ) to create an object of a class with a constructor that 
has arguments.  

Exercise 23:   (1) Modify FactoryConstraint.java so that create( ) takes an 
argument.  

Exercise 24:   (3) Modify Exercise 21 so that factory objects are held in the Map instead 
of Class<?>.  

474 Thinking in Java Bruce Eckel 



 

Arrays of generics 

As you saw in Erased.java, you can’t create arrays of generics. The general solution is to use 
an ArrayList everywhere that you are tempted to create an array of generics:  

//: generics/ListOfGenerics.java 
import java.util.*; 
 
public class ListOfGenerics<T> { 
  private List<T> array = new ArrayList<T>(); 
  public void add(T item) { array.add(item); } 
  public T get(int index) { return array.get(index); } 
} ///:~ 

Here you get the behavior of an array but the compile-time type safety afforded by generics.  

At times, you will still want to create an array of generic types (the ArrayList, for example, 
uses arrays internally). Interestingly enough, you can define a reference in a way that makes 
the compiler happy. For example:  

//: generics/ArrayOfGenericReference.java 
 
class Generic<T> {} 
 
public class ArrayOfGenericReference { 
  static Generic<Integer>[] gia; 
} ///:~ 

The compiler accepts this without producing warnings. But you can never create an array of 
that exact type (including the type parameters), so it’s a little confusing. Since all arrays have 
the same structure (size of each array slot and array layout) regardless of the type they hold, 
it seems that you should be able to create an array of Object and cast that to the desired 
array type. This does in fact compile, but it won’t run; it produces a ClassCastException:  

//: generics/ArrayOfGeneric.java 
 
public class ArrayOfGeneric { 
  static final int SIZE = 100; 
  static Generic<Integer>[] gia; 
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) { 
    // Compiles; produces ClassCastException: 
    //! gia = (Generic<Integer>[])new Object[SIZE]; 
    // Runtime type is the raw (erased) type: 
    gia = (Generic<Integer>[])new Generic[SIZE]; 
    System.out.println(gia.getClass().getSimpleName()); 
    gia[0] = new Generic<Integer>(); 
    //! gia[1] = new Object(); // Compile-time error 
    // Discovers type mismatch at compile time: 
    //! gia[2] = new Generic<Double>(); 
  } 
} /* Output: 
Generic[] 
*///:~ 

The problem is that arrays keep track of their actual type, and that type is established at the 
point of creation of the array. So even though gia has been cast to a Generic < Integer >[], 
that information only exists at compile time (and without the @SuppressWarnings 
annotation, you’d get a warning for that cast). At run time, it’s still an array of Object, and 

Generics 475 



 

that causes problems. The only way to successfully create an array of a generic type is to 
create a new array of the erased type, and cast that.  

Let’s look at a slightly more sophisticated example. Consider a simple generic wrapper 
around an array:  

//: generics/GenericArray.java 
 
public class GenericArray<T> { 
  private T[] array; 
  @SuppressWarnings("unchecked") 
  public GenericArray(int sz) { 
    array = (T[])new Object[sz]; 
  } 
  public void put(int index, T item) { 
    array[index] = item; 
  } 
  public T get(int index) { return array[index]; } 
  // Method that exposes the underlying representation: 
  public T[] rep() { return array; }  
  public static void main(String[] args) { 
    GenericArray<Integer> gai = 
      new GenericArray<Integer>(10); 
    // This causes a ClassCastException: 
    //! Integer[] ia = gai.rep(); 
    // This is OK: 
    Object[] oa = gai.rep(); 
  } 
} ///:~ 

As before, we can’t say T[] array = new T[sz], so we create an array of objects and cast it.  

The rep( ) method returns a T[], which in main( ) should be an Integer[] for gai, but if 
you call it and try to capture the result as an Integer [] reference, you get a 
ClassCastException, again because the actual runtime type is Object[].  

If you compile GenericArray .Java after commenting out the @SuppressWarnings 
annotation, the compiler produces a warning:  

Note: GenericArray.Java uses unchecked or unsafe operations.  
Note: Recompile with -Xlint:unchecked for details.  

In this case, we’ve gotten a single warning, and we believe that it’s about the cast. But if you 
really want to make sure, you should compile with -Xlint:unchecked:  

GenericArray.java:7: warning: [unchecked] unchecked cast  
found   : java.lang.Object[] 
required: T[] 
    array = (T[])new Object[sz]; 
                 ^ 
1 warning  

It is indeed complaining about that cast. Because warnings become noise, the best thing we 
could possibly do, once we verify that a particular warning is expected, is to turn it off using 
@SuppressWarnings. That way, when a warning does appear, we’ll actually investigate it.  

 

476 Thinking in Java Bruce Eckel 



 

Because of erasure, the runtime type of the array can only be Object[]. If we immediately 
cast it to T[], then at compile time the actual type of the array is lost, and the compiler may 
miss out on some potential error checks. Because of this, it’s better to use an Object[] inside 
the collection, and add a cast to T when you use an array element. Let’s see how that would 
look with the GenericArray.java example:  

//: generics/GenericArray2.java 
 
public class GenericArray2<T> { 
  private Object[] array; 
  public GenericArray2(int sz) { 
    array = new Object[sz]; 
  } 
  public void put(int index, T item) { 
    array[index] = item; 
  } 
  @SuppressWarnings("unchecked") 
  public T get(int index) { return (T)array[index]; } 
  @SuppressWarnings("unchecked") 
  public T[] rep() { 
    return (T[])array; // Warning: unchecked cast 
  }  
  public static void main(String[] args) { 
    GenericArray2<Integer> gai = 
      new GenericArray2<Integer>(10); 
    for(int i = 0; i < 10; i ++) 
      gai.put(i, i); 
    for(int i = 0; i < 10; i ++) 
      System.out.print(gai.get(i) + " "); 
    System.out.println(); 
    try { 
      Integer[] ia = gai.rep(); 
    } catch(Exception e) { System.out.println(e); } 
  } 
} /* Output: (Sample) 
0 1 2 3 4 5 6 7 8 9 
java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to 
[Ljava.lang.Integer; 
*///:~ 

Initially, this doesn’t look very different, just that the cast has been moved. Without the 
©SuppressWarnings annotations, you will still get "unchecked" warnings. However, the 
internal representation is now Object[] rather than T[]. When get( ) is called, it casts the 
object to T, which is in fact the correct type, so that is safe. However, if you call rep( ), it 
again attempts to cast the Object[] to a T[], which is still incorrect, and produces a warning 
at compile time and an exception at run time. Thus there’s no way to subvert the type of the 
underlying array, which can only be Object[]. The advantage of treating array internally as 
Object[] instead of T[] is that it’s less likely that you’ll forget the runtime type of the array 
and accidentally introduce a bug (although the majority, and perhaps all, of such bugs would 
be rapidly detected at run time).  

For new code, you should pass in a type token. In that case, the GenericArray looks like 
this:  

//: generics/GenericArrayWithTypeToken.java 
import java.lang.reflect.*; 
 
public class GenericArrayWithTypeToken<T> { 
  private T[] array; 
  @SuppressWarnings("unchecked") 
  public GenericArrayWithTypeToken(Class<T> type, int sz) { 

Generics 477 



 

478 Thinking in Java Bruce Eckel 

    array = (T[])Array.newInstance(type, sz); 
  } 
  public void put(int index, T item) { 
    array[index] = item; 
  } 
  public T get(int index) { return array[index]; } 
  // Expose the underlying representation: 
  public T[] rep() { return array; }  
  public static void main(String[] args) { 
    GenericArrayWithTypeToken<Integer> gai = 
      new GenericArrayWithTypeToken<Integer>( 
        Integer.class, 10); 
    // This now works: 
    Integer[] ia = gai.rep(); 
  } 
} ///:~ 

The type token Class<T> is passed into the constructor in order to recover from the erasure, 
so that we can create the actual type of array that we need, although the warning from the 
cast must be suppressed with @SuppressWarnings. Once we do get the actual type, we 
can return it and get the desired results, as you see in main( ). The runtime type of the array 
is the exact type T[].  

Unfortunately, if you look at the source code in the Java SE5 standard libraries, you’ll see 
there are casts from Object arrays to parameterized types everywhere. For example, here’s 
the copy-ArrayList-from-Collection constructor, after cleaning up and simplifying:  

public ArrayList(Collection c) {  
  size = c.size();  
  elementData = (E[])new Object[size];  
  c.toArray(elementData);  
}  

If you look through ArrayList.java, you’ll find plenty of these casts. And what happens 
when we compile it?  

Note: ArrayList.java uses unchecked or unsafe operations.  
Note: Recompile with -Xlint:unchecked for details. 

Sure enough, the standard libraries produce lots of warnings. If you’ve worked with C, 
especially pre-ANSI C, you remember a particular effect of warnings: When you discover you 
can ignore them, you do. For that reason, it’s best to not issue any kind of message from the 
compiler unless the programmer must do something about it.  

In his weblog,3 Neal Gafter (one of the lead developers for Java SE5) points out that he was 
lazy when rewriting the Java libraries, and that we should not do what he did. Neal also 
points out that he could not fix some of the Java library code without breaking the existing 
interface. So even if certain idioms appear in the Java library sources, that’s not necessarily 
the right way to do it. When you look at library code, you cannot assume that it’s an example 
that you should follow in your own code.  

 

                                                            
3 http://gafter.blogspot.com/2004/og/puzzling-through-erasure-answer.html 



 

Bounds 
Bounds were briefly introduced earlier in the chapter (see page 652). Bounds allow you to 
place constraints on the parameter types that can be used with generics. Although this allows 
you to enforce rules about the types that your generics can be applied to, a potentially more 
important effect is that you can call methods that are in your bound types.  

Because erasure removes type information, the only methods you can call for an unbounded 
generic parameter are those available for Object. If, however, you are able to constrain that 
parameter to be a subset of types, then you can call the methods in that subset. To perform 
this constraint, Java generics reuse the extends keyword. It’s important for you to 
understand that extends has a significantly different meaning in the context of generic 
bounds than it does ordinarily. This example shows the basics of bounds:  

//: generics/BasicBounds.java 
 
interface HasColor { java.awt.Color getColor(); } 
 
class Colored<T extends HasColor> { 
  T item; 
  Colored(T item) { this.item = item; } 
  T getItem() { return item; } 
  // The bound allows you to call a method: 
  java.awt.Color color() { return item.getColor(); } 
} 
 
class Dimension { public int x, y, z; } 
 
// This won’t work -- class must be first, then interfaces: 
// class ColoredDimension<T extends HasColor & Dimension> { 
  
// Multiple bounds: 
class ColoredDimension<T extends Dimension & HasColor> { 
  T item; 
  ColoredDimension(T item) { this.item = item; } 
  T getItem() { return item; } 
  java.awt.Color color() { return item.getColor(); } 
  int getX() { return item.x; } 
  int getY() { return item.y; } 
  int getZ() { return item.z; } 
} 
 
interface Weight { int weight(); }  
 
// As with inheritance, you can have only one 
// concrete class but multiple interfaces: 
class Solid<T extends Dimension & HasColor & Weight> { 
  T item; 
  Solid(T item) { this.item = item; } 
  T getItem() { return item; } 
  java.awt.Color color() { return item.getColor(); } 
  int getX() { return item.x; } 
  int getY() { return item.y; } 
  int getZ() { return item.z; } 
  int weight() { return item.weight(); } 
} 
 
class Bounded 
extends Dimension implements HasColor, Weight { 
  public java.awt.Color getColor() { return null; } 

Generics 479 



 

  public int weight() { return 0; } 
}  
 
public class BasicBounds { 
  public static void main(String[] args) { 
    Solid<Bounded> solid = 
      new Solid<Bounded>(new Bounded()); 
    solid.color(); 
    solid.getY(); 
    solid.weight(); 
  } 
} ///:~ 

You might observe that BasicBounds.java seems to contain redundancies that could be 
eliminated through inheritance. Here, you can see how each level of inheritance also adds 
bounds constraints:  

//: generics/InheritBounds.java 
 
class HoldItem<T> { 
  T item; 
  HoldItem(T item) { this.item = item; } 
  T getItem() { return item; } 
} 
 
class Colored2<T extends HasColor> extends HoldItem<T> { 
  Colored2(T item) { super(item); } 
  java.awt.Color color() { return item.getColor(); } 
} 
 
class ColoredDimension2<T extends Dimension & HasColor> 
extends Colored2<T> { 
  ColoredDimension2(T item) {  super(item); } 
  int getX() { return item.x; } 
  int getY() { return item.y; } 
  int getZ() { return item.z; } 
} 
 
class Solid2<T extends Dimension & HasColor & Weight> 
extends ColoredDimension2<T> { 
  Solid2(T item) {  super(item); } 
  int weight() { return item.weight(); } 
} 
 
public class InheritBounds { 
  public static void main(String[] args) { 
    Solid2<Bounded> solid2 = 
      new Solid2<Bounded>(new Bounded()); 
    solid2.color(); 
    solid2.getY(); 
    solid2.weight(); 
  } 
} ///:~ 

Holdltem simply holds an object, so this behavior is inherited into Colored2, which also 
requires that its parameter conforms to HasColor. ColoredDimension2 and Solid2 
further extend the hierarchy and add bounds at each level. Now the methods are inherited 
and they don’t have to be repeated in each class.  

 

480 Thinking in Java Bruce Eckel 



 

Here’s an example with more layers:  

//: generics/EpicBattle.java 
// Demonstrating bounds in Java generics. 
import java.util.*; 
 
interface SuperPower {} 
interface XRayVision extends SuperPower { 
  void seeThroughWalls(); 
} 
interface SuperHearing extends SuperPower { 
  void hearSubtleNoises(); 
} 
interface SuperSmell extends SuperPower { 
  void trackBySmell(); 
} 
 
class SuperHero<POWER extends SuperPower> { 
  POWER power; 
  SuperHero(POWER power) { this.power = power; } 
  POWER getPower() { return power; } 
} 
 
class SuperSleuth<POWER extends XRayVision> 
extends SuperHero<POWER> { 
  SuperSleuth(POWER power) { super(power); } 
  void see() { power.seeThroughWalls(); } 
} 
 
class CanineHero<POWER extends SuperHearing & SuperSmell> 
extends SuperHero<POWER> { 
  CanineHero(POWER power) { super(power); } 
  void hear() { power.hearSubtleNoises(); } 
  void smell() { power.trackBySmell(); } 
} 
 
class SuperHearSmell implements SuperHearing, SuperSmell { 
  public void hearSubtleNoises() {} 
  public void trackBySmell() {} 
} 
 
class DogBoy extends CanineHero<SuperHearSmell> { 
  DogBoy() { super(new SuperHearSmell()); } 
} 
 
public class EpicBattle { 
  // Bounds in generic methods: 
  static <POWER extends SuperHearing> 
  void useSuperHearing(SuperHero<POWER> hero) { 
    hero.getPower().hearSubtleNoises(); 
  } 
  static <POWER extends SuperHearing & SuperSmell> 
  void superFind(SuperHero<POWER> hero) { 
    hero.getPower().hearSubtleNoises(); 
    hero.getPower().trackBySmell(); 
  } 
  public static void main(String[] args) { 
    DogBoy dogBoy = new DogBoy(); 
    useSuperHearing(dogBoy); 
    superFind(dogBoy); 
    // You can do this: 
    List<? extends SuperHearing> audioBoys; 
    // But you can’t do this: 

Generics 481 



 

    // List<? extends SuperHearing & SuperSmell> dogBoys; 
  } 
} ///:~ 

Notice that wildcards (which we shall study next) are limited to a single bound.  

Exercise 25:   (2) Create two interfaces and a class that implements both. Create two 
generic methods, one whose argument parameter is bounded by the first interface and one 
whose argument parameter is bounded by the second interface. Create an instance of the 
class that implements both interfaces, and show that it can be used with both generic 
methods.  

Wildcards  
You’ve already seen some simple uses of wildcards—question marks in generic argument 
expressions—in the Holding Your Objects chapter and more in the Type Information 
chapter. This section will explore the issue more deeply.  

We’ll start with an example that shows a particular behavior of arrays: You can assign an 
array of a derived type to an array reference of the base type:  

//: generics/CovariantArrays.java 
 
class Fruit {} 
class Apple extends Fruit {} 
class Jonathan extends Apple {} 
class Orange extends Fruit {} 
 
public class CovariantArrays { 
  public static void main(String[] args) { 
    Fruit[] fruit = new Apple[10]; 
    fruit[0] = new Apple(); // OK 
    fruit[1] = new Jonathan(); // OK 
    // Runtime type is Apple[], not Fruit[] or Orange[]: 
    try { 
      // Compiler allows you to add Fruit: 
      fruit[0] = new Fruit(); // ArrayStoreException 
    } catch(Exception e) { System.out.println(e); } 
    try { 
      // Compiler allows you to add Oranges: 
      fruit[0] = new Orange(); // ArrayStoreException 
    } catch(Exception e) { System.out.println(e); } 
  } 
} /* Output: 
java.lang.ArrayStoreException: Fruit 
java.lang.ArrayStoreException: Orange 
*///:~ 

The first line in main( ) creates an array of Apple and assigns it to a reference to an array of 
Fruit. This makes sense—an Apple is a kind of Fruit, so an array of Apple should also be 
an array of Fruit.  

However, if the actual array type is Apple [], you should only be able to place an Apple or a 
subtype of Apple into the array, which in fact works at both compile time and run time. But 
notice that the compiler allows you to place a Fruit object into the array. This makes sense to 
the compiler, because it has a Fruit[] reference—why shouldn’t it allow a Fruit object, or 
anything descended from Fruit, such as Orange, to be placed into the array? So at compile 

482 Thinking in Java Bruce Eckel 



 

time, this is allowed. The runtime array mechanism, however, knows that it’s dealing with an 
Apple [] and throws an exception when a foreign type is placed into the array.  

"Upcast" is actually rather a misnomer here. What you’re really doing is assigning one array 
to another. The array behavior is that it holds other objects, but because we are able to 
upcast, it’s clear that the array objects can preserve the rules about the type of objects they 
contain. It’s as if the arrays are conscious of what they are holding, so between the compile-
time checks and the runtime checks, you can’t abuse them.  

This arrangement for arrays is not so terrible, because you do find out at run time that you’ve 
inserted an improper type. But one of the primary goals of generics is to move such error 
detection to compile time. So what happens when we try to use generic containers instead of 
arrays?  

//: generics/NonCovariantGenerics.java 
// {CompileTimeError} (Won’t compile) 
import java.util.*; 
 
public class NonCovariantGenerics { 
  // Compile Error: incompatible types: 
  List<Fruit> flist = new ArrayList<Apple>(); 

Although you may at first read this as saying, "You can’t assign a container of Apple to a 
container of Fruit," remember that generics are not just about containers. What it’s really 
saying is, "You can’t assign a generic involving Apples to a generic involving Fruit." If, as 
in the case of arrays, the compiler knew enough about the code to determine that containers 
were involved, perhaps it could give some leeway. But it doesn’t know anything like that, so it 
refuses to allow the "upcast." But it really isn’t an "upcast" anyway—a List of Apple is not a 
List of Fruit. A List of Apple will hold Apples and subtypes of Apple, and a List of 
Fruit will hold any kind of Fruit. Yes, including Apples, but that doesn’t make it a List of 
Apple; it’s still a List of Fruit. A List of Apple is not type-equivalent to a List of Fruit, 
even if an Apple is a type of Fruit.  

The real issue is that we are talking about the type of the container, rather than the type that 
the container is holding. Unlike arrays, generics do not have built-in covariance. This is 
because arrays are completely defined in the language and can thus have both compile-time 
and runtime checks built in, but with generics, the compiler and runtime system cannot 
know what you want to do with your types and what the rules should be.  

Sometimes, however, you’d like to establish some kind of upcasting relationship between the 
two. This is what wildcards allow.  

//: generics/GenericsAndCovariance.java 
import java.util.*; 
 
public class GenericsAndCovariance { 
  public static void main(String[] args) { 
    // Wildcards allow covariance: 
    List<? extends Fruit> flist = new ArrayList<Apple>(); 
    // Compile Error: can’t add any type of object: 
    // flist.add(new Apple()); 
    // flist.add(new Fruit()); 
    // flist.add(new Object()); 
    flist.add(null); // Legal but uninteresting 
    // We know that it returns at least Fruit: 
    Fruit f = flist.get(0); 
  } 
} ///:~ 

Generics 483 



 

The type of flist is now List<? extends Fruit>, which you can read as "a list of any type 
that’s inherited from Fruit." This doesn’t actually mean that the List will hold any type of 
Fruit, however. The wildcard refers to a definite type, so it means "some specific type which 
the flist reference doesn’t specify." So the List that’s assigned has to be holding some 
specified type such as Fruit or Apple, but in order to upcast to flist, that type is a "don’t 
actually care."  

If the only constraint is that the List hold a specific Fruit or subtype of Fruit, but you don’t 
actually care what it is, then what can you do with such a List? If you don’t know what type 
the List is holding, how can you safely add an object? Just as with the "upcast" array in 
CovariantArrays.java, you can’t, except that the compiler prevents it from happening 
rather than the runtime system. You discover the problem sooner.  

You might argue that things have gone a bit overboard, because now you can’t even add an 
Apple to a List that you just said would hold Apples. Yes, but the compiler doesn’t know 
that. A List<? extends Fruit> could legally point to a List<Orange>. Once you do this 
kind of "upcast," you lose the ability to pass anything in, even an Object.  

On the other hand, if you call a method that returns Fruit, that’s safe because you know that 
anything in the List must at least be of type Fruit, so the compiler allows it.  

Exercise 26:   (2) Demonstrate array covariance using Numbers and Integers.  

Exercise 27:   (2) Show that covariance doesn’t work with Lists, using Numbers and 
Integers, then introduce wildcards.  

How smart is the compiler?  

Now, you might guess that you are prevented from calling any methods that take arguments, 
but consider this:  

//: generics/CompilerIntelligence.java 
import java.util.*; 
 
public class CompilerIntelligence { 
  public static void main(String[] args) { 
    List<? extends Fruit> flist = 
      Arrays.asList(new Apple()); 
    Apple a = (Apple)flist.get(0); // No warning 
    flist.contains(new Apple()); // Argument is ‘Object’ 
    flist.indexOf(new Apple()); // Argument is ‘Object’ 
  } 
} ///:~ 

You can see calls to contains( ) and indexOf( ) that take Apple objects as arguments, and 
those are just fine. Does this mean that the compiler actually examines the code to see if a 
particular method modifies its object?  

By looking at the documentation for ArrayList, we find that the compiler is not that smart. 
While add( ) takes an argument of the generic parameter type, contains( ) and indexOf( ) 
take arguments of type Object. So when you specify an ArrayList <? extends Fruit >, the 
argument for add( ) becomes’? extends Fruit’. From that description, the compiler cannot 
know which specific subtype of Fruit is required there, so it won’t accept any type of Fruit. 
It doesn’t matter if you upcast the Apple to a Fruit first—the compiler simply refuses to call 
a method (such as add( )) if a wildcard is involved in the argument list.  

484 Thinking in Java Bruce Eckel 



 

With contains( ) and indexOf( ), the arguments are of type Object, so there are no 
wildcards involved and the compiler allows the call. This means that it’s up to the generic 
class designer to decide which calls are "safe," and to use Object types for their arguments. 
To disallow a call when the type is used with wildcards, use the type parameter in the 
argument list.  

You can see this in a very simple Holder class:  

//: generics/Holder.java 
 
public class Holder<T> { 
  private T value; 
  public Holder() {} 
  public Holder(T val) { value = val; } 
  public void set(T val) { value = val; } 
  public T get() { return value; } 
  public boolean equals(Object obj) { 
    return value.equals(obj); 
  }  
  public static void main(String[] args) { 
    Holder<Apple> Apple = new Holder<Apple>(new Apple()); 
    Apple d = Apple.get(); 
    Apple.set(d); 
    // Holder<Fruit> Fruit = Apple; // Cannot upcast 
    Holder<? extends Fruit> fruit = Apple; // OK 
    Fruit p = fruit.get(); 
    d = (Apple)fruit.get(); // Returns ‘Object’ 
    try { 
      Orange c = (Orange)fruit.get(); // No warning 
    } catch(Exception e) { System.out.println(e); } 
    // fruit.set(new Apple()); // Cannot call set() 
    // fruit.set(new Fruit()); // Cannot call set() 
    System.out.println(fruit.equals(d)); // OK 
  } 
} /* Output: (Sample) 
java.lang.ClassCastException: Apple cannot be cast to Orange 
true 
*///:~ 

Holder has a set( ) which takes a T, a get( ) which returns a T, and an equals( ) that takes 
an Object. As you’ve already seen, if you create a Holder<Apple>, you cannot upcast it to 
a Holder<Fruit>, but you can upcast to a Holder<? extends Fruit>. If you call get( ), it 
only returns a Fruit—that’s as much as it knows given the "anything that extends Fruit" 
bound. If you know more about what’s there, you can cast to a specific type of Fruit and 
there won’t be any warning about it, but you risk a ClassCastException. The set( ) method 
won’t work with either an Apple or a Fruit, because the set( ) argument is also "? Extends 
Fruit," which means it can be anything and the compiler can’t verify type safety for 
"anything."  

However, the equals( ) method works fine because it takes an Object instead of a T as an 
argument. Thus, the compiler is only paying attention to the types of objects that are passed 
and returned. It is not analyzing the code to see if you perform any actual writes or reads.  

Contravariance  

It’s also possible to go the other way, and use supertype wildcards. Here, you say that the 
wildcard is bounded by any base class of a particular class, by specifying <? super 
MyClass> or even using a type parameter: <? super T> (although you cannot give a 
generic parameter a supertype bound; that is, you cannot say <T super MyClass>). This 

Generics 485 



 

allows you to safely pass a typed object into a generic type. Thus, with supertype wildcards 
you can write into a Collection:  

//: generics/SuperTypeWildcards.java 
import java.util.*; 
 
public class SuperTypeWildcards { 
  static void writeTo(List<? super Apple> apples) { 
    apples.add(new Apple()); 
    apples.add(new Jonathan()); 
    // apples.add(new Fruit()); // Error 
  } 
} ///:~ 

The argument apples is a List of some type that is the base type of Apple; thus you know 
that it is safe to add an Apple or a subtype of Apple. Since the lower bound is Apple, 
however, you don’t know that it is safe to add Fruit to such a List, because that would allow 
the List to be opened up to the addition of non-Apple types, which would violate static type 
safety.  

You can thus begin to think of subtype and supertype bounds in terms of how you can "write" 
(pass into a method) to a generic type, and "read" (return from a method) from a generic 
type.  

Supertype bounds relax the constraints on what you can pass into a method:  

//: generics/GenericWriting.java 
import java.util.*; 
 
public class GenericWriting { 
  static <T> void writeExact(List<T> list, T item) { 
    list.add(item); 
  } 
  static List<Apple> apples = new ArrayList<Apple>(); 
  static List<Fruit> fruit = new ArrayList<Fruit>(); 
  static void f1() { 
    writeExact(apples, new Apple()); 
    // writeExact(fruit, new Apple()); // Error: 
    // Incompatible types: found Fruit, required Apple 
  } 
  static <T> void 
  writeWithWildcard(List<? super T> list, T item) { 
    list.add(item); 
  }  
  static void f2() { 
    writeWithWildcard(apples, new Apple()); 
    writeWithWildcard(fruit, new Apple()); 
  } 
  public static void main(String[] args) { f1(); f2(); } 
} ///:~ 

The writeExact( ) method uses an exact parameter type (no wildcards). In fi( ) you can see 
that this works fine—as long as you only put an Apple into a List<Apple>. However, 
writeExact( ) does not allow you to put an Apple into a List<Fruit>, even though you 
know that should be possible.  

In writeWithWildcard( ), the argument is now a List<? super T>, so the List holds a 
specific type that is derived from T; thus it is safe to pass a T or anything derived from T as an 
argument to List methods. You can see this in f2( ), where it’s still possible to put an Apple 

486 Thinking in Java Bruce Eckel 



 

into a List<Apple>, as before, but it is now also possible to put an Apple into a 
List<Fruit>, as you expect.  

We can perform this same type of analysis as a review of covariance and wildcards: 

//: generics/GenericReading.java 
import java.util.*; 
 
public class GenericReading { 
  static <T> T readExact(List<T> list) { 
    return list.get(0); 
  } 
  static List<Apple> apples = Arrays.asList(new Apple()); 
  static List<Fruit> fruit = Arrays.asList(new Fruit()); 
  // A static method adapts to each call: 
  static void f1() { 
    Apple a = readExact(apples); 
    Fruit f = readExact(fruit); 
    f = readExact(apples); 
  } 
  // If, however, you have a class, then its type is 
  // established when the class is instantiated: 
  static class Reader<T> { 
    T readExact(List<T> list) { return list.get(0); } 
  }  
  static void f2() { 
    Reader<Fruit> fruitReader = new Reader<Fruit>(); 
    Fruit f = fruitReader.readExact(fruit); 
    // Fruit a = fruitReader.readExact(apples); // Error: 
    // readExact(List<Fruit>) cannot be 
    // applied to (List<Apple>). 
  } 
  static class CovariantReader<T> { 
    T readCovariant(List<? extends T> list) { 
      return list.get(0); 
    } 
  } 
  static void f3() { 
    CovariantReader<Fruit> fruitReader = 
      new CovariantReader<Fruit>(); 
    Fruit f = fruitReader.readCovariant(fruit); 
    Fruit a = fruitReader.readCovariant(apples); 
  }  
  public static void main(String[] args) { 
    f1(); f2(); f3(); 
  } 
} ///:~ 

As before, the first method readExact( ) uses the precise type. So if you use the precise type 
with no wildcards, you can both write and read that precise type into and out of a List. In 
addition, for the return value, the static generic method readExact( ) effectively "adapts" 
to each method call, and returns an Apple from a List<Apple> and a Fruit from a 
List<Fruit>, as you can see in f1( ). Thus, if you can get away with a static generic method, 
you don’t necessarily need covariance if you’re just reading.  

If you have a generic class, however, the parameter is established for the class when you 
make an instance of that class. As you can see in f2( ), the fruitReader instance can read a 
piece of Fruit from a List<Fruit>, since that is its exact type. But a List<Apple> should 
also produce Fruit objects, and the fruitReader doesn’t allow this.  

Generics 487 



 

To fix the problem, the CovariantReader.readCovariant( ) method takes a List<? 
extends T>, and so it’s safe to read a T from that list (you know that everything in that list is 
at least a T, and possibly something derived from a T). In f3( ) you can see that it’s now 
possible to read a Fruit from a List<Apple>.  

Exercise 28:   (4) Create a generic class Generic1<T> with a single method that takes an 
argument of type T. Create a second generic class Generic2<T> with a single method that 
returns an argument of type T. Write a generic method with a contravariant argument of the first 
generic class that calls its method. Write a second generic method with a covariant argument of 
the second generic class that calls its method. Test using the typeinfo.pets library.  

Unbounded wildcards 

The unbounded wildcard <?> appears to mean "anything," and so using an unbounded 
wildcard seems equivalent to using a raw type. Indeed, the compiler seems at first to agree 
with this assessment:  

//: generics/UnboundedWildcards1.java 
import java.util.*; 
 
public class UnboundedWildcards1 { 
  static List list1; 
  static List<?> list2; 
  static List<? extends Object> list3; 
  static void assign1(List list) { 
    list1 = list; 
    list2 = list; 
    // list3 = list; // Warning: unchecked conversion 
    // Found: List, Required: List<? extends Object> 
  } 
  static void assign2(List<?> list) { 
    list1 = list; 
    list2 = list; 
    list3 = list; 
  }  
  static void assign3(List<? extends Object> list) { 
    list1 = list; 
    list2 = list; 
    list3 = list; 
  } 
  public static void main(String[] args) { 
    assign1(new ArrayList()); 
    assign2(new ArrayList()); 
    // assign3(new ArrayList()); // Warning: 
    // Unchecked conversion. Found: ArrayList 
    // Required: List<? extends Object> 
    assign1(new ArrayList<String>()); 
    assign2(new ArrayList<String>()); 
    assign3(new ArrayList<String>()); 
    // Both forms are acceptable as List<?>: 
    List<?> wildList = new ArrayList(); 
    wildList = new ArrayList<String>(); 
    assign1(wildList); 
    assign2(wildList); 
    assign3(wildList); 
  } 
} ///:~ 
 

488 Thinking in Java Bruce Eckel 



 

There are many cases like the ones you see here where the compiler could care less whether 
you use a raw type or <?>. In those cases, <?> can be thought of as a decoration; and yet it is 
valuable because, in effect, it says, "I wrote this code with Java generics in mind, and I don’t 
mean here that I’m using a raw type, but that in this case the generic parameter can hold any 
type."  

A second example shows an important use of unbounded wildcards. When you are dealing 
with multiple generic parameters, it’s sometimes important to allow one parameter to be any 
type while establishing a particular type for the other parameter:  

//: generics/UnboundedWildcards2.java 
import java.util.*; 
 
public class UnboundedWildcards2 { 
  static Map map1; 
  static Map<?,?> map2; 
  static Map<String,?> map3; 
  static void assign1(Map map) { map1 = map; } 
  static void assign2(Map<?,?> map) { map2 = map; } 
  static void assign3(Map<String,?> map) { map3 = map; } 
  public static void main(String[] args) { 
    assign1(new HashMap()); 
    assign2(new HashMap()); 
    // assign3(new HashMap()); // Warning: 
    // Unchecked conversion. Found: HashMap 
    // Required: Map<String,?> 
    assign1(new HashMap<String,Integer>()); 
    assign2(new HashMap<String,Integer>()); 
    assign3(new HashMap<String,Integer>()); 
  } 
} ///:~ 

But again, when you have all unbounded wildcards, as seen in Map<?,?>, the compiler 
doesn’t seem to distinguish it from a raw Map. In addition, UnboundedWildcards1.java 
shows that the compiler treats List<?> and List<? extends Object> differently.  

What’s confusing is that the compiler doesn’t always care about the difference between, for 
example, List and List<?>, so they can seem like the same thing. Indeed, since a generic 
argument erases to its first bound, List<?> would seem to be equivalent to List<Object>, 
and List is effectively List<Object> as well—except neither of those statements is exactly 
true. List actually means "a raw List that holds any Object type," whereas List<?> means 
"a non-raw List of some specific type, but we just don’t know what that type is."  

When does the compiler actually care about the difference between raw types and types 
involving unbounded wildcards? The following example uses the previously defined 
Holder<T> class. It contains methods that take Holder as an argument, but in various 
forms: as a raw type, with a specific type parameter, and with an unbounded wildcard 
parameter:  

//: generics/Wildcards.java 
// Exploring the meaning of wildcards. 
 
public class Wildcards { 
   // Raw argument: 
  static void rawArgs(Holder holder, Object arg) { 
    // holder.set(arg); // Warning: 
    //   Unchecked call to set(T) as a 
    //   member of the raw type Holder 
    // holder.set(new Wildcards()); // Same warning 
 

Generics 489 



 

    // Can’t do this; don’t have any ‘T’: 
    // T t = holder.get(); 
 
    // OK, but type information has been lost: 
    Object obj = holder.get(); 
  }  
  // Similar to rawArgs(), but errors instead of warnings: 
  static void unboundedArg(Holder<?> holder, Object arg) { 
    // holder.set(arg); // Error: 
    //   set(capture of ?) in Holder<capture of ?> 
    //   cannot be applied to (Object) 
    // holder.set(new Wildcards()); // Same error 
 
    // Can’t do this; don’t have any ‘T’: 
    // T t = holder.get(); 
 
    // OK, but type information has been lost: 
    Object obj = holder.get(); 
  }  
  static <T> T exact1(Holder<T> holder) { 
    T t = holder.get(); 
    return t; 
  } 
  static <T> T exact2(Holder<T> holder, T arg) { 
    holder.set(arg); 
    T t = holder.get(); 
    return t; 
  } 
  static <T> 
  T wildSubtype(Holder<? extends T> holder, T arg) { 
    // holder.set(arg); // Error: 
    //   set(capture of ? extends T) in 
    //   Holder<capture of ? extends T> 
    //   cannot be applied to (T) 
    T t = holder.get(); 
    return t; 
  }  
  static <T> 
  void wildSupertype(Holder<? super T> holder, T arg) { 
    holder.set(arg); 
    // T t = holder.get();  // Error: 
    //   Incompatible types: found Object, required T 
 
    // OK, but type information has been lost: 
    Object obj = holder.get(); 
  } 
  public static void main(String[] args) { 
    Holder raw = new Holder<Long>(); 
    // Or: 
    raw = new Holder(); 
    Holder<Long> qualified = new Holder<Long>(); 
    Holder<?> unbounded = new Holder<Long>(); 
    Holder<? extends Long> bounded = new Holder<Long>(); 
    Long lng = 1L; 
 
    rawArgs(raw, lng); 
    rawArgs(qualified, lng); 
    rawArgs(unbounded, lng); 
    rawArgs(bounded, lng); 
  
    unboundedArg(raw, lng); 
    unboundedArg(qualified, lng); 
    unboundedArg(unbounded, lng); 

490 Thinking in Java Bruce Eckel 



 

    unboundedArg(bounded, lng); 
 
    // Object r1 = exact1(raw); // Warnings: 
    //   Unchecked conversion from Holder to Holder<T> 
    //   Unchecked method invocation: exact1(Holder<T>) 
    //   is applied to (Holder) 
    Long r2 = exact1(qualified); 
    Object r3 = exact1(unbounded); // Must return Object 
    Long r4 = exact1(bounded); 
  
    // Long r5 = exact2(raw, lng); // Warnings: 
    //   Unchecked conversion from Holder to Holder<Long> 
    //   Unchecked method invocation: exact2(Holder<T>,T) 
    //   is applied to (Holder,Long) 
    Long r6 = exact2(qualified, lng); 
    // Long r7 = exact2(unbounded, lng); // Error: 
    //   exact2(Holder<T>,T) cannot be applied to 
    //   (Holder<capture of ?>,Long) 
    // Long r8 = exact2(bounded, lng); // Error: 
    //   exact2(Holder<T>,T) cannot be applied 
    //   to (Holder<capture of ? extends Long>,Long) 
  
    // Long r9 = wildSubtype(raw, lng); // Warnings: 
    //   Unchecked conversion from Holder 
    //   to Holder<? extends Long> 
    //   Unchecked method invocation: 
    //   wildSubtype(Holder<? extends T>,T) is 
    //   applied to (Holder,Long) 
    Long r10 = wildSubtype(qualified, lng); 
    // OK, but can only return Object: 
    Object r11 = wildSubtype(unbounded, lng); 
    Long r12 = wildSubtype(bounded, lng); 
  
    // wildSupertype(raw, lng); // Warnings: 
    //   Unchecked conversion from Holder 
    //   to Holder<? super Long> 
    //   Unchecked method invocation: 
    //   wildSupertype(Holder<? super T>,T) 
    //   is applied to (Holder,Long) 
    wildSupertype(qualified, lng); 
    // wildSupertype(unbounded, lng); // Error: 
    //   wildSupertype(Holder<? super T>,T) cannot be 
    //   applied to (Holder<capture of ?>,Long) 
    // wildSupertype(bounded, lng); // Error: 
    //   wildSupertype(Holder<? super T>,T) cannot be 
    //  applied to (Holder<capture of ? extends Long>,Long) 
  } 
} ///:~ 

In rawArgs( ), the compiler knows that Holder is a generic type, so even though it is 
expressed as a raw type here, the compiler knows that passing an Object to set( ) is unsafe. 
Since it’s a raw type, you can pass an object of any type into set( ), and that object is upcast 
to Object. So anytime you have a raw type, you give up compile-time checking. The call to 
get( ) shows the same issue: There’s no T, so the result can only be an Object.  

It’s easy to start thinking that a raw Holder and a Holder<?> are roughly the same thing. 
But unboundedArg( ) emphasizes that they are differentit discovers the same kind of 
problems, but reports them as errors rather than warnings, because the raw Holder will 
hold a combination of any types, whereas a Holder<?> holds a homogeneous collection of 
some specific type, and thus you can’t just pass in an Object.  

Generics 491 



 

In exact1( ) and exact2( ), you see the exact generic parameters used—no wildcards. You’ll 
see that exact2( ) has different limitations than exact1( ), because of the extra argument.  

In wildSubtype( ), the constraints on the type of Holder are relaxed to include a Holder 
of anything that extends T. Again, this means that T could be Fruit, while holder could 
legitimately be a Holder<Apple>. To prevent putting an Orange in a Holder<Apple>, 
the call to set( ) (or any method that takes an argument of the type parameter) is disallowed. 
However, you still know that anything that comes out of a Holder<? extends Fruit> will 
at least be Fruit, so get( ) (or any method that produces a return value of the type 
parameter) is allowed.  

Supertype wildcards are shown in wildSupertype( ), which shows the opposite behavior of 
wildSubtype( ): holder can be a container that holds any type that’s a base class of T. 
Thus, set( ) can accept a T, since anything that works with a base type will polymorphically 
work with a derived type (thus a T). However, trying to call get( ) is not helpful, because the 
type held by holder can be any supertype at all, so the only safe one is Object.  

This example also shows the limitations on what you can and can’t do with an unbounded 
parameter in unbounded( ): You can’t get( ) or set( ) a T because you don’t have a T.  

In main( ) you can see which of these methods can accept which types of arguments without 
errors and warnings. For migration compatibility, rawArgs( ) will take all the different 
variations of Holder without producing warnings. The unboundedArg( ) method is 
equally accepting of all types, although, as previously noted, it handles them differently 
inside the body of the method.  

If you pass a raw Holder reference into a method that takes an "exact" generic type (no 
wildcards), you get a warning because the exact argument is expecting information that 
doesn’t exist in the raw type. And if you pass an unbounded reference to exact1( ), there’s no 
type information to establish the return type.  

You can see that exact2( ) has the most constraints, since it wants exactly a Holder<T> 
and an argument of type T, and because of this it generates errors or warnings unless you 
give it the exact arguments. Sometimes this is OK, but if it’s overconstraining, then you can 
use wildcards, depending on whether you want to get typed return values from your generic 
argument (as seen in wildSubtype( )) or you want to pass typed arguments to your generic 
argument (as seen in wildSupertype( )).  

Thus, the benefit of using exact types instead of wildcard types is that you can do more with 
the generic parameters. But using wildcards allows you to accept a broader range of 
parameterized types as arguments. You must decide which trade-off is more appropriate for 
your needs on a case-by-case basis.  

Capture conversion 

One situation in particular requires the use of <?> rather than a raw type. If you pass a raw 
type to a method that uses <?>, it’s possible for the compiler to infer the actual type 
parameter, so that the method can turn around and call another method that uses the exact 
type. The following example demonstrates the technique, which is called capture conversion 
because the unspecified wildcard type is captured and converted to an exact type. Here, the 
comments about warnings only take effect when the @SuppressWarnings annotation is 
removed:  

 

 

492 Thinking in Java Bruce Eckel 



 

//: generics/CaptureConversion.java 
 
public class CaptureConversion { 
  static <T> void f1(Holder<T> holder) { 
    T t = holder.get(); 
    System.out.println(t.getClass().getSimpleName()); 
  } 
  static void f2(Holder<?> holder) { 
    f1(holder); // Call with captured type 
  }  
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) { 
    Holder raw = new Holder<Integer>(1); 
    // f1(raw); // Produces warnings 
    f2(raw); // No warnings 
    Holder rawBasic = new Holder(); 
    rawBasic.set(new Object()); // Warning 
    f2(rawBasic); // No warnings 
    // Upcast to Holder<?>, still figures it out: 
    Holder<?> wildcarded = new Holder<Double>(1.0); 
    f2(wildcarded); 
  } 
} /* Output: 
Integer 
Object 
Double 
*///:~ 

The type parameters in f1( ) are all exact, without wildcards or bounds. In f2( ), the Holder 
parameter is an unbounded wildcard, so it would seem to be effectively unknown. However, 
within f2( ), f1( ) is called and f1( ) requires a known parameter. What’s happening is that 
the parameter type is captured in the process of calling f2( ), so it can be used in the call to 
f1( ).  

You might wonder if this technique could be used for writing, but that would require you to 
pass a specific type along with the Holder<?>. Capture conversion only works in situations 
where, within the method, you need to work with the exact type. Notice that you can’t return 
T from f2( ), because T is unknown for f2( ). Capture conversion is interesting, but quite 
limited.  

Exercise 29:   (5) Create a generic method that takes as an argument a 
Holder<List<?>>. Determine what methods you can and can’t call for the Holder and for 
the List. Repeat for an argument of List<Holder<?>>.  

Issues 
This section addresses an assorted set of issues that appear when you are using Java generics.  

No primitives as type parameters 

As mentioned earlier in this chapter, one of the limitations you will discover in Java generics 
is that you cannot use primitives as type parameters. So you cannot, for example, create an 
ArrayList<int>.  

The solution is to use the primitive wrapper classes in conjunction with Java SE5 autoboxing. 
If you create an ArrayList< Integer> and use primitive ints with this container, you’ll 

Generics 493 



 

discover that autoboxing does the conversion to and from Integer automatically—so it’s 
almost as if you have an Ar r ayList < int >:  

//: generics/ListOfInt.java 
// Autoboxing compensates for the inability to use 
// primitives in generics. 
import java.util.*; 
 
public class ListOfInt { 
  public static void main(String[] args) { 
    List<Integer> li = new ArrayList<Integer>(); 
    for(int i = 0; i < 5; i++) 
      li.add(i); 
    for(int i : li) 
      System.out.print(i + " "); 
  } 
} /* Output: 
0 1 2 3 4 
*///:~ 

Note that autoboxing even allows the foreach syntax to produce ints.  

In general this solution works fine—you’re able to successfully store and retrieve ints. There 
happen to be some conversions going on but these are hidden from you. However, if 
performance is a problem, you can use a specialized version of the containers adapted for 
primitive types; one opensource version of this is 
org.apache.commons.collections.primitives.  

Here’s another approach, which creates a Set of Bytes:  

//: generics/ByteSet.java 
import java.util.*; 
 
public class ByteSet { 
  Byte[] possibles = { 1,2,3,4,5,6,7,8,9 }; 
  Set<Byte> mySet = 
    new HashSet<Byte>(Arrays.asList(possibles)); 
  // But you can’t do this: 
  // Set<Byte> mySet2 = new HashSet<Byte>( 
  //   Arrays.<Byte>asList(1,2,3,4,5,6,7,8,9)); 
} ///:~ 

Notice that autoboxing solves some problems, but not all. The following example shows a 
generic Generator interface that specifies a next( ) that returns an object of the parameter 
type. The FArray class contains a generic method that uses a generator to fill an array with 
objects (making the class generic wouldn’t work in this case because the method is static). 
The Generator implementations come from the Arrays chapter, and in main( ) you can 
see FArray.fill( ) used to fill arrays with objects:  

//: generics/PrimitiveGenericTest.java 
import net.mindview.util.*; 
 
// Fill an array using a generator: 
class FArray { 
  public static <T> T[] fill(T[] a, Generator<T> gen) { 
    for(int i = 0; i < a.length; i++) 
      a[i] = gen.next(); 
    return a; 
  } 
}  

494 Thinking in Java Bruce Eckel 



 

 
public class PrimitiveGenericTest { 
  public static void main(String[] args) { 
    String[] strings = FArray.fill( 
      new String[7], new RandomGenerator.String(10)); 
    for(String s : strings) 
      System.out.println(s); 
    Integer[] integers = FArray.fill( 
      new Integer[7], new RandomGenerator.Integer()); 
    for(int i: integers) 
      System.out.println(i); 
    // Autoboxing won’t save you here. This won’t compile: 
    // int[] b = 
    //   FArray.fill(new int[7], new RandIntGenerator()); 
  } 
} /* Output: 
YNzbrnyGcF 
OWZnTcQrGs 
eGZMmJMRoE 
suEcUOneOE 
dLsmwHLGEa 
hKcxrEqUCB 
bkInaMesbt 
7052 
6665 
2654 
3909 
5202 
2209 
5458 
*///:~ 

Since RandomGenerator.Integer implements Generator<Integer>, my hope was that 
autoboxing would automatically convert the value of next( ) from Integer to int. However, 
autoboxing doesn’t apply to arrays, so this won’t work.  

Exercise 30:   (2) Create a Holder for each of the primitive wrapper types, and show that 
autoboxing and autounboxing works for the set( ) and get( ) methods of each instance.  

Implementing parameterized interfaces 

A class cannot implement two variants of the same generic interface. Because of erasure, 
these are both the same interface. Here’s a situation where this clash occurs:  

//: generics/MultipleInterfaceVariants.java 
// {CompileTimeError} (Won’t compile) 
 
interface Payable<T> {} 
 
class Employee implements Payable<Employee> {} 
class Hourly extends Employee 
  implements Payable<Hourly> {} ///:~ 

Hourly won’t compile because erasure reduces Payable<Employee> and 
Payable<Hourly> to the same class, Payable, and the above code would mean that you’d 
be implementing the same interface twice. Interestingly enough, if you remove the generic 
parameters from both uses of Payable—as the compiler does during erasure—the code 
compiles.  

Generics 495 



 

This issue can become annoying when you are working with some of the more fundamental 
Java interfaces, such as Comparable<T>, as you’ll see a little later in this section.  

Exercise 31:   (1) Remove all the generics from MultipleInterfaceVariants.java and 
modify the code so that the example compiles.  

Casting and warnings 

Using a cast or instanceof with a generic type parameter doesn’t have any effect. The 
following container stores values internally as Objects and casts them back to T when you 
fetch them:  

//: generics/GenericCast.java 
 
class FixedSizeStack<T> { 
  private int index = 0; 
  private Object[] storage; 
  public FixedSizeStack(int size) { 
    storage = new Object[size]; 
  } 
  public void push(T item) { storage[index++] = item; } 
  @SuppressWarnings("unchecked") 
  public T pop() { return (T)storage[--index]; } 
}  
 
public class GenericCast { 
  public static final int SIZE = 10; 
  public static void main(String[] args) { 
    FixedSizeStack<String> strings = 
      new FixedSizeStack<String>(SIZE); 
    for(String s : "A B C D E F G H I J".split(" ")) 
      strings.push(s); 
    for(int i = 0; i < SIZE; i++) { 
      String s = strings.pop(); 
      System.out.print(s + " "); 
    } 
  } 
} /* Output: 
J I H G F E D C B A 
*///:~ 

Without the @SuppressWarnings annotation, the compiler will produce an "unchecked 
cast" warning for pop( ). Because of erasure, it can’t know whether the cast is safe, and the 
pop( ) method doesn’t actually do any casting. T is erased to its first bound, which is Object 
by default, so pop( ) is actually just casting an Object to an Object.  

There are times when generics do not eliminate the need to cast, and this generates a 
warning by the compiler which is inappropriate. For example:  

//: generics/NeedCasting.java 
import java.io.*; 
import java.util.*; 
 
public class NeedCasting { 
  @SuppressWarnings("unchecked") 
  public void f(String[] args) throws Exception { 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream(args[0])); 
    List<Widget> shapes = (List<Widget>)in.readObject(); 

496 Thinking in Java Bruce Eckel 



 

  } 
} ///:~ 

As you’ll learn in the next chapter, readObject( ) cannot know what it is reading, so it 
returns an object that must be cast. But when you comment out the @SuppressWarnings 
annotation and compile the program, you get a warning:  

Note: NeedCasting.Java uses unchecked or unsafe operations.  
Note: Recompile with -Xlint:unchecked for details. 

And if you follow the instructions and recompile with -Xlint:unchecked:  

NeedCasting.Java:12: warning: [unchecked] unchecked cast  
found   : java.lang.Object  
required: java.uti1.List<Widget>  
    List<Shape> shapes = (List<Widget>)in.readObject(); 

You’re forced to cast, and yet you’re told you shouldn’t. To solve the problem, you must use a 
new form of cast introduced in Java SE5, the cast via a generic class:  

//: generics/ClassCasting.java 
import java.io.*; 
import java.util.*; 
 
public class ClassCasting { 
  @SuppressWarnings("unchecked") 
  public void f(String[] args) throws Exception { 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream(args[0])); 
      // Won’t Compile: 
//    List<Widget> lw1 = 
//    List<Widget>.class.cast(in.readObject()); 
    List<Widget> lw2 = List.class.cast(in.readObject()); 
  } 
} ///:~ 

However, you can’t cast to the actual type (List<Widget>). That is, you can’t say  

List<Widget>.class.cast(in.readObject()) 

and even if you add another cast like this:  

(List<Widget>)List.class.cast(in.readObject()) 

you’ll still get a warning.  

Exercise 32:   (1) Verify that FixedSizeStack in GenericCast.java generates 
exceptions if you try to go out of its bounds. Does this mean that bounds-checking code is not 
required?  

Exercise 33:   (3) Repair GenericCast.java using an ArrayList.  

 

 

 

Generics 497 



 

Overloading 

This won’t compile, even though it’s a reasonable thing to try:  

//: generics/UseList.java 
// {CompileTimeError} (Won’t compile) 
import java.util.*; 
 
public class UseList<W,T> { 
  void f(List<T> v) {} 
  void f(List<W> v) {} 
} ///:~ 

Overloading the method produces the identical type signature because of erasure.  

Instead, you must provide distinct method names when the erased arguments do not 
produce a unique argument list:  

//: generics/UseList2.java 
import java.util.*; 
 
public class UseList2<W,T> { 
  void f1(List<T> v) {} 
  void f2(List<W> v) {} 
} ///:~ 

Fortunately, this kind of problem is detected by the compiler.  

Base class hijacks an interface 

Suppose you have a Pet class that is Comparable to other Pet objects:  

//: generics/ComparablePet.java 
 
public class ComparablePet 
implements Comparable<ComparablePet> { 
  public int compareTo(ComparablePet arg) { return 0; } 
} ///:~ 

It makes sense to try to narrow the type that a subclass of ComparablePet can be 
compared to. For example, a Cat should only be Comparable with other Cats:  

//: generics/HijackedInterface.java 
// {CompileTimeError} (Won’t compile) 
 
class Cat extends ComparablePet implements Comparable<Cat>{ 
  // Error: Comparable cannot be inherited with 
  // different arguments: <Cat> and <Pet> 
  public int compareTo(Cat arg) { return 0; } 
} ///:~ 

Unfortunately, this won’t work. Once the ComparablePet argument is established for 
Comparable, no other implementing class can ever be compared to anything but a 
ComparablePet:  

//: generics/RestrictedComparablePets.java 
 

498 Thinking in Java Bruce Eckel 



 

class Hamster extends ComparablePet 
implements Comparable<ComparablePet> { 
  public int compareTo(ComparablePet arg) { return 0; } 
} 
 
// Or just: 
 
class Gecko extends ComparablePet { 
  public int compareTo(ComparablePet arg) { return 0; } 
} ///:~ 

Hamster shows that it is possible to reimplement the same interface that is in 
ComparablePet, as long as it is exactly the same, including the parameter types. However, 
this is the same as just overriding the methods in the base class, as seen in Gecko.  

   

Generics 499 



 

Self-bounded types 
There’s one rather mind-bending idiom that appears periodically in Java generics. Here’s 
what it looks like:  

class SelfBounded<T extends SelfBounded<T>> { // ... 

This has the dizzying effect of two mirrors pointed at each other, a kind of infinite reflection. 
The class SelfBounded takes a generic argument T, T is constrained by a bound, and that 
bound is SelfBounded, with T as an argument.  

This is difficult to parse when you first see it, and it emphasizes that the extends keyword, 
when used with bounds, is definitely different than when it is used to create subclasses.  

Curiously recurring generics 

To understand what a self-bounded type means, let’s start with a simpler version of the 
idiom, without the self-bound.  

You can’t inherit directly from a generic parameter. However, you can inherit from a class 
that uses that generic parameter in its own definition. That is, you can say:  

//: generics/CuriouslyRecurringGeneric.java 
 
class GenericType<T> {} 
 
public class CuriouslyRecurringGeneric 
  extends GenericType<CuriouslyRecurringGeneric> {} ///:~ 

This could be called curiously recurring generics (CRG) after Jim Coplien’s Curiously 
Recurring Template Pattern in C++. The "curiously recurring" part refers to the fact that 
your class appears, rather curiously, in its own base class.  

To understand what this means, try saying it aloud: "I’m creating a new class that inherits 
from a generic type that takes my class name as its parameter." What can the generic base 
type accomplish when given the derived class name? Well, generics in Java are about 
arguments and return types, so it can produce a base class that uses the derived type for its 
arguments and return types. It can also use the derived type for field types, even though 
those will be erased to Object. Here’s a generic class that expresses this:  

 

//: generics/BasicHolder.java 
 
public class BasicHolder<T> { 
  T element; 
  void set(T arg) { element = arg; } 
  T get() { return element; } 
  void f() { 
    System.out.println(element.getClass().getSimpleName()); 
  } 
} ///:~ 

It’s an ordinary generic type with methods that both accept and produce objects of the 
parameter type, along with a method that operates on the stored field (although it only 
performs Object operations on that field).  

500 Thinking in Java Bruce Eckel 



 

We can use BasicHolder in a curiously recurring generic:  

//: generics/CRGWithBasicHolder.java 
 
class Subtype extends BasicHolder<Subtype> {} 
 
public class CRGWithBasicHolder { 
  public static void main(String[] args) { 
    Subtype st1 = new Subtype(), st2 = new Subtype(); 
    st1.set(st2); 
    Subtype st3 = st1.get(); 
    st1.f(); 
  } 
} /* Output: 
Subtype 
*///:~ 

Notice something important here: The new class Subtype takes arguments and returns 
values of Subtype, not just the base class BasicHolder. This is the essence of CRG: The 
base class substitutes the derived class for its parameters. This means that the generic base 
class becomes a kind of template for common functionality for all its derived classes, but this 
functionality will use the derived type for all of its arguments and return values. That is, the 
exact type instead of the base type will be used in the resulting class. So in Subtype, both the 
argument to set( ) and the return type of get( ) are exactly Subtypes.  

Self-bounding 

The BasicHolder can use any type as its generic parameter, as seen here:  

//: generics/Unconstrained.java 
 
class Other {} 
class BasicOther extends BasicHolder<Other> {} 
 
public class Unconstrained { 
  public static void main(String[] args) { 
    BasicOther b = new BasicOther(), b2 = new BasicOther(); 
    b.set(new Other()); 
    Other other = b.get(); 
    b.f(); 
  } 
} /* Output: 
Other 
*///:~ 

Self-bounding takes the extra step of forcing the generic to be used as its own bound 
argument. Look at how the resulting class can and can’t be used:  

//: generics/SelfBounding.java 
 
class SelfBounded<T extends SelfBounded<T>> { 
  T element; 
  SelfBounded<T> set(T arg) { 
    element = arg; 
    return this; 
  } 
  T get() { return element; } 
} 
 
class A extends SelfBounded<A> {} 

Generics 501 



 

class B extends SelfBounded<A> {} // Also OK 
 
class C extends SelfBounded<C> { 
  C setAndGet(C arg) { set(arg); return get(); } 
}  
 
class D {} 
// Can’t do this: 
// class E extends SelfBounded<D> {} 
// Compile error: Type parameter D is not within its bound 
 
// Alas, you can do this, so you can’t force the idiom: 
class F extends SelfBounded {} 
 
public class SelfBounding { 
  public static void main(String[] args) { 
    A a = new A(); 
    a.set(new A()); 
    a = a.set(new A()).get(); 
    a = a.get(); 
    C c = new C(); 
    c = c.setAndGet(new C()); 
  } 
} ///:~ 

What self-bounding does is require the use of the class in an inheritance relationship like 
this:  

class A extends SelfBounded<A> {}  

This forces you to pass the class that you are defining as a parameter to the base class.  

What’s the added value in self-bounding the parameter? The type parameter must be the 
same as the class being defined. As you can see in the definition of class B, you can also 
derive from a SelfBounded that uses a parameter of another SelfBounded, although the 
predominant use seems to be the one that you see for class A. The attempt to define E shows 
that you cannot use a type parameter that is not a SelfBounded.  

Unfortunately, F compiles without warnings, so the self-bounding idiom is not enforceable. If 
it’s really important, it may require an external tool to ensure that raw types are not being 
used in place of parameterized types.  

Notice that you can remove the constraint and all the classes will still compile, but E will also 
compile:  

//: generics/NotSelfBounded.java 
 
public class NotSelfBounded<T> { 
  T element; 
  NotSelfBounded<T> set(T arg) { 
    element = arg; 
    return this; 
  } 
  T get() { return element; } 
} 
 
class A2 extends NotSelfBounded<A2> {} 
class B2 extends NotSelfBounded<A2> {} 
 
class C2 extends NotSelfBounded<C2> { 

502 Thinking in Java Bruce Eckel 



 

  C2 setAndGet(C2 arg) { set(arg); return get(); } 
}  
 
class D2 {} 
// Now this is OK: 
class E2 extends NotSelfBounded<D2> {} ///:~ 

So clearly, the self-bounding constraint serves only to force the inheritance relationship. If 
you use self-bounding, you know that the type parameter used by the class will be the same 
basic type as the class that’s using that parameter. It forces anyone using that class to follow 
that form.  

It’s also possible to use self-bounding for generic methods:  

//: generics/SelfBoundingMethods.java 
 
public class SelfBoundingMethods { 
  static <T extends SelfBounded<T>> T f(T arg) { 
    return arg.set(arg).get(); 
  } 
  public static void main(String[] args) { 
    A a = f(new A()); 
  } 
} ///:~ 

This prevents the method from being applied to anything but a self-bounded argument of the 
form shown.  

Argument covariance 

The value of self-bounding types is that they produce covariant argument types—method 
argument types vary to follow the subclasses.  

Although self-bounding types also produce return types that are the same as the subclass 
type, this is not so important because covariant return types were introduced in Java SE5:  

//: generics/CovariantReturnTypes.java 
 
class Base {} 
class Derived extends Base {} 
 
interface OrdinaryGetter { 
  Base get(); 
} 
 
interface DerivedGetter extends OrdinaryGetter { 
  // Return type of overridden method is allowed to vary: 
  Derived get(); 
} 
 
public class CovariantReturnTypes { 
  void test(DerivedGetter d) { 
    Derived d2 = d.get(); 
  } 
} ///:~ 

The get( ) method in DerivedGetter overrides get( ) in OrdinaryGetter and returns a 
type that is derived from the type returned by OrdinaryGetter.get( ). Although this is a 

Generics 503 



 

perfectly logical thing to do—a derived type method should be able to return a more specific type 
than the base type method that it’s overriding—it was illegal in earlier versions of Java.  

A self-bounded generic does in fact produce the exact derived type as a return value, as seen here 
with get( ):  

//: generics/GenericsAndReturnTypes.java 
 
interface GenericGetter<T extends GenericGetter<T>> { 
  T get(); 
} 
 
interface Getter extends GenericGetter<Getter> {} 
 
public class GenericsAndReturnTypes { 
  void test(Getter g) { 
    Getter result = g.get(); 
    GenericGetter gg = g.get(); // Also the base type 
  } 
} ///:~ 

Notice that this code would not have compiled unless covariant return types were included in 
Java SE5.  

In non-generic code, however, the argument types cannot be made to vary with the subtypes:  

//: generics/OrdinaryArguments.java 
 
class OrdinarySetter { 
  void set(Base base) { 
    System.out.println("OrdinarySetter.set(Base)"); 
  } 
} 
 
class DerivedSetter extends OrdinarySetter { 
  void set(Derived derived) { 
    System.out.println("DerivedSetter.set(Derived)"); 
  } 
}  
 
public class OrdinaryArguments { 
  public static void main(String[] args) { 
    Base base = new Base(); 
    Derived derived = new Derived(); 
    DerivedSetter ds = new DerivedSetter(); 
    ds.set(derived); 
    ds.set(base); // Compiles: overloaded, not overridden! 
  } 
} /* Output: 
DerivedSetter.set(Derived) 
OrdinarySetter.set(Base) 
*///:~ 

Both set(derived) and set(base) are legal, so DerivedSetter.set( ) is not overriding 
OrdinarySetter.set( ), but instead it is overloading that method. From the output, you can 
see that there are two methods in DerivedSetter, so the base-class version is still available, 
thus verifying that it has been overloaded.  

However, with self-bounding types, there is only one method in the derived class, and that 
method takes the derived type as its argument, not the base type:  

504 Thinking in Java Bruce Eckel 



 

//: generics/SelfBoundingAndCovariantArguments.java 
 
interface SelfBoundSetter<T extends SelfBoundSetter<T>> { 
  void set(T arg); 
} 
 
interface Setter extends SelfBoundSetter<Setter> {} 
 
public class SelfBoundingAndCovariantArguments { 
  void testA(Setter s1, Setter s2, SelfBoundSetter sbs) { 
    s1.set(s2); 
    // s1.set(sbs); // Error: 
    // set(Setter) in SelfBoundSetter<Setter> 
    // cannot be applied to (SelfBoundSetter) 
  } 
} ///:~ 

The compiler doesn’t recognize the attempt to pass in the base type as an argument to set( ), 
because there is no method with that signature. The argument has, in effect, been overridden.  

Without self-bounding, the ordinary inheritance mechanism steps in, and you get 
overloading, just as with the non-generic case:  

//: generics/PlainGenericInheritance.java 
 
class GenericSetter<T> { // Not self-bounded 
  void set(T arg){ 
    System.out.println("GenericSetter.set(Base)"); 
  } 
} 
 
class DerivedGS extends GenericSetter<Base> { 
  void set(Derived derived){ 
    System.out.println("DerivedGS.set(Derived)"); 
  } 
}  
 
public class PlainGenericInheritance { 
  public static void main(String[] args) { 
    Base base = new Base(); 
    Derived derived = new Derived(); 
    DerivedGS dgs = new DerivedGS(); 
    dgs.set(derived); 
    dgs.set(base); // Compiles: overloaded, not overridden! 
  } 
} /* Output: 
DerivedGS.set(Derived) 
GenericSetter.set(Base) 
*///:~ 

This code mimics OrdinaryArguments.java; in that example, DerivedSetter inherits 
from OrdinarySetter which contains a set(Base). Here, DerivedGS inherits from 
GenericSetter<Base> which also contains a set(Base), created by the generic. And just 
like OrdinaryArguments.java, you can see from the output that DerivedGS contains 
two overloaded versions of set( ). Without self-bounding, you overload on argument types. If 
you use self-bounding, you only end up with one version of a method, which takes the exact 
argument type.  

Exercise 34:   (4) Create a self-bounded generic type that contains an abstract method 
that takes an argument of the generic type parameter and produces a return value of the 

Generics 505 



 

generic type parameter. In a non-abstract method of the class, call the abstract method 
and return its result. Inherit from the self-bounded type and test the resulting class.  

Dynamic type safety 
Because you can pass generic containers to pre-Java SE5 code, there’s still the possibility that 
old-style code can corrupt your containers. Java SE5 has a set of utilities in 
java.util.Collections to solve the type-checking problem in this situation: the static 
methods checkedCollection( ), checkedList( ), checkedMap( ), checkedSet( ), 
checkedSortedMap( ) and checkedSortedSet( ). Each of these takes the container you 
want to dynamically check as the first argument and the type that you want to enforce as the 
second argument.  

A checked container will throw a ClassCastException at the point you try to insert an 
improper object, as opposed to a pre-generic (raw) container which would inform you that 
there was a problem when you pulled the object out. In the latter case, you know there’s a 
problem but you don’t know who the culprit is, but with checked containers you find out who 
tried to insert the bad object.  

Let’s look at the problem of "putting a cat in a list of dogs" using a checked container. Here, 
oldStyleMethod( ) represents legacy code because it takes a raw List, and the 
@SuppressWarnings("unchecked") annotation is necessary to suppress the resulting 
warning:  

//: generics/CheckedList.java 
// Using Collection.checkedList(). 
import typeinfo.pets.*; 
import java.util.*; 
 
public class CheckedList { 
  @SuppressWarnings("unchecked") 
  static void oldStyleMethod(List probablyDogs) { 
    probablyDogs.add(new Cat()); 
  }  
  public static void main(String[] args) { 
    List<Dog> dogs1 = new ArrayList<Dog>(); 
    oldStyleMethod(dogs1); // Quietly accepts a Cat 
    List<Dog> dogs2 = Collections.checkedList( 
      new ArrayList<Dog>(), Dog.class); 
    try { 
      oldStyleMethod(dogs2); // Throws an exception 
    } catch(Exception e) { 
      System.out.println(e); 
    } 
    // Derived types work fine: 
    List<Pet> pets = Collections.checkedList( 
      new ArrayList<Pet>(), Pet.class); 
    pets.add(new Dog()); 
    pets.add(new Cat()); 
  } 
} /* Output: 
java.lang.ClassCastException: Attempt to insert class typeinfo.pets.Cat 
element into collection with element type class typeinfo.pets.Dog 
*///:~ 

When you run the program you’ll see that the insertion of a Cat goes unchallenged by dogs1, 
but dogs2 immediately throws an exception upon the insertion of an incorrect type. You can 
also see that it’s fine to put derived-type objects into a checked container that is checking for 
the base type.  

506 Thinking in Java Bruce Eckel 



 

Exercise 35:   (1) Modify CheckedList.java so that it uses the Coffee classes defined in 
this chapter.  

Exceptions 
Because of erasure, the use of generics with exceptions is extremely limited. A catch clause 
cannot catch an exception of a generic type, because the exact type of the exception must be 
known at both compile time and run time. Also, a generic class can’t directly or indirectly 
inherit from Throwable (this further prevents you from trying to define generic exceptions 
that can’t be caught).  

However, type parameters may be used in the throws clause of a method declaration. This 
allows you to write generic code that varies with the type of a checked exception:  

//: generics/ThrowGenericException.java 
import java.util.*; 
 
interface Processor<T,E extends Exception> { 
  void process(List<T> resultCollector) throws E; 
} 
 
class ProcessRunner<T,E extends Exception> 
extends ArrayList<Processor<T,E>> { 
  List<T> processAll() throws E { 
    List<T> resultCollector = new ArrayList<T>(); 
    for(Processor<T,E> processor : this) 
      processor.process(resultCollector); 
    return resultCollector; 
  } 
}  
 
class Failure1 extends Exception {} 
 
class Processor1 implements Processor<String,Failure1> { 
  static int count = 3; 
  public void 
  process(List<String> resultCollector) throws Failure1 { 
    if(count-- > 1) 
      resultCollector.add("Hep!"); 
    else 
      resultCollector.add("Ho!"); 
    if(count < 0) 
       throw new Failure1(); 
  } 
}  
 
class Failure2 extends Exception {} 
 
class Processor2 implements Processor<Integer,Failure2> { 
  static int count = 2; 
  public void 
  process(List<Integer> resultCollector) throws Failure2 { 
    if(count-- == 0) 
      resultCollector.add(47); 
    else { 
      resultCollector.add(11); 
    } 
    if(count < 0) 
       throw new Failure2(); 
  } 

Generics 507 



 

}  
 
public class ThrowGenericException { 
  public static void main(String[] args) { 
    ProcessRunner<String,Failure1> runner = 
      new ProcessRunner<String,Failure1>(); 
    for(int i = 0; i < 3; i++) 
      runner.add(new Processor1()); 
    try { 
      System.out.println(runner.processAll()); 
    } catch(Failure1 e) { 
      System.out.println(e); 
    } 
 
    ProcessRunner<Integer,Failure2> runner2 = 
      new ProcessRunner<Integer,Failure2>(); 
    for(int i = 0; i < 3; i++) 
      runner2.add(new Processor2()); 
    try { 
      System.out.println(runner2.processAll()); 
    } catch(Failure2 e) { 
      System.out.println(e); 
    } 
  } 
} ///:~ 

A Processor performs a process( ) and may throw an exception of type E. The result of the 
process( ) is stored in the List<T> resultCollector (this is called a collecting 
parameter). A ProcessRunner has a processAll( ) method that executes every Process 
object that it holds, and returns the resultCollector.  

If you could not parameterize the exceptions that are thrown, you would be unable to write 
this code generically because of the checked exceptions.  

Exercise 36:   (2) Add a second parameterized exception to the Processor class and 
demonstrate that the exceptions can vary independently.  

   

508 Thinking in Java Bruce Eckel 



 

Mixins 
The term mixin seems to have acquired numerous meanings over time, but the fundamental 
concept is that of mixing in capabilities from multiple classes in order to produce a resulting 
class that represents all the types of the mixins. This is often something you do at the last 
minute, which makes it convenient to easily assemble classes.  

One value of mixins is that they consistently apply characteristics and behaviors across 
multiple classes. As a bonus, if you want to change something in a mixin class, those changes 
are then applied across all the classes where the mixin is applied. Because of this, mixins 
have part of the flavor of aspect-oriented programming (AOP), and aspects are often 
suggested to solve the mixin problem.   

Mixins in C++ 

One of the strongest arguments made for multiple inheritance in C++ is for the use of mixins. 
However, a more interesting and elegant approach to mixins is using parameterized types, 
whereby a mixin is a class that inherits from its type parameter. In C++, you can easily create 
mixins because C++ remembers the type of its template parameters.  

Here’s a C++ example with two mixin types: one that allows you to mix in the property of 
having a time stamp, and another that mixes in a serial number for each object instance:  

//: generics/Mixins.cpp 
#include <string> 
#include <ctime> 
#include <iostream> 
using namespace std; 
 
template<class T> class TimeStamped : public T { 
  long timeStamp; 
public: 
  TimeStamped() { timeStamp = time(0); } 
  long getStamp() { return timeStamp; } 
}; 
 
template<class T> class SerialNumbered : public T { 
  long serialNumber; 
  static long counter; 
public: 
  SerialNumbered() { serialNumber = counter++; } 
  long getSerialNumber() { return serialNumber; } 
}; 
 
// Define and initialize the static storage: 
template<class T> long SerialNumbered<T>::counter = 1; 
 
class Basic { 
  string value; 
public: 
  void set(string val) { value = val; } 
  string get() { return value; } 
};  
 
int main() { 
  TimeStamped<SerialNumbered<Basic> > mixin1, mixin2; 
  mixin1.set("test string 1"); 
  mixin2.set("test string 2"); 

Generics 509 



 

  cout << mixin1.get() << " " << mixin1.getStamp() << 
    " " << mixin1.getSerialNumber() << endl; 
  cout << mixin2.get() << " " << mixin2.getStamp() << 
    " " << mixin2.getSerialNumber() << endl; 
} /* Output: (Sample) 
test string 1 1129840250 1 
test string 2 1129840250 2 
*///:~ 

In main( ), the resulting type of mixin1 and mixin2 has all the methods of the mixed-in 
types. You can think of a mixin as a function that maps existing classes to new subclasses. 
Notice how trivial it is to create a mixin using this technique; basically, you just say, "Here’s 
what I want," and it happens:  

TimeStamped<SerialNumbered<Basic> > mixin1, mixin2;  

Unfortunately, Java generics don’t permit this. Erasure forgets the base-class type, so a 
generic class cannot inherit directly from a generic parameter.  

Mixing with interfaces 

A commonly suggested solution is to use interfaces to produce the effect of mixins, like this:  

//: generics/Mixins.java 
import java.util.*; 
 
interface TimeStamped { long getStamp(); } 
 
class TimeStampedImp implements TimeStamped { 
  private final long timeStamp; 
  public TimeStampedImp() { 
    timeStamp = new Date().getTime(); 
  } 
  public long getStamp() { return timeStamp; } 
} 
 
interface SerialNumbered { long getSerialNumber(); } 
 
class SerialNumberedImp implements SerialNumbered { 
  private static long counter = 1; 
  private final long serialNumber = counter++; 
  public long getSerialNumber() { return serialNumber; } 
} 
 
interface Basic { 
  public void set(String val); 
  public String get(); 
} 
 
class BasicImp implements Basic { 
  private String value; 
  public void set(String val) { value = val; } 
  public String get() { return value; } 
} 
 
class Mixin extends BasicImp 
implements TimeStamped, SerialNumbered { 
  private TimeStamped timeStamp = new TimeStampedImp(); 
  private SerialNumbered serialNumber = 
    new SerialNumberedImp(); 

510 Thinking in Java Bruce Eckel 



 

Generics 511 

  public long getStamp() { return timeStamp.getStamp(); } 
  public long getSerialNumber() { 
    return serialNumber.getSerialNumber(); 
  } 
} 
 
public class Mixins { 
  public static void main(String[] args) { 
    Mixin mixin1 = new Mixin(), mixin2 = new Mixin(); 
    mixin1.set("test string 1"); 
    mixin2.set("test string 2"); 
    System.out.println(mixin1.get() + " " + 
      mixin1.getStamp() +  " " + mixin1.getSerialNumber()); 
    System.out.println(mixin2.get() + " " + 
      mixin2.getStamp() +  " " + mixin2.getSerialNumber()); 
  } 
} /* Output: (Sample) 
test string 1 1132437151359 1 
test string 2 1132437151359 2 
*///:~ 

The Mixin class is basically using delegation, so each mixed-in type requires a field in 
Mixin, and you must write all the necessary methods in Mixin to forward calls to the 
appropriate object. This example uses trivial classes, but with a more complex mixin the code 
grows rapidly.4  

Exercise 37:   (2) Add a new mixin class Colored to Mixins.java, mix it into Mixin, 
and show that it works.  

Using the Decorator pattern 

When you look at the way that it is used, the concept of a mixin seems closely related to the 
Decorator design pattern.5 Decorators are often used when, in order to satisfy every possible 
combination, simple subclassing produces so many classes that it becomes impractical.  

The Decorator pattern uses layered objects to dynamically and transparently add 
responsibilities to individual objects. Decorator specifies that all objects that wrap around 
your initial object have the same basic interface. Something is decoratable, and you layer on 
functionality by wrapping other classes around the decoratable. This makes the use of the 
decorators transparentthere are a set of common messages you can send to an object whether 
it has been decorated or not. A decorating class can also add methods, but as you shall see, 
this is limited.  

Decorators are implemented using composition and formal structures (the 
decoratable/decorator hierarchy), whereas mixins are inheritance-based. So you could think 
of parameterized-type-based mixins as a generic decorator mechanism that does not require 
the inheritance structure of the Decorator design pattern.  

The previous example can be recast using Decorator:  

//: generics/decorator/Decoration.java 
package generics.decorator; 
import java.util.*; 
                                                            
4 Note that some programming environments, such as Eclipse and IntelliJ Idea, will automatically generate delegation 
code. 
5 Patterns are the subject of Thinking in Patterns (with Java), which you can find at www.MindView.net. See also Design 
Patterns, by Erich Gamma et al. (Addison-Wesley, 1995)- 



 

 
class Basic { 
  private String value; 
  public void set(String val) { value = val; } 
  public String get() { return value; } 
} 
 
class Decorator extends Basic { 
  protected Basic basic; 
  public Decorator(Basic basic) { this.basic = basic; } 
  public void set(String val) { basic.set(val); } 
  public String get() { return basic.get(); } 
}  
 
class TimeStamped extends Decorator { 
  private final long timeStamp; 
  public TimeStamped(Basic basic) { 
    super(basic); 
    timeStamp = new Date().getTime(); 
  } 
  public long getStamp() { return timeStamp; } 
} 
 
class SerialNumbered extends Decorator { 
  private static long counter = 1; 
  private final long serialNumber = counter++; 
  public SerialNumbered(Basic basic) { super(basic); } 
  public long getSerialNumber() { return serialNumber; } 
}  
 
public class Decoration { 
  public static void main(String[] args) { 
    TimeStamped t = new TimeStamped(new Basic()); 
    TimeStamped t2 = new TimeStamped( 
      new SerialNumbered(new Basic())); 
    //! t2.getSerialNumber(); // Not available 
    SerialNumbered s = new SerialNumbered(new Basic()); 
    SerialNumbered s2 = new SerialNumbered( 
      new TimeStamped(new Basic())); 
    //! s2.getStamp(); // Not available 
  } 
} ///:~ 

The class resulting from a mixin contains all the methods of interest, but the type of the 
object that results from using decorators is the last type that it was decorated with. That is, 
although it’s possible to add more than one layer, the final layer is the actual type, so only the 
final layer’s methods are visible, whereas the type of the mixin is all the types that have been 
mixed together. So a significant drawback to Decorator is that it only effectively works with 
one layer of decoration (the final one), and the mixin approach is arguably more natural. 
Thus, Decorator is only a limited solution to the problem addressed by mixins.  

Exercise 38:   (4) Create a simple Decorator system by starting with basic coffee, then 
providing decorators of steamed milk, foam, chocolate, caramel and whipped cream.  

Mixins with dynamic proxies 

It’s possible to use a dynamic proxy to create a mechanism that more closely models mixins 
than does the Decorator (see the Type Information chapter for an explanation of how Java’s 
dynamic proxies work). With a dynamic proxy, the dynamic type of the resulting class is the 
combined types that have been mixed in.  

512 Thinking in Java Bruce Eckel 



 

Because of the constraints of dynamic proxies, each class that is mixed in must be the 
implementation of an interface:  

//: generics/DynamicProxyMixin.java 
import java.lang.reflect.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Tuple.*; 
 
class MixinProxy implements InvocationHandler { 
  Map<String,Object> delegatesByMethod; 
  public MixinProxy(TwoTuple<Object,Class<?>>... pairs) { 
    delegatesByMethod = new HashMap<String,Object>(); 
    for(TwoTuple<Object,Class<?>> pair : pairs) { 
      for(Method method : pair.second.getMethods()) { 
        String methodName = method.getName(); 
        // The first interface in the map 
        // implements the method. 
        if (!delegatesByMethod.containsKey(methodName)) 
          delegatesByMethod.put(methodName, pair.first); 
      } 
    } 
  }  
  public Object invoke(Object proxy, Method method, 
    Object[] args) throws Throwable { 
    String methodName = method.getName(); 
    Object delegate = delegatesByMethod.get(methodName); 
    return method.invoke(delegate, args); 
  } 
  @SuppressWarnings("unchecked") 
  public static Object newInstance(TwoTuple... pairs) { 
    Class[] interfaces = new Class[pairs.length]; 
    for(int i = 0; i < pairs.length; i++) { 
      interfaces[i] = (Class)pairs[i].second; 
    } 
    ClassLoader cl = 
      pairs[0].first.getClass().getClassLoader(); 
    return Proxy.newProxyInstance( 
      cl, interfaces, new MixinProxy(pairs)); 
  } 
}  
 
public class DynamicProxyMixin { 
  public static void main(String[] args) { 
    Object mixin = MixinProxy.newInstance( 
      tuple(new BasicImp(), Basic.class), 
      tuple(new TimeStampedImp(), TimeStamped.class), 
      tuple(new SerialNumberedImp(),SerialNumbered.class)); 
    Basic b = (Basic)mixin; 
    TimeStamped t = (TimeStamped)mixin; 
    SerialNumbered s = (SerialNumbered)mixin; 
    b.set("Hello"); 
    System.out.println(b.get()); 
    System.out.println(t.getStamp()); 
    System.out.println(s.getSerialNumber()); 
  } 
} /* Output: (Sample) 
Hello 
1132519137015 
1 
*///:~ 

Generics 513 



 

Because only the dynamic type, and not the static type, includes all the mixed-in types, this is 
still not quite as nice as the C++ approach, because you’re forced to downcast to the 
appropriate type before you can call methods for it. However, it is significantly closer to a 
true mixin.  

There has been a fair amount of work done towards the support of mixins for Java, including 
the creation of at least one language add-on, the Jam language, specifically for supporting 
mixins.  

Exercise 39:   (1) Add a new mixin class Colored to DynamicProxyMixin.java, mix it 
into mixin, and show that it works.  

Latent typing 
The beginning of this chapter introduced the idea of writing code that can be applied as 
generally as possible. To do this, we need ways to loosen the constraints on the types that our 
code works with, without losing the benefits of static type checking. We are then able to write 
code that can be used in more situations without change—that is, more "generic" code.  

Java generics appear to take a further step in this direction. When you are writing or using 
generics that simply hold objects, the code works with any type (except for primitives, 
although as you’ve seen, autoboxing smoothes this over). Or, put another way, "holder" 
generics are able to say, "I don’t care what type you are." Code that doesn’t care what type it 
works with can indeed be applied everywhere, and is thus quite "generic."  

As you’ve also seen, a problem arises when you want to perform manipulations on generic 
types (other than calling Object methods), because erasure requires that you specify the 
bounds of the generic types that may be used, in order to safely call specific methods for the 
generic objects in your code. This is a significant limitation to the concept of "generic" 
because you must constrain your generic types so that they inherit from particular classes or 
implement particular interfaces. In some cases you might end up using an ordinary class or 
interface instead, because a bounded generic might be no different from specifying a class or 
interface.  

One solution that some programming languages provide is called latent typing or structural 
typing. A more whimsical term is duck typing, as in, "If it walks like a duck and talks like a 
duck, you might as well treat it like a duck." Duck typing has become a fairly popular term, 
possibly because it doesn’t carry the historical baggage that other terms do.  

Generic code typically only calls a few methods on a generic type, and a language with latent 
typing loosens the constraint (and produces more generic code) by only requiring that a 
subset of methods be implemented, not a particular class or interface. Because of this, latent 
typing allows you to cut across class hierarchies, calling methods that are not part of a 
common interface. So a piece of code might say, in effect, "I don’t care what type you are as 
long as you can speak( ) and sit( )." By not requiring a specific type, your code can be more 
generic.  

Latent typing is a code organization and reuse mechanism. With it you can write a piece of 
code that can be reused more easily than without it. Code organization and reuse are the 
foundational levers of all computer programming: Write it once, use it more than once, and 
keep the code in one place. Because I am not required to name an exact interface that my 
code operates upon, with latent typing I can write less code and apply it more easily in more 
places.  

514 Thinking in Java Bruce Eckel 



 

Generics 515 

Two examples of languages that support latent typing are Python (freely downloadable from 
www.Python.org) and C++.6

 Python is a dynamically typed language (virtually all the type 
checking happens at run time) and C++ is a statically typed language (the type checking 
happens at compile time), so latent typing does not require either static or dynamic type 
checking.  

If we take the above description and express it in Python, it looks like this:  

#: generics/DogsAndRobots.py 
 
class Dog: 
    def speak(self): 
        print "Arf!" 
    def sit(self): 
        print "Sitting" 
    def reproduce(self): 
        pass 
 
class Robot: 
    def speak(self): 
        print "Click!" 
    def sit(self): 
        print "Clank!" 
    def oilChange(self) : 
        pass 
 
def perform(anything): 
    anything.speak() 
    anything.sit() 
 
a = Dog() 
b = Robot() 
perform(a) 
perform(b) 
#:~ 

Python uses indentation to determine scope (so no curly braces are needed), and a colon to 
begin a new scope. A ‘#’ indicates a comment to the end of the line, like ‘//’ in Java. The 
methods of a class explicitly specify the equivalent of the this reference as the first argument, 
called self by convention. Constructor calls do not require any sort of "new" keyword. And 
Python allows regular (non-member) functions, as evidenced by perform( ).  

In perform(anything), notice that there is no type for anything, and anything is just an 
identifier. It must be able to perform the operations that perform( ) asks of it, so an 
interface is implied. But you never have to explicitly write out that interface—it’s latent. 
perform( ) doesn’t care about the type of its argument, so I can pass any object to it as long 
as it supports the speak( ) and sit( ) methods. If you pass an object to perform( ) that 
does not support these operations, you’ll get a runtime exception.  

We can produce the same effect in C++:  

//: generics/DogsAndRobots.cpp 
 
class Dog { 
public: 
  void speak() {} 
  void sit() {} 
  void reproduce() {} 
                                                            
6 The Ruby and Smalltalk languages also support latent typing. 



 

516 Thinking in Java Bruce Eckel 

}; 
 
class Robot { 
public: 
  void speak() {} 
  void sit() {} 
  void oilChange() { 
}; 
 
template<class T> void perform(T anything) { 
  anything.speak(); 
  anything.sit(); 
} 
 
int main() { 
  Dog d; 
  Robot r; 
  perform(d); 
  perform(r); 
} ///:~ 

In both Python and C++, Dog and Robot have nothing in common, other than that they 
happen to have two methods with identical signatures. From a type standpoint, they are 
completely distinct types. However, perform( ) doesn’t care about the specific type of its 
argument, and latent typing allows it to accept both types of object.  

C++ ensures that it can actually send those messages. The compiler gives you an error 
message if you try to pass the wrong type (these error messages have historically been 
terrible and verbose, and are the primary reason that C++ templates have a poor reputation). 
Although they do it at different times— C++ at compile time, and Python at run time—both 
languages ensure that types cannot be misused and are thus considered to be strongly 
typed.7 Latent typing does not compromise strong typing.  

Because generics were added to Java late in the game, there was no chance that any kind of 
latent typing could be implemented, so Java has no support for this feature. As a result, it 
initially seems that Java’s generic mechanism is "less generic" than a language that supports 
latent typing.8

 For instance, if we try to implement the above example in Java, we are forced 
to use a class or an interface and specify it in a bounds expression:  

//: generics/Performs.java 
 
public interface Performs { 
  void speak(); 
  void sit(); 
} ///:~ 
 
//: generics/DogsAndRobots.java 
// No latent typing in Java 
import typeinfo.pets.*; 
import static net.mindview.util.Print.*; 
 
class PerformingDog extends Dog implements Performs { 
  public void speak() { print("Woof!"); } 
  public void sit() { print("Sitting"); } 
  public void reproduce() {} 
} 

                                                            
7 Because you can use casts, which effectively disable the type system, some people argue that C++ is weakly typed, but 
that’s extreme. It’s probably safer to say that C++ is "strongly typed with a trap door." 

8 The implementation of Java’s generics using erasure is sometimes referred to as secondclass generic types. 



 

 
class Robot implements Performs { 
  public void speak() { print("Click!"); } 
  public void sit() { print("Clank!"); } 
  public void oilChange() {} 
}  
 
class Communicate { 
  public static <T extends Performs> 
  void perform(T performer) { 
    performer.speak(); 
    performer.sit(); 
  } 
} 
 
public class DogsAndRobots { 
  public static void main(String[] args) { 
    PerformingDog d = new PerformingDog(); 
    Robot r = new Robot(); 
    Communicate.perform(d); 
    Communicate.perform(r); 
  } 
} /* Output: 
Woof! 
Sitting 
Click! 
Clank! 
*///:~ 

However, note that perform( ) does not need to use generics in order to work. It can simply 
be specified to accept a Performs object:  

//: generics/SimpleDogsAndRobots.java 
// Removing the generic; code still works. 
 
class CommunicateSimply { 
  static void perform(Performs performer) { 
    performer.speak(); 
    performer.sit(); 
  } 
} 
 
public class SimpleDogsAndRobots { 
  public static void main(String[] args) { 
    CommunicateSimply.perform(new PerformingDog()); 
    CommunicateSimply.perform(new Robot()); 
  } 
} /* Output: 
Woof! 
Sitting 
Click! 
Clank! 
*///:~ 

In this case, generics were simply not necessary, since the classes were already forced to 
implement the Performs interface.  

 

Generics 517 



 

Compensating for the lack of 
      latent typing 

Although Java does not support latent typing, it turns out that this does not mean that your 
bounded generic code cannot be applied across different type hierarchies. That is, it is still 
possible to create truly generic code, but it takes some extra effort.  

Reflection 

One approach you can use is reflection. Here’s a perform( ) method that uses latent typing:  

//: generics/LatentReflection.java 
// Using Reflection to produce latent typing. 
import java.lang.reflect.*; 
import static net.mindview.util.Print.*; 
 
// Does not implement Performs: 
class Mime { 
  public void walkAgainstTheWind() {} 
  public void sit() { print("Pretending to sit"); } 
  public void pushInvisibleWalls() {} 
  public String toString() { return "Mime"; } 
} 
 
// Does not implement Performs: 
class SmartDog { 
  public void speak() { print("Woof!"); } 
  public void sit() { print("Sitting"); } 
  public void reproduce() {} 
}  
 
class CommunicateReflectively { 
  public static void perform(Object speaker) { 
    Class<?> spkr = speaker.getClass(); 
    try { 
      try { 
        Method speak = spkr.getMethod("speak"); 
        speak.invoke(speaker); 
      } catch(NoSuchMethodException e) { 
        print(speaker + " cannot speak"); 
      } 
      try { 
        Method sit = spkr.getMethod("sit"); 
        sit.invoke(speaker); 
      } catch(NoSuchMethodException e) { 
        print(speaker + " cannot sit"); 
      } 
    } catch(Exception e) { 
      throw new RuntimeException(speaker.toString(), e); 
    } 
  } 
} 
 
public class LatentReflection { 
  public static void main(String[] args) { 
    CommunicateReflectively.perform(new SmartDog()); 
    CommunicateReflectively.perform(new Robot()); 
    CommunicateReflectively.perform(new Mime()); 

518 Thinking in Java Bruce Eckel 



 

  } 
} /* Output: 
Woof! 
Sitting 
Click! 
Clank! 
Mime cannot speak 
Pretending to sit 
*///:~ 

Here, the classes are completely disjoint and have no base classes (other than Object) or 
interfaces in common. Through reflection, CommunicateReflectively.perform( ) is able 
to dynamically establish whether the desired methods are available and call them. It is even 
able to deal with the fact that Mime only has one of the necessary methods, and partially 
fulfills its goal.  

Applying a method to a sequence 

Reflection provides some interesting possibilities, but it relegates all the type checking to run 
time, and is thus undesirable in many situations. If you can achieve compile-time type 
checking, that’s usually more desirable. But is it possible to have compile-time type checking 
and latent typing?  

Let’s look at an example that explores the problem. Suppose you want to create an apply( ) 
method that will apply any method to every object in a sequence. This is a situation where 
interfaces don’t seem to fit. You want to apply any method to a collection of objects, and 
interfaces constrain you too much to describe "any method." How do you do this in Java?  

Initially, we can solve the problem with reflection, which turns out to be fairly elegant 
because of Java SE5 varargs:  

//: generics/Apply.java 
// {main: ApplyTest} 
import java.lang.reflect.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Apply { 
  public static <T, S extends Iterable<? extends T>> 
  void apply(S seq, Method f, Object... args) { 
    try { 
      for(T t: seq) 
        f.invoke(t, args); 
    } catch(Exception e) { 
      // Failures are programmer errors 
      throw new RuntimeException(e); 
    } 
  } 
}  
 
class Shape { 
  public void rotate() { print(this + " rotate"); } 
  public void resize(int newSize) { 
    print(this + " resize " + newSize); 
  } 
} 
 
class Square extends Shape {} 
 
class FilledList<T> extends ArrayList<T> { 

Generics 519 



 

  public FilledList(Class<? extends T> type, int size) { 
    try { 
      for(int i = 0; i < size; i++) 
        // Assumes default constructor: 
        add(type.newInstance()); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
}  
 
class ApplyTest { 
  public static void main(String[] args) throws Exception { 
    List<Shape> shapes = new ArrayList<Shape>(); 
    for(int i = 0; i < 10; i++) 
      shapes.add(new Shape()); 
    Apply.apply(shapes, Shape.class.getMethod("rotate")); 
    Apply.apply(shapes, 
      Shape.class.getMethod("resize", int.class), 5); 
    List<Square> squares = new ArrayList<Square>(); 
    for(int i = 0; i < 10; i++) 
      squares.add(new Square()); 
    Apply.apply(squares, Shape.class.getMethod("rotate")); 
    Apply.apply(squares, 
      Shape.class.getMethod("resize", int.class), 5); 
  
    Apply.apply(new FilledList<Shape>(Shape.class, 10), 
      Shape.class.getMethod("rotate")); 
    Apply.apply(new FilledList<Shape>(Square.class, 10), 
      Shape.class.getMethod("rotate")); 
 
    SimpleQueue<Shape> shapeQ = new SimpleQueue<Shape>(); 
    for(int i = 0; i < 5; i++) { 
      shapeQ.add(new Shape()); 
      shapeQ.add(new Square()); 
    } 
    Apply.apply(shapeQ, Shape.class.getMethod("rotate")); 
  } 
} /* (Execute to see output) *///:~ 

In Apply, we get lucky because there happens to be an Iterable interface built into Java 
which is used by the Java containers library. Because of this, the apply( ) method can accept 
anything that implements the Iterable interface, which includes all the Collection classes 
such as List. But it can also accept anything else, as long as you make it Iterable—for 
example, the SimpleQueue class defined here and used above in main( ):  

//: generics/SimpleQueue.java 
// A different kind of container that is Iterable 
import java.util.*; 
 
public class SimpleQueue<T> implements Iterable<T> { 
  private LinkedList<T> storage = new LinkedList<T>(); 
  public void add(T t) { storage.offer(t); } 
  public T get() { return storage.poll(); } 
  public Iterator<T> iterator() { 
    return storage.iterator(); 
  } 
} ///:~ 

In Apply.java, exceptions are converted to RuntimeExceptions because there’s not much 
of a way to recover from exceptions—they really do represent programmer errors in this case.  

520 Thinking in Java Bruce Eckel 



 

Generics 521 

Note that I had to put in bounds and wildcards in order for Apply and FilledList to be used 
in all desired situations. You can experiment by taking these out, and you’ll discover that 
some applications of Apply and FilledList will not work.  

FilledList presents a bit of a quandary. In order for a type to be used, it must have a default 
(no-arg) constructor. Java has no way to assert such a thing at compile time, so it becomes a 
runtime issue. A common suggestion to ensure compile-time checking is to define a factory 
interface that has a method that generates objects; then FilledList would accept that 
interface rather than the "raw factory" of the type token. The problem with this is that all the 
classes you use in FilledList must then implement your factory interface. Alas, most classes 
are created without knowledge of your interface, and therefore do not implement it. Later, I’ll 
show one solution using adapters.  

But the approach shown, of using a type token, is perhaps a reasonable tradeoff (at least as a 
first-cut solution). With this approach, using something like FilledList is just easy enough 
that it may be used rather than ignored. Of course, because errors are reported at run time, 
you need confidence that these errors will appear early in the development process.  

Note that the type token technique is recommended in the Java literature, such as Gilad 
Bracha’s paper Generics in the Java Programming Language,9 where he notes, "It’s an 
idiom that’s used extensively in the new APIs for manipulating annotations, for example." 
However, I’ve discovered some inconsistency in people’s comfort level with this technique; 
some people strongly prefer the factory approach, which was presented earlier in this 
chapter.  

Also, as elegant as the Java solution turns out to be, we must observe that the use of 
reflection (although it has been improved significantly in recent versions of Java) may be 
slower than a non-reflection implementation, since so much is happening at run time. This 
should not stop you from using the solution, at least as a first cut (lest you fall sway to 
premature optimization), but it’s certainly a distinction between the two approaches.  

Exercise 40:   (3) Add a speak( ) method to all the pets in typeinfo.pets. Modify 
Apply.java to call the speak( ) method for a heterogeneous collection of Pet.  

When you don’t happen to have the right 
interface 

The above example benefited because the Iterable interface was already built in, and was 
exactly what we needed. But what about the general case, when there isn’t an interface 
already in place that just happens to fit your needs?  

For example, let’s generalize the idea in FilledList and create a parameterized fill( ) 
method that will take a sequence and fill it using a Generator. When we try to write this in 
Java, we run into a problem, because there is no convenient "Addable" interface as there 
was an Iterable interface in the previous example. So instead of saying, "anything that you 
can call add( ) for," you must say, "subtype of Collection." The resulting code is not 
particularly generic, since it must be constrained to work with Collection implementations. 
If I try to use a class that doesn’t implement Collection, my generic code won’t work. Here’s 
what it looks like:  

//: generics/Fill.java 
// Generalizing the FilledList idea 
// {main: FillTest} 
import java.util.*; 

                                                            
9 See citation at the end of this chapter. 



 

 
// Doesn’t work with "anything that has an add()." There is 
// no "Addable" interface so we are narrowed to using a 
// Collection. We cannot generalize using generics in 
// this case. 
public class Fill { 
  public static <T> void fill(Collection<T> collection, 
  Class<? extends T> classToken, int size) { 
    for(int i = 0; i < size; i++) 
      // Assumes default constructor: 
      try { 
        collection.add(classToken.newInstance()); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
  } 
} 
 
class Contract { 
  private static long counter = 0; 
  private final long id = counter++; 
  public String toString() { 
    return getClass().getName() + " " + id; 
  } 
} 
 
class TitleTransfer extends Contract {} 
  
class FillTest { 
  public static void main(String[] args) { 
    List<Contract> contracts = new ArrayList<Contract>(); 
    Fill.fill(contracts, Contract.class, 3); 
    Fill.fill(contracts, TitleTransfer.class, 2); 
    for(Contract c: contracts) 
      System.out.println(c); 
    SimpleQueue<Contract> contractQueue = 
      new SimpleQueue<Contract>(); 
    // Won’t work. fill() is not generic enough: 
    // Fill.fill(contractQueue, Contract.class, 3); 
  } 
} /* Output: 
Contract 0 
Contract 1 
Contract 2 
TitleTransfer 3 
TitleTransfer 4 
*///:~ 

This is where a parameterized type mechanism with latent typing is valuable, because you are 
not at the mercy of the past design decisions of any particular library creator, so you do not 
have to rewrite your code every time you encounter a new library that didn’t take your 
situation into account (thus the code is truly "generic"). In the above case, because the Java 
designers (understandably) did not see the need for an "Addable" interface, we are 
constrained within the Collection hierarchy, and SimpleQueue, even though it has an 
add( ) method, will not work. Because it is thus constrained to working with Collection, the 
code is not particularly "generic." With latent typing, this would not be the case.  

 

 

522 Thinking in Java Bruce Eckel 



 

Simulating latent typing with adapters 

So Java generics don’t have latent typing, and we need something like latent typing in order 
to write code that can be applied across class boundaries (that is, "generic" code). Is there 
some way to get around this limitation?  

What would latent typing accomplish here? It means that you could write code saying, "I 
don’t care what type I’m using here as long as it has these methods." In effect, latent typing 
creates an implicit interface containing the desired methods. So it follows that if we write the 
necessary interface by hand (since Java doesn’t do it for us), that should solve the problem.  

Writing code to produce an interface that we want from an interface that we have is an example of 
the Adapter design pattern. We can use adapters to adapt existing classes to produce the desired 
interface, with a relatively small amount of code. The solution, which uses the previously defined 
Coffee hierarchy, demonstrates different ways of writing adapters:  

//: generics/Fill2.java 
// Using adapters to simulate latent typing. 
// {main: Fill2Test} 
import generics.coffee.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
interface Addable<T> { void add(T t); } 
 
public class Fill2 { 
  // Classtoken version: 
  public static <T> void fill(Addable<T> addable, 
  Class<? extends T> classToken, int size) { 
    for(int i = 0; i < size; i++) 
      try { 
        addable.add(classToken.newInstance()); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
  } 
  // Generator version: 
  public static <T> void fill(Addable<T> addable, 
  Generator<T> generator, int size) { 
    for(int i = 0; i < size; i++) 
      addable.add(generator.next()); 
  } 
} 
 
// To adapt a base type, you must use composition. 
// Make any Collection Addable using composition: 
class AddableCollectionAdapter<T> implements Addable<T> { 
  private Collection<T> c; 
  public AddableCollectionAdapter(Collection<T> c) { 
    this.c = c; 
  } 
  public void add(T item) { c.add(item); } 
} 
  
// A Helper to capture the type automatically: 
class Adapter { 
  public static <T> 
  Addable<T> collectionAdapter(Collection<T> c) { 
    return new AddableCollectionAdapter<T>(c); 
  } 

Generics 523 



 

} 
 
// To adapt a specific type, you can use inheritance. 
// Make a SimpleQueue Addable using inheritance: 
class AddableSimpleQueue<T> 
extends SimpleQueue<T> implements Addable<T> { 
  public void add(T item) { super.add(item); } 
} 
  
class Fill2Test { 
  public static void main(String[] args) { 
    // Adapt a Collection: 
    List<Coffee> carrier = new ArrayList<Coffee>(); 
    Fill2.fill( 
      new AddableCollectionAdapter<Coffee>(carrier), 
      Coffee.class, 3); 
    // Helper method captures the type: 
    Fill2.fill(Adapter.collectionAdapter(carrier), 
      Latte.class, 2); 
    for(Coffee c: carrier) 
      print(c); 
    print("----------------------"); 
    // Use an adapted class: 
    AddableSimpleQueue<Coffee> coffeeQueue = 
      new AddableSimpleQueue<Coffee>(); 
    Fill2.fill(coffeeQueue, Mocha.class, 4); 
    Fill2.fill(coffeeQueue, Latte.class, 1); 
    for(Coffee c: coffeeQueue) 
      print(c); 
  } 
} /* Output: 
Coffee 0 
Coffee 1 
Coffee 2 
Latte 3 
Latte 4 
---------------------- 
Mocha 5 
Mocha 6 
Mocha 7 
Mocha 8 
Latte 9 
*///:~ 

Fill2 doesn’t require a Collection as Fill did. Instead, it only needs something that 
implements Addable, and Addable has been written just for Fill—it is a manifestation of 
the latent type that I wanted the compiler to make for me.  

In this version, I’ve also added an overloaded fill( ) that takes a Generator rather than a 
type token. The Generator is type-safe at compile time: The compiler ensures that you pass 
it a proper Generator, so no exceptions can be thrown.  

The first adapter, AddableCollectionAdapter, works with the base type Collection, 
which means that any implementation of Collection can be used. This version simply stores 
the Collection reference and uses it to implement add( ).  

If you have a specific type rather than the base class of a hierarchy, you can write somewhat 
less code when creating your adapter by using inheritance, as you can see in 
AddableSimpleQueue.  

524 Thinking in Java Bruce Eckel 



 

In Fill2Test.main( ), you can see the various types of adapters at work. First, a Collection 
type is adapted with AddableCollectionAdapter. A second version of this uses a generic 
helper method, and you can see how the generic method captures the type so it doesn’t have 
to be explicitly written— this is a convenient trick that produces more elegant code.  

Next, the pre-adapted AddableSimpleQueue is used. Note that in both cases the adapters 
allow the classes that previously didn’t implement Addable to be used with Fill2.fill( ).  

Using adapters like this would seem to compensate for the lack of latent typing, and thus 
allow you to write genuinely generic code. However, it’s an extra step and something that 
must be understood both by the library creator and the library consumer, and the concept 
may not be grasped as readily by less experienced programmers. By removing the extra step, 
latent typing makes generic code easier to apply, and this is its value.  

Exercise 41:   (1) Modify Fill2.java to use the classes in typeinfo.pets instead of the 
Coffee classes.  

   

Generics 525 



 

526 Thinking in Java Bruce Eckel 

Using function objects as 
     strategies 

This final example will create truly generic code using the adapter approach described in the 
previous section. The example began as an attempt to create a sum over a sequence of 
elements (of any type that can be summed), but evolved into performing general operations 
using afunctional style of programming.  

If you just look at the process of trying to add objects, you can see that this is a case where we 
have common operations across classes, but the operations are not represented in any base 
class that we can specify—sometimes you can even use a’+’ operator, and other times there 
may be some kind of "add" method. This is generally the situation that you encounter when 
trying to write generic code, because you want the code to apply across multiple classes—
especially, as in this case, multiple classes that already exist and that we have no ability to 
"fix." Even if you were to narrow this case to subclasses of Number, that superclass doesn’t 
include anything about "addability."  

The solution is to use the Strategy design pattern, which produces more elegant code 
because it completely isolates "the thing that changes" inside of a function object.10

 A 
function object is an object that in some way behaves like a function—typically, there’s one 
method of interest (in languages that support operator overloading, you can make the call to 
this method look like an ordinary method call). The value of function objects is that, unlike 
an ordinary method, they can be passed around, and they can also have state that persists 
across calls. Of course, you can accomplish something like this with any method in a class, 
but (as with any design pattern) the function object is primarily distinguished by its intent. 
Here the intent is to create something that behaves like a single method that you can pass 
around; thus it is closely coupled with—and sometimes indistinguishable from—the Strategy 
design pattern.  

As I’ve found with a number of design patterns, the lines get kind of blurry here: We are creating 
function objects which perform adaptation, and they are being passed into methods to be used as 
strategies.  

Taking this approach, I added the various kinds of generic methods that I had originally set out to 
create, and more. Here is the result:  

//: generics/Functional.java 
import java.math.*; 
import java.util.concurrent.atomic.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
// Different types of function objects: 
interface Combiner<T> { T combine(T x, T y); } 
interface UnaryFunction<R,T> { R function(T x); } 
interface Collector<T> extends UnaryFunction<T,T> { 
  T result(); // Extract result of collecting parameter 
} 
interface UnaryPredicate<T> { boolean test(T x); } 
  
public class Functional { 
  // Calls the Combiner object on each element to combine 
  // it with a running result, which is finally returned: 
  public static <T> T 

                                                            
10 You will sometimes see these called functors. I will use the term function object rather than^unctor, as the term 
"functor" has a specific and different meaning in mathematics. 



 

  reduce(Iterable<T> seq, Combiner<T> combiner) { 
    Iterator<T> it = seq.iterator(); 
    if(it.hasNext()) { 
      T result = it.next(); 
      while(it.hasNext()) 
        result = combiner.combine(result, it.next()); 
      return result; 
    } 
    // If seq is the empty list: 
    return null; // Or throw exception 
  } 
  // Take a function object and call it on each object in 
  // the list, ignoring the return value. The function 
  // object may act as a collecting parameter, so it is 
  // returned at the end. 
  public static <T> Collector<T> 
  forEach(Iterable<T> seq, Collector<T> func) { 
    for(T t : seq) 
      func.function(t); 
    return func; 
  } 
  // Creates a list of results by calling a 
  // function object for each object in the list: 
  public static <R,T> List<R> 
  transform(Iterable<T> seq, UnaryFunction<R,T> func) { 
    List<R> result = new ArrayList<R>(); 
    for(T t : seq) 
      result.add(func.function(t)); 
    return result; 
  } 
  // Applies a unary predicate to each item in a sequence, 
  // and returns a list of items that produced "true": 
  public static <T> List<T> 
  filter(Iterable<T> seq, UnaryPredicate<T> pred) { 
    List<T> result = new ArrayList<T>(); 
    for(T t : seq) 
      if(pred.test(t)) 
        result.add(t); 
    return result; 
  } 
  // To use the above generic methods, we need to create 
  // function objects to adapt to our particular needs: 
  static class IntegerAdder implements Combiner<Integer> { 
    public Integer combine(Integer x, Integer y) { 
      return x + y; 
    } 
  } 
  static class 
  IntegerSubtracter implements Combiner<Integer> { 
    public Integer combine(Integer x, Integer y) { 
      return x - y; 
    } 
  } 
  static class 
  BigDecimalAdder implements Combiner<BigDecimal> { 
    public BigDecimal combine(BigDecimal x, BigDecimal y) { 
      return x.add(y); 
    } 
  } 
  static class 
  BigIntegerAdder implements Combiner<BigInteger> { 
    public BigInteger combine(BigInteger x, BigInteger y) { 
      return x.add(y); 

Generics 527 



 

    } 
  } 
  static class 
  AtomicLongAdder implements Combiner<AtomicLong> { 
    public AtomicLong combine(AtomicLong x, AtomicLong y) { 
      // Not clear whether this is meaningful: 
      return new AtomicLong(x.addAndGet(y.get())); 
    } 
  } 
  // We can even make a UnaryFunction with an "ulp" 
  // (Units in the last place): 
  static class BigDecimalUlp 
  implements UnaryFunction<BigDecimal,BigDecimal> { 
    public BigDecimal function(BigDecimal x) { 
      return x.ulp(); 
    } 
  } 
  static class GreaterThan<T extends Comparable<T>> 
  implements UnaryPredicate<T> { 
    private T bound; 
    public GreaterThan(T bound) { this.bound = bound; } 
    public boolean test(T x) { 
      return x.compareTo(bound) > 0; 
    } 
  } 
  static class MultiplyingIntegerCollector 
  implements Collector<Integer> { 
    private Integer val = 1; 
    public Integer function(Integer x) { 
      val *= x; 
      return val; 
    } 
    public Integer result() { return val; } 
  } 
  public static void main(String[] args) { 
    // Generics, varargs & boxing working together: 
    List<Integer> li = Arrays.asList(1, 2, 3, 4, 5, 6, 7); 
    Integer result = reduce(li, new IntegerAdder()); 
    print(result); 
 
    result = reduce(li, new IntegerSubtracter()); 
    print(result); 
 
    print(filter(li, new GreaterThan<Integer>(4))); 
 
    print(forEach(li, 
      new MultiplyingIntegerCollector()).result()); 
 
    print(forEach(filter(li, new GreaterThan<Integer>(4)), 
      new MultiplyingIntegerCollector()).result()); 
 
    MathContext mc = new MathContext(7); 
    List<BigDecimal> lbd = Arrays.asList( 
      new BigDecimal(1.1, mc), new BigDecimal(2.2, mc), 
      new BigDecimal(3.3, mc), new BigDecimal(4.4, mc)); 
    BigDecimal rbd = reduce(lbd, new BigDecimalAdder()); 
    print(rbd); 
 
    print(filter(lbd, 
      new GreaterThan<BigDecimal>(new BigDecimal(3)))); 
 
    // Use the prime-generation facility of BigInteger: 
    List<BigInteger> lbi = new ArrayList<BigInteger>(); 

528 Thinking in Java Bruce Eckel 



 

    BigInteger bi = BigInteger.valueOf(11); 
    for(int i = 0; i < 11; i++) { 
      lbi.add(bi); 
      bi = bi.nextProbablePrime(); 
    } 
    print(lbi); 
 
    BigInteger rbi = reduce(lbi, new BigIntegerAdder()); 
    print(rbi); 
    // The sum of this list of primes is also prime: 
    print(rbi.isProbablePrime(5)); 
 
    List<AtomicLong> lal = Arrays.asList( 
      new AtomicLong(11), new AtomicLong(47), 
      new AtomicLong(74), new AtomicLong(133)); 
    AtomicLong ral = reduce(lal, new AtomicLongAdder()); 
    print(ral); 
 
    print(transform(lbd,new BigDecimalUlp())); 
  } 
} /* Output: 
28 
-26 
[5, 6, 7] 
5040 
210 
11.000000 
[3.300000, 4.400000] 
[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] 
311 
true 
265 
[0.000001, 0.000001, 0.000001, 0.000001] 
*///:~ 

I begin by defining interfaces for different types of function objects. These were created on 
demand, as I developed the different methods and discovered the need for each. The 
Combiner class was suggested by an anonymous contributor to one of the articles posted on 
my Web site. The Combiner abstracts away the specific detail of trying to add two objects, 
and just says that they are being combined somehow. As a result, you can see that 
IntegerAdder and IntegerSubtracter can be types of Combiner.  

A UnaryFunction takes a single argument and produces a result; the argument and result 
need not be of the same type. A Collector is used as a "collecting parameter," and you can 
extract the result when you’re finished. A UnaryPredicate produces a boolean result. 
There are other types of function objects that can be defined, but these are enough to make 
the point.  

The Functional class contains a number of generic methods that apply function objects to 
sequences. reduce( ) applies the function in a Combiner to each element of a sequence in 
order to produce a single result.  

forEach( ) takes a Collector and applies its function to each element, ignoring the result of 
each function call. This can be called just for the side effect (which wouldn’t be a "functional" 
style of programming but can still be useful), or the Collector can maintain internal state to 
become a collecting parameter, as is the case in this example.  

transform( ) produces a list by calling a UnaryFunction on each object in the sequence 
and capturing the result.  

Generics 529 



 

Finally, filter( ) applies a UnaryPredicate to each object in a sequence and stores the ones 
that produce true in a List, which it returns.  

You can define additional generic functions. The C++ STL, for example, has lots of them. The 
problem has also been solved in some open-source libraries, such as the JGA (Generic 
Algorithms for Java).  

In C++, latent typing takes care of matching up operations when you call functions, but in 
Java we need to write the function objects to adapt the generic methods to our particular 
needs. So the next part of the class shows various different implementations of the function 
objects. Note, for example, that IntegerAdder and BigDecimalAdder solve the same 
problemadding two objects—by calling the appropriate operations for their particular type. 
So that’s the Adapter pattern and Strategy pattern combined.  

In main( ), you can see that in each method call, a sequence is passed along with the 
appropriate function object. Also, a number of the expressions can get fairly complex, such 
as:  

forEach(filter(li, new GreaterThan(4)),  
        new MultiplyingIntegerCollector()).result() 

This produces a list by selecting all elements in li that are greater than 4, and then applies the 
MultiplyingIntegerCollector( ) to the resulting list and extracts the result( ). I won’t 
explain the details of the rest of the code other than to say that you can probably figure it out 
by walking through it.  

Exercise 42:   (5) Create two separate classes, with nothing in common. Each class should 
hold a value, and at least have methods that produce that value and perform a modification 
upon that value. Modify Functional.java so that it performs functional operations on 
collections of your classes (these operations do not have to be arithmetic as they are in 
Functional.java).  

   

530 Thinking in Java Bruce Eckel 



 

Summary: Is casting really so 
     bad? 

Having worked to explain C++ templates since their inception, I have probably been putting 
forward the following argument longer than most people. Only recently have I stopped to 
wonder how often this argument is valid—how many times does the problem I’m about to 
describe really slip through the cracks?  

The argument goes like this. One of the most compelling places to use a generic type 
mechanism is with container classes such as the Lists, Sets, Maps, etc. that you saw in 
Holding Your Objects and that you shall see more of in the Containers in Depth chapter. 
Before Java SE5, when you put an object into a container, it would be upcast to Object, so 
you’d lose the type information. When you wanted to pull it back out to do something with it, 
you had to cast it back down to the proper type. My example was a List of Cat (a variation of 
this using apples and oranges is shown at the beginning of the Holding Your Objects 
chapter). Without the Java SE5 generic version of the container, you put Objects in and you 
get Objects out, so it’s easily possible to put a Dog in a List of Cat.  

However, pre-generic Java wouldn’t let you misuse the objects that you put into a container. 
If you threw a Dog into a container of Cats and then tried to treat everything in the 
container as a Cat, you’d get a RuntimeException when you pulled the Dog reference out 
of the Cat container and tried to cast it to a Cat. You’d still discover the problem, but you 
discovered it at run time rather than compile time.  

In previous editions of this book, I go on to say:  

This is more than just an annoyance. It’s something that can create difficult-to-find bugs. 
If one part (or several parts) of a program inserts objects into a container, and you 
discover only in a separate part of the program through an exception that a bad object 
was placed in the container, then you must find out where the bad insert occurred.  

However, upon further examination of the argument, I began to wonder about it. First, how 
often does it happen? I don’t remember this kind of thing ever happening to me, and when I 
asked people at conferences, I didn’t hear anyone say that it had happened to them. Another 
book used an example of a list called files that contained String objects—in this example it 
seemed perfectly natural to add a File object to files, so a better name for the object might 
have been fileNames. No matter how much type checking Java provides, it’s still possible to 
write obscure programs, and a badly written program that compiles is still a badly written 
program. Perhaps most people use well-named containers such as "cats" that provide a 
visual warning to the programmer who would try to add a non-Cat. And even if it did happen, 
how long would such a thing really stay buried? It would seem that as soon as you started 
running tests with real data, you’d see an exception pretty quickly.  

One author even asserted that such a bug could "remain buried for years." But I do not recall 
any deluge of reports of people having great difficulty finding "dog in cat list" bugs, or even 
producing them very often. Whereas you will see in the Concurrency chapter that with 
threads, it is very easy and common to have bugs that may appear extremely rarely, and only 
give you a vague idea of what’s wrong. So is the "dog in cat list" argument really the reason 
that this very significant and fairly complex feature has been added to Java?  

I believe the intent of the general-purpose language feature called "generics" (not necessarily 
Java’s particular implementation of it) is expressiveness, not just creating type-safe 
containers. Type-safe containers come as a side effect of the ability to create more general-
purpose code.  

Generics 531 



 

So even though the "dog in cat list" argument is often used to justify generics, it is 
questionable. And as I asserted at the beginning of the chapter, I do not believe that this is 
what the concept of generics is really about. Instead, generics are as their name implies—a 
way to write more "generic" code that is less constrained by the types it can work with, so a 
single piece of code can be applied to more types. As you have seen in this chapter, it is fairly 
easy to write truly generic "holder" classes (which the Java containers are), but to write 
generic code that manipulates its generic types requires extra effort, on the part of both the 
class creator and the class consumer, who must understand the concept and implementation 
of the Adapter design pattern. That extra effort reduces the ease of use of the feature, and 
may thus make it less applicable in places where it might otherwise have added value.  

Also note that because generics were back-engineered into Java instead of being designed 
into the language from the start, some of the containers cannot be made as robust as they 
should be. For example, look at Map, in particular the methods containsKey(Object key) 
and get(Object key). If these classes had been designed with pre-existing generics, these 
methods would have used parameterized types instead of Object, thus affording the 
compile-time checking that generics are supposed to provide. In C++ maps, for example, the 
key type is always checked at compile time.  

One thing is very clear: Introducing any kind of generic mechanism in a later version of a 
language, after that language has come into general use, is a very, very messy proposition, 
and one that cannot be accomplished without pain. In C++, templates were introduced in the 
initial ISO version of the language (although even that caused some pain because there was 
an earlier nontemplate version in use before the first Standard C++ appeared), so in effect 
templates were always a part of the language. In Java, generics were not introduced until 
almost 10 years after the language was first released, so the issues of migrating to generics 
are quite considerable, and have made a significant impact on the design of generics. The 
result is that you, the programmer, will suffer because of the lack of vision exhibited by the 
Java designers when they created version l.o. When Java was first being created, the 
designers, of course, knew about C++ templates, and they even considered including them in 
the language, but for one reason or another decided to leave them out (indications are that 
they were in a hurry). As a result, both the language and the programmers that use it will 
suffer. Only time will show the ultimate impact that Java’s approach to generics will have on 
the language.  

Some languages, notably Nice (see http://nice.sourceforge.net; this language generates Java 
bytecodes and works with existing Java libraries) and NextGen (see 
http://japan.cs.rice.edu/nextgen) have incorporated cleaner and less impactful approaches 
to parameterized types. It’s not impossible to imagine such a language becoming a successor 
to Java, because it takes exactly the approach that C++ did with C: Use what’s there and 
improve upon it.  

   

532 Thinking in Java Bruce Eckel 



 

Generics 533 

Further reading 

The introductory document for generics is Generics in the Java Programming Language, by 
Gilad Bracha, located at http://java.sun.eom/j2se/1.5/pdf/generics-tutorial.pdf  

Angelika Langer’s Java Generics FAQs is a very helpful resource, located at 
www.angelikalanger.com/GenericsFAQ/JavaGenericsFAQ.html.  

You can find out more about wildcards in Adding Wildcards to the Java Programming 
Language, by Torgerson, Ernst, Hansen, von der Ahe, Bracha and Gafter, located at 
www.jot.fm/issues/issue_2004_12/article5.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net. 





 

Arrays 
At the end of the Initialization & Cleanup chapter, you learned how to 
define and initialize an array.  

The simple view of arrays is that you create and populate them, you select elements from 
them using int indexes, and they don’t change their size. Most of the time that’s all you need 
to know, but sometimes you need to perform more sophisticated operations on arrays, and 
you may also need to evaluate the use of an array vs. a more flexible container. This chapter 
will show you how to think about arrays in more depth.  

Why arrays are special 
There are a number of other ways to hold objects, so what makes an array special?  

There are three issues that distinguish arrays from other types of containers: efficiency, type, 
and the ability to hold primitives. The array is Java’s most efficient way to store and 
randomly access a sequence of object references. The array is a simple linear sequence, which 
makes element access fast. The cost of this speed is that the size of an array object is fixed 
and cannot be changed for the lifetime of that array. You might suggest an ArrayList (from 
Holding Your Objects), which will automatically allocate more space, creating a new one and 
moving all the references from the old one to the new one. Although you should generally 
prefer an ArrayList to an array, this flexibility has overhead, so an ArrayList is measurably 
less efficient than an array.  

Both arrays and containers guarantee that you can’t abuse them. Whether you’re using an 
array or a container, you’ll get a RuntimeException if you exceed the bounds, indicating a 
programmer error.  

Before generics, the other container classes dealt with objects as if they had no specific type. 
That is, they treated them as type Object, the root class of all classes in Java. Arrays are 
superior to pre-generic containers because you create an array to hold a specific type. This 
means that you get compile-time type checking to prevent you from inserting the wrong type 
or mistaking the type that you’re extracting. Of course, Java will prevent you from sending an 
inappropriate message to an object at either compile time or run time. So it’s not riskier one 
way or the other; it’s just nicer if the compiler points it out to you, and there’s less likelihood 
that the end user will get surprised by an exception.  

An array can hold primitives, whereas a pre-generic container could not. With generics, 
however, containers can specify and check the type of objects they hold, and with autoboxing 
containers can act as if they are able to hold primitives, since the conversion is automatic. 
Here’s an example that compares arrays with generic containers:  

//: arrays/ContainerComparison.java 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class BerylliumSphere { 
  private static long counter; 
  private final long id = counter++; 
  public String toString() { return "Sphere " + id; } 
} 
 
public class ContainerComparison { 

 



 

  public static void main(String[] args) { 
    BerylliumSphere[] spheres = new BerylliumSphere[10]; 
    for(int i = 0; i < 5; i++) 
      spheres[i] = new BerylliumSphere(); 
    print(Arrays.toString(spheres)); 
    print(spheres[4]); 
 
    List<BerylliumSphere> sphereList = 
      new ArrayList<BerylliumSphere>(); 
    for(int i = 0; i < 5; i++) 
      sphereList.add(new BerylliumSphere()); 
    print(sphereList); 
    print(sphereList.get(4)); 
 
    int[] integers = { 0, 1, 2, 3, 4, 5 }; 
    print(Arrays.toString(integers)); 
    print(integers[4]); 
 
    List<Integer> intList = new ArrayList<Integer>( 
      Arrays.asList(0, 1, 2, 3, 4, 5)); 
    intList.add(97); 
    print(intList); 
    print(intList.get(4)); 
  } 
} /* Output: 
[Sphere 0, Sphere 1, Sphere 2, Sphere 3, Sphere 4, null, null, null, 
null, null] 
Sphere 4 
[Sphere 5, Sphere 6, Sphere 7, Sphere 8, Sphere 9] 
Sphere 9 
[0, 1, 2, 3, 4, 5] 
4 
[0, 1, 2, 3, 4, 5, 97] 
4 
*///:~ 

Both ways of holding objects are type-checked, and the only apparent difference is that arrays 
use [ ] for accessing elements, and a List uses methods such as add( ) and get( ). The 
similarity between arrays and the ArrayList is intentional, so that it’s conceptually easy to 
switch between the two. But as you saw in the Holding Your Objects chapter, containers have 
significantly more functionality than arrays.  

With the advent of autoboxing, containers are nearly as easy to use for primitives as arrays. 
The only remaining advantage to arrays is efficiency. However, when you’re solving a more 
general problem, arrays can be too restrictive, and in those cases you use a container class.  

Arrays are first-class objects 
Regardless of what type of array you’re working with, the array identifier is actually a 
reference to a true object that’s created on the heap. This is the object that holds the 
references to the other objects, and it can be created either implicitly, as part of the array 
initialization syntax, or explicitly with a new expression. Part of the array object (in fact, the 
only field or method you can access) is the read-only length member that tells you how 
many elements can be stored in that array object. The ‘[ ]’ syntax is the only other access that 
you have to the array object.  

The following example summarizes the various ways that an array can be initialized, and how 
the array references can be assigned to different array objects. It also shows that arrays of 

536 Thinking in Java Bruce Eckel 



 

objects and arrays of primitives are almost identical in their use. The only difference is that 
arrays of objects hold references, but arrays of primitives hold the primitive values directly.  

//: arrays/ArrayOptions.java 
// Initialization & re-assignment of arrays. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ArrayOptions { 
  public static void main(String[] args) { 
    // Arrays of objects: 
    BerylliumSphere[] a; // Local uninitialized variable 
    BerylliumSphere[] b = new BerylliumSphere[5]; 
    // The references inside the array are 
    // automatically initialized to null: 
    print("b: " + Arrays.toString(b)); 
    BerylliumSphere[] c = new BerylliumSphere[4]; 
    for(int i = 0; i < c.length; i++) 
      if(c[i] == null) // Can test for null reference 
        c[i] = new BerylliumSphere(); 
    // Aggregate initialization: 
    BerylliumSphere[] d = { new BerylliumSphere(), 
      new BerylliumSphere(), new BerylliumSphere() 
    }; 
    // Dynamic aggregate initialization: 
    a = new BerylliumSphere[]{ 
      new BerylliumSphere(), new BerylliumSphere(), 
    }; 
    // (Trailing comma is optional in both cases) 
    print("a.length = " + a.length); 
    print("b.length = " + b.length); 
    print("c.length = " + c.length); 
    print("d.length = " + d.length); 
    a = d; 
    print("a.length = " + a.length); 
 
    // Arrays of primitives: 
    int[] e; // Null reference 
    int[] f = new int[5]; 
    // The primitives inside the array are 
    // automatically initialized to zero: 
    print("f: " + Arrays.toString(f)); 
    int[] g = new int[4]; 
    for(int i = 0; i < g.length; i++) 
      g[i] = i*i; 
    int[] h = { 11, 47, 93 }; 
    // Compile error: variable e not initialized: 
    //!print("e.length = " + e.length); 
    print("f.length = " + f.length); 
    print("g.length = " + g.length); 
    print("h.length = " + h.length); 
    e = h; 
    print("e.length = " + e.length); 
    e = new int[]{ 1, 2 }; 
    print("e.length = " + e.length); 
  } 
} /* Output: 
b: [null, null, null, null, null] 
a.length = 2 
b.length = 5 
c.length = 4 
d.length = 3 
a.length = 3 

Arrays 537 



 

f: [0, 0, 0, 0, 0] 
f.length = 5 
g.length = 4 
h.length = 3 
e.length = 3 
e.length = 2 
*///:~ 

The array a is an uninitialized local variable, and the compiler prevents you from doing 
anything with this reference until you’ve properly initialized it. The array b is initialized to 
point to an array of BerylliumSphere references, but no actual BerylliumSphere objects 
are ever placed in that array. However, you can still ask what the size of the array is, since b 
is pointing to a legitimate object. This brings up a slight drawback: You can’t find out how 
many elements are actually in the array, since length tells you only how many elements can 
be placed in the array; that is, the size of the array object, not the number of elements it 
actually holds. However, when an array object is created, its references are automatically 
initialized to null, so you can see whether a particular array slot has an object in it by 
checking to see whether it’s null. Similarly, an array of primitives is automatically initialized 
to zero for numeric types, (char)o for char, and false for boolean.  

Array c shows the creation of the array object followed by the assignment of 
BerylliumSphere objects to all the slots in the array. Array d shows the "aggregate 
initialization" syntax that causes the array object to be created (implicitly with new on the 
heap, just like for array c) and initialized with BerylliumSphere objects, all in one 
statement.  

The next array initialization can be thought of as a "dynamic aggregate initialization." The 
aggregate initialization used by d must be used at the point of d’s definition, but with the 
second syntax you can create and initialize an array object anywhere. For example, suppose 
hide( ) is a method that takes an array of BerylliumSphere objects. You could call it by 
saying:  

hide(d); 

but you can also dynamically create the array you want to pass as the argument:  

hide(new BerylliumSphere[]{ new BerylliumSphere(),  
  new BerylliumSphere() }); 

In many situations this syntax provides a more convenient way to write code.  

The expression:  

a = d; 

shows how you can take a reference that’s attached to one array object and assign it to 
another array object, just as you can do with any other type of object reference. Now both a 
and d are pointing to the same array object on the heap.  

The second part of ArrayOptions.java shows that primitive arrays work just like object 
arrays except that primitive arrays hold the primitive values directly.  

Exercise 1:   (2) Create a method that takes an array of BerylliumSphere as an 
argument. Call the method, creating the argument dynamically. Demonstrate that ordinary 
aggregate array initialization doesn’t work in this case. Discover the only situations where 
ordinary aggregate array initialization works, and where dynamic aggregate initialization is 
redundant.  

538 Thinking in Java Bruce Eckel 



 

Returning an array 
Suppose you’re writing a method and you don’t want to return just one thing, but a whole 
bunch of things. Languages like C and C++ make this difficult because you can’t just return 
an array, only a pointer to an array. This introduces problems because it becomes messy to 
control the lifetime of the array, which leads to memory leaks.  

In Java, you just return the array. You never worry about responsibility for that array—it will 
be around as long as you need it, and the garbage collector will clean it up when you’re done.  

As an example, consider returning an array of String:  

//: arrays/IceCream.java 
// Returning arrays from methods. 
import java.util.*; 
 
public class IceCream { 
  private static Random rand = new Random(47); 
  static final String[] FLAVORS = { 
    "Chocolate", "Strawberry", "Vanilla Fudge Swirl", 
    "Mint Chip", "Mocha Almond Fudge", "Rum Raisin", 
    "Praline Cream", "Mud Pie" 
  }; 
  public static String[] flavorSet(int n) { 
    if(n > FLAVORS.length) 
      throw new IllegalArgumentException("Set too big"); 
    String[] results = new String[n]; 
    boolean[] picked = new boolean[FLAVORS.length]; 
    for(int i = 0; i < n; i++) { 
      int t; 
      do 
        t = rand.nextInt(FLAVORS.length); 
      while(picked[t]); 
      results[i] = FLAVORS[t]; 
      picked[t] = true; 
    } 
    return results; 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < 7; i++) 
      System.out.println(Arrays.toString(flavorSet(3))); 
  } 
} /* Output: 
[Rum Raisin, Mint Chip, Mocha Almond Fudge] 
[Chocolate, Strawberry, Mocha Almond Fudge] 
[Strawberry, Mint Chip, Mocha Almond Fudge] 
[Rum Raisin, Vanilla Fudge Swirl, Mud Pie] 
[Vanilla Fudge Swirl, Chocolate, Mocha Almond Fudge] 
[Praline Cream, Strawberry, Mocha Almond Fudge] 
[Mocha Almond Fudge, Strawberry, Mint Chip] 
*///:~ 

The method flavorSet( ) creates an array of String called results. The size of this array is 
n, determined by the argument that you pass into the method. Then it proceeds to choose 
flavors randomly from the array FLAVORS and place them into results, which it returns. 
Returning an array is just like returning any other object—it’s a reference. It’s not important 
that the array was created within flavorSet( ), or that the array was created anyplace else, for 
that matter. The garbage collector takes care of cleaning up the array when you’re done with 
it, and the array will persist for as long as you need it.  

Arrays 539 



 

As an aside, notice that when flavorSet( ) chooses flavors randomly, it ensures that a 
particular choice hasn’t already been selected. This is performed in a do loop that keeps 
making random choices until it finds one not already in the picked array. (Of course, a 
String comparison also could have been performed to see if the random choice was already 
in the results array.) If it’s successful, it adds the entry and finds the next one (i gets 
incremented).  

You can see from the output that flavorSet( ) chooses the flavors in a random order each 
time.  

Exercise 2:   (1) Write a method that takes an int argument and returns an array of that 
size, filled with BerylliumSphere objects.  

 

Multidimensional arrays 
You can easily create multidimensional arrays. For a multidimensional array of primitives, 
you delimit each vector in the array by using curly braces:  

//: arrays/MultidimensionalPrimitiveArray.java 
// Creating multidimensional arrays. 
import java.util.*; 
 
public class MultidimensionalPrimitiveArray { 
  public static void main(String[] args) { 
    int[][] a = { 
      { 1, 2, 3, }, 
      { 4, 5, 6, }, 
    }; 
    System.out.println(Arrays.deepToString(a)); 
  } 
} /* Output: 
[[1, 2, 3], [4, 5, 6]] 
*///:~ 

Each nested set of curly braces moves you into the next level of the array.  

This example uses the Java SE5 Arrays.deepToString( ) method, which turns 
multidimensional arrays into Strings, as you can see from the output.  

You can also allocate an array using new. Here’s a three-dimensional array allocated in a 
new expression:  

//: arrays/ThreeDWithNew.java 
import java.util.*; 
 
public class ThreeDWithNew { 
  public static void main(String[] args) { 
    // 3-D array with fixed length: 
    int[][][] a = new int[2][2][4]; 
    System.out.println(Arrays.deepToString(a)); 
  } 
} /* Output: 
[[[0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0]]] 
*///:~ 

540 Thinking in Java Bruce Eckel 



 

You can see that primitive array values are automatically initialized if you don’t give them an 
explicit initialization value. Arrays of objects are initialized to null.  

Each vector in the arrays that make up the matrix can be of any length (this is called a ragged 
array):  

//: arrays/RaggedArray.java 
import java.util.*; 
 
public class RaggedArray { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    // 3-D array with varied-length vectors: 
    int[][][] a = new int[rand.nextInt(7)][][]; 
    for(int i = 0; i < a.length; i++) { 
      a[i] = new int[rand.nextInt(5)][]; 
      for(int j = 0; j < a[i].length; j++) 
        a[i][j] = new int[rand.nextInt(5)]; 
    } 
    System.out.println(Arrays.deepToString(a)); 
  } 
} /* Output: 
[[], [[0], [0], [0, 0, 0, 0]], [[], [0, 0], [0, 0]], [[0, 0, 0], [0], 
[0, 0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0], []], [[0], [], [0]]] 
*///:~ 

The first new creates an array with a random-length first element and the rest 
undetermined. The second new inside the for loop fills out the elements but leaves the third 
index undetermined until you hit the third new.  

You can deal with arrays of non-primitive objects in a similar fashion. Here, you can see how 
to collect many new expressions with curly braces:  

//: arrays/MultidimensionalObjectArrays.java 
import java.util.*; 
 
public class MultidimensionalObjectArrays { 
  public static void main(String[] args) { 
    BerylliumSphere[][] spheres = { 
      { new BerylliumSphere(), new BerylliumSphere() }, 
      { new BerylliumSphere(), new BerylliumSphere(), 
        new BerylliumSphere(), new BerylliumSphere() }, 
      { new BerylliumSphere(), new BerylliumSphere(), 
        new BerylliumSphere(), new BerylliumSphere(), 
        new BerylliumSphere(), new BerylliumSphere(), 
        new BerylliumSphere(), new BerylliumSphere() }, 
    }; 
    System.out.println(Arrays.deepToString(spheres)); 
  } 
} /* Output: 
[[Sphere 0, Sphere 1], [Sphere 2, Sphere 3, Sphere 4, Sphere 5], [Sphere 
6, Sphere 7, Sphere 8, Sphere 9, Sphere 10, Sphere 11, Sphere 12, Sphere 
13]] 
*///:~ 

You can see that spheres is another ragged array, where the length of each list of objects is 
different.  

 

Arrays 541 



 

Autoboxing also works with array initializers:  

//: arrays/AutoboxingArrays.java 
import java.util.*; 
 
public class AutoboxingArrays { 
  public static void main(String[] args) { 
    Integer[][] a = { // Autoboxing: 
      { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, 
      { 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 }, 
      { 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 }, 
      { 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 }, 
    }; 
    System.out.println(Arrays.deepToString(a)); 
  } 
} /* Output: 
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [21, 22, 23, 24, 25, 26, 27, 28, 29, 
30], [51, 52, 53, 54, 55, 56, 57, 58, 59, 60], [71, 72, 73, 74, 75, 76, 
77, 78, 79, 80]] 
*///:~ 

Here’s how an array of non-primitive objects can be built up piece-by-piece: 

//: arrays/AssemblingMultidimensionalArrays.java 
// Creating multidimensional arrays. 
import java.util.*; 
 
public class AssemblingMultidimensionalArrays { 
  public static void main(String[] args) { 
    Integer[][] a; 
    a = new Integer[3][]; 
    for(int i = 0; i < a.length; i++) { 
      a[i] = new Integer[3]; 
      for(int j = 0; j < a[i].length; j++) 
        a[i][j] = i * j; // Autoboxing 
    } 
    System.out.println(Arrays.deepToString(a)); 
  } 
} /* Output: 
[[0, 0, 0], [0, 1, 2], [0, 2, 4]] 
*///:~ 

The i*j is only there to put an interesting value into the Integer.  

The Arrays.deepToString( ) method works with both primitive arrays and object arrays:  

//: arrays/MultiDimWrapperArray.java 
// Multidimensional arrays of "wrapper" objects. 
import java.util.*; 
 
public class MultiDimWrapperArray { 
  public static void main(String[] args) { 
    Integer[][] a1 = { // Autoboxing 
      { 1, 2, 3, }, 
      { 4, 5, 6, }, 
    }; 
    Double[][][] a2 = { // Autoboxing 
      { { 1.1, 2.2 }, { 3.3, 4.4 } }, 
      { { 5.5, 6.6 }, { 7.7, 8.8 } }, 
      { { 9.9, 1.2 }, { 2.3, 3.4 } }, 
    }; 

542 Thinking in Java Bruce Eckel 



 

    String[][] a3 = { 
      { "The", "Quick", "Sly", "Fox" }, 
      { "Jumped", "Over" }, 
      { "The", "Lazy", "Brown", "Dog", "and", "friend" }, 
    }; 
    System.out.println("a1: " + Arrays.deepToString(a1)); 
    System.out.println("a2: " + Arrays.deepToString(a2)); 
    System.out.println("a3: " + Arrays.deepToString(a3)); 
  } 
} /* Output: 
a1: [[1, 2, 3], [4, 5, 6]] 
a2: [[[1.1, 2.2], [3.3, 4.4]], [[5.5, 6.6], [7.7, 8.8]], [[9.9, 1.2], 
[2.3, 3.4]]] 
a3: [[The, Quick, Sly, Fox], [Jumped, Over], [The, Lazy, Brown, Dog, 
and, friend]] 
*///:~ 

Again, in the Integer and Double arrays, Java SE5 autoboxing creates the wrapper objects 
for you.  

Exercise 3:   (4) Write a method that creates and initializes a twodimensional array of 
double. The size of the array is determined by the arguments of the method, and the 
initialization values are a range determined by beginning and ending values that are also 
arguments of the method. Create a second method that will print the array generated by the 
first method. In main( ) test the methods by creating and printing several different sizes of 
arrays.  

Exercise 4:   (2) Repeat the previous exercise for a three-dimensional array.  

Exercise 5:   (1) Demonstrate that multidimensional arrays of nonprimitive types are 
automatically initialized to null.  

Exercise 6:   (1) Write a method that takes two int arguments, indicating the two sizes of 
a 2-D array. The method should create and fill a 2-D array of BerylliumSphere according 
to the size arguments.  

Exercise 7:   (1) Repeat the previous exercise for a 3-D array.  

 

Arrays and generics 
In general, arrays and generics do not mix well. You cannot instantiate arrays of 
parameterized types:  

Peel<Banana>[] peels = new Peel<Banana> [10]; // Illegal 

Erasure removes the parameter type information, and arrays must know the exact type that 
they hold, in order to enforce type safety.  

However, you can parameterize the type of the array itself:  

//: arrays/ParameterizedArrayType.java 
 
class ClassParameter<T> { 
  public T[] f(T[] arg) { return arg; } 

Arrays 543 



 

} 
 
class MethodParameter { 
  public static <T> T[] f(T[] arg) { return arg; } 
} 
 
public class ParameterizedArrayType { 
  public static void main(String[] args) { 
    Integer[] ints = { 1, 2, 3, 4, 5 }; 
    Double[] doubles = { 1.1, 2.2, 3.3, 4.4, 5.5 }; 
    Integer[] ints2 = 
      new ClassParameter<Integer>().f(ints); 
    Double[] doubles2 = 
      new ClassParameter<Double>().f(doubles); 
    ints2 = MethodParameter.f(ints); 
    doubles2 = MethodParameter.f(doubles); 
  } 
} ///:~ 

Note the convenience of using a parameterized method instead of a parameterized class: You 
don’t have to instantiate a class with a parameter for each different type you need to apply it 
to, and you can make it static. Of course, you can’t always choose to use a parameterized 
method instead of a parameterized class, but it can be preferable.  

As it turns out, it’s not precisely correct to say that you cannot create arrays of generic types. 
True, the compiler won’t let you instantiate an array of a generic type. However, it will let 
you create a reference to such an array. For example:  

List<String>[] ls;  

This passes through the compiler without complaint. And although you cannot create an 
actual array object that holds generics, you can create an array of the non-generified type and 
cast it:  

//: arrays/ArrayOfGenerics.java 
// It is possible to create arrays of generics. 
import java.util.*; 
 
public class ArrayOfGenerics { 
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) { 
    List<String>[] ls; 
    List[] la = new List[10]; 
    ls = (List<String>[])la; // "Unchecked" warning 
    ls[0] = new ArrayList<String>(); 
    // Compile-time checking produces an error: 
    //! ls[1] = new ArrayList<Integer>(); 
 
    // The problem: List<String> is a subtype of Object 
    Object[] objects = ls; // So assignment is OK 
    // Compiles and runs without complaint: 
    objects[1] = new ArrayList<Integer>(); 
 
    // However, if your needs are straightforward it is 
    // possible to create an array of generics, albeit 
    // with an "unchecked" warning: 
    List<BerylliumSphere>[] spheres = 
      (List<BerylliumSphere>[])new List[10]; 
    for(int i = 0; i < spheres.length; i++) 
      spheres[i] = new ArrayList<BerylliumSphere>(); 
  } 

544 Thinking in Java Bruce Eckel 



 

} ///:~ 

Once you have a reference to a List<String>[], you can see that you get some compile-time 
checking. The problem is that arrays are covariant, so a List<String>[] is also an Object[], 
and you can use this to assign an ArrayList<Integer> into your array, with no error at 
either compile time or run time.  

If you know you’re not going to upcast and your needs are relatively simple, however, it is 
possible to create an array of generics, which will provide basic compile-time type checking. 
However, a generic container will virtually always be a better choice than an array of 
generics.  

In general you’ll find that generics are effective at the boundaries of a class or method. In the 
interiors, erasure usually makes generics unusable. So you cannot, for example, create an 
array of a generic type:  

//: arrays/ArrayOfGenericType.java 
// Arrays of generic types won’t compile. 
 
public class ArrayOfGenericType<T> { 
  T[] array; // OK 
  @SuppressWarnings("unchecked") 
  public ArrayOfGenericType(int size) { 
    //! array = new T[size]; // Illegal 
    array = (T[])new Object[size]; // "unchecked" Warning 
  } 
  // Illegal: 
  //! public <U> U[] makeArray() { return new U[10]; } 
} ///:~ 

Erasure gets in the way again—this example attempts to create arrays of types that have been 
erased, and are thus unknown types. Notice that you can create an array of Object, and cast 
it, but without the @SuppressWarnings annotation you get an "unchecked" warning at 
compile time because the array doesn’t really hold or dynamically check for type T. That is, if 
I create a String[], Java will enforce at both compile time and run time that I can only place 
String objects in that array. However, if I create an Object[], I can put anything into that 
array except primitive types.  

Exercise 8:   (1) Demonstrate the assertions in the previous paragraph.  

Exercise 9:   (3) Create the classes necessary for the Peel<Banana> example and show 
that the compiler doesn’t accept it. Fix the problem using an ArrayList.  

Exercise 10:   (2) Modify ArrayOfGenerics .Java to use containers instead of arrays. 
Show that you can eliminate the compile-time warnings.  

 

 

 

 

Arrays 545 



 

Creating test data 
When experimenting with arrays, and with programs in general, it’s helpful to be able to 
easily generate arrays filled with test data. The tools in this section will fill an array with 
values or objects.  

Arrays.fill() 

The Java standard library Arrays class has a rather trivial fill( ) method: It only duplicates 
a single value into each location, or in the case of objects, copies the same reference into each 
location. Here’s an example:  

//: arrays/FillingArrays.java 
// Using Arrays.fill() 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class FillingArrays { 
  public static void main(String[] args) { 
    int size = 6; 
    boolean[] a1 = new boolean[size]; 
    byte[] a2 = new byte[size]; 
    char[] a3 = new char[size]; 
    short[] a4 = new short[size]; 
    int[] a5 = new int[size]; 
    long[] a6 = new long[size]; 
    float[] a7 = new float[size]; 
    double[] a8 = new double[size]; 
    String[] a9 = new String[size]; 
    Arrays.fill(a1, true); 
    print("a1 = " + Arrays.toString(a1)); 
    Arrays.fill(a2, (byte)11); 
    print("a2 = " + Arrays.toString(a2)); 
    Arrays.fill(a3, ‘x’); 
    print("a3 = " + Arrays.toString(a3)); 
    Arrays.fill(a4, (short)17); 
    print("a4 = " + Arrays.toString(a4)); 
    Arrays.fill(a5, 19); 
    print("a5 = " + Arrays.toString(a5)); 
    Arrays.fill(a6, 23); 
    print("a6 = " + Arrays.toString(a6)); 
    Arrays.fill(a7, 29); 
    print("a7 = " + Arrays.toString(a7)); 
    Arrays.fill(a8, 47); 
    print("a8 = " + Arrays.toString(a8)); 
    Arrays.fill(a9, "Hello"); 
    print("a9 = " + Arrays.toString(a9)); 
    // Manipulating ranges: 
    Arrays.fill(a9, 3, 5, "World"); 
    print("a9 = " + Arrays.toString(a9)); 
  } 
} /* Output: 
a1 = [true, true, true, true, true, true] 
a2 = [11, 11, 11, 11, 11, 11] 
a3 = [x, x, x, x, x, x] 
a4 = [17, 17, 17, 17, 17, 17] 
a5 = [19, 19, 19, 19, 19, 19] 
a6 = [23, 23, 23, 23, 23, 23] 
a7 = [29.0, 29.0, 29.0, 29.0, 29.0, 29.0] 

546 Thinking in Java Bruce Eckel 



 

Arrays 547 

a8 = [47.0, 47.0, 47.0, 47.0, 47.0, 47.0] 
a9 = [Hello, Hello, Hello, Hello, Hello, Hello] 
a9 = [Hello, Hello, Hello, World, World, Hello] 
*///:~ 

You can either fill the entire array or, as the last two statements show, fill a range of 
elements. But since you can only call Arrays.fill( ) with a single data value, the results are 
not especially useful.  

Data Generators 

To create more interesting arrays of data, but in a flexible fashion, we’ll use the Generator 
concept that was introduced in the Generics chapter. If a tool uses a Generator, you can 
produce any kind of data via your choice of Generator (this is an example of the Strategy 
design pattern—each different Generator represents a different strategy1).  

This section will supply some Generators, and as you’ve seen before, you can easily define 
your own.  

First, here’s a basic set of counting generators for all primitive wrapper types, and for 
Strings. The generator classes are nested within the CountingGenerator class so that 
they may use the same name as the object types they are generating; for example, a generator 
that creates Integer objects would be created with the expression new 
CountingGenerator.Integer( ):  

//: net/mindview/util/CountingGenerator.java 
// Simple generator implementations. 
package net.mindview.util; 
 
public class CountingGenerator { 
  public static class 
  Boolean implements Generator<java.lang.Boolean> { 
    private boolean value = false; 
    public java.lang.Boolean next() { 
      value = !value; // Just flips back and forth 
      return value; 
    } 
  } 
  public static class 
  Byte implements Generator<java.lang.Byte> { 
    private byte value = 0; 
    public java.lang.Byte next() { return value++; } 
  } 
  static char[] chars = ("abcdefghijklmnopqrstuvwxyz" + 
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ").toCharArray(); 
  public static class 
  Character implements Generator<java.lang.Character> { 
    int index = -1; 
    public java.lang.Character next() { 
      index = (index + 1) % chars.length; 
      return chars[index]; 
    } 
  } 
  public static class 
  String implements Generator<java.lang.String> { 
    private int length = 7; 
                                                            
1 Although this is a place where things are a bit fuzzy. You could also make an argument that a Generator represents the 
Command pattern. However, I think that the task is to fill an array, and the Generator fulfills part of that task, so it’s 
more strategy-like than command-like. 



 

    Generator<java.lang.Character> cg = new Character(); 
    public String() {} 
    public String(int length) { this.length = length; } 
    public java.lang.String next() { 
      char[] buf = new char[length]; 
      for(int i = 0; i < length; i++) 
        buf[i] = cg.next(); 
      return new java.lang.String(buf); 
    } 
  } 
  public static class 
  Short implements Generator<java.lang.Short> { 
    private short value = 0; 
    public java.lang.Short next() { return value++; } 
  } 
  public static class 
  Integer implements Generator<java.lang.Integer> { 
    private int value = 0; 
    public java.lang.Integer next() { return value++; } 
  } 
  public static class 
  Long implements Generator<java.lang.Long> { 
    private long value = 0; 
    public java.lang.Long next() { return value++; } 
  } 
  public static class 
  Float implements Generator<java.lang.Float> { 
    private float value = 0; 
    public java.lang.Float next() { 
      float result = value; 
      value += 1.0; 
      return result; 
    } 
  } 
  public static class 
  Double implements Generator<java.lang.Double> { 
    private double value = 0.0; 
    public java.lang.Double next() { 
      double result = value; 
      value += 1.0; 
      return result; 
    } 
  } 
} ///:~ 

Each class implements some meaning of "counting." In the case of 
CountingGenerator.Character, this is just the upper and lowercase letters repeated over 
and over. The CountingGenerator.String class uses CountingGenerator.Character 
to fill an array of characters, which is then turned into a String. The size of the array is 
determined by the constructor argument. Notice that CountingGenerator.String uses a 
basic Generator <java.lang. Character > instead of a specific reference to 
CountingGenerator.Character. Later, this generator can be replaced to produce 
RandomGenerator.String in RandomGenerator.java.  

Here’s a test tool that uses reflection with the nested Generator idiom, so that it can be 
used to test any set of Generators that follow this form:  

//: arrays/GeneratorsTest.java 
import net.mindview.util.*; 
 
public class GeneratorsTest { 
  public static int size = 10; 

548 Thinking in Java Bruce Eckel 



 

  public static void test(Class<?> surroundingClass) { 
    for(Class<?> type : surroundingClass.getClasses()) { 
      System.out.print(type.getSimpleName() + ": "); 
      try { 
        Generator<?> g = (Generator<?>)type.newInstance(); 
        for(int i = 0; i < size; i++) 
          System.out.printf(g.next() + " "); 
        System.out.println(); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
    } 
  } 
  public static void main(String[] args) { 
    test(CountingGenerator.class); 
  } 
} /* Output: 
Double: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
Float: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 
Long: 0 1 2 3 4 5 6 7 8 9 
Integer: 0 1 2 3 4 5 6 7 8 9 
Short: 0 1 2 3 4 5 6 7 8 9 
String: abcdefg hijklmn opqrstu vwxyzAB CDEFGHI JKLMNOP QRSTUVW XYZabcd 
efghijk lmnopqr 
Character: a b c d e f g h i j 
Byte: 0 1 2 3 4 5 6 7 8 9 
Boolean: true false true false true false true false true false 
*///:~ 

This assumes that the class under test contains a set of nested Generator objects, each of 
which has a default constructor (one without arguments). The reflection method 
getClasses( ) produces all the nested classes. The test( ) method then creates an instance 
of each of these generators, and prints the result produced by calling next( ) ten times.  

Here is a set of Generators that use the random number generator. Because the Random 
constructor is initialized with a constant value, the output is repeatable each time you run a 
program using one of these Generators:  

//: net/mindview/util/RandomGenerator.java 
// Generators that produce random values. 
package net.mindview.util; 
import java.util.*; 
 
public class RandomGenerator { 
  private static Random r = new Random(47); 
  public static class 
  Boolean implements Generator<java.lang.Boolean> { 
    public java.lang.Boolean next() { 
      return r.nextBoolean(); 
    } 
  } 
  public static class 
  Byte implements Generator<java.lang.Byte> { 
    public java.lang.Byte next() { 
      return (byte)r.nextInt(); 
    } 
  } 
  public static class 
  Character implements Generator<java.lang.Character> { 
    public java.lang.Character next() { 
      return CountingGenerator.chars[ 
        r.nextInt(CountingGenerator.chars.length)]; 

Arrays 549 



 

    } 
  } 
  public static class 
  String extends CountingGenerator.String { 
    // Plug in the random Character generator: 
    { cg = new Character(); } // Instance initializer 
    public String() {} 
    public String(int length) { super(length); } 
  } 
  public static class 
  Short implements Generator<java.lang.Short> { 
    public java.lang.Short next() { 
      return (short)r.nextInt(); 
    } 
  } 
  public static class 
  Integer implements Generator<java.lang.Integer> { 
    private int mod = 10000; 
    public Integer() {} 
    public Integer(int modulo) { mod = modulo; } 
    public java.lang.Integer next() { 
      return r.nextInt(mod); 
    } 
  } 
  public static class 
  Long implements Generator<java.lang.Long> { 
    private int mod = 10000; 
    public Long() {} 
    public Long(int modulo) { mod = modulo; } 
    public java.lang.Long next() { 
      return new java.lang.Long(r.nextInt(mod)); 
    } 
  } 
  public static class 
  Float implements Generator<java.lang.Float> { 
    public java.lang.Float next() { 
      // Trim all but the first two decimal places: 
      int trimmed = Math.round(r.nextFloat() * 100); 
      return ((float)trimmed) / 100; 
    } 
  } 
  public static class 
  Double implements Generator<java.lang.Double> { 
    public java.lang.Double next() { 
      long trimmed = Math.round(r.nextDouble() * 100); 
      return ((double)trimmed) / 100; 
    } 
  } 
} ///:~ 

You can see that RandomGenerator.String inherits from CountingGenerator.String 
and simply plugs in the new Character generator.  

To generate numbers that aren’t too large, RandomGenerator.Integer defaults to a 
modulus of 10,000, but the overloaded constructor allows you to choose a smaller value. The 
same approach is used for RandomGenerator.Long. For the Float and Double 
Generators, the values after the decimal point are trimmed.  

We can reuse GeneratorsTest to test RandomGenerator:  

//: arrays/RandomGeneratorsTest.java 
import net.mindview.util.*; 

550 Thinking in Java Bruce Eckel 



 

 
public class RandomGeneratorsTest { 
  public static void main(String[] args) { 
    GeneratorsTest.test(RandomGenerator.class); 
  } 
} /* Output: 
Double: 0.73 0.53 0.16 0.19 0.52 0.27 0.26 0.05 0.8 0.76 
Float: 0.53 0.16 0.53 0.4 0.49 0.25 0.8 0.11 0.02 0.8 
Long: 7674 8804 8950 7826 4322 896 8033 2984 2344 5810 
Integer: 8303 3141 7138 6012 9966 8689 7185 6992 5746 3976 
Short: 3358 20592 284 26791 12834 -8092 13656 29324 -1423 5327 
String: bkInaMe sbtWHkj UrUkZPg wsqPzDy CyRFJQA HxxHvHq XumcXZJ oogoYWM 
NvqeuTp nXsgqia 
Character: x x E A J J m z M s 
Byte: -60 -17 55 -14 -5 115 39 -37 79 115 
Boolean: false true false false true true true true true true 
*///:~ 

You can change the number of values produced by changing the GeneratorsTest.size 
value, which is public.  

Creating arrays from Generators 

In order to take a Generator and produce an array, we need two conversion tools. The first 
one uses any Generator to produce an array of Object subtypes. To cope with the problem 
of primitives, the second tool takes any array of primitive wrapper types and produces the 
associated array of primitives.  

The first tool has two options, represented by an overloaded static method, array( ). The 
first version of the method takes an existing array and fills it using a Generator, and the 
second version takes a Class object, a Generator, and the desired number of elements, and 
creates a new array, again filling it using the Generator. Notice that this tool only produces 
arrays of Object subtypes and cannot create primitive arrays:  

//: net/mindview/util/Generated.java 
package net.mindview.util; 
import java.util.*; 
 
public class Generated { 
  // Fill an existing array: 
  public static <T> T[] array(T[] a, Generator<T> gen) { 
    return new CollectionData<T>(gen, a.length).toArray(a); 
  } 
  // Create a new array: 
  @SuppressWarnings("unchecked") 
  public static <T> T[] array(Class<T> type, 
      Generator<T> gen, int size) { 
    T[] a = 
      (T[])java.lang.reflect.Array.newInstance(type, size); 
    return new CollectionData<T>(gen, size).toArray(a); 
  } 
} ///:~ 

The CollectionData class will be defined in the Containers in Depth chapter. It creates a 
Collection object filled with elements produced by the Generator gen. The number of 
elements is determined by the second constructor argument. All Collection subtypes have a 
toArray( ) method that will fill the argument array with the elements from the Collection.  

Arrays 551 



 

The second method uses reflection to dynamically create a new array of the appropriate type 
and size. This is then filled using the same technique as the first method.  

We can test Generated using one of the CountingGenerator classes defined in the 
previous section:  

//: arrays/TestGenerated.java 
import java.util.*; 
import net.mindview.util.*; 
 
public class TestGenerated { 
  public static void main(String[] args) { 
    Integer[] a = { 9, 8, 7, 6 }; 
    System.out.println(Arrays.toString(a)); 
    a = Generated.array(a,new CountingGenerator.Integer()); 
    System.out.println(Arrays.toString(a)); 
    Integer[] b = Generated.array(Integer.class, 
        new CountingGenerator.Integer(), 15); 
    System.out.println(Arrays.toString(b)); 
  } 
} /* Output: 
[9, 8, 7, 6] 
[0, 1, 2, 3] 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] 
*///:~ 

Even though the array a is initialized, those values are overwritten by passing it through 
Generated.array( ), which replaces the values (but leaves the original array in place). The 
initialization of b shows how you can create a filled array from scratch.  

Generics don’t work with primitives, and we want to use the generators to fill primitive 
arrays. To solve the problem, we create a converter that takes any array of wrapper objects 
and converts it to an array of the associated primitive types. Without this tool, we would have 
to create special case generators for all the primitives.  

//: net/mindview/util/ConvertTo.java 
package net.mindview.util; 
 
public class ConvertTo { 
  public static boolean[] primitive(Boolean[] in) { 
    boolean[] result = new boolean[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; // Autounboxing 
    return result; 
  } 
  public static char[] primitive(Character[] in) { 
    char[] result = new char[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
  public static byte[] primitive(Byte[] in) { 
    byte[] result = new byte[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
  public static short[] primitive(Short[] in) { 
    short[] result = new short[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 

552 Thinking in Java Bruce Eckel 



 

    return result; 
  } 
  public static int[] primitive(Integer[] in) { 
    int[] result = new int[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
  public static long[] primitive(Long[] in) { 
    long[] result = new long[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
  public static float[] primitive(Float[] in) { 
    float[] result = new float[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
  public static double[] primitive(Double[] in) { 
    double[] result = new double[in.length]; 
    for(int i = 0; i < in.length; i++) 
      result[i] = in[i]; 
    return result; 
  } 
} ///:~ 

Each version of primitive( ) creates an appropriate primitive array of the correct length, 
then copies the elements from the in array of wrapper types. Notice that autounboxing takes 
place in the expression:  

result[i] = in [1]; 

Here’s an example that shows how you can use ConvertTo with both versions of 
Generated.array( ):  

//: arrays/PrimitiveConversionDemonstration.java 
import java.util.*; 
import net.mindview.util.*; 
 
public class PrimitiveConversionDemonstration { 
  public static void main(String[] args) { 
    Integer[] a = Generated.array(Integer.class, 
        new CountingGenerator.Integer(), 15); 
    int[] b = ConvertTo.primitive(a); 
    System.out.println(Arrays.toString(b)); 
    boolean[] c = ConvertTo.primitive( 
      Generated.array(Boolean.class, 
        new CountingGenerator.Boolean(), 7)); 
    System.out.println(Arrays.toString(c)); 
  } 
} /* Output: 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] 
[true, false, true, false, true, false, true] 
*///:~ 

Finally, here’s a program that tests the array generation tools using RandomGenerator 
classes:  

//: arrays/TestArrayGeneration.java 

Arrays 553 



 

// Test the tools that use generators to fill arrays. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class TestArrayGeneration { 
  public static void main(String[] args) { 
    int size = 6; 
    boolean[] a1 = ConvertTo.primitive(Generated.array( 
      Boolean.class, new RandomGenerator.Boolean(), size)); 
    print("a1 = " + Arrays.toString(a1)); 
    byte[] a2 = ConvertTo.primitive(Generated.array( 
      Byte.class, new RandomGenerator.Byte(), size)); 
    print("a2 = " + Arrays.toString(a2)); 
    char[] a3 = ConvertTo.primitive(Generated.array( 
      Character.class, 
      new RandomGenerator.Character(), size)); 
    print("a3 = " + Arrays.toString(a3)); 
    short[] a4 = ConvertTo.primitive(Generated.array( 
      Short.class, new RandomGenerator.Short(), size)); 
    print("a4 = " + Arrays.toString(a4)); 
    int[] a5 = ConvertTo.primitive(Generated.array( 
      Integer.class, new RandomGenerator.Integer(), size)); 
    print("a5 = " + Arrays.toString(a5)); 
    long[] a6 = ConvertTo.primitive(Generated.array( 
      Long.class, new RandomGenerator.Long(), size)); 
    print("a6 = " + Arrays.toString(a6)); 
    float[] a7 = ConvertTo.primitive(Generated.array( 
      Float.class, new RandomGenerator.Float(), size)); 
    print("a7 = " + Arrays.toString(a7)); 
    double[] a8 = ConvertTo.primitive(Generated.array( 
      Double.class, new RandomGenerator.Double(), size)); 
    print("a8 = " + Arrays.toString(a8)); 
  } 
} /* Output: 
a1 = [true, false, true, false, false, true] 
a2 = [104, -79, -76, 126, 33, -64] 
a3 = [Z, n, T, c, Q, r] 
a4 = [-13408, 22612, 15401, 15161, -28466, -12603] 
a5 = [7704, 7383, 7706, 575, 8410, 6342] 
a6 = [7674, 8804, 8950, 7826, 4322, 896] 
a7 = [0.01, 0.2, 0.4, 0.79, 0.27, 0.45] 
a8 = [0.16, 0.87, 0.7, 0.66, 0.87, 0.59] 
*///:~ 

This also ensures that each version of ConvertTo.primitive( ) works correctly.  

Exercise 11:   (2) Show that autoboxing doesn’t work with arrays.  

Exercise 12:   (1) Create an initialized array of double using CountingGenerator. Print 
the results.  

Exercise 13:   (2) Fill a String using CountingGenerator.Character.  

Exercise 14:   (6) Create an array of each primitive type, then fill each array by using 
CountingGenerator. Print each array.  

Exercise 15:   (2) Modify ContainerComparison.java by creating a Generator for 
BerylliumSphere, and change main( ) to use that Generator with Generated.array(). 

554 Thinking in Java Bruce Eckel 



 

Exercise 16:   (3) Starting with CountingGenerator.java, create a SkipGenerator 
class that produces new values by incrementing according to a constructor argument. Modify 
TestArrayGeneration.java to show that your new class works correctly.  

Exercise 17:   (5) Create and test a Generator for BigDecimal, and ensure that it works 
with the Generated methods.  

 

Arrays utilities 
In java.util, you’ll find the Arrays class, which holds a set of static utility methods for 
arrays. There are six basic methods: equals( ), to compare two arrays for equality (and a 
deepEquals( ) for multidimensional arrays); fill( ), which you’ve seen earlier in this 
chapter; sort( ), to sort an array; binarySearch( ), to find an element in a sorted array; 
toString( ), to produce a String representation for an array; and hashCode( ), to produce 
the hash value of an array (you’ll learn what this means in the Containers in Depth chapter). 
All of these methods are overloaded for all the primitive types and Objects. In addition, 
Arrays.asList( ) takes any sequence or array and turns it into a List container—this 
method was covered in the Holding Your Objects chapter.  

Before discussing the Arrays methods, there’s one other useful method that isn’t part of 
Arrays.  

Copying an array 

The Java standard library provides a static method, System.arraycopy( ), which can copy 
arrays far more quickly than if you use a for loop to perform the copy by hand. 
System.arraycopyC ) is overloaded to handle all types. Here’s an example that 
manipulates arrays of int:  

//: arrays/CopyingArrays.java 
// Using System.arraycopy() 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class CopyingArrays { 
  public static void main(String[] args) { 
    int[] i = new int[7]; 
    int[] j = new int[10]; 
    Arrays.fill(i, 47); 
    Arrays.fill(j, 99); 
    print("i = " + Arrays.toString(i)); 
    print("j = " + Arrays.toString(j)); 
    System.arraycopy(i, 0, j, 0, i.length); 
    print("j = " + Arrays.toString(j)); 
    int[] k = new int[5]; 
    Arrays.fill(k, 103); 
    System.arraycopy(i, 0, k, 0, k.length); 
    print("k = " + Arrays.toString(k)); 
    Arrays.fill(k, 103); 
    System.arraycopy(k, 0, i, 0, k.length); 
    print("i = " + Arrays.toString(i)); 
    // Objects: 
    Integer[] u = new Integer[10]; 
    Integer[] v = new Integer[5]; 
    Arrays.fill(u, new Integer(47)); 

Arrays 555 



 

    Arrays.fill(v, new Integer(99)); 
    print("u = " + Arrays.toString(u)); 
    print("v = " + Arrays.toString(v)); 
    System.arraycopy(v, 0, u, u.length/2, v.length); 
    print("u = " + Arrays.toString(u)); 
  } 
} /* Output: 
i = [47, 47, 47, 47, 47, 47, 47] 
j = [99, 99, 99, 99, 99, 99, 99, 99, 99, 99] 
j = [47, 47, 47, 47, 47, 47, 47, 99, 99, 99] 
k = [47, 47, 47, 47, 47] 
i = [103, 103, 103, 103, 103, 47, 47] 
u = [47, 47, 47, 47, 47, 47, 47, 47, 47, 47] 
v = [99, 99, 99, 99, 99] 
u = [47, 47, 47, 47, 47, 99, 99, 99, 99, 99] 
*///:~ 

The arguments to arraycopy( ) are the source array, the offset into the source array from 
whence to start copying, the destination array, the offset into the destination array where the 
copying begins, and the number of elements to copy. Naturally, any violation of the array 
boundaries will cause an exception.  

The example shows that both primitive arrays and object arrays can be copied. However, if 
you copy arrays of objects, then only the references get copied—there’s no duplication of the 
objects themselves. This is called a shallow copy (see the online supplements for this book 
for more details).  

System.arraycopy( ) will not perform autoboxing or autounboxing—the two arrays must 
be of exactly the same type.  

Exercise 18:   (3) Create and fill an array of BerylliumSphere. Copy this array to a new 
array and show that it’s a shallow copy.  

 

Comparing arrays 

Arrays provides the equals( ) method to compare entire arrays for equality, which is 
overloaded for all the primitives and for Object. To be equal, the arrays must have the same 
number of elements, and each element must be equivalent to each corresponding element in 
the other array, using the equals( ) for each element. (For primitives, that primitive’s 
wrapper class equals( ) is used; for example, Integer.equals( ) for int.) For example:  

//: arrays/ComparingArrays.java 
// Using Arrays.equals() 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ComparingArrays { 
  public static void main(String[] args) { 
    int[] a1 = new int[10]; 
    int[] a2 = new int[10]; 
    Arrays.fill(a1, 47); 
    Arrays.fill(a2, 47); 
    print(Arrays.equals(a1, a2)); 
    a2[3] = 11; 
    print(Arrays.equals(a1, a2)); 
    String[] s1 = new String[4]; 
    Arrays.fill(s1, "Hi"); 

556 Thinking in Java Bruce Eckel 



 

Arrays 557 

    String[] s2 = { new String("Hi"), new String("Hi"), 
      new String("Hi"), new String("Hi") }; 
    print(Arrays.equals(s1, s2)); 
  } 
} /* Output: 
true 
false 
true 
*///:~ 

Originally, a1 and a2 are exactly equal, so the output is "true," but then one of the elements 
is changed, which makes the result "false." In the last case, all the elements of s1 point to the 
same object, but s2 has five unique objects. However, array equality is based on contents (via 
Object.equals( )), so the result is "true."  

Exercise 19:   (2) Create a class with an int field that’s initialized from a constructor 
argument. Create two arrays of these objects, using identical initialization values for each 
array, and show that Arrays.equals( ) says that they are unequal. Add an equals( ) 
method to your class to fix the problem.  

Exercise 20:   (4) Demonstrate deepEquals( ) for multidimensional arrays.  

 

Array element comparisons 

Sorting must perform comparisons based on the actual type of the object. Of course, one 
approach is to write a different sorting method for every different type, but such code is not 
reusable for new types.  

A primary goal of programming design is to "separate things that change from things that 
stay the same," and here, the code that stays the same is the general sort algorithm, but the 
thing that changes from one use to the next is the way objects are compared. So instead of 
placing the comparison code into many different sort routines, the Strategy design pattern is 
used.2

 With a Strategy, the part of the code that varies is encapsulated inside a separate class 
(the Strategy object). You hand a Strategy object to the code that’s always the same, which 
uses the Strategy to fulfill its algorithm. That way, you can make different objects to express 
different ways of comparison and feed them to the same sorting code.  

Java has two ways to provide comparison functionality. The first is with the "natural" 
comparison method that is imparted to a class by implementing the 
java.lang.Comparable interface. This is a very simple interface with a single method, 
compareTo( ). This method takes another object of the same type as an argument and 
produces a negative value if the current object is less than the argument, zero if the argument is 
equal, and a positive value if the current object is greater than the argument.  

Here’s a class that implements Comparable and demonstrates the comparability by using the 
Java standard library method Arrays.sort( ):  

//: arrays/CompType.java 
// Implementing Comparable in a class. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 

                                                            
2 Design Patterns, Erich Gamma et al. (Addison-Wesley, 1995). See Thinking in Patterns (with Java) at 
www.MindView.net. 



 

 
public class CompType implements Comparable<CompType> { 
  int i; 
  int j; 
  private static int count = 1; 
  public CompType(int n1, int n2) { 
    i = n1; 
    j = n2; 
  } 
  public String toString() { 
    String result = "[i = " + i + ", j = " + j + "]"; 
    if(count++ % 3 == 0) 
      result += "\n"; 
    return result; 
  } 
  public int compareTo(CompType rv) { 
    return (i < rv.i ? -1 : (i == rv.i ? 0 : 1)); 
  } 
  private static Random r = new Random(47); 
  public static Generator<CompType> generator() { 
    return new Generator<CompType>() { 
      public CompType next() { 
        return new CompType(r.nextInt(100),r.nextInt(100)); 
      } 
    }; 
  } 
  public static void main(String[] args) { 
    CompType[] a = 
      Generated.array(new CompType[12], generator()); 
    print("before sorting:"); 
    print(Arrays.toString(a)); 
    Arrays.sort(a); 
    print("after sorting:"); 
    print(Arrays.toString(a)); 
  } 
} /* Output: 
before sorting: 
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29] 
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28] 
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61] 
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22] 
] 
after sorting: 
[[i = 9, j = 78], [i = 11, j = 22], [i = 16, j = 40] 
, [i = 20, j = 58], [i = 22, j = 7], [i = 51, j = 89] 
, [i = 58, j = 55], [i = 61, j = 29], [i = 68, j = 0] 
, [i = 88, j = 28], [i = 93, j = 61], [i = 98, j = 61] 
] 
*///:~ 

When you define the comparison method, you are responsible for deciding what it means to 
compare one of your objects to another. Here, only the i values are used in the comparison, 
and the j values are ignored. 

The generator( ) method produces an object that implements the Generator interface by 
creating an anonymous inner class. This builds CompType objects by initializing them with 
random values. In main( ), the generator is used to fill an array of CompType, which is 
then sorted. If Comparable hadn’t been implemented, then you’d get a 
ClassCastException at run time when you tried to call sort( ). This is because sort( ) 
casts its argument to Comparable.  

558 Thinking in Java Bruce Eckel 



 

Now suppose someone hands you a class that doesn’t implement Comparable, or hands 
you this class that does implement Comparable, but you decide you don’t like the way it 
works and would rather have a different comparison method for the type. To solve the 
problem, you create a separate class that implements an interface called Comparator 
(briefly introduced in the Holding Your Objects chapter). This is an example of the Strategy 
design pattern. It has two methods, compare( ) and equals( ). However, you don’t have to 
implement equals( ) except for special performance needs, because anytime you create a 
class, it is implicitly inherited from Object, which has an equals( ). So you can just use the 
default Object equals( ) and satisfy the contract imposed by the interface.  

The Collections class (which we’ll look at more in the next chapter) contains a method 
reverseOrder( ) that produces a Comparator to reverse the natural sorting order. This can be 
applied to CompType:  

//: arrays/Reverse.java 
// The Collections.reverseOrder() Comparator 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class Reverse { 
  public static void main(String[] args) { 
    CompType[] a = Generated.array( 
      new CompType[12], CompType.generator()); 
    print("before sorting:"); 
    print(Arrays.toString(a)); 
    Arrays.sort(a, Collections.reverseOrder()); 
    print("after sorting:"); 
    print(Arrays.toString(a)); 
  } 
} /* Output: 
before sorting: 
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29] 
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28] 
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61] 
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22] 
] 
after sorting: 
[[i = 98, j = 61], [i = 93, j = 61], [i = 88, j = 28] 
, [i = 68, j = 0], [i = 61, j = 29], [i = 58, j = 55] 
, [i = 51, j = 89], [i = 22, j = 7], [i = 20, j = 58] 
, [i = 16, j = 40], [i = 11, j = 22], [i = 9, j = 78] 
] 
*///:~ 

You can also write your own Comparator. This one compares CompType objects based on 
their j values rather than their i values:  

//: arrays/ComparatorTest.java 
// Implementing a Comparator for a class. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
class CompTypeComparator implements Comparator<CompType> { 
  public int compare(CompType o1, CompType o2) { 
    return (o1.j < o2.j ? -1 : (o1.j == o2.j ? 0 : 1)); 
  } 
} 
 
public class ComparatorTest { 

Arrays 559 



 

560 Thinking in Java Bruce Eckel 

  public static void main(String[] args) { 
    CompType[] a = Generated.array( 
      new CompType[12], CompType.generator()); 
    print("before sorting:"); 
    print(Arrays.toString(a)); 
    Arrays.sort(a, new CompTypeComparator()); 
    print("after sorting:"); 
    print(Arrays.toString(a)); 
  } 
} /* Output: 
before sorting: 
[[i = 58, j = 55], [i = 93, j = 61], [i = 61, j = 29] 
, [i = 68, j = 0], [i = 22, j = 7], [i = 88, j = 28] 
, [i = 51, j = 89], [i = 9, j = 78], [i = 98, j = 61] 
, [i = 20, j = 58], [i = 16, j = 40], [i = 11, j = 22] 
] 
after sorting: 
[[i = 68, j = 0], [i = 22, j = 7], [i = 11, j = 22] 
, [i = 88, j = 28], [i = 61, j = 29], [i = 16, j = 40] 
, [i = 58, j = 55], [i = 20, j = 58], [i = 93, j = 61] 
, [i = 98, j = 61], [i = 9, j = 78], [i = 51, j = 89] 
] 
*///:~ 

Exercise 21:   (3) Try to sort an array of the objects in Exercise 18. Implement 
Comparable to fix the problem. Now create a Comparator to sort the objects into reverse 
order.  

 

Sorting an array 

With the built-in sorting methods, you can sort any array of primitives, or any array of 
objects that either implements Comparable or has an associated Comparator.3 Here’s an 
example that generates random String objects and sorts them:  

//: arrays/StringSorting.java 
// Sorting an array of Strings. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class StringSorting { 
  public static void main(String[] args) { 
    String[] sa = Generated.array(new String[20], 
      new RandomGenerator.String(5)); 
    print("Before sort: " + Arrays.toString(sa)); 
    Arrays.sort(sa); 
    print("After sort: " + Arrays.toString(sa)); 
    Arrays.sort(sa, Collections.reverseOrder()); 
    print("Reverse sort: " + Arrays.toString(sa)); 
    Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER); 
    print("Case-insensitive sort: " + Arrays.toString(sa)); 
  } 
} /* Output: 
Before sort: [YNzbr, nyGcF, OWZnT, cQrGs, eGZMm, JMRoE, suEcU, OneOE, 
dLsmw, HLGEa, hKcxr, EqUCB, bkIna, Mesbt, WHkjU, rUkZP, gwsqP, zDyCy, 
RFJQA, HxxHv] 
                                                            
3 Surprisingly, there was no support in Java 1.0 or 1.1 for sorting Strings. 



 

After sort: [EqUCB, HLGEa, HxxHv, JMRoE, Mesbt, OWZnT, OneOE, RFJQA, 
WHkjU, YNzbr, bkIna, cQrGs, dLsmw, eGZMm, gwsqP, hKcxr, nyGcF, rUkZP, 
suEcU, zDyCy] 
Reverse sort: [zDyCy, suEcU, rUkZP, nyGcF, hKcxr, gwsqP, eGZMm, dLsmw, 
cQrGs, bkIna, YNzbr, WHkjU, RFJQA, OneOE, OWZnT, Mesbt, JMRoE, HxxHv, 
HLGEa, EqUCB] 
Case-insensitive sort: [bkIna, cQrGs, dLsmw, eGZMm, EqUCB, gwsqP, hKcxr, 
HLGEa, HxxHv, JMRoE, Mesbt, nyGcF, OneOE, OWZnT, RFJQA, rUkZP, suEcU, 
WHkjU, YNzbr, zDyCy] 
*///:~ 

One thing you’ll notice about the output in the String sorting algorithm is that it’s 
lexicographic, so it puts all the words starting with uppercase letters first, followed by all the 
words starting with lowercase letters. (Telephone books are typically sorted this way.) If you 
want to group the words together regardless of case, use 
String.CASE_INSENSITIVE_ORDER as shown in the last call to sort( ) in the above 
example.  

The sorting algorithm that’s used in the Java standard library is designed to be optimal for 
the particular type you’re sorting—a Quicksort for primitives, and a stable merge sort for 
objects. You don’t need to worry about performance unless your profiler points you to the 
sorting process as a bottleneck.  

 

Searching a sorted array 

Once an array is sorted, you can perform a fast search for a particular item by using 
Arrays.binarySearch( ). However, if you try to use binarySearchC ) on an unsorted 
array the results will be unpredictable. The following example uses a 
RandomGenerator.Integer to fill an array, and then uses the same generator to produce 
search values:  

//: arrays/ArraySearching.java 
// Using Arrays.binarySearch(). 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class ArraySearching { 
  public static void main(String[] args) { 
    Generator<Integer> gen = 
      new RandomGenerator.Integer(1000); 
    int[] a = ConvertTo.primitive( 
      Generated.array(new Integer[25], gen)); 
    Arrays.sort(a); 
    print("Sorted array: " + Arrays.toString(a)); 
    while(true) { 
      int r = gen.next(); 
      int location = Arrays.binarySearch(a, r); 
      if(location >= 0) { 
        print("Location of " + r + " is " + location + 
          ", a[" + location + "] = " + a[location]); 
        break; // Out of while loop 
      } 
    } 
  } 
} /* Output: 
Sorted array: [128, 140, 200, 207, 258, 258, 278, 288, 322, 429, 511, 
520, 522, 551, 555, 589, 693, 704, 809, 861, 861, 868, 916, 961, 998] 

Arrays 561 



 

Location of 322 is 8, a[8] = 322 
*///:~ 

In the while loop, random values are generated as search items until one of them is found.  

Arrays.binarySearch( ) produces a value greater than or equal to zero if the search item is 
found. Otherwise, it produces a negative value representing the place that the element should 
be inserted if you are maintaining the sorted array by hand. The value produced is  

-(insertion point) - 1 

The insertion point is the index of the first element greater than the key, or a.size( ), if all 
elements in the array are less than the specified key.  

If an array contains duplicate elements, there is no guarantee which of those duplicates will 
be found. The search algorithm is not designed to support duplicate elements, but rather to 
tolerate them. If you need a sorted list of non-duplicated elements, use a TreeSet (to 
maintain sorted order) or LinkedHashSet (to maintain insertion order). These classes take 
care of all the details for you automatically. Only in cases of performance bottlenecks should 
you replace one of these classes with a hand-maintained array.  

If you sort an object array using a Comparator (primitive arrays do not allow sorting with a 
Comparator), you must include that same Comparator when you perform a 
binarySearch( ) (using the overloaded version of binarySearch( )). For example, the 
StringSorting.java program can be modified to perform a search:  

//: arrays/AlphabeticSearch.java 
// Searching with a Comparator. 
import java.util.*; 
import net.mindview.util.*; 
 
public class AlphabeticSearch { 
  public static void main(String[] args) { 
    String[] sa = Generated.array(new String[30], 
      new RandomGenerator.String(5)); 
    Arrays.sort(sa, String.CASE_INSENSITIVE_ORDER); 
    System.out.println(Arrays.toString(sa)); 
    int index = Arrays.binarySearch(sa, sa[10], 
      String.CASE_INSENSITIVE_ORDER); 
    System.out.println("Index: "+ index + "\n"+ sa[index]); 
  } 
} /* Output: 
[bkIna, cQrGs, cXZJo, dLsmw, eGZMm, EqUCB, gwsqP, hKcxr, HLGEa, HqXum, 
HxxHv, JMRoE, JmzMs, Mesbt, MNvqe, nyGcF, ogoYW, OneOE, OWZnT, RFJQA, 
rUkZP, sgqia, slJrL, suEcU, uTpnX, vpfFv, WHkjU, xxEAJ, YNzbr, zDyCy] 
Index: 10 
HxxHv 
*///:~ 

The Comparator must be passed to the overloaded binarySearch( ) as the third argument. In 
this example, success is guaranteed because the search item is selected from the array itself.  

Exercise 22:   (2) Show that the results of performing a binarySearch( ) on an unsorted 
array are unpredictable.  

Exercise 23:   (2) Create an array of Integer, fill it with random int values (using 
autoboxing), and sort it into reverse order using a Comparator.  

562 Thinking in Java Bruce Eckel 



 

Exercise 24:   (3) Show that the class from Exercise 19 can be searched.  

   

Arrays 563 



 

564 Thinking in Java Bruce Eckel 

Summary 
In this chapter, you’ve seen that Java provides reasonable support for fixedsized, low-level 
arrays. This sort of array emphasizes performance over flexibility, just like the C and C++ 
array model. In the initial version of Java, fixed-sized, low-level arrays were absolutely 
necessary, not only because the Java designers chose to include primitive types (also for 
performance), but because the support for containers in that version was very minimal. Thus, 
in early versions of Java, it was always reasonable to choose arrays.  

In subsequent versions of Java, container support improved significantly, and now 
containers tend to outshine arrays in all ways except for performance, and even then, the 
performance of containers has been significantly improved. As stated in other places in this 
book, performance problems are usually never where you imagine them to be, anyway.  

With the addition of autoboxing and generics, holding primitives in containers has become 
effortless, which further encourages you to replace low-level arrays with containers. Because 
generics produce type-safe containers, arrays no long have an advantage on that front, either.  

As noted in this chapter and as you’ll see when you try to use them, generics are fairly hostile 
towards arrays. Often, even when you can get generics and arrays to work together in some 
form (as you’ll see in the next chapter), you’ll still end up with "unchecked" warnings during 
compilation.  

On several occasions I have been told directly by Java language designers that I should be 
using containers instead of arrays, when we were discussing particular examples (I was using 
arrays to demonstrate specific techniques and so I did not have that option).  

All of these issues indicate that you should "prefer containers to arrays" when programming 
in recent versions of Java. Only when it’s proven that performance is an issue (and that 
switching to an array will make a difference) should you refactor to arrays.  

This is a rather bold statement, but some languages have no fixed-sized, lowlevel arrays at all. 
They only have resizable containers with significantly more functionality than C/C++/Java-
style arrays. Python,4 for example, has a list type that uses basic array syntax, but has much 
greater functionality—you can even inherit from it:  

#: arrays/PythonLists.py 
 
aList = [1, 2, 3, 4, 5] 
print type(aList) # <type ‘list’> 
print aList # [1, 2, 3, 4, 5] 
print aList[4] # 5 Basic list indexing 
aList.append(6) # lists can be resized 
aList += [7, 8] # Add a list to a list 
print aList # [1, 2, 3, 4, 5, 6, 7, 8] 
aSlice = aList[2:4] 
print aSlice # [3, 4] 
 
class MyList(list): # Inherit from list 
    # Define a method, ‘this’ pointer is explicit: 
    def getReversed(self): 
        reversed = self[:] # Copy list using slices 
        reversed.reverse() # Built-in list method 
        return reversed 
 

                                                            
4 See www.Python.org. 



 

Arrays 565 

list2 = MyList(aList) # No ‘new’ needed for object creation 
print type(list2) # <class ‘__main__.MyList’> 
print list2.getReversed() # [8, 7, 6, 5, 4, 3, 2, 1] 
#:~ 

Basic Python syntax was introduced in the previous chapter. Here, a list is created by simply 
surrounding a comma-separated sequence of objects with square brackets. The result is an 
object with a runtime type of list (the output of the print statements is shown as comments 
on the same line). The result of printing a list is the same as that of using 
Arrays.toString() in Java.  

Creating a sub-sequence of a list is accomplished with "slicing," by placing the’:’ operator 
inside the index operation. The list type has many more builtin operations.  

MyList is a class definition; the base classes are placed within the parentheses. Inside the 
class, def statements produce methods, and the first argument to the method is 
automatically the equivalent of this in Java, except that in Python it’s explicit and the 
identifier self is used by convention (it’s not a keyword). Notice how the constructor is 
automatically inherited.  

Although everything in Python really is an object (including integral and floating point 
types), you still have an escape hatch in that you can optimize performance-critical portions 
of your code by writing extensions in C, C++ or a special tool called Pyrex, which is designed 
to easily speed up your code. This way you can have object purity without being prevented 
from performance improvements.  

The PHP language5 goes even further by having only a single array type, which acts as both 
an int-indexed array and an associative array (a Map).  

It’s interesting to speculate, after this many years of Java evolution, whether the designers 
would put primitives and low-level arrays in the language if they were to start over again. If 
these were left out, it would be possible to make a truly pure object-oriented language 
(despite claims, Java is not a pure 0 0 language, precisely because of the low-level detritus). 
The initial argument for efficiency always seems compelling, but over time we have seen an 
evolution away from this idea and towards the use of higher-level components like 
containers. Add to this the fact that if containers can be built into the core language as they 
are in some languages, then the compiler has a much better opportunity to optimize.  

Green-fields speculation aside, we are certainly stuck with arrays, and you will see them 
when reading code. Containers, however, are almost always a better choice.  

Exercise 25:   (3) Rewrite PythonLists.py in Java.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net. 

                                                            
5 See www.php.net. 





 

Containers in Depth 
The Holding Your Objects chapter introduced the ideas and basic 
functionality of the Java containers library, and is enough to get you 
started using containers. This chapter explores this important library 
more deeply. 

In order to get full use of the containers library, you need to know more than what was 
introduced in Holding Your Objects, but this chapter relies on advanced material (like 
generics) so it was delayed until later in the book.  

After a more complete overview of containers, you’ll learn how hashing works, and how to 
write hashCode( ) and equals( ) to work with hashed containers. You’ll learn why there 
are different versions of some containers and how to choose between them. The chapter 
finishes with an exploration of general-purpose utilities and special classes.  

Full container taxonomy 
The "Summary" section of the Holding Your Objects chapter showed a simplified diagram of 
the Java containers library. Here is a more complete diagram of the collections library, 
including abstract classes and legacy components (with the exception of Queue 
implementations):  

 

Full Container Taxonomy 

 



 

Java SE5 adds:  

• The Queue interface (which LinkedList has been modified to implement, as you 
saw in Holding Your Objects) and its implementations PriorityQueue and various 
flavors of BlockingQueue that will be shown in the Concurrency chapter.  
 

• A ConcurrentMap interface and its implementation ConcurrentHashMap, also 
for use in threading and shown in the Concurrency chapter.  

 
• CopyOnWriteArrayList and CopyOnWriteArraySet, also for concurrency.  

 
• EnumSet and EnumMap, special implementations of Set and Map for use with 

enums, and shown in the Enumerated Types chapter.  
 

• Several utilities in the Collections class.  
 

The long-dashed boxes represent abstract classes, and you can see a number of classes 
whose names begin with "Abstract." These can seem a bit confusing at first, but they are 
simply tools that partially implement a particular interface. If you were making your own 
Set, for example, you wouldn’t start with the Set interface and implement all the methods; 
instead, you’d inherit from AbstractSet and do the minimal necessary work to make your 
new class. However, the containers library contains enough functionality to satisfy your 
needs virtually all the time, so you can usually ignore any class that begins with "Abstract."  

Filling containers 
Although the problem of printing containers is solved, filling containers suffers from the 
same deficiency as java.utiLArrays. Just as with Arrays, there is a companion class called 
Collections containing static utility methods, including one called fill( ). Like the Arrays 
version, this fill( ) just duplicates a single object reference throughout the container. In 
addition, it only works for List objects, but the resulting list can be passed to a constructor or 
to an addAll( ) method:  

//: containers/FillingLists.java 
// The Collections.fill() & Collections.nCopies() methods. 
import java.util.*; 
 
class StringAddress { 
  private String s; 
  public StringAddress(String s) { this.s = s; } 
  public String toString() { 
    return super.toString() + " " + s; 
  } 
} 
 
public class FillingLists { 
  public static void main(String[] args) { 
    List<StringAddress> list= new ArrayList<StringAddress>( 
      Collections.nCopies(4, new StringAddress("Hello"))); 
    System.out.println(list); 
    Collections.fill(list, new StringAddress("World!")); 
    System.out.println(list); 
  } 
} /* Output: (Sample) 
[StringAddress@82ba41 Hello, StringAddress@82ba41 Hello, 
StringAddress@82ba41 Hello, StringAddress@82ba41 Hello] 
[StringAddress@923e30 World!, StringAddress@923e30 World!, 
StringAddress@923e30 World!, StringAddress@923e30 World!] 
*///:~ 

568 Thinking in Java Bruce Eckel 



 

Containers in Depth 569 

This example shows two ways to fill a Collection with references to a single object. The first, 
Collections.nCopies( ), creates a List which is passed to the constructor; this fills the 
ArrayList.  

The toString( ) method in StringAddress calls Object.toString( ), which produces the 
class name followed by the unsigned hexadecimal representation of the hash code of the 
object (generated by the hashCode( ) method). You can see from the output that all the 
references are set to the same object, and this is also true after the second method, 
Collections.fill( ), is called. The fill( ) method is made even less useful by the fact that it 
can only replace elements that are already in the List and will not add new elements.  

A Generator solution 

Virtually all Collection subtypes have a constructor that takes another Collection object, 
from which it can fill the new container. In order to easily create test data, then, all we need 
to do is build a class that takes constructor arguments of a Generator (defined in the 
Generics chapter and further explored in the Arrays chapter) and a quantity value:  

//: net/mindview/util/CollectionData.java 
// A Collection filled with data using a generator object. 
package net.mindview.util; 
import java.util.*; 
 
public class CollectionData<T> extends ArrayList<T> { 
  public CollectionData(Generator<T> gen, int quantity) { 
    for(int i = 0; i < quantity; i++) 
      add(gen.next()); 
  } 
  // A generic convenience method: 
  public static <T> CollectionData<T> 
  list(Generator<T> gen, int quantity) { 
    return new CollectionData<T>(gen, quantity); 
  } 
} ///:~ 

This uses the Generator to put as many objects into the container as you need. The 
resulting container can then be passed to the constructor for any Collection, and that 
constructor will copy the data into itself. The addAll( ) method that’s part of every 
Collection subtype can also be used to populate an existing Collection.  

The generic convenience method reduces the amount of typing necessary when using the 
class.  

CollectionData is an example of the Adapter design pattern;1
 it adapts a Generator to the 

constructor for a Collection.  

Here’s an example that initializes a LinkedHashSet:  

//: containers/CollectionDataTest.java 
import java.util.*; 
import net.mindview.util.*; 
 
class Government implements Generator<String> { 
  String[] foundation = ("strange women lying in ponds " + 
    "distributing swords is no basis for a system of " + 

                                                            
1 This may not be a strict definition of adapter as defined in the Design Patterns book, but I think it meets the spirit of the 
idea. 



 

    "government").split(" "); 
  private int index; 
  public String next() { return foundation[index++]; } 
} 
 
public class CollectionDataTest { 
  public static void main(String[] args) { 
    Set<String> set = new LinkedHashSet<String>( 
      new CollectionData<String>(new Government(), 15)); 
    // Using the convenience method: 
    set.addAll(CollectionData.list(new Government(), 15)); 
    System.out.println(set); 
  } 
} /* Output: 
[strange, women, lying, in, ponds, distributing, swords, is, no, basis, 
for, a, system, of, government] 
*///:~ 

The elements are in the same order in which they are inserted because a LinkedHashSet 
maintains a linked list holding the insertion order.  

All the generators defined in the Arrays chapter are now available via the CollectionData 
adapter. Here’s an example that uses two of them:  

//: containers/CollectionDataGeneration.java 
// Using the Generators defined in the Arrays chapter. 
import java.util.*; 
import net.mindview.util.*; 
 
public class CollectionDataGeneration { 
  public static void main(String[] args) { 
    System.out.println(new ArrayList<String>( 
      CollectionData.list( // Convenience method 
        new RandomGenerator.String(9), 10))); 
    System.out.println(new HashSet<Integer>( 
      new CollectionData<Integer>( 
        new RandomGenerator.Integer(), 10))); 
  } 
} /* Output: 
[YNzbrnyGc, FOWZnTcQr, GseGZMmJM, RoEsuEcUO, neOEdLsmw, HLGEahKcx, 
rEqUCBbkI, naMesbtWH, kjUrUkZPg, wsqPzDyCy] 
[573, 4779, 871, 4367, 6090, 7882, 2017, 8037, 3455, 299] 
*///:~ 

The String length produced by RandomGenerator.String is controlled by the 
constructor argument.  

Map generators 

We can take the same approach for a Map, but that requires a Pair class since a pair of 
objects (one key and one value) must be produced by each call to a Generator’s next( ) in 
order to populate a Map:  

//: net/mindview/util/Pair.java 
package net.mindview.util; 
 
public class Pair<K,V> { 
  public final K key; 
  public final V value; 
  public Pair(K k, V v) { 

570 Thinking in Java Bruce Eckel 



 

    key = k; 
    value = v; 
  } 
} ///:~ 

The key and value fields are made public and final so that Pair becomes a read-only Data 
Transfer Object (or Messenger).  

The Map adapter can now use various combinations of Generators, Iterables, and 
constant values to fill Map initialization objects:  

//: net/mindview/util/MapData.java 
// A Map filled with data using a generator object. 
package net.mindview.util; 
import java.util.*; 
 
public class MapData<K,V> extends LinkedHashMap<K,V> { 
  // A single Pair Generator: 
  public MapData(Generator<Pair<K,V>> gen, int quantity) { 
    for(int i = 0; i < quantity; i++) { 
      Pair<K,V> p = gen.next(); 
      put(p.key, p.value); 
    } 
  } 
  // Two separate Generators: 
  public MapData(Generator<K> genK, Generator<V> genV, 
      int quantity) { 
    for(int i = 0; i < quantity; i++) { 
      put(genK.next(), genV.next()); 
    } 
  } 
  // A key Generator and a single value: 
  public MapData(Generator<K> genK, V value, int quantity){ 
    for(int i = 0; i < quantity; i++) { 
      put(genK.next(), value); 
    } 
  } 
  // An Iterable and a value Generator: 
  public MapData(Iterable<K> genK, Generator<V> genV) { 
    for(K key : genK) { 
      put(key, genV.next()); 
    } 
  } 
  // An Iterable and a single value: 
  public MapData(Iterable<K> genK, V value) { 
    for(K key : genK) { 
      put(key, value); 
    } 
  } 
  // Generic convenience methods: 
  public static <K,V> MapData<K,V> 
  map(Generator<Pair<K,V>> gen, int quantity) { 
    return new MapData<K,V>(gen, quantity); 
  } 
  public static <K,V> MapData<K,V> 
  map(Generator<K> genK, Generator<V> genV, int quantity) { 
    return new MapData<K,V>(genK, genV, quantity); 
  } 
  public static <K,V> MapData<K,V> 
  map(Generator<K> genK, V value, int quantity) { 
    return new MapData<K,V>(genK, value, quantity); 
  } 

Containers in Depth 571 



 

  public static <K,V> MapData<K,V> 
  map(Iterable<K> genK, Generator<V> genV) { 
    return new MapData<K,V>(genK, genV); 
  } 
  public static <K,V> MapData<K,V> 
  map(Iterable<K> genK, V value) { 
    return new MapData<K,V>(genK, value); 
  } 
} ///:~ 

This gives you a choice of using a single Generator<Pair<K,V> >, two separate 
Generators, one Generator and a constant value, an Iterable (which includes any 
Collection) and a Generator, or an Iterable and a single value. The generic convenience 
methods reduce the amount of typing necessary when creating a MapData object.  

Here’s an example using MapData. The Letters Generator also implements Iterable by 
producing an Iterator; this way, it can be used to test the MapData.map( ) methods that 
work with an Iterable:  

//: containers/MapDataTest.java 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
class Letters implements Generator<Pair<Integer,String>>, 
  Iterable<Integer> { 
  private int size = 9; 
  private int number = 1; 
  private char letter = ‘A’; 
  public Pair<Integer,String> next() { 
    return new Pair<Integer,String>( 
      number++, "" + letter++); 
  } 
  public Iterator<Integer> iterator() { 
    return new Iterator<Integer>() { 
      public Integer next() { return number++; } 
      public boolean hasNext() { return number < size; } 
      public void remove() { 
        throw new UnsupportedOperationException(); 
      } 
    }; 
  } 
} 
 
public class MapDataTest { 
  public static void main(String[] args) { 
    // Pair Generator: 
    print(MapData.map(new Letters(), 11)); 
    // Two separate generators: 
    print(MapData.map(new CountingGenerator.Character(), 
      new RandomGenerator.String(3), 8)); 
    // A key Generator and a single value: 
    print(MapData.map(new CountingGenerator.Character(), 
      "Value", 6)); 
    // An Iterable and a value Generator: 
    print(MapData.map(new Letters(), 
      new RandomGenerator.String(3))); 
    // An Iterable and a single value: 
    print(MapData.map(new Letters(), "Pop")); 
  } 
} /* Output: 
{1=A, 2=B, 3=C, 4=D, 5=E, 6=F, 7=G, 8=H, 9=I, 10=J, 11=K} 

572 Thinking in Java Bruce Eckel 



 

Containers in Depth 573 

{a=YNz, b=brn, c=yGc, d=FOW, e=ZnT, f=cQr, g=Gse, h=GZM} 
{a=Value, b=Value, c=Value, d=Value, e=Value, f=Value} 
{1=mJM, 2=RoE, 3=suE, 4=cUO, 5=neO, 6=EdL, 7=smw, 8=HLG} 
{1=Pop, 2=Pop, 3=Pop, 4=Pop, 5=Pop, 6=Pop, 7=Pop, 8=Pop} 
*///:~ 

This example also uses the generators from the Arrays chapter.  

You can create any generated data set for Maps or Collections using these tools, and then 
initialize a Map or Collection using the constructor or the Map.putAll( ) or 
Collection.addAll( ) methods.  

Using Abstract classes 

An alternative approach to the problem of producing test data for containers is to create 
custom Collection and Map implementations. Each java.util container has its own 
Abstract class that provides a partial implementation of that container, so all you must do is 
implement the necessary methods in order to produce the desired container. If the resulting 
container is read-only, as it typically is for test data, the number of methods you need to 
provide is minimized.  

Although it isn’t particularly necessary in this case, the following solution also provides the 
opportunity to demonstrate another design pattern: the Flyweight. You use a flyweight when 
the ordinary solution requires too many objects, or when producing normal objects takes up 
too much space. The Flyweight pattern externalizes part of the object so that, instead of 
everything in the object being contained within the object, some or all of the object is looked 
up in a more efficient external table (or produced through some other calculation that saves 
space).  

An important point of this example is to demonstrate how relatively simple it is to create a 
custom Map and Collection by inheriting from the java.util.Abstract classes. In order to 
create a read-only Map, you inherit from AbstractMap and implement entrySet( ). In 
order to create a readonly Set, you inherit from AbstractSet and implement iterator( ) 
and size( ).  

The data set in this example is a Map of the countries of the world and their capitals.2
 The 

capitals( ) method produces a Map of countries and capitals. The names( ) method 
produces a List of the country names. In both cases you can get a partial listing by providing 
an int argument indicating the desired size:  

//: net/mindview/util/Countries.java 
// "Flyweight" Maps and Lists of sample data. 
package net.mindview.util; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Countries { 
  public static final String[][] DATA = { 
    // Africa 
    {"ALGERIA","Algiers"}, {"ANGOLA","Luanda"}, 
    {"BENIN","Porto-Novo"}, {"BOTSWANA","Gaberone"}, 
    {"BURKINA FASO","Ouagadougou"}, 
    {"BURUNDI","Bujumbura"}, 
    {"CAMEROON","Yaounde"}, {"CAPE VERDE","Praia"}, 
    {"CENTRAL AFRICAN REPUBLIC","Bangui"}, 
    {"CHAD","N’djamena"},  {"COMOROS","Moroni"}, 

                                                            
2 This data was found on the Internet. Various corrections have been submitted by readers over time. 



 

    {"CONGO","Brazzaville"}, {"DJIBOUTI","Dijibouti"}, 
    {"EGYPT","Cairo"}, {"EQUATORIAL GUINEA","Malabo"}, 
    {"ERITREA","Asmara"}, {"ETHIOPIA","Addis Ababa"}, 
    {"GABON","Libreville"}, {"THE GAMBIA","Banjul"}, 
    {"GHANA","Accra"}, {"GUINEA","Conakry"}, 
    {"BISSAU","Bissau"}, 
    {"COTE D’IVOIR (IVORY COAST)","Yamoussoukro"}, 
    {"KENYA","Nairobi"}, {"LESOTHO","Maseru"}, 
    {"LIBERIA","Monrovia"}, {"LIBYA","Tripoli"}, 
    {"MADAGASCAR","Antananarivo"}, {"MALAWI","Lilongwe"}, 
    {"MALI","Bamako"}, {"MAURITANIA","Nouakchott"}, 
    {"MAURITIUS","Port Louis"}, {"MOROCCO","Rabat"}, 
    {"MOZAMBIQUE","Maputo"}, {"NAMIBIA","Windhoek"}, 
    {"NIGER","Niamey"}, {"NIGERIA","Abuja"}, 
    {"RWANDA","Kigali"}, 
    {"SAO TOME E PRINCIPE","Sao Tome"}, 
    {"SENEGAL","Dakar"}, {"SEYCHELLES","Victoria"}, 
    {"SIERRA LEONE","Freetown"}, {"SOMALIA","Mogadishu"}, 
    {"SOUTH AFRICA","Pretoria/Cape Town"}, 
    {"SUDAN","Khartoum"}, 
    {"SWAZILAND","Mbabane"}, {"TANZANIA","Dodoma"}, 
    {"TOGO","Lome"}, {"TUNISIA","Tunis"}, 
    {"UGANDA","Kampala"}, 
    {"DEMOCRATIC REPUBLIC OF THE CONGO (ZAIRE)", 
     "Kinshasa"}, 
    {"ZAMBIA","Lusaka"}, {"ZIMBABWE","Harare"}, 
    // Asia 
    {"AFGHANISTAN","Kabul"}, {"BAHRAIN","Manama"}, 
    {"BANGLADESH","Dhaka"}, {"BHUTAN","Thimphu"}, 
    {"BRUNEI","Bandar Seri Begawan"}, 
    {"CAMBODIA","Phnom Penh"}, 
    {"CHINA","Beijing"}, {"CYPRUS","Nicosia"}, 
    {"INDIA","New Delhi"}, {"INDONESIA","Jakarta"}, 
    {"IRAN","Tehran"}, {"IRAQ","Baghdad"}, 
    {"ISRAEL","Jerusalem"}, {"JAPAN","Tokyo"}, 
    {"JORDAN","Amman"}, {"KUWAIT","Kuwait City"}, 
    {"LAOS","Vientiane"}, {"LEBANON","Beirut"}, 
    {"MALAYSIA","Kuala Lumpur"}, {"THE MALDIVES","Male"}, 
    {"MONGOLIA","Ulan Bator"}, 
    {"MYANMAR (BURMA)","Rangoon"}, 
    {"NEPAL","Katmandu"}, {"NORTH KOREA","P’yongyang"}, 
    {"OMAN","Muscat"}, {"PAKISTAN","Islamabad"}, 
    {"PHILIPPINES","Manila"}, {"QATAR","Doha"}, 
    {"SAUDI ARABIA","Riyadh"}, {"SINGAPORE","Singapore"}, 
    {"SOUTH KOREA","Seoul"}, {"SRI LANKA","Colombo"}, 
    {"SYRIA","Damascus"}, 
    {"TAIWAN (REPUBLIC OF CHINA)","Taipei"}, 
    {"THAILAND","Bangkok"}, {"TURKEY","Ankara"}, 
    {"UNITED ARAB EMIRATES","Abu Dhabi"}, 
    {"VIETNAM","Hanoi"}, {"YEMEN","Sana’a"}, 
    // Australia and Oceania 
    {"AUSTRALIA","Canberra"}, {"FIJI","Suva"}, 
    {"KIRIBATI","Bairiki"}, 
    {"MARSHALL ISLANDS","Dalap-Uliga-Darrit"}, 
    {"MICRONESIA","Palikir"}, {"NAURU","Yaren"}, 
    {"NEW ZEALAND","Wellington"}, {"PALAU","Koror"}, 
    {"PAPUA NEW GUINEA","Port Moresby"}, 
    {"SOLOMON ISLANDS","Honaira"}, {"TONGA","Nuku’alofa"}, 
    {"TUVALU","Fongafale"}, {"VANUATU","< Port-Vila"}, 
    {"WESTERN SAMOA","Apia"}, 
    // Eastern Europe and former USSR 
    {"ARMENIA","Yerevan"}, {"AZERBAIJAN","Baku"}, 
    {"BELARUS (BYELORUSSIA)","Minsk"}, 

574 Thinking in Java Bruce Eckel 



 

    {"BULGARIA","Sofia"}, {"GEORGIA","Tbilisi"}, 
    {"KAZAKSTAN","Almaty"}, {"KYRGYZSTAN","Alma-Ata"}, 
    {"MOLDOVA","Chisinau"}, {"RUSSIA","Moscow"}, 
    {"TAJIKISTAN","Dushanbe"}, {"TURKMENISTAN","Ashkabad"}, 
    {"UKRAINE","Kyiv"}, {"UZBEKISTAN","Tashkent"}, 
    // Europe 
    {"ALBANIA","Tirana"}, {"ANDORRA","Andorra la Vella"}, 
    {"AUSTRIA","Vienna"}, {"BELGIUM","Brussels"}, 
    {"BOSNIA","-"}, {"HERZEGOVINA","Sarajevo"}, 
    {"CROATIA","Zagreb"}, {"CZECH REPUBLIC","Prague"}, 
    {"DENMARK","Copenhagen"}, {"ESTONIA","Tallinn"}, 
    {"FINLAND","Helsinki"}, {"FRANCE","Paris"}, 
    {"GERMANY","Berlin"}, {"GREECE","Athens"}, 
    {"HUNGARY","Budapest"}, {"ICELAND","Reykjavik"}, 
    {"IRELAND","Dublin"}, {"ITALY","Rome"}, 
    {"LATVIA","Riga"}, {"LIECHTENSTEIN","Vaduz"}, 
    {"LITHUANIA","Vilnius"}, {"LUXEMBOURG","Luxembourg"}, 
    {"MACEDONIA","Skopje"}, {"MALTA","Valletta"}, 
    {"MONACO","Monaco"}, {"MONTENEGRO","Podgorica"}, 
    {"THE NETHERLANDS","Amsterdam"}, {"NORWAY","Oslo"}, 
    {"POLAND","Warsaw"}, {"PORTUGAL","Lisbon"}, 
    {"ROMANIA","Bucharest"}, {"SAN MARINO","San Marino"}, 
    {"SERBIA","Belgrade"}, {"SLOVAKIA","Bratislava"}, 
    {"SLOVENIA","Ljuijana"}, {"SPAIN","Madrid"}, 
    {"SWEDEN","Stockholm"}, {"SWITZERLAND","Berne"}, 
    {"UNITED KINGDOM","London"}, {"VATICAN CITY","---"}, 
    // North and Central America 
    {"ANTIGUA AND BARBUDA","Saint John’s"}, 
    {"BAHAMAS","Nassau"}, 
    {"BARBADOS","Bridgetown"}, {"BELIZE","Belmopan"}, 
    {"CANADA","Ottawa"}, {"COSTA RICA","San Jose"}, 
    {"CUBA","Havana"}, {"DOMINICA","Roseau"}, 
    {"DOMINICAN REPUBLIC","Santo Domingo"}, 
    {"EL SALVADOR","San Salvador"}, 
    {"GRENADA","Saint George’s"}, 
    {"GUATEMALA","Guatemala City"}, 
    {"HAITI","Port-au-Prince"}, 
    {"HONDURAS","Tegucigalpa"}, {"JAMAICA","Kingston"}, 
    {"MEXICO","Mexico City"}, {"NICARAGUA","Managua"}, 
    {"PANAMA","Panama City"}, {"ST. KITTS","-"}, 
    {"NEVIS","Basseterre"}, {"ST. LUCIA","Castries"}, 
    {"ST. VINCENT AND THE GRENADINES","Kingstown"}, 
    {"UNITED STATES OF AMERICA","Washington, D.C."}, 
    // South America 
    {"ARGENTINA","Buenos Aires"}, 
    {"BOLIVIA","Sucre (legal)/La Paz(administrative)"}, 
    {"BRAZIL","Brasilia"}, {"CHILE","Santiago"}, 
    {"COLOMBIA","Bogota"}, {"ECUADOR","Quito"}, 
    {"GUYANA","Georgetown"}, {"PARAGUAY","Asuncion"}, 
    {"PERU","Lima"}, {"SURINAME","Paramaribo"}, 
    {"TRINIDAD AND TOBAGO","Port of Spain"}, 
    {"URUGUAY","Montevideo"}, {"VENEZUELA","Caracas"}, 
  }; 
  // Use AbstractMap by implementing entrySet() 
  private static class FlyweightMap 
  extends AbstractMap<String,String> { 
    private static class Entry 
    implements Map.Entry<String,String> { 
      int index; 
      Entry(int index) { this.index = index; } 
      public boolean equals(Object o) { 
        return DATA[index][0].equals(o); 
      } 

Containers in Depth 575 



 

      public String getKey() { return DATA[index][0]; } 
      public String getValue() { return DATA[index][1]; } 
      public String setValue(String value) { 
        throw new UnsupportedOperationException(); 
      } 
      public int hashCode() { 
        return DATA[index][0].hashCode(); 
      } 
    } 
    // Use AbstractSet by implementing size() & iterator() 
    static class EntrySet 
    extends AbstractSet<Map.Entry<String,String>> { 
      private int size; 
      EntrySet(int size) { 
        if(size < 0) 
          this.size = 0; 
        // Can’t be any bigger than the array: 
        else if(size > DATA.length) 
          this.size = DATA.length; 
        else 
          this.size = size; 
      } 
      public int size() { return size; } 
      private class Iter 
      implements Iterator<Map.Entry<String,String>> { 
        // Only one Entry object per Iterator: 
        private Entry entry = new Entry(-1); 
        public boolean hasNext() { 
          return entry.index < size - 1; 
        } 
        public Map.Entry<String,String> next() { 
          entry.index++; 
          return entry; 
        } 
        public void remove() { 
          throw new UnsupportedOperationException(); 
        } 
      } 
      public 
      Iterator<Map.Entry<String,String>> iterator() { 
        return new Iter(); 
      } 
    } 
    private static Set<Map.Entry<String,String>> entries = 
      new EntrySet(DATA.length); 
    public Set<Map.Entry<String,String>> entrySet() { 
      return entries; 
    } 
  } 
  // Create a partial map of ‘size’ countries: 
  static Map<String,String> select(final int size) { 
    return new FlyweightMap() { 
      public Set<Map.Entry<String,String>> entrySet() { 
        return new EntrySet(size); 
      } 
    }; 
  } 
  static Map<String,String> map = new FlyweightMap(); 
  public static Map<String,String> capitals() { 
    return map; // The entire map 
  } 
  public static Map<String,String> capitals(int size) { 
    return select(size); // A partial map 

576 Thinking in Java Bruce Eckel 



 

Containers in Depth 577 

  } 
  static List<String> names = 
    new ArrayList<String>(map.keySet()); 
  // All the names: 
  public static List<String> names() { return names; } 
  // A partial list: 
  public static List<String> names(int size) { 
    return new ArrayList<String>(select(size).keySet()); 
  } 
  public static void main(String[] args) { 
    print(capitals(10)); 
    print(names(10)); 
    print(new HashMap<String,String>(capitals(3))); 
    print(new LinkedHashMap<String,String>(capitals(3))); 
    print(new TreeMap<String,String>(capitals(3))); 
    print(new Hashtable<String,String>(capitals(3))); 
    print(new HashSet<String>(names(6))); 
    print(new LinkedHashSet<String>(names(6))); 
    print(new TreeSet<String>(names(6))); 
    print(new ArrayList<String>(names(6))); 
    print(new LinkedList<String>(names(6))); 
    print(capitals().get("BRAZIL")); 
  } 
} /* Output: 
{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo, BOTSWANA=Gaberone, 
BULGARIA=Sofia, BURKINA FASO=Ouagadougou, BURUNDI=Bujumbura, 
CAMEROON=Yaounde, CAPE VERDE=Praia, CENTRAL AFRICAN REPUBLIC=Bangui} 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO, BURUNDI, 
CAMEROON, CAPE VERDE, CENTRAL AFRICAN REPUBLIC] 
{BENIN=Porto-Novo, ANGOLA=Luanda, ALGERIA=Algiers} 
{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo} 
{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo} 
{ALGERIA=Algiers, ANGOLA=Luanda, BENIN=Porto-Novo} 
[BULGARIA, BURKINA FASO, BOTSWANA, BENIN, ANGOLA, ALGERIA] 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
Brasilia 
*///:~ 

The two-dimensional array of String DATA is public so it can be used elsewhere. 
FlyweightMap must implement the entrySet( ) method, which requires both a custom 
Set implementation and a custom Map.Entry class. Here’s part of the flyweight: each 
Map.Entry object simply stores its index, rather than the actual key and value. When you 
call getKey( ) or getValue( ), it uses the index to return the appropriate DATA element. 
The EntrySet ensures that its size is no bigger than DATA.  

You can see the other part of the flyweight implemented in EntrySet.Iterator. Instead of 
creating a Map.Entry object for each data pair in DATA, there’s only one Map.Entry 
object per iterator. The Entry object is used as a window into the data; it only contains an 
index into the static array of strings. Every time you call next( ) for the iterator, the index 
in the Entry is incremented so that it points to the next element pair, and then that 
Iterator’s single Entry object is returned from next( ).3

  

The select( ) method produces a FlyweightMap containing an EntrySet of the desired 
size, and this is used in the overloaded capitals( ) and names( ) methods that you see 
demonstrated in main( ).  

                                                            
3 The Maps in java.util perform bulk copies using getKey( ) and getValue( ) for Maps, so this works. If a custom Map 
were to simply copy the entire Map.Entry then this approach would cause a problem. 



 

For some tests, the limited size of Countries is a problem. We can take the same approach 
to produce initialized custom containers that have a data set of any size. This class is a List 
that can be any size, and is (effectively) preinitialized with Integer data:  

//: net/mindview/util/CountingIntegerList.java 
// List of any length, containing sample data. 
package net.mindview.util; 
import java.util.*; 
 
public class CountingIntegerList 
extends AbstractList<Integer> { 
  private int size; 
  public CountingIntegerList(int size) { 
    this.size = size < 0 ? 0 : size; 
  } 
  public Integer get(int index) { 
    return Integer.valueOf(index); 
  } 
  public int size() { return size; } 
  public static void main(String[] args) { 
    System.out.println(new CountingIntegerList(30)); 
  } 
} /* Output: 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 
*///:~ 

To create a read-only List from an AbstractList, you must implement get( ) and size( ). 
Again, a flyweight solution is used: get( ) produces the value when you ask for it, so the List 
doesn’t actually have to be populated.  

Here is a Map containing pre-initialized unique Integers and Strings; it can also be any size:  

//: net/mindview/util/CountingMapData.java 
// Unlimited-length Map containing sample data. 
package net.mindview.util; 
import java.util.*; 
 
public class CountingMapData 
extends AbstractMap<Integer,String> { 
  private int size; 
  private static String[] chars = 
    "A B C D E F G H I J K L M N O P Q R S T U V W X Y Z" 
    .split(" "); 
  public CountingMapData(int size) { 
    if(size < 0) this.size = 0; 
    this.size = size; 
  } 
  private static class Entry 
  implements Map.Entry<Integer,String> { 
    int index; 
    Entry(int index) { this.index = index; } 
    public boolean equals(Object o) { 
      return Integer.valueOf(index).equals(o); 
    } 
    public Integer getKey() { return index; } 
    public String getValue() { 
      return 
        chars[index % chars.length] + 
        Integer.toString(index / chars.length); 
    } 
    public String setValue(String value) { 

578 Thinking in Java Bruce Eckel 



 

      throw new UnsupportedOperationException(); 
    } 
    public int hashCode() { 
      return Integer.valueOf(index).hashCode(); 
    } 
  } 
  public Set<Map.Entry<Integer,String>> entrySet() { 
    // LinkedHashSet retains initialization order: 
    Set<Map.Entry<Integer,String>> entries = 
      new LinkedHashSet<Map.Entry<Integer,String>>(); 
    for(int i = 0; i < size; i++) 
      entries.add(new Entry(i)); 
    return entries; 
  } 
  public static void main(String[] args) { 
    System.out.println(new CountingMapData(60)); 
  } 
} /* Output: 
{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0, 10=K0, 
11=L0, 12=M0, 13=N0, 14=O0, 15=P0, 16=Q0, 17=R0, 18=S0, 19=T0, 20=U0, 
21=V0, 22=W0, 23=X0, 24=Y0, 25=Z0, 26=A1, 27=B1, 28=C1, 29=D1, 30=E1, 
31=F1, 32=G1, 33=H1, 34=I1, 35=J1, 36=K1, 37=L1, 38=M1, 39=N1, 40=O1, 
41=P1, 42=Q1, 43=R1, 44=S1, 45=T1, 46=U1, 47=V1, 48=W1, 49=X1, 50=Y1, 
51=Z1, 52=A2, 53=B2, 54=C2, 55=D2, 56=E2, 57=F2, 58=G2, 59=H2} 
*///:~ 

Here, a LinkedHashSet is used instead of creating a custom Set class, so the flyweight is 
not fully implemented.  

Exercise 1:   (1) Create a List (try both ArrayList and LinkedList) and fill it using 
Countries. Sort the list and print it, then apply Collections.shuffle( ) to the list 
repeatedly, printing it each time so that you can see how the shuffle( ) method randomizes 
the list differently each time.  

Exercise 2:   (2) Produce a Map and a Set containing all the countries that begin with ‘A’.  

Exercise 3:   (1) Using Countries, fill a Set multiple times with the same data and verify 
that the Set ends up with only one of each instance. Try this with HashSet, 
LinkedHashSet, and TreeSet.  

Exercise 4:   (2) Create a Collection initializer that opens a file and breaks it into words 
using TextFile, and then uses the words as the source of data for the resulting Collection. 
Demonstrate that it works.  

Exercise 5:   (3) Modify CountingMapData.java to fully implement the flyweight by 
adding a custom EntrySet class like the one in Countries.java.  

   

Containers in Depth 579 



 

Collection functionality 
The following table shows everything you can do with a Collection (not including the 
methods that automatically come through with Object), and thus, everything you can do 
with a Set or a List. (List also has additional functionality.) Maps are not inherited from 
Collection and will be treated separately.   

boolean add(T) Ensures that the container holds the 
argument which is of generic type T. 
Returns false if it doesn’t add the 
argument. (This is an "optional" method, 
described in the next section.) 

boolean addAll( 
Collection<? extends T>) 

Adds all the elements in the argument. 
Returns true if any elements were 
added. ("Optional.") 

void clear( ) Removes all the elements in the 
container. ("Optional.") 

boolean contains (T) true if the container holds the argument 
which is of generic type T. 

Boolean containsAll( 

Collection<?>) 

true if the container holds all the 
elements in the argument. 

boolean isEmpty( ) true if the container has no elements. 

Iterator<T> iterator( ) Returns an Iterator<T> that you can 
use to move through the elements in the 
container. 

Boolean 

remove(Object) 

If the argument is in the container, one 
instance of that element is removed. 
Returns true if a removal occurred. 
("Optional") 

boolean removeAll( 

Collection<?>) 

Removes all the elements that are 
contained in the argument. Returns true 
if any removals occurred. ("Optional.") 

Boolean retainAll( 

Collection<?>) 

Retains only elements that are contained 
in the argument (an "intersection," from 
set theory). Returns true if any changes 
occurred. ("Optional.") 

int size( ) Returns the number of elements in the 
container. 

Object[] toArray( ) Returns an array containing all the 
elements in the container. 

<T>T[] toArray(T[] a) Returns an array containing all the 
elements in the container. The runtime 
type of the result is that of the argument 
array a rather than plain Object. 

Notice that there’s no get( ) method for random-access element selection. That’s because 
Collection also includes Set, which maintains its own internal ordering (and thus makes 
random-access lookup meaningless). Thus, if you want to examine the elements of a 
Collection, you must use an iterator.  

580 Thinking in Java Bruce Eckel 



 

The following example demonstrates all of these methods. Although these methods work 
with anything that implements Collection, an ArrayList is used as a "least-common 
denominator":  

//: containers/CollectionMethods.java 
// Things you can do with all Collections. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class CollectionMethods { 
  public static void main(String[] args) { 
    Collection<String> c = new ArrayList<String>(); 
    c.addAll(Countries.names(6)); 
    c.add("ten"); 
    c.add("eleven"); 
    print(c); 
    // Make an array from the List: 
    Object[] array = c.toArray(); 
    // Make a String array from the List: 
    String[] str = c.toArray(new String[0]); 
    // Find max and min elements; this means 
    // different things depending on the way 
    // the Comparable interface is implemented: 
    print("Collections.max(c) = " + Collections.max(c)); 
    print("Collections.min(c) = " + Collections.min(c)); 
    // Add a Collection to another Collection 
    Collection<String> c2 = new ArrayList<String>(); 
    c2.addAll(Countries.names(6)); 
    c.addAll(c2); 
    print(c); 
    c.remove(Countries.DATA[0][0]); 
    print(c); 
    c.remove(Countries.DATA[1][0]); 
    print(c); 
    // Remove all components that are 
    // in the argument collection: 
    c.removeAll(c2); 
    print(c); 
    c.addAll(c2); 
    print(c); 
    // Is an element in this Collection? 
    String val = Countries.DATA[3][0]; 
    print("c.contains(" + val  + ") = " + c.contains(val)); 
    // Is a Collection in this Collection? 
    print("c.containsAll(c2) = " + c.containsAll(c2)); 
    Collection<String> c3 = 
      ((List<String>)c).subList(3, 5); 
    // Keep all the elements that are in both 
    // c2 and c3 (an intersection of sets): 
    c2.retainAll(c3); 
    print(c2); 
    // Throw away all the elements 
    // in c2 that also appear in c3: 
    c2.removeAll(c3); 
    print("c2.isEmpty() = " +  c2.isEmpty()); 
    c = new ArrayList<String>(); 
    c.addAll(Countries.names(6)); 
    print(c); 
    c.clear(); // Remove all elements 
    print("after c.clear():" + c); 
  } 
} /* Output: 

Containers in Depth 581 



 

582 Thinking in Java Bruce Eckel 

[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO, ten, eleven] 
Collections.max(c) = ten 
Collections.min(c) = ALGERIA 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO, ten, eleven, 
ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO, ten, eleven, ALGERIA, 
ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[BENIN, BOTSWANA, BULGARIA, BURKINA FASO, ten, eleven, ALGERIA, ANGOLA, 
BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
[ten, eleven] 
[ten, eleven, ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
c.contains(BOTSWANA) = true 
c.containsAll(c2) = true 
[ANGOLA, BENIN] 
c2.isEmpty() = true 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
after c.clear():[] 
*///:~ 

ArrayLists are created containing different sets of data and upcast to Collection objects, 
so it’s clear that nothing other than the Collection interface is being used. main( ) uses 
simple exercises to show all of the methods in Collection.  

Subsequent sections in this chapter describe the various implementations of List, Set, and 
Map and indicate in each case (with an asterisk) which one should be your default choice. 
Descriptions of the legacy classes Vector, Stack, and Hashtable are delayed to the end of 
the chapter—although you shouldn’t use these classes, you will see them in old code.  

Optional operations 
The methods that perform various kinds of addition and removal are optional operations in 
the Collection interface. This means that the implementing class is not required to provide 
functioning definitions for these methods.  

This is a very unusual way to define an interface. As you’ve seen, an interface is a contract in 
object-oriented design. It says, "No matter how you choose to implement this interface, I 
guarantee that you can send these messages to this object."4 But an "optional" operation 
violates this very fundamental principle; it says that calling some methods will nor perform 
meaningful behavior. Instead, they will throw exceptions! It appears that compile-time type 
safety is discarded.  

It’s not quite that bad. If an operation is optional, the compiler still restricts you to calling 
only the methods in that interface. It’s not like a dynamic language, in which you can call any 
method for any object, and find out at run time whether a particular call will work.5 In 
addition, most methods that take a Collection as an argument only read from that 
Collection, and all the "read" methods of Collection are not optional.  

Why would you define methods as "optional"? Doing so prevents an explosion of interfaces in 
the design. Other designs for container libraries always seem to end up with a confusing 
plethora of interfaces to describe each of the variations on the main theme. It’s not even 
possible to capture all of the special cases in interfaces, because someone can always invent a 
new interface. The "unsupported operation" approach achieves an important goal of the Java 

                                                            
4 I am using the term "interface" here to describe both the formal interface keyword and the more general meaning of 
"the methods supported by any class or subclass." 

5 Although this sounds odd and possibly useless when I describe it this way, you’ve seen, especially in the Type 
Information chapter, that this kind of dynamic behavior can be very powerful. 



 

containers library: The containers are simple to learn and use. Unsupported operations are a 
special case that can be delayed until necessary. For this approach to work, however:  

1. The UnsupportedOperationException must be a rare event. That is, for most 
classes, all operations should work, and only in special cases should an operation be 
unsupported. This is true in the Java containers library, since the classes you’ll use 99 
percent of the time—ArrayList, LinkedList, HashSet, and HashMap, as well as 
the other concrete implementations—support all of the operations. The design does 
provide a "back door" if you want to create a new Collection without providing 
meaningful definitions for all the methods in the Collection interface, and yet still fit 
it into the existing library.  
 

2. When an operation is unsupported, there should be reasonable likelihood that an 
UnsupportedOperationException will appear at implementation time, rather 
than after you’ve shipped the product to the customer. After all, it indicates a 
programming error: You’ve used an implementation incorrectly.  

 
It’s worth noting that unsupported operations are only detectable at run time, and therefore 
represent dynamic type checking. If you’re coming from a statically typed language like C++, 
Java might appear to be just another statically typed language. Java certainly has static type 
checking, but it also has a significant amount of dynamic typing, so it’s hard to say that it’s 
exactly one type of language or another. Once you begin to notice this, you’ll start to see other 
examples of dynamic type checking in Java.  

Unsupported operations 

A common source of unsupported operations involves a container backed by a fixed-sized 
data structure. You get such a container when you turn an array into a List with the 
Arrays.asList( ) method. You can also choose to make any container (including a Map) 
throw UnsupportedOperationExceptions by using the "unmodifiable" methods in the 
Collections class. This example shows both cases:  

//: containers/Unsupported.java 
// Unsupported operations in Java containers. 
import java.util.*; 
 
public class Unsupported { 
  static void test(String msg, List<String> list) { 
    System.out.println("--- " + msg + " ---"); 
    Collection<String> c = list; 
    Collection<String> subList = list.subList(1,8); 
    // Copy of the sublist: 
    Collection<String> c2 = new ArrayList<String>(subList); 
    try { c.retainAll(c2); } catch(Exception e) { 
      System.out.println("retainAll(): " + e); 
    } 
    try { c.removeAll(c2); } catch(Exception e) { 
      System.out.println("removeAll(): " + e); 
    } 
    try { c.clear(); } catch(Exception e) { 
      System.out.println("clear(): " + e); 
    } 
    try { c.add("X"); } catch(Exception e) { 
      System.out.println("add(): " + e); 
    } 
    try { c.addAll(c2); } catch(Exception e) { 
      System.out.println("addAll(): " + e); 
    } 
    try { c.remove("C"); } catch(Exception e) { 

Containers in Depth 583 



 

      System.out.println("remove(): " + e); 
    } 
    // The List.set() method modifies the value but 
    // doesn’t change the size of the data structure: 
    try { 
      list.set(0, "X"); 
    } catch(Exception e) { 
      System.out.println("List.set(): " + e); 
    } 
  } 
  public static void main(String[] args) { 
    List<String> list = 
      Arrays.asList("A B C D E F G H I J K L".split(" ")); 
    test("Modifiable Copy", new ArrayList<String>(list)); 
    test("Arrays.asList()", list); 
    test("unmodifiableList()", 
      Collections.unmodifiableList( 
        new ArrayList<String>(list))); 
  } 
} /* Output: 
--- Modifiable Copy --- 
--- Arrays.asList() --- 
retainAll(): java.lang.UnsupportedOperationException 
removeAll(): java.lang.UnsupportedOperationException 
clear(): java.lang.UnsupportedOperationException 
add(): java.lang.UnsupportedOperationException 
addAll(): java.lang.UnsupportedOperationException 
remove(): java.lang.UnsupportedOperationException 
--- unmodifiableList() --- 
retainAll(): java.lang.UnsupportedOperationException 
removeAll(): java.lang.UnsupportedOperationException 
clear(): java.lang.UnsupportedOperationException 
add(): java.lang.UnsupportedOperationException 
addAll(): java.lang.UnsupportedOperationException 
remove(): java.lang.UnsupportedOperationException 
List.set(): java.lang.UnsupportedOperationException 
*///:~ 

Because Arrays.asList( ) produces a List that is backed by a fixed-size array, it makes 
sense that the only supported operations are the ones that don’t change the size of the array. 
Any method that would cause a change to the size of the underlying data structure produces 
an UnsupportedOperationException, to indicate a call to an unsupported method (a 
programming error).  

Note that you can always pass the result of Arrays.asList( ) as a constructor argument to 
any Collection (or use the addAll( ) method, or the Collections.addAll( ) static 
method) in order to create a regular container that allows the use of all the methods—this is 
shown in the first call to test( ) in main( ). Such a call produces a new resizable underlying 
data structure.  

The "unmodifiable" methods in the Collections class wrap the container in a proxy that 
produces an UnsupportedOperationException if you perform any operation that 
modifies the container in any way. The goal of using these methods is to produce a "constant" 
container object. The full list of "unmodifiable" Collections methods is described later.  

The last try block in test( ) examines the set( ) method that’s part of List. This is 
interesting, because you can see how the granularity of the "unsupported operation" 
technique comes in handy—the resulting "interface" can vary by one method between the 
object returned by Arrays.asList( ) and that returned by 
Collections.unmodifiableList( ). Arrays.asList( ) returns a fixed-sized List, whereas 
Collections.unmodifiableList( ) produces a list that cannot be changed. As you can see 

584 Thinking in Java Bruce Eckel 



 

from the output, it’s OK to modify the elements in the List returned by Arrays.asList( ), 
because this would not violate the "fixed-sized" nature of that List. But clearly, the result of 
unmodifiableList( ) should not be modifiable in any way. If interfaces were used, this 
would have required two additional interfaces, one with a working set( ) method and one 
without. Additional interfaces would be required for various unmodifiable subtypes of 
Collection.  

The documentation for a method that takes a container as an argument should specify which 
of the optional methods must be implemented.  

Exercise 6:   (2) Note that List has additional "optional" operations that are not included 
in Collection. Write a version of Unsupported.java that tests these additional optional 
operations.  

   

Containers in Depth 585 



 

List functionality 
As you’ve seen, the basic List is quite simple to use: Most of the time you just call add( ) to 
insert objects, use get( ) to get them out one at a time, and call iterator( ) to get an 
Iterator for the sequence.  

The methods in the following example each cover a different group of activities: things that 
every List can do (basicTest( )), moving around with an Iterator (iterMotion( )) versus 
changing things with an Iterator (iterManipulation( )), seeing the effects of List 
manipulation (testVisual( )), and operations available only to LinkedLists:  

//: containers/Lists.java 
// Things you can do with Lists. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class Lists { 
  private static boolean b; 
  private static String s; 
  private static int i; 
  private static Iterator<String> it; 
  private static ListIterator<String> lit; 
  public static void basicTest(List<String> a) { 
    a.add(1, "x"); // Add at location 1 
    a.add("x"); // Add at end 
    // Add a collection: 
    a.addAll(Countries.names(25)); 
    // Add a collection starting at location 3: 
    a.addAll(3, Countries.names(25)); 
    b = a.contains("1"); // Is it in there? 
    // Is the entire collection in there? 
    b = a.containsAll(Countries.names(25)); 
    // Lists allow random access, which is cheap 
    // for ArrayList, expensive for LinkedList: 
    s = a.get(1); // Get (typed) object at location 1 
    i = a.indexOf("1"); // Tell index of object 
    b = a.isEmpty(); // Any elements inside? 
    it = a.iterator(); // Ordinary Iterator 
    lit = a.listIterator(); // ListIterator 
    lit = a.listIterator(3); // Start at loc 3 
    i = a.lastIndexOf("1"); // Last match 
    a.remove(1); // Remove location 1 
    a.remove("3"); // Remove this object 
    a.set(1, "y"); // Set location 1 to "y" 
    // Keep everything that’s in the argument 
    // (the intersection of the two sets): 
    a.retainAll(Countries.names(25)); 
    // Remove everything that’s in the argument: 
    a.removeAll(Countries.names(25)); 
    i = a.size(); // How big is it? 
    a.clear(); // Remove all elements 
  } 
  public static void iterMotion(List<String> a) { 
    ListIterator<String> it = a.listIterator(); 
    b = it.hasNext(); 
    b = it.hasPrevious(); 
    s = it.next(); 
    i = it.nextIndex(); 
    s = it.previous(); 

586 Thinking in Java Bruce Eckel 



 

    i = it.previousIndex(); 
  } 
  public static void iterManipulation(List<String> a) { 
    ListIterator<String> it = a.listIterator(); 
    it.add("47"); 
    // Must move to an element after add(): 
    it.next(); 
    // Remove the element after the newly produced one: 
    it.remove(); 
    // Must move to an element after remove(): 
    it.next(); 
    // Change the element after the deleted one: 
    it.set("47"); 
  } 
  public static void testVisual(List<String> a) { 
    print(a); 
    List<String> b = Countries.names(25); 
    print("b = " + b); 
    a.addAll(b); 
    a.addAll(b); 
    print(a); 
    // Insert, remove, and replace elements 
    // using a ListIterator: 
    ListIterator<String> x = a.listIterator(a.size()/2); 
    x.add("one"); 
    print(a); 
    print(x.next()); 
    x.remove(); 
    print(x.next()); 
    x.set("47"); 
    print(a); 
    // Traverse the list backwards: 
    x = a.listIterator(a.size()); 
    while(x.hasPrevious()) 
      printnb(x.previous() + " "); 
    print(); 
    print("testVisual finished"); 
  } 
  // There are some things that only LinkedLists can do: 
  public static void testLinkedList() { 
    LinkedList<String> ll = new LinkedList<String>(); 
    ll.addAll(Countries.names(25)); 
    print(ll); 
    // Treat it like a stack, pushing: 
    ll.addFirst("one"); 
    ll.addFirst("two"); 
    print(ll); 
    // Like "peeking" at the top of a stack: 
    print(ll.getFirst()); 
    // Like popping a stack: 
    print(ll.removeFirst()); 
    print(ll.removeFirst()); 
    // Treat it like a queue, pulling elements 
    // off the tail end: 
    print(ll.removeLast()); 
    print(ll); 
  } 
  public static void main(String[] args) { 
    // Make and fill a new list each time: 
    basicTest( 
      new LinkedList<String>(Countries.names(25))); 
    basicTest( 
      new ArrayList<String>(Countries.names(25))); 

Containers in Depth 587 



 

    iterMotion( 
      new LinkedList<String>(Countries.names(25))); 
    iterMotion( 
      new ArrayList<String>(Countries.names(25))); 
    iterManipulation( 
      new LinkedList<String>(Countries.names(25))); 
    iterManipulation( 
      new ArrayList<String>(Countries.names(25))); 
    testVisual( 
      new LinkedList<String>(Countries.names(25))); 
    testLinkedList(); 
  } 
} /* (Execute to see output) *///:~ 

In basicTest( ) and iterMotion( ) the calls are made in order to show the proper syntax, 
and although the return value is captured, it is not used. In some cases, the return value isn’t 
captured at all. You should look up the full usage of each of these methods in the JDK 
documentation before you use them.  

Exercise 7:   (4) Create both an ArrayList and a LinkedList, and fill each using the 
Countries.names( ) generator. Print each list using an ordinary Iterator, then insert one 
list into the other by using a Listlterator, inserting at every other location. Now perform the 
insertion starting at the end of the first list and moving backward.  

Exercise 8:   (7) Create a generic, singly linked list class called SList, which, to keep 
things simple, does not implement the List interface. Each Link object in the list should 
contain a reference to the next element in the list, but not the previous one (LinkedList, in 
contrast, is a doubly linked list, which means it maintains links in both directions). Create 
your own SListIterator which, again for simplicity, does not implement ListIterator. The 
only method in SList other than toString( ) should be iterator( ), which produces an 
SListIterator. The only way to insert and remove elements from an SList is through 
SListIterator. Write code to demonstrate SList.  

   

588 Thinking in Java Bruce Eckel 



 

Sets and storage order 
The Set examples in the Holding Your Objects chapter provide a good introduction to the 
operations that can be performed with basic Sets. However, those examples conveniently use 
predefined Java types such as Integer and String, which were designed to be usable inside 
containers. When creating your own types, be aware that a Set needs a way to maintain 
storage order. How the storage order is maintained varies from one implementation of Set to 
another. Thus, different Set implementations not only have different behaviors, they have 
different requirements for the type of object that you can put into a particular Set:  

Set (interface) Each element that you add to the Set must be 
unique; otherwise, the Set doesn’t add the 
duplicate element. Elements added to a Set must 
at least define equals( ) to establish object 
uniqueness. Set has exactly the same interface as 
Collection. The Set interface does not guarantee 
that it will maintain its elements in any particular 
order. 

HashSet* For Sets where fast lookup time is important. 
Elements must also define hashCode( ). 

TreeSet An ordered Set backed by a tree. This way, you 
can extract an ordered sequence from a Set. 
Elements must also implement the Comparable 
interface. 

LinkedHashSet Has the lookup speed of a HashSet, but internally 
maintains the order in which you add the elements 
(the insertion order) using a linked list. Thus, 
when you iterate through the Set, the results 
appear in insertion order. Elements must also 
define hashCode( ). 

The asterisk on HashSet indicates that, in the absence of other constraints, this should be 
your default choice because it is optimized for speed.  

Defining hashCode( ) will be described later in this chapter. You must create an equals( ) 
for both hashed and tree storage, but the hashCode( ) is necessary only if the class will be 
placed in a HashSet (which is likely, since that should generally be your first choice as a Set 
implementation) or LinkedHashSet. However, for good programming style, you should 
always override hashCode( ) when you override equals( ).  

This example demonstrates the methods that must be defined in order to successfully use a 
type with a particular Set implementation:  

//: containers/TypesForSets.java 
// Methods necessary to put your own type in a Set. 
import java.util.*; 
 
class SetType { 
  int i; 
  public SetType(int n) { i = n; } 
  public boolean equals(Object o) { 
    return o instanceof SetType && (i == ((SetType)o).i); 
  } 
  public String toString() { return Integer.toString(i); } 
} 

Containers in Depth 589 



 

 
class HashType extends SetType { 
  public HashType(int n) { super(n); } 
  public int hashCode() { return i; } 
} 
 
class TreeType extends SetType 
implements Comparable<TreeType> { 
  public TreeType(int n) { super(n); } 
  public int compareTo(TreeType arg) { 
    return (arg.i < i ? -1 : (arg.i == i ? 0 : 1)); 
  } 
} 
 
public class TypesForSets { 
  static <T> Set<T> fill(Set<T> set, Class<T> type) { 
    try { 
      for(int i = 0; i < 10; i++) 
          set.add( 
            type.getConstructor(int.class).newInstance(i)); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
    return set; 
  } 
  static <T> void test(Set<T> set, Class<T> type) { 
    fill(set, type); 
    fill(set, type); // Try to add duplicates 
    fill(set, type); 
    System.out.println(set); 
  } 
  public static void main(String[] args) { 
    test(new HashSet<HashType>(), HashType.class); 
    test(new LinkedHashSet<HashType>(), HashType.class); 
    test(new TreeSet<TreeType>(), TreeType.class); 
    // Things that don’t work: 
    test(new HashSet<SetType>(), SetType.class); 
    test(new HashSet<TreeType>(), TreeType.class); 
    test(new LinkedHashSet<SetType>(), SetType.class); 
    test(new LinkedHashSet<TreeType>(), TreeType.class); 
    try { 
      test(new TreeSet<SetType>(), SetType.class); 
    } catch(Exception e) { 
      System.out.println(e.getMessage()); 
    } 
    try { 
      test(new TreeSet<HashType>(), HashType.class); 
    } catch(Exception e) { 
      System.out.println(e.getMessage()); 
    } 
  } 
} /* Output: (Sample) 
[2, 4, 9, 8, 6, 1, 3, 7, 5, 0] 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 
[9, 9, 7, 5, 1, 2, 6, 3, 0, 7, 2, 4, 4, 7, 9, 1, 3, 6, 2, 4, 3, 0, 5, 0, 
8, 8, 8, 6, 5, 1] 
[0, 5, 5, 6, 5, 0, 3, 1, 9, 8, 4, 2, 3, 9, 7, 3, 4, 4, 0, 7, 1, 9, 6, 2, 
1, 8, 2, 8, 6, 7] 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9] 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 
4, 5, 6, 7, 8, 9] 

590 Thinking in Java Bruce Eckel 



 

java.lang.ClassCastException: SetType cannot be cast to 
java.lang.Comparable 
java.lang.ClassCastException: HashType cannot be cast to 
java.lang.Comparable 
*///:~ 

In order to prove which methods are necessary for a particular Set and at the same time to 
avoid code duplication, three classes are created. The base class, SetType, simply stores an 
int, and produces it via toString( ). Since all classes stored in Sets must have an equals( ), 
that method is also placed in the base class. Equality is based on the value of the int i.  

HashType inherits from SetType and adds the hashCode( ) method necessary for an 
object to be placed in a hashed implementation of a Set.  

The Comparable interface, implemented by TreeType, is necessary if an object is to be 
used in any kind of sorted container, such as a SortedSet (of which TreeSet is the only 
implementation). In compareTo( ), note that I did not use the "simple and obvious" form 
return i-i2. Although this is a common programming error, it would only work properly if i 
and i2 were "unsigned" ints (if Java had an "unsigned" keyword, which it does not). It breaks 
for Java’s signed int, which is not big enough to represent the difference of two signed ints. 
If i is a large positive integer and j is a large negative integer, i-j will overflow and return a 
negative value, which will not work.  

You’ll usually want the compareTo( ) method to produce a natural ordering that is 
consistent with the equals( ) method. If equals( ) produces true for a particular 
comparison, then compareTo( ) should produce a zero result for that comparison, and if 
equals ( ) produces false for a comparison then compareTo( ) should produce a nonzero 
result for that comparison.  

In TypesForSets, both fill( ) and test( ) are defined using generics, in order to prevent 
code duplication. To verify the behavior of a Set, test( ) calls fill( ) on the test set three 
times, attempting to introduce duplicate objects. The fill( ) method takes a Set of any type, 
and a Class object of the same type. It uses the Class object to discover the constructor that 
takes an int argument, and calls that constructor to add elements to the Set.  

From the output, you can see that the HashSet keeps the elements in some mysterious 
order (which will be made clear later in the chapter), the LinkedHashSet keeps the 
elements in the order in which they were inserted, and the TreeSet maintains the elements 
in sorted order (because of the way that compareTo( ) is implemented, this happens to be 
descending order).  

If we try to use types that don’t properly support the necessary operations with Sets that 
require those operations, things go very wrong. Placing a SetType or TreeType object, 
which doesn’t include a redefined hashCode( ) method, into any hashed implementations 
results in duplicate values, so the primary contract of the Set is violated. This is rather 
disturbing because there’s not even a runtime error. However, the default hashCode( ) is 
legitimate and so this is legal behavior, even if it’s incorrect. The only reliable way to ensure 
the correctness of such a program is to incorporate unit tests into your build system (see the 
supplement at http://MindView.net/Books/BetterJava for more information).  

If you try to use a type that doesn’t implement Comparable in a TreeSet, you get a more 
definitive result: An exception is thrown when the TreeSet attempts to use the object as a 
Comparable.  

SortedSet 

Containers in Depth 591 



 

The elements in a SortedSet are guaranteed to be in sorted order, which allows additional 
functionality to be provided with the following methods that are in the SortedSet interface:  

Comparator comparator( ): Produces the Comparator used for this Set, or null for 
natural ordering.  
 
Object first( ): Produces the lowest element.  
 
Object last( ): Produces the highest element.  
 
SortedSet subSet(fromElement, toElement): Produces a view of this Set with 
elements from fromElement, inclusive, to toElement, exclusive.  
 
SortedSet headSet(toElement): Produces a view of this Set with elements less than 
toElement.  
 
SortedSet tailSet(fromElement): Produces a view of this Set with elements greater than 
or equal to fromElement.  
 

Here’s a simple demonstration:  

//: containers/SortedSetDemo.java 
// What you can do with a TreeSet. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class SortedSetDemo { 
  public static void main(String[] args) { 
    SortedSet<String> sortedSet = new TreeSet<String>(); 
    Collections.addAll(sortedSet, 
      "one two three four five six seven eight" 
        .split(" ")); 
    print(sortedSet); 
    String low = sortedSet.first(); 
    String high = sortedSet.last(); 
    print(low); 
    print(high); 
    Iterator<String> it = sortedSet.iterator(); 
    for(int i = 0; i <= 6; i++) { 
      if(i == 3) low = it.next(); 
      if(i == 6) high = it.next(); 
      else it.next(); 
    } 
    print(low); 
    print(high); 
    print(sortedSet.subSet(low, high)); 
    print(sortedSet.headSet(high)); 
    print(sortedSet.tailSet(low)); 
  } 
} /* Output: 
[eight, five, four, one, seven, six, three, two] 
eight 
two 
one 
two 
[one, seven, six, three] 
[eight, five, four, one, seven, six, three] 
[one, seven, six, three, two] 
*///:~ 

Note that SortedSet means "sorted according to the comparison function of the object," not 
"insertion order." Insertion order can be preserved using a LinkedHashSet.  

592 Thinking in Java Bruce Eckel 



 

Exercise 9:   (2) Use RandomGenerator.String to fill a TreeSet, but use alphabetic 
ordering. Print the TreeSet to verify the sort order.  

Exercise 10:   (7) Using a LinkedList as your underlying implementation, define your 
own SortedSet.  

   

Containers in Depth 593 



 

Queues 
Other than concurrency applications, the only two Java SE5 implementations of Queue are 
LinkedList and PriorityQueue, which are differentiated by ordering behavior rather than 
performance. Here’s a basic example that involves most of the Queue implementations (not 
all of them will work in this example), including the concurrency-based Queues. You place 
elements in one end and extract them from the other:  

//: containers/QueueBehavior.java 
// Compares the behavior of some of the queues 
import java.util.concurrent.*; 
import java.util.*; 
import net.mindview.util.*; 
 
public class QueueBehavior { 
  private static int count = 10; 
  static <T> void test(Queue<T> queue, Generator<T> gen) { 
    for(int i = 0; i < count; i++) 
      queue.offer(gen.next()); 
    while(queue.peek() != null) 
      System.out.print(queue.remove() + " "); 
    System.out.println(); 
  } 
  static class Gen implements Generator<String> { 
    String[] s = ("one two three four five six seven " + 
      "eight nine ten").split(" "); 
    int i; 
    public String next() { return s[i++]; } 
  } 
  public static void main(String[] args) { 
    test(new LinkedList<String>(), new Gen()); 
    test(new PriorityQueue<String>(), new Gen()); 
    test(new ArrayBlockingQueue<String>(count), new Gen()); 
    test(new ConcurrentLinkedQueue<String>(), new Gen()); 
    test(new LinkedBlockingQueue<String>(), new Gen()); 
    test(new PriorityBlockingQueue<String>(), new Gen()); 
  } 
} /* Output: 
one two three four five six seven eight nine ten 
eight five four nine one seven six ten three two 
one two three four five six seven eight nine ten 
one two three four five six seven eight nine ten 
one two three four five six seven eight nine ten 
eight five four nine one seven six ten three two 
*///:~ 

You can see that, with the exception of the priority queues, a Queue will produce elements in 
exactly the same order as they are placed in the Queue.  

Priority queues 

Priority queues were given a simple introduction in the Holding Your Objects chapter. A 
more interesting problem is a to-do list, where each object contains a string and a primary 
and secondary priority value. The ordering of this list is again controlled by implementing 
Comparable:  

//: containers/ToDoList.java 
// A more complex use of PriorityQueue. 
import java.util.*; 

594 Thinking in Java Bruce Eckel 



 

 
class ToDoList extends PriorityQueue<ToDoList.ToDoItem> { 
  static class ToDoItem implements Comparable<ToDoItem> { 
    private char primary; 
    private int secondary; 
    private String item; 
    public ToDoItem(String td, char pri, int sec) { 
      primary = pri; 
      secondary = sec; 
      item = td; 
    } 
    public int compareTo(ToDoItem arg) { 
      if(primary > arg.primary) 
        return +1; 
      if(primary == arg.primary) 
        if(secondary > arg.secondary) 
          return +1; 
        else if(secondary == arg.secondary) 
          return 0; 
      return -1; 
    } 
    public String toString() { 
      return Character.toString(primary) + 
        secondary + ": " + item; 
    } 
  } 
  public void add(String td, char pri, int sec) { 
    super.add(new ToDoItem(td, pri, sec)); 
  } 
  public static void main(String[] args) { 
    ToDoList toDoList = new ToDoList(); 
    toDoList.add("Empty trash", ‘C’, 4); 
    toDoList.add("Feed dog", ‘A’, 2); 
    toDoList.add("Feed bird", ‘B’, 7); 
    toDoList.add("Mow lawn", ‘C’, 3); 
    toDoList.add("Water lawn", ‘A’, 1); 
    toDoList.add("Feed cat", ‘B’, 1); 
    while(!toDoList.isEmpty()) 
      System.out.println(toDoList.remove()); 
  } 
} /* Output: 
A1: Water lawn 
A2: Feed dog 
B1: Feed cat 
B7: Feed bird 
C3: Mow lawn 
C4: Empty trash 
*///:~ 

You can see how the ordering of the items happens automatically because of the priority 
queue.  

Exercise 11:   (2) Create a class that contains an Integer that is initialized to a value 
between o and 100 using java.util.Random. Implement Comparable using this Integer 
field. Fill a PriorityQueue with objects of your class, and extract the values using poll( ) to 
show that it produces the expected order.  

Deques 

Containers in Depth 595 



 

A deque (double-ended queue) is like a queue, but you can add and remove elements from 
either end. There are methods in LinkedList that support deque operations, but there is no 
explicit interface for a deque in the Java standard libraries. Thus, LinkedList cannot 
implement this interface and you cannot upcast to a Deque interface as you can to a Queue in 
the previous example. However, you can create a Deque class using composition, and simply 
expose the relevant methods from LinkedList:  

//: net/mindview/util/Deque.java 
// Creating a Deque from a LinkedList. 
package net.mindview.util; 
import java.util.*; 
 
public class Deque<T> { 
  private LinkedList<T> deque = new LinkedList<T>(); 
  public void addFirst(T e) { deque.addFirst(e); } 
  public void addLast(T e) { deque.addLast(e); } 
  public T getFirst() { return deque.getFirst(); } 
  public T getLast() { return deque.getLast(); } 
  public T removeFirst() { return deque.removeFirst(); } 
  public T removeLast() { return deque.removeLast(); } 
  public int size() { return deque.size(); } 
  public String toString() { return deque.toString(); } 
  // And other methods as necessary... 
} ///:~ 

If you put this Deque to use in your own programs, you may discover that you need to add 
other methods in order to make it practical.  

Here’s a simple test of the Deque class:  

//: containers/DequeTest.java 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class DequeTest { 
  static void fillTest(Deque<Integer> deque) { 
    for(int i = 20; i < 27; i++) 
      deque.addFirst(i); 
    for(int i = 50; i < 55; i++) 
      deque.addLast(i); 
  } 
  public static void main(String[] args) { 
    Deque<Integer> di = new Deque<Integer>(); 
    fillTest(di); 
    print(di); 
    while(di.size() != 0) 
      printnb(di.removeFirst() + " "); 
    print(); 
    fillTest(di); 
    while(di.size() != 0) 
      printnb(di.removeLast() + " "); 
  } 
} /* Output: 
[26, 25, 24, 23, 22, 21, 20, 50, 51, 52, 53, 54] 
26 25 24 23 22 21 20 50 51 52 53 54 
54 53 52 51 50 20 21 22 23 24 25 26 
*///:~ 

It’s less likely that you’ll put elements in and take them out at both ends, so Deque is not as 
commonly used as Queue.  

596 Thinking in Java Bruce Eckel 



 

   

Containers in Depth 597 



 

Understanding Maps 
As you learned in the Holding Your Objects chapter, the basic idea of a map (also called an 
associative array) is that it maintains key-value associations (pairs) so you can look up a 
value using a key. The standard Java library contains different basic implementations of 
Maps: HashMap, TreeMap, LinkedHashMap, WeakHashMap, 
ConcurrentHashMap, and IdentityHashMap. They all have the same basic Map 
interface, but they differ in behaviors including efficiency, the order in which the pairs are 
held and presented, how long the objects are held by the map, how the map works in 
multithreaded programs, and how key equality is determined. The number of 
implementations of the Map interface should tell you something about the importance of 
this tool.  

So you can gain a deeper understanding of Maps, it is helpful to look at how an associative 
array is constructed. Here is an extremely simple implementation:  

//: containers/AssociativeArray.java 
// Associates keys with values. 
import static net.mindview.util.Print.*; 
 
public class AssociativeArray<K,V> { 
  private Object[][] pairs; 
  private int index; 
  public AssociativeArray(int length) { 
    pairs = new Object[length][2]; 
  } 
  public void put(K key, V value) { 
    if(index >= pairs.length) 
      throw new ArrayIndexOutOfBoundsException(); 
    pairs[index++] = new Object[]{ key, value }; 
  } 
  @SuppressWarnings("unchecked") 
  public V get(K key) { 
    for(int i = 0; i < index; i++) 
      if(key.equals(pairs[i][0])) 
        return (V)pairs[i][1]; 
    return null; // Did not find key 
  } 
  public String toString() { 
    StringBuilder result = new StringBuilder(); 
    for(int i = 0; i < index; i++) { 
      result.append(pairs[i][0].toString()); 
      result.append(" : "); 
      result.append(pairs[i][1].toString()); 
      if(i < index - 1) 
        result.append("\n"); 
    } 
    return result.toString(); 
  } 
  public static void main(String[] args) { 
    AssociativeArray<String,String> map = 
      new AssociativeArray<String,String>(6); 
    map.put("sky", "blue"); 
    map.put("grass", "green"); 
    map.put("ocean", "dancing"); 
    map.put("tree", "tall"); 
    map.put("earth", "brown"); 
    map.put("sun", "warm"); 
    try { 
      map.put("extra", "object"); // Past the end 

598 Thinking in Java Bruce Eckel 



 

Containers in Depth 599 

    } catch(ArrayIndexOutOfBoundsException e) { 
      print("Too many objects!"); 
    } 
    print(map); 
    print(map.get("ocean")); 
  } 
} /* Output: 
Too many objects! 
sky : blue 
grass : green 
ocean : dancing 
tree : tall 
earth : brown 
sun : warm 
dancing 
*///:~ 

The essential methods in an associative array are put( ) and get( ), but for easy display, 
toString( ) has been overridden to print the key-value pairs. To show that it works, main( ) 
loads an AssociativeArray with pairs of strings and prints the resulting map, followed by a 
get( ) of one of the values.  

To use the get( ) method, you pass in the key that you want it to look up, and it produces the 
associated value as the result or returns null if it can’t be found. The get( ) method is using 
what is possibly the least efficient approach imaginable to locate the value: starting at the top 
of the array and using equals( ) to compare keys. But the point here is simplicity, not 
efficiency.  

So the above version is instructive, but it isn’t very efficient and it has a fixed size, which is 
inflexible. Fortunately, the Maps in java.util do not have these problems and can be 
substituted into the above example.  

Exercise 12:   (1) Substitute a HashMap, a TreeMap and a LinkedHashMap in 
AssociativeArray .Java’s main( ).  

Exercise 13:   (4) Use AssociativeArray Java to create a wordoccurrence counter, 
mapping String to Integer. Using the net.mindview.util.TextFile utility in this book, 
open a text file and break up the words in that file using whitespace and punctuation, and 
count the occurrence of the words in that file.  

Performance 

Performance is a fundamental issue for maps, and it’s very slow to use a linear search in 
get( ) when hunting for a key. This is where HashMap speeds things up. Instead of a slow 
search for the key, it uses a special value called a hash code. The hash code is a way to take 
some information in the object in question and turn it into a "relatively unique" int for that 
object. hashCode( ) is a method in the root class Object, so all Java objects can produce a 
hash code. A HashMap takes the hashCode( ) of the object and uses it to quickly hunt for 
the key. This results in a dramatic performance improvement.6

  

Here are the basic Map implementations. The asterisk on HashMap indicates that, in the 
absence of other constraints, this should be your default choice because it is optimized for 
                                                            
6 If these speedups still don’t meet your performance needs, you can further accelerate table lookup by writing your own 
Map and customizing it to your particular types to avoid delays due to casting to and from Objects. To reach even higher 
levels of performance, speed enthusiasts can use Donald Knuth’s The Art of Computer Programming, Volume 3: Sorting 
and Searching, Second Edition, to replace overflow bucket lists with arrays that have two additional benefits: they can be 
optimized for disk storage characteristics and they can save most of the time of creating and garbage collecting individual 
records. 



 

speed. The other implementations emphasize other characteristics, and are thus not as fast 
as HashMap. 

HashMap* Implementation based on a hash table. 
(Use this class instead of Hashtable.) 
Provides constant-time performance for 
inserting and locating pairs. Performance 
can be adjusted via constructors that 
allow you to set the capacity and load 
factor of the hash table. 

LinkedHashMap Like a HashMap, but when you iterate 
through it, you get the pairs in insertion 
order, or in least-recently-used (LRU) 
order. Only slightly slower than a 
HashMap, except when iterating, where 
it is faster due to the linked list used to 
maintain the internal ordering. 

TreeMap Implementation based on a red-black 
tree. When you view the keys or the pairs, 
they will be in sorted order (determined 
by Comparable or Comparator). The 
point of a TreeMap is that you get the 
results in sorted order. TreeMap is the 
only Map with the subMap( ) method, 
which allows you to return a portion of 
the tree. 

WeakHashMap A map of weak keys that allow objects 
referred to by the map to be released; 
designed to solve certain types of 
problems. If no references to a particular 
key are held outside the map, that key 
may be garbage collected. 

ConcurrentHashMap A thread-safe Map which does not 
involve synchronization locking. This is 
discussed in the Concurrency chapter. 

IdentityHashMap A hash map that uses == instead of 
equals( ) to compare keys. Only for 
solving special types of problems; not for 
general use. 

Hashing is the most commonly used way to store elements in a map. Later, you’ll learn how 
hashing works.  

The requirements for the keys used in a Map are the same as for the elements in a Set. You 
saw these demonstrated in TypesForSets.java. Any key must have an equals( ) method. If 
the key is used in a hashed Map, it must also have a proper hashCode( ). If the key is used 
in a TreeMap, it must implement Comparable.  

The following example shows the operations available through the Map interface, using the 
previously defined CountingMapData test data set:  

//: containers/Maps.java 
// Things you can do with Maps. 
import java.util.concurrent.*; 
import java.util.*; 

600 Thinking in Java Bruce Eckel 



 

import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class Maps { 
  public static void printKeys(Map<Integer,String> map) { 
    printnb("Size = " + map.size() + ", "); 
    printnb("Keys: "); 
    print(map.keySet()); // Produce a Set of the keys 
  } 
  public static void test(Map<Integer,String> map) { 
    print(map.getClass().getSimpleName()); 
    map.putAll(new CountingMapData(25)); 
    // Map has ‘Set’ behavior for keys: 
    map.putAll(new CountingMapData(25)); 
    printKeys(map); 
    // Producing a Collection of the values: 
    printnb("Values: "); 
    print(map.values()); 
    print(map); 
    print("map.containsKey(11): " + map.containsKey(11)); 
    print("map.get(11): " + map.get(11)); 
    print("map.containsValue(\"F0\"): " 
      + map.containsValue("F0")); 
    Integer key = map.keySet().iterator().next(); 
    print("First key in map: " + key); 
    map.remove(key); 
    printKeys(map); 
    map.clear(); 
    print("map.isEmpty(): " + map.isEmpty()); 
    map.putAll(new CountingMapData(25)); 
    // Operations on the Set change the Map: 
    map.keySet().removeAll(map.keySet()); 
    print("map.isEmpty(): " + map.isEmpty()); 
  } 
  public static void main(String[] args) { 
    test(new HashMap<Integer,String>()); 
    test(new TreeMap<Integer,String>()); 
    test(new LinkedHashMap<Integer,String>()); 
    test(new IdentityHashMap<Integer,String>()); 
    test(new ConcurrentHashMap<Integer,String>()); 
    test(new WeakHashMap<Integer,String>()); 
  } 
} /* Output: 
HashMap 
Size = 25, Keys: [15, 8, 23, 16, 7, 22, 9, 21, 6, 1, 14, 24, 4, 19, 11, 
18, 3, 12, 17, 2, 13, 20, 10, 5, 0] 
Values: [P0, I0, X0, Q0, H0, W0, J0, V0, G0, B0, O0, Y0, E0, T0, L0, S0, 
D0, M0, R0, C0, N0, U0, K0, F0, A0] 
{15=P0, 8=I0, 23=X0, 16=Q0, 7=H0, 22=W0, 9=J0, 21=V0, 6=G0, 1=B0, 14=O0, 
24=Y0, 4=E0, 19=T0, 11=L0, 18=S0, 3=D0, 12=M0, 17=R0, 2=C0, 13=N0, 
20=U0, 10=K0, 5=F0, 0=A0} 
map.containsKey(11): true 
map.get(11): L0 
map.containsValue("F0"): true 
First key in map: 15 
Size = 24, Keys: [8, 23, 16, 7, 22, 9, 21, 6, 1, 14, 24, 4, 19, 11, 18, 
3, 12, 17, 2, 13, 20, 10, 5, 0] 
map.isEmpty(): true 
map.isEmpty(): true 
... 
*///:~ 

Containers in Depth 601 



 

The printKeys( ) method demonstrates how to produce a Collection view of a Map. The 
keySet( ) method produces a Set backed by the keys in the Map. Because of improved 
printing support in Java SE5, you can simply print the result of the values( ) method, which 
produces a Collection containing all the values in the Map. (Note that keys must be unique, 
but values may contain duplicates.) Since these Collections are backed by the Map, any 
changes in a Collection will be reflected in the associated Map.  

The rest of the program provides simple examples of each Map operation and tests each 
basic type of Map.  

Exercise 14:   (3) Show that java.util.Properties works in the above program.  

 

 

SortedMap 

If you have a SortedMap (of which TreeMap is the only one available), the keys are 
guaranteed to be in sorted order, which allows additional functionality to be provided with 
these methods in the SortedMap interface:  
 

Comparator comparator( ): Produces the comparator used for this Map, or null for 
natural ordering.  
 
T firstKey( ): Produces the lowest key.  
 
T lastKey( ): Produces the highest key.  
 
SortedMap subMap(fromKey, toKey): Produces a view of this Map with keys from 
fromKey, inclusive, to toKey, exclusive.  
 
SortedMap headMap(toKey): Produces a view of this Map with keys less than 
toKey.  
 
SortedMap tailMap(fromKey): Produces a view of this Map with keys greater than or 
equal to fromKey.  
 

Here’s an example that’s similar to SortedSetDemo.java and shows this additional 
behavior of TreeMaps:  

//: containers/SortedMapDemo.java 
// What you can do with a TreeMap. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class SortedMapDemo { 
  public static void main(String[] args) { 
    TreeMap<Integer,String> sortedMap = 
      new TreeMap<Integer,String>(new CountingMapData(10)); 
    print(sortedMap); 
    Integer low = sortedMap.firstKey(); 
    Integer high = sortedMap.lastKey(); 
    print(low); 
    print(high); 
    Iterator<Integer> it = sortedMap.keySet().iterator(); 
    for(int i = 0; i <= 6; i++) { 

602 Thinking in Java Bruce Eckel 



 

      if(i == 3) low = it.next(); 
      if(i == 6) high = it.next(); 
      else it.next(); 
    } 
    print(low); 
    print(high); 
    print(sortedMap.subMap(low, high)); 
    print(sortedMap.headMap(high)); 
    print(sortedMap.tailMap(low)); 
  } 
} /* Output: 
{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0} 
0 
9 
3 
7 
{3=D0, 4=E0, 5=F0, 6=G0} 
{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0} 
{3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0, 9=J0} 
*///:~ 

Here, the pairs are stored by key-sorted order. Because there is a sense of order in the 
TreeMap, the concept of "location" makes sense, so you can have first and last elements and 
submaps.  

LinkedHashMap 

The LinkedHashMap hashes everything for speed, but also produces the pairs in insertion 
order during a traversal (System.out.println( ) iterates through the map, so you see the 
results of traversal). In addition, a LinkedHashMap can be configured in the constructor to 
use a leastrecently- used (LRU) algorithm based on accesses, so elements that haven’t been 
accessed (and thus are candidates for removal) appear at the front of the list. This allows easy 
creation of programs that do periodic cleanup in order to save space. Here’s a simple example 
showing both features:  

//: containers/LinkedHashMapDemo.java 
// What you can do with a LinkedHashMap. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class LinkedHashMapDemo { 
  public static void main(String[] args) { 
    LinkedHashMap<Integer,String> linkedMap = 
      new LinkedHashMap<Integer,String>( 
        new CountingMapData(9)); 
    print(linkedMap); 
    // Least-recently-used order: 
    linkedMap = 
      new LinkedHashMap<Integer,String>(16, 0.75f, true); 
    linkedMap.putAll(new CountingMapData(9)); 
    print(linkedMap); 
    for(int i = 0; i < 6; i++) // Cause accesses: 
      linkedMap.get(i); 
    print(linkedMap); 
    linkedMap.get(0); 
    print(linkedMap); 
  } 
} /* Output: 
{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0} 

Containers in Depth 603 



 

{0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 6=G0, 7=H0, 8=I0} 
{6=G0, 7=H0, 8=I0, 0=A0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0} 
{6=G0, 7=H0, 8=I0, 1=B0, 2=C0, 3=D0, 4=E0, 5=F0, 0=A0} 
*///:~ 

You can see from the output that the pairs are indeed traversed in insertion order, even for 
the LRU version. However, after the first six items (only) are accessed in the LRU version, 
the last three items move to the front of the list. Then, when "o" is accessed again, it moves to 
the back of the list.  

   

604 Thinking in Java Bruce Eckel 



 

Hashing and hash codes 
The examples in the Holding Your Objects chapter used predefined classes as HashMap 
keys. These examples worked because the predefined classes had all the necessary wiring to 
make them behave correctly as keys. A common pitfall occurs when you create your own classes 
to be used as keys for HashMaps, and forget to put in the necessary wiring. For example, 
consider a weather predicting system that matches Groundhog objects to Prediction 
objects. This seems fairly straightforward—you create the two classes, and use Groundhog 
as the key and Prediction as the value:  

//: containers/Groundhog.java 
// Looks plausible, but doesn’t work as a HashMap key. 
 
public class Groundhog { 
  protected int number; 
  public Groundhog(int n) { number = n; } 
  public String toString() { 
    return "Groundhog #" + number; 
  } 
} ///:~ 
 
//: containers/Prediction.java 
// Predicting the weather with groundhogs. 
import java.util.*; 
 
public class Prediction { 
  private static Random rand = new Random(47); 
  private boolean shadow = rand.nextDouble() > 0.5; 
  public String toString() { 
    if(shadow) 
      return "Six more weeks of Winter!"; 
    else 
      return "Early Spring!"; 
  } 
} ///:~ 
 
//: containers/SpringDetector.java 
// What will the weather be? 
import java.lang.reflect.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class SpringDetector { 
  // Uses a Groundhog or class derived from Groundhog: 
  public static <T extends Groundhog> 
  void detectSpring(Class<T> type) throws Exception { 
    Constructor<T> ghog = type.getConstructor(int.class); 
    Map<Groundhog,Prediction> map = 
      new HashMap<Groundhog,Prediction>(); 
    for(int i = 0; i < 10; i++) 
      map.put(ghog.newInstance(i), new Prediction()); 
    print("map = " + map); 
    Groundhog gh = ghog.newInstance(3); 
    print("Looking up prediction for " + gh); 
    if(map.containsKey(gh)) 
      print(map.get(gh)); 
    else 
      print("Key not found: " + gh); 
  } 
  public static void main(String[] args) throws Exception { 
    detectSpring(Groundhog.class); 

Containers in Depth 605 



 

  } 
} /* Output: 
map = {Groundhog #3=Early Spring!, Groundhog #7=Early Spring!, Groundhog 
#5=Early Spring!, Groundhog #9=Six more weeks of Winter!, Groundhog 
#8=Six more weeks of Winter!, Groundhog #0=Six more weeks of Winter!, 
Groundhog #6=Early Spring!, Groundhog #4=Six more weeks of Winter!, 
Groundhog #1=Six more weeks of Winter!, Groundhog #2=Early Spring!} 
Looking up prediction for Groundhog #3 
Key not found: Groundhog #3 
*///:~ 

Each Groundhog is given an identity number, so you can look up a Prediction in the 
HashMap by saying, "Give me the Prediction associated with Groundhog #3." The 
Prediction class contains a boolean that is initialized using java.util.random( ) and a 
toString( ) that interprets the result for you. The detectSpring( ) method is created using 
reflection to instantiate and use the class Groundhog or any class derived from 
Groundhog. This will come in handy later, when we inherit a new type of Groundhog to 
solve the problem demonstrated here.  

A HashMap is filled with Groundhogs and their associated Predictions. The HashMap 
is printed so that you can see it has been filled. Then a Groundhog with an identity number 
of 3 is used as a key to look up the prediction for Groundhog #3 (which you can see must be 
in the Map).  

It seems simple enough, but it doesn’t work—it can’t find the key for #3. The problem is that 
Groundhog is automatically inherited from the common root class Object, and it is 
Object’s hashCode( ) method that is used to generate the hash code for each object. By 
default this just uses the address of its object. Thus, the first instance of Groundhog(3) 
does not produce a hash code equal to the hash code for the second instance of 
Groundhog(3) that we tried to use as a lookup.  

You might think that all you need to do is write an appropriate override for hashCode( ). 
But it still won’t work until you’ve done one more thing: override the equals( ) that is also 
part of Object.equals( ) is used by the HashMap when trying to determine if your key is 
equal to any of the keys in the table.  

A proper equals( ) must satisfy the following five conditions:  

1. Reflexive: For any x, x.equals(x) should return true.  
 

2. Symmetric: For any x and y, x.equals(y) should return true if and only if 
y.equals(x) returns true. 

 
3. Transitive: For any x, y, and z, if x.equals(y) returns true and y.equals(z) returns 

true, then x.equals(z) should return true.  
 

4. Consistent: For any x and y, multiple invocations of x.equals(y) consistently return 
true or consistently return false, provided no information used in equals 
comparisons on the object is modified.  

 
5. For any non-null x, x.equals(null) should return false.  

 
Again, the default Object.equals( ) simply compares object addresses, so one 
Groundhog(3) is not equal to another Groundhog(3). Thus, to use your own classes as 
keys in a HashMap, you must override both hashCode( ) and equals( ), as shown in the 
following solution to the groundhog problem:  

//: containers/Groundhog2.java 

606 Thinking in Java Bruce Eckel 



 

// A class that’s used as a key in a HashMap 
// must override hashCode() and equals(). 
 
public class Groundhog2 extends Groundhog { 
  public Groundhog2(int n) { super(n); } 
  public int hashCode() { return number; } 
  public boolean equals(Object o) { 
    return o instanceof Groundhog2 && 
      (number == ((Groundhog2)o).number); 
  } 
} ///:~ 
 
//: containers/SpringDetector2.java 
// A working key. 
 
public class SpringDetector2 { 
  public static void main(String[] args) throws Exception { 
    SpringDetector.detectSpring(Groundhog2.class); 
  } 
} /* Output: 
map = {Groundhog #2=Early Spring!, Groundhog #4=Six more weeks of 
Winter!, Groundhog #9=Six more weeks of Winter!, Groundhog #8=Six more 
weeks of Winter!, Groundhog #6=Early Spring!, Groundhog #1=Six more 
weeks of Winter!, Groundhog #3=Early Spring!, Groundhog #7=Early 
Spring!, Groundhog #5=Early Spring!, Groundhog #0=Six more weeks of 
Winter!} 
Looking up prediction for Groundhog #3 
Early Spring! 
*///:~ 

Groundhog2.hashCode( ) returns the groundhog number as a hash value. In this 
example, the programmer is responsible for ensuring that no two groundhogs exist with the 
same ID number. The hashCode( ) is not required to return a unique identifier (something 
you’ll understand better later in this chapter), but the equals( ) method must strictly 
determine whether two objects are equivalent. Here, equals( ) is based on the groundhog 
number, so if two Groundhog2 objects exist as keys in the HashMap with the same 
groundhog number, it will fail.  

Even though it appears that the equals( ) method is only checking to see whether the 
argument is an instance of Groundhog2 (using the instanceof keyword, which was 
explained in the Type Information chapter), the instanceof actually quietly does a second 
sanity check to see if the object is null, since instanceof produces false if the left-hand 
argument is null. Assuming it’s the correct type and not null, the comparison is based on 
the actual number values in each object. You can see from the output that the behavior is 
now correct.  

When creating your own class to use in a HashSet, you must pay attention to the same 
issues as when it is used as a key in a HashMap.  

Understanding hashCodeQ 

The preceding example is only a start toward solving the problem correctly. It shows that if 
you do not override hashCode( ) and equals( ) for your key, the hashed data structure 
(HashSet, HashMap, LinkedHashSet, or LinkedHashMap) probably won’t deal with 
your key properly. For a good solution to the problem, however, you need to understand 
what’s going on inside the hashed data structure.  

First, consider the motivation behind hashing: You want to look up an object using another 
object. But you can also accomplish this with a TreeMap, or you can even implement your 

Containers in Depth 607 



 

own Map. In contrast to a hashed implementation, the following example implements a 
Map using a pair of ArrayLists. Unlike AssociativeArray.java, this includes a full 
implementation of the Map interface, which accounts for the entrySet( ) method:  

//: containers/SlowMap.java 
// A Map implemented with ArrayLists. 
import java.util.*; 
import net.mindview.util.*; 
 
public class SlowMap<K,V> extends AbstractMap<K,V> { 
  private List<K> keys = new ArrayList<K>(); 
  private List<V> values = new ArrayList<V>(); 
  public V put(K key, V value) { 
    V oldValue = get(key); // The old value or null 
    if(!keys.contains(key)) { 
      keys.add(key); 
      values.add(value); 
    } else 
      values.set(keys.indexOf(key), value); 
    return oldValue; 
  } 
  public V get(Object key) { // key is type Object, not K 
    if(!keys.contains(key)) 
      return null; 
    return values.get(keys.indexOf(key)); 
  } 
  public Set<Map.Entry<K,V>> entrySet() { 
    Set<Map.Entry<K,V>> set= new HashSet<Map.Entry<K,V>>(); 
    Iterator<K> ki = keys.iterator(); 
    Iterator<V> vi = values.iterator(); 
    while(ki.hasNext()) 
      set.add(new MapEntry<K,V>(ki.next(), vi.next())); 
    return set; 
  } 
  public static void main(String[] args) { 
    SlowMap<String,String> m= new SlowMap<String,String>(); 
    m.putAll(Countries.capitals(15)); 
    System.out.println(m); 
    System.out.println(m.get("BULGARIA")); 
    System.out.println(m.entrySet()); 
  } 
} /* Output: 
{CAMEROON=Yaounde, CHAD=N’djamena, CONGO=Brazzaville, CAPE VERDE=Praia, 
ALGERIA=Algiers, COMOROS=Moroni, CENTRAL AFRICAN REPUBLIC=Bangui, 
BOTSWANA=Gaberone, BURUNDI=Bujumbura, BENIN=Porto-Novo, BULGARIA=Sofia, 
EGYPT=Cairo, ANGOLA=Luanda, BURKINA FASO=Ouagadougou, 
DJIBOUTI=Dijibouti} 
Sofia 
[CAMEROON=Yaounde, CHAD=N’djamena, CONGO=Brazzaville, CAPE VERDE=Praia, 
ALGERIA=Algiers, COMOROS=Moroni, CENTRAL AFRICAN REPUBLIC=Bangui, 
BOTSWANA=Gaberone, BURUNDI=Bujumbura, BENIN=Porto-Novo, BULGARIA=Sofia, 
EGYPT=Cairo, ANGOLA=Luanda, BURKINA FASO=Ouagadougou, 
DJIBOUTI=Dijibouti] 
*///:~ 

The put( ) method simply places the keys and values in corresponding ArrayLists. In 
accordance with the Map interface, it must return the old key or null if there was no old key.  

Also following the specifications for Map, get( ) produces null if the key is not in the 
SlowMap. If the key exists, it is used to look up the numerical index indicating its location 
in the keys List, and this number is used as an index to produce the associated value from 
the values List. Notice that the type of key is Object in get( ), rather than the 

608 Thinking in Java Bruce Eckel 



 

parameterized type K as you might expect (and which was indeed used in 
AssociativeArray.java). This is a result of the injection of generics into the Java language 
at such a late date—if generics had been an original feature in the language, get( ) could have 
specified the type of its parameter.  

The Map.entrySet( ) method must produce a set of Map.Entry objects. However, 
Map.Entry is an interface describing an implementationdependent structure, so if you want 
to make your own type of Map, you must also define an implementation of Map.Entry:  

//: containers/MapEntry.java 
// A simple Map.Entry for sample Map implementations. 
import java.util.*; 
 
public class MapEntry<K,V> implements Map.Entry<K,V> { 
  private K key; 
  private V value; 
  public MapEntry(K key, V value) { 
    this.key = key; 
    this.value = value; 
  } 
  public K getKey() { return key; } 
  public V getValue() { return value; } 
  public V setValue(V v) { 
    V result = value; 
    value = v; 
    return result; 
  } 
  public int hashCode() { 
    return (key==null ? 0 : key.hashCode()) ^ 
      (value==null ? 0 : value.hashCode()); 
  } 
  public boolean equals(Object o) { 
    if(!(o instanceof MapEntry)) return false; 
    MapEntry me = (MapEntry)o; 
    return 
      (key == null ? 
       me.getKey() == null : key.equals(me.getKey())) && 
      (value == null ? 
       me.getValue()== null : value.equals(me.getValue())); 
  } 
  public String toString() { return key + "=" + value; } 
} ///:~ 

Here, a very simple class called MapEntry holds and retrieves the keys and values. This is 
used in entrySet( ) to produce a Set of key-value pairs. Notice that entrySet( ) uses a 
HashSet to hold the pairs, and MapEntry takes the simple approach of just using key’s 
hashCode( ). Although this solution is very simple, and appears to work in the trivial test in 
SlowMap.main( ), it is not a correct implementation because a copy of the keys and values 
is made. A correct implementation of entrySet( ) will provide a view into the Map, rather 
than a copy, and this view will allow modification of the original map (which a copy doesn’t). 
Exercise 16 provides the opportunity to repair the problem.  

Note that the equals( ) method in MapEntry must check both keys and values. The 
meaning of the hashCode( ) method will be described shortly. The String representation of 
the contents of the SlowMap is automatically produced by the toString( ) method defined 
in AbstractMap.  

In SlowMap.main( ), a SlowMap is loaded and then the contents are displayed. A call to 
get( ) shows that it works.  

Containers in Depth 609 



 

610 Thinking in Java Bruce Eckel 

Exercise 15:   (1) Repeat Exercise 13 using a SlowMap.  

Exercise 16:   (7) Apply the tests in Maps.java to SlowMap to verify that it works. Fix 
anything in SlowMap that doesn’t work correctly.  

Exercise 17:   (2) Implement the rest of the Map interface for SlowMap.  

Exercise 18:   (3) Using SlowMap.java for inspiration, create a SlowSet.  

Hashing for speed 

SlowMap.java shows that it’s not that hard to produce a new type of Map. But as the name 
suggests, a SlowMap isn’t very fast, so you probably wouldn’t use it if you had an alternative 
available. The problem is in the lookup of the key; the keys are not kept in any particular 
order, so a simple linear search is used. A linear search is the slowest way to find something.  

The whole point of hashing is speed: Hashing allows the lookup to happen quickly. Since the 
bottleneck is in the speed of the key lookup, one of the solutions to the problem is to keep the 
keys sorted and then use Collections.binarySearch( ) to perform the lookup (an exercise 
will walk you through this process).  

Hashing goes further by saying that all you want to do is to store the key somewhere in a way 
that it can be found quickly. The fastest structure in which to store a group of elements is an 
array, so that will be used for representing the key information (note that I said "key 
information," and not the key itself). But because an array cannot be resized, we have a 
problem: We want to store an indeterminate number of values in the Map, but if the number 
of keys is fixed by the array size, how can this be?  

The answer is that the array will not hold the keys. From the key object, a number will be 
derived that will index into the array. This number is the hash code, produced by the 
hashCode( ) method (in computer science parlance, this is the hash function) defined in 
Object and presumably overridden by your class.  

To solve the problem of the fixed-size array, more than one key may produce the same index. 
That is, there may be collisions. Because of this, it doesn’t matter how big the array is; any 
key object’s hash code will land somewhere in that array.  

So the process of looking up a value starts by computing the hash code and using it to index 
into the array. If you could guarantee that there were no collisions (which is possible if you 
have a fixed number of values), then you’d have a perfect hashing junction, but that’s a 
special case7 In all other cases, collisions are handled by external chaining: The array doesn’t 
point directly to a value, but instead to a list of values. These values are searched in a linear 
fashion using the equals( ) method. Of course, this aspect of the search is much slower, but 
if the hash function is good, there will only be a few values in each slot. So instead of 
searching through the entire list, you quickly jump to a slot where you only have to compare 
a few entries to find the value. This is much faster, which is why the HashMap is so quick.  

Knowing the basics of hashing, you can implement a simple hashed Map:  

//: containers/SimpleHashMap.java 
// A demonstration hashed Map. 
import java.util.*; 
import net.mindview.util.*; 

                                                            
7 The case of a perfect hashing function is implemented in the Java SE5 EnumMap and EnumSet, because an enum 
defines a fixed number of instances. See the Enumerated Types chapter. 



 

 
public class SimpleHashMap<K,V> extends AbstractMap<K,V> { 
  // Choose a prime number for the hash table 
  // size, to achieve a uniform distribution: 
  static final int SIZE = 997; 
  // You can’t have a physical array of generics, 
  // but you can upcast to one: 
  @SuppressWarnings("unchecked") 
  LinkedList<MapEntry<K,V>>[] buckets = 
    new LinkedList[SIZE]; 
  public V put(K key, V value) { 
    V oldValue = null; 
    int index = Math.abs(key.hashCode()) % SIZE; 
    if(buckets[index] == null) 
      buckets[index] = new LinkedList<MapEntry<K,V>>(); 
    LinkedList<MapEntry<K,V>> bucket = buckets[index]; 
    MapEntry<K,V> pair = new MapEntry<K,V>(key, value); 
    boolean found = false; 
    ListIterator<MapEntry<K,V>> it = bucket.listIterator(); 
    while(it.hasNext()) { 
      MapEntry<K,V> iPair = it.next(); 
      if(iPair.getKey().equals(key)) { 
        oldValue = iPair.getValue(); 
        it.set(pair); // Replace old with new 
        found = true; 
        break; 
      } 
    } 
    if(!found) 
      buckets[index].add(pair); 
    return oldValue; 
  } 
  public V get(Object key) { 
    int index = Math.abs(key.hashCode()) % SIZE; 
    if(buckets[index] == null) return null; 
    for(MapEntry<K,V> iPair : buckets[index]) 
      if(iPair.getKey().equals(key)) 
        return iPair.getValue(); 
    return null; 
  } 
  public Set<Map.Entry<K,V>> entrySet() { 
    Set<Map.Entry<K,V>> set= new HashSet<Map.Entry<K,V>>(); 
    for(LinkedList<MapEntry<K,V>> bucket : buckets) { 
      if(bucket == null) continue; 
      for(MapEntry<K,V> mpair : bucket) 
        set.add(mpair); 
    } 
    return set; 
  } 
  public static void main(String[] args) { 
    SimpleHashMap<String,String> m = 
      new SimpleHashMap<String,String>(); 
    m.putAll(Countries.capitals(25)); 
    System.out.println(m); 
    System.out.println(m.get("ERITREA")); 
    System.out.println(m.entrySet()); 
  } 
} /* Output: 
{CAMEROON=Yaounde, CONGO=Brazzaville, CHAD=N’djamena, COTE D’IVOIR 
(IVORY COAST)=Yamoussoukro, CENTRAL AFRICAN REPUBLIC=Bangui, 
GUINEA=Conakry, BOTSWANA=Gaberone, BISSAU=Bissau, EGYPT=Cairo, 
ANGOLA=Luanda, BURKINA FASO=Ouagadougou, ERITREA=Asmara, THE 
GAMBIA=Banjul, KENYA=Nairobi, GABON=Libreville, CAPE VERDE=Praia, 

Containers in Depth 611 



 

612 Thinking in Java Bruce Eckel 

ALGERIA=Algiers, COMOROS=Moroni, EQUATORIAL GUINEA=Malabo, 
BURUNDI=Bujumbura, BENIN=Porto-Novo, BULGARIA=Sofia, GHANA=Accra, 
DJIBOUTI=Dijibouti, ETHIOPIA=Addis Ababa} 
Asmara 
[CAMEROON=Yaounde, CONGO=Brazzaville, CHAD=N’djamena, COTE D’IVOIR 
(IVORY COAST)=Yamoussoukro, CENTRAL AFRICAN REPUBLIC=Bangui, 
GUINEA=Conakry, BOTSWANA=Gaberone, BISSAU=Bissau, EGYPT=Cairo, 
ANGOLA=Luanda, BURKINA FASO=Ouagadougou, ERITREA=Asmara, THE 
GAMBIA=Banjul, KENYA=Nairobi, GABON=Libreville, CAPE VERDE=Praia, 
ALGERIA=Algiers, COMOROS=Moroni, EQUATORIAL GUINEA=Malabo, 
BURUNDI=Bujumbura, BENIN=Porto-Novo, BULGARIA=Sofia, GHANA=Accra, 
DJIBOUTI=Dijibouti, ETHIOPIA=Addis Ababa] 
*///:~ 

Because the "slots" in a hash table are often referred to as buckets, the array that represents 
the actual table is called buckets. To promote even distribution, the number of buckets is 
typically a prime number.8

 Notice that it is an array of LinkedList, which automatically 
provides for collisions: Each new item is simply added to the end of the list in a particular 
bucket. Even though Java will not let you create an array of generics, it is possible to make a 
reference to such an array. Here, it is convenient to upcast to such an array, to prevent extra 
casting later in the code.  

For a put( ), the hashCode( ) is called for the key and the result is forced to a positive 
number. To fit the resulting number into the buckets array, the modulus operator is used 
with the size of that array. If that location is null, it means there are no elements that hash to 
that location, so a new LinkedList is created to hold the object that just did hash to that 
location. However, the normal process is to look through the list to see if there are duplicates, 
and if there are, the old value is put into oldValue and the new value replaces the old. The 
found flag keeps track of whether an old key-value pair was found and, if not, the new pair is 
appended to the end of the list.  

The get( ) calculates the index into the buckets array in the same fashion as put( ) (this is 
important in order to guarantee that you end up in the same spot). If a LinkedList exists, it 
is searched for a match.  

Note that this implementation is not meant to be tuned for performance; it is only intended 
to show the operations performed by a hash map. If you look at the source code for 
java.util.HashMap, you’ll see a tuned implementation. Also, for simplicity 
SimpleHashMap uses the same approach to entrySet( ) as did SlowMap, which is 
oversimplified and will not work for a general-purpose Map.  

Exercise 19:   (1) Repeat Exercise 13 using a SimpleHashMap.  

Exercise 20:   (3) Modify SimpleHashMap so that it reports collisions, and test this by 
adding the same data set twice so that you see collisions.  

Exercise 21:   (2) Modify SimpleHashMap so that it reports the number of "probes" 
necessary when collisions occur. That is, how many calls to next( ) must be made on the 
Iterators that walk the LinkedLists looking for matches?  

Exercise 22:   (4) Implement the clear( ) and remove( ) methods for 
SimpleHashMap.  

                                                            
8 As it turns out, a prime number is not actually the ideal size for hash buckets, and recent hashed implementations in 
Java use a power-of-two size (after extensive testing). Division or remainder is the slowest operation on a modern 
processor. With a power-of-two hash table length, masking can be used instead of division. Since get( ) is by far the most 
common operation, the % is a large part of the cost, and the power-of-two approach eliminates this (but may also affect 
some hashCode( ) methods). 



 

Exercise 23:   (3) Implement the rest of the Map interface for SimpleHashMap. 
Exercise 24:   (5) Following the example in SimpleHashMap.java, create and test a 
SimpleHashSet.  

Exercise 25:   (6) Instead of using a Listlterator for each bucket, modify MapEntry so 
that it is a self-contained singly linked list (each MapEntry should have a forward link to the 
next MapEntry). Modify the rest of the code in SimpleHashMap.java so that this new 
approach works correctly.  

Overriding hashCode() 

Now that you understand how hashing works, writing your own hashCode( ) method will 
make more sense.  

First of all, you don’t control the creation of the actual value that’s used to index into the 
array of buckets. That is dependent on the capacity of the particular HashMap object, and 
that capacity changes depending on how full the container is, and what the load factor is 
(this term will be described later). Thus, the value produced by your hashCode( ) will be 
further processed in order to create the bucket index (in SimpleHashMap, the calculation 
is just a modulo by the size of the bucket array).  

The most important factor in creating a hashCode( ) is that, regardless of when 
hashCode( ) is called, it produces the same value for a particular object every time it is 
called. If you end up with an object that produces one hashCode( ) value when it is put( ) 
into a HashMap and another during a get( ), you won’t be able to retrieve the objects. So if 
your hashCode( ) depends on mutable data in the object, the user must be made aware that 
changing the data will produce a different key because it generates a different hashCode( ).  

In addition, you will probably nor want to generate a hashCode( ) that is based on unique 
object information—in particular, the value of this makes a bad hashCode( ) because then 
you can’t generate a new key identical to the one used to put( ) the original key-value pair. 
This was the problem that occurred in SpringDetector.java, because the default 
implementation of hashCode( ) does use the object address. So you’ll want to use 
information in the object that identifies the object in a meaningful way.  

One example can be seen in the String class. Strings have the special characteristic that if a 
program has several String objects that contain identical character sequences, then those 
String objects all map to the same memory. So it makes sense that the hashCode( ) 
produced by two separate instances of the String "hello" should be identical. You can see 
this in the following program:  

//: containers/StringHashCode.java 
 
public class StringHashCode { 
  public static void main(String[] args) { 
    String[] hellos = "Hello Hello".split(" "); 
    System.out.println(hellos[0].hashCode()); 
    System.out.println(hellos[1].hashCode()); 
  } 
} /* Output: (Sample) 
69609650 
69609650 
*///:~ 

The hashCode( ) for String is clearly based on the contents of the String.  

Containers in Depth 613 



 

So, for a hashCode( ) to be effective, it must be fast and it must be meaningful; that is, it 
must generate a value based on the contents of the object. Remember that this value doesn’t 
have to be unique—you should lean toward speed rather than uniqueness—but between 
hashCode( ) and equals( ), the identity of the object must be completely resolved.  

Because the hashCode( ) is further processed before the bucket index is produced, the 
range of values is not important; it just needs to generate an int.  

There’s one other factor: A good hashCode( ) should result in an even distribution of 
values. If the values tend to cluster, then the HashMap or HashSet will be more heavily 
loaded in some areas and will not be as fast as it can be with an evenly distributed hashing 
function.  

In Effective Java™ Programming Language Guide (Addison-Wesley, 2001), Joshua Bloch 
gives a basic recipe for generating a decent hashCode( ):  

1. Store some constant nonzero value, say 17, in an int variable called result.  
 

2. For each significant field fin your object (that is, each field taken into account by the 
equals( ) method), calculate an int hash code c for the field:  

Field type Calculation 

boolean c = ( f ? 0 : 1) 

byte, char, short, or 

int 

c = (int)f 

long c = (int)(f ^ (f>>>32)) 

float c = Float.floatToIntBits(f); 

double long l = Double.doubleToLongBits(f); 

c = (int)(1 ^ (l>>>32)) 

Object, where 

equals( ) calls 

equals( ) for this 

field 

c = f.hashCode( ) 

Array Apply above rules to each element 

3. Combine the hash code(s) computed above: result = 37 * result + c;  
 

4. Return result.  
 

5. Look at the resulting hashCode( ) and make sure that equal instances have equal 
hash codes.  

 
Here’s an example that follows these guidelines:  

//: containers/CountedString.java 
// Creating a good hashCode(). 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class CountedString { 
  private static List<String> created = 
    new ArrayList<String>(); 

614 Thinking in Java Bruce Eckel 



 

  private String s; 
  private int id = 0; 
  public CountedString(String str) { 
    s = str; 
    created.add(s); 
    // id is the total number of instances 
    // of this string in use by CountedString: 
    for(String s2 : created) 
      if(s2.equals(s)) 
        id++; 
  } 
  public String toString() { 
    return "String: " + s + " id: " + id + 
      " hashCode(): " + hashCode(); 
  } 
  public int hashCode() { 
    // The very simple approach: 
    // return s.hashCode() * id; 
    // Using Joshua Bloch’s recipe: 
    int result = 17; 
    result = 37 * result + s.hashCode(); 
    result = 37 * result + id; 
    return result; 
  } 
  public boolean equals(Object o) { 
    return o instanceof CountedString && 
      s.equals(((CountedString)o).s) && 
      id == ((CountedString)o).id; 
  } 
  public static void main(String[] args) { 
    Map<CountedString,Integer> map = 
      new HashMap<CountedString,Integer>(); 
    CountedString[] cs = new CountedString[5]; 
    for(int i = 0; i < cs.length; i++) { 
      cs[i] = new CountedString("hi"); 
      map.put(cs[i], i); // Autobox int -> Integer 
    } 
    print(map); 
    for(CountedString cstring : cs) { 
      print("Looking up " + cstring); 
      print(map.get(cstring)); 
    } 
  } 
} /* Output: (Sample) 
{String: hi id: 4 hashCode(): 146450=3, String: hi id: 1 hashCode(): 
146447=0, String: hi id: 3 hashCode(): 146449=2, String: hi id: 5 
hashCode(): 146451=4, String: hi id: 2 hashCode(): 146448=1} 
Looking up String: hi id: 1 hashCode(): 146447 
0 
Looking up String: hi id: 2 hashCode(): 146448 
1 
Looking up String: hi id: 3 hashCode(): 146449 
2 
Looking up String: hi id: 4 hashCode(): 146450 
3 
Looking up String: hi id: 5 hashCode(): 146451 
4 
*///:~ 

CountedString includes a String and an id that represents the number of 
CountedString objects that contain an identical String. The counting is accomplished in 
the constructor by iterating through the static ArrayList where all the Strings are stored.  

Containers in Depth 615 



 

Both hashCode( ) and equals( ) produce results based on both fields; if they were just 
based on the String alone or the id alone, there would be duplicate matches for distinct 
values.  

In main( ), several CountedString objects are created using the same String, to show that 
the duplicates create unique values because of the count id. The HashMap is displayed so 
that you can see how it is stored internally (no discernible orders), and then each key is 
looked up individually to demonstrate that the lookup mechanism is working properly.  

As a second example, consider the Individual class that was used as the base class for the 
typeinfo.pet library defined in the Type Information chapter. The Individual class was 
used in that chapter but the definition has been delayed until this chapter so you could 
properly understand the implementation:  

//: typeinfo/pets/Individual.java 
package typeinfo.pets; 
 
public class Individual implements Comparable<Individual> { 
  private static long counter = 0; 
  private final long id = counter++; 
  private String name; 
  public Individual(String name) { this.name = name; } 
  // ‘name’ is optional: 
  public Individual() {} 
  public String toString() { 
    return getClass().getSimpleName() + 
      (name == null ? "" : " " + name); 
  } 
  public long id() { return id; } 
  public boolean equals(Object o) { 
    return o instanceof Individual && 
      id == ((Individual)o).id; 
  } 
  public int hashCode() { 
    int result = 17; 
    if(name != null) 
      result = 37 * result + name.hashCode(); 
    result = 37 * result + (int)id; 
    return result; 
  } 
  public int compareTo(Individual arg) { 
    // Compare by class name first: 
    String first = getClass().getSimpleName(); 
    String argFirst = arg.getClass().getSimpleName(); 
    int firstCompare = first.compareTo(argFirst); 
    if(firstCompare != 0) 
    return firstCompare; 
    if(name != null && arg.name != null) { 
      int secondCompare = name.compareTo(arg.name); 
      if(secondCompare != 0) 
        return secondCompare; 
    } 
    return (arg.id < id ? -1 : (arg.id == id ? 0 : 1)); 
  } 
} ///:~ 

The compareTo( ) method has a hierarchy of comparisons, so that it will produce a 
sequence that is sorted first by actual type, then by name if there is one, and finally falls 
back to creation order. Here’s an example that shows how it works:  

//: containers/IndividualTest.java 

616 Thinking in Java Bruce Eckel 



 

import holding.MapOfList; 
import typeinfo.pets.*; 
import java.util.*; 
 
public class IndividualTest { 
  public static void main(String[] args) { 
    Set<Individual> pets = new TreeSet<Individual>(); 
    for(List<? extends Pet> lp : 
        MapOfList.petPeople.values()) 
      for(Pet p : lp) 
        pets.add(p); 
    System.out.println(pets); 
  } 
} /* Output: 
[Cat Elsie May, Cat Pinkola, Cat Shackleton, Cat Stanford aka Stinky el 
Negro, Cymric Molly, Dog Margrett, Mutt Spot, Pug Louie aka Louis 
Snorkelstein Dupree, Rat Fizzy, Rat Freckly, Rat Fuzzy] 
*///:~ 

Since all of these pets have names, they are sorted first by type, then by name within their type.  

Writing a proper hashCode( ) and equals( ) for a new class can be tricky. You can find 
tools to help you do this in Apache’s "Jakarta Commons" project 
atjakarta.apache.org/commons, under "lang" (this project also has many other potentially 
useful libraries, and appears to be the Java community’s answer to the C++ community’s 
www.boost.org).  

Exercise 26:   (2) Add a char field to CountedString that is also initialized in the 
constructor, and modify the hashCode( ) and equals( ) methods to include the value of 
this char.  

Exercise 27:   (3) Modify the hashCode( ) in CountedString.java by removing the 
combination with id, and demonstrate that CountedString still works as a key. What is the 
problem with this approach?  

Exercise 28:   (4) Modify net/mindview/util/Tuple.java to make it a general-purpose 
class by adding hashCode( ), equals( ), and implementing Comparable for each type of 
Tuple.  

Choosing an implementation 
By now you should understand that although there are only four fundamental container 
types—Map, List, Set, and Queue—there is more than one implementation of each 
interface. If you need to use the functionality offered by a particular interface, how do you 
decide which implementation to use?  

Each different implementation has its own features, strengths, and weaknesses. For example, 
you can see in the figure at the beginning of this chapter that the "feature" of Hashtable, 
Vector, and Stack is that they are legacy classes, so that old code doesn’t break (it’s best if 
you don’t use those for new code).  

The different types of Queues in the Java library are differentiated only by the way they 
accept and produce values (you’ll see the importance of these in the Concurrency chapter).  

The distinction between containers often comes down to what they are "backed by"—that is, 
the data structures that physically implement the desired interface. For example, because 
ArrayList and LinkedList implement the List interface, the basic List operations are the 

Containers in Depth 617 



 

618 Thinking in Java Bruce Eckel 

same regardless of which one you use. However, ArrayList is backed by an array, and 
LinkedList is implemented in the usual way for a doubly linked list, as individual objects 
each containing data along with references to the previous and next elements in the list. 
Because of this, if you want to do many insertions and removals in the middle of a list, a 
LinkedList is the appropriate choice. (LinkedList also has additional functionality that is 
established in AbstractSequentialList.) If not, an ArrayList is typically faster.  

As another example, a Set can be implemented as either a TreeSet, a HashSet, or a 
LinkedHashSet.9 Each one has different behaviors: HashSet is for typical use and 
provides raw speed on lookup, LinkedHashSet keeps pairs in insertion order, and TreeSet 
is backed by TreeMap and is designed to produce a constantly sorted set. You choose the 
implementation based on the behavior you need.  

Sometimes different implementations of a particular container will have operations in 
common, but the performance of those operations will be different. In this case, you’ll choose 
between implementations based on how often you use a particular operation, and how fast 
you need it to be. For cases like this, one way to look at the differences between container 
implementations is with a performance test.  

A performance test framework 

To prevent code duplication and to provide consistency among tests, I’ve put the basic 
functionality of the test process into a framework. The following code establishes a base class 
from which you create a list of anonymous inner classes, one for each different test. Each of 
these inner classes is called as part of the testing process. This approach allows you to easily 
add and remove new kinds of tests.  

This is another example of the Template Method design pattern. Although you follow the 
typical Template Method approach of overriding the method Test.test( ) for each particular 
test, in this case the core code (that doesn’t change) is in a separate Tester class.10

 The type 
of container under test is the generic parameter C:  

//: containers/Test.java 
// Framework for performing timed tests of containers. 
 
public abstract class Test<C> { 
  String name; 
  public Test(String name) { this.name = name; } 
  // Override this method for different tests. 
  // Returns actual number of repetitions of test. 
  abstract int test(C container, TestParam tp); 
} ///:~ 

Each Test object stores the name of that test. When you call the test( ) method, it must be 
given the container to be tested along with a "messenger" or "data transfer object" that holds 
the various parameters for that particular test. The parameters include size, indicating the 
number of elements in the container, and loops, which controls the number of iterations for 
that test. These parameters may or may not be used in every test.  

Each container will undergo a sequence of calls to test( ), each with a different TestParam, 
so TestParam also contains static array( ) methods that make it easy to create arrays of 
TestParam objects. The first version of array( ) takes a variable argument list containing 
alternating size and loops values, and the second version takes the same kind of list except 
                                                            
9 Or as an EnumSet or CopyOnWriteArraySet, which are special cases. While acknowledging that there maybe 
additional specialized implementations of various container interfaces, this section attempts to look at the more general 
cases. 

10 Krzysztof Sobolewski assisted me in figuring out the generics for this example. 



 

that the values are inside Strings—this way, it can be used to parse commandline 
arguments:  

//: containers/TestParam.java 
// A "data transfer object." 
 
public class TestParam { 
  public final int size; 
  public final int loops; 
  public TestParam(int size, int loops) { 
    this.size = size; 
    this.loops = loops; 
  } 
  // Create an array of TestParam from a varargs sequence: 
  public static TestParam[] array(int... values) { 
    int size = values.length/2; 
    TestParam[] result = new TestParam[size]; 
    int n = 0; 
    for(int i = 0; i < size; i++) 
      result[i] = new TestParam(values[n++], values[n++]); 
    return result; 
  } 
  // Convert a String array to a TestParam array: 
  public static TestParam[] array(String[] values) { 
    int[] vals = new int[values.length]; 
    for(int i = 0; i < vals.length; i++) 
      vals[i] = Integer.decode(values[i]); 
    return array(vals); 
  } 
} ///:~ 

To use the framework, you pass the container to be tested along with a List of Test objects to 
a Tester.run( ) method (these are overloaded generic convenience methods which reduce 
the amount of typing necessary to use them). Tester.run( ) calls the appropriate overloaded 
constructor, then calls timedTest( ), which executes each test in the list for that container. 
timedTest( ) repeats each test for each of the TestParam objects in paramList. Because 
paramList is initialized from the static defaultParams array, you can change the 
paramList for all tests by reassigning defaultParams, or you can change the paramList 
for one test by passing in a custom paramList for that test:  

//: containers/Tester.java 
// Applies Test objects to lists of different containers. 
import java.util.*; 
 
public class Tester<C> { 
  public static int fieldWidth = 8; 
  public static TestParam[] defaultParams= TestParam.array( 
    10, 5000, 100, 5000, 1000, 5000, 10000, 500); 
  // Override this to modify pre-test initialization: 
  protected C initialize(int size) { return container; } 
  protected C container; 
  private String headline = ""; 
  private List<Test<C>> tests; 
  private static String stringField() { 
    return "%" + fieldWidth + "s"; 
  } 
  private static String numberField() { 
    return "%" + fieldWidth + "d"; 
  } 
  private static int sizeWidth = 5; 
  private static String sizeField = "%" + sizeWidth + "s"; 
  private TestParam[] paramList = defaultParams; 

Containers in Depth 619 



 

  public Tester(C container, List<Test<C>> tests) { 
    this.container = container; 
    this.tests = tests; 
    if(container != null) 
      headline = container.getClass().getSimpleName(); 
  } 
  public Tester(C container, List<Test<C>> tests, 
      TestParam[] paramList) { 
    this(container, tests); 
    this.paramList = paramList; 
  } 
  public void setHeadline(String newHeadline) { 
    headline = newHeadline; 
  } 
  // Generic methods for convenience : 
  public static <C> void run(C cntnr, List<Test<C>> tests){ 
    new Tester<C>(cntnr, tests).timedTest(); 
  } 
  public static <C> void run(C cntnr, 
      List<Test<C>> tests, TestParam[] paramList) { 
    new Tester<C>(cntnr, tests, paramList).timedTest(); 
  } 
  private void displayHeader() { 
    // Calculate width and pad with ‘-’: 
    int width = fieldWidth * tests.size() + sizeWidth; 
    int dashLength = width - headline.length() - 1; 
    StringBuilder head = new StringBuilder(width); 
    for(int i = 0; i < dashLength/2; i++) 
      head.append(‘-’); 
    head.append(‘ ‘); 
    head.append(headline); 
    head.append(‘ ‘); 
    for(int i = 0; i < dashLength/2; i++) 
      head.append(‘-’); 
    System.out.println(head); 
    // Print column headers: 
    System.out.format(sizeField, "size"); 
    for(Test test : tests) 
      System.out.format(stringField(), test.name); 
    System.out.println(); 
  } 
  // Run the tests for this container: 
  public void timedTest() { 
    displayHeader(); 
    for(TestParam param : paramList) { 
      System.out.format(sizeField, param.size); 
      for(Test<C> test : tests) { 
        C kontainer = initialize(param.size); 
        long start = System.nanoTime(); 
        // Call the overriden method: 
        int reps = test.test(kontainer, param); 
        long duration = System.nanoTime() - start; 
        long timePerRep = duration / reps; // Nanoseconds 
        System.out.format(numberField(), timePerRep); 
      } 
      System.out.println(); 
    } 
  } 
} ///:~ 

The stringField( ) and numberField( ) methods produce formatting strings for 
outputting the results. The standard width for formatting can be changed by modifying the 

620 Thinking in Java Bruce Eckel 



 

static fieldWidth value. The displayHeader( ) method formats and prints the header 
information for each test.  

If you need to perform special initialization, override the initialize( ) method. This 
produces an initialized container object of the appropriate size—you can either modify the 
existing container object or create a new one. You can see in test( ) that the result is 
captured in a local reference called kontainer, which allows you to replace the stored 
member container with a completely different initialized container.  

The return value of each Test.test( ) method must be the number of operations performed 
by that test, which is used to calculate the number of nanoseconds required for each 
operation. You should be aware that System.nanoTime( ) typically produces values with a 
granularity that is greater than one (and this granularity will vary with machines and 
operating systems), and this will produce a certain amount of rattle in the results.  

The results may vary from machine to machine; these tests are only intended to compare the 
performance of the different containers.  

Choosing between Lists 

Here is a performance test for the most essential of the List operations. For comparison, it 
also shows the most important Queue operations. Two separate lists of tests are created for 
testing each class of container. In this case, Queue operations only apply to LinkedLists.  

//: containers/ListPerformance.java 
// Demonstrates performance differences in Lists. 
// {Args: 100 500} Small to keep build testing short 
import java.util.*; 
import net.mindview.util.*; 
 
public class ListPerformance { 
  static Random rand = new Random(); 
  static int reps = 1000; 
  static List<Test<List<Integer>>> tests = 
    new ArrayList<Test<List<Integer>>>(); 
  static List<Test<LinkedList<Integer>>> qTests = 
    new ArrayList<Test<LinkedList<Integer>>>(); 
  static { 
    tests.add(new Test<List<Integer>>("add") { 
      int test(List<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        int listSize = tp.size; 
        for(int i = 0; i < loops; i++) { 
          list.clear(); 
          for(int j = 0; j < listSize; j++) 
            list.add(j); 
        } 
        return loops * listSize; 
      } 
    }); 
    tests.add(new Test<List<Integer>>("get") { 
      int test(List<Integer> list, TestParam tp) { 
        int loops = tp.loops * reps; 
        int listSize = list.size(); 
        for(int i = 0; i < loops; i++) 
          list.get(rand.nextInt(listSize)); 
        return loops; 
      } 
    }); 
    tests.add(new Test<List<Integer>>("set") { 

Containers in Depth 621 



 

      int test(List<Integer> list, TestParam tp) { 
        int loops = tp.loops * reps; 
        int listSize = list.size(); 
        for(int i = 0; i < loops; i++) 
          list.set(rand.nextInt(listSize), 47); 
        return loops; 
      } 
    }); 
    tests.add(new Test<List<Integer>>("iteradd") { 
      int test(List<Integer> list, TestParam tp) { 
        final int LOOPS = 1000000; 
        int half = list.size() / 2; 
        ListIterator<Integer> it = list.listIterator(half); 
        for(int i = 0; i < LOOPS; i++) 
          it.add(47); 
        return LOOPS; 
      } 
    }); 
    tests.add(new Test<List<Integer>>("insert") { 
      int test(List<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        for(int i = 0; i < loops; i++) 
          list.add(5, 47); // Minimize random-access cost 
        return loops; 
      } 
    }); 
    tests.add(new Test<List<Integer>>("remove") { 
      int test(List<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          list.clear(); 
          list.addAll(new CountingIntegerList(size)); 
          while(list.size() > 5) 
            list.remove(5); // Minimize random-access cost 
        } 
        return loops * size; 
      } 
    }); 
    // Tests for queue behavior: 
    qTests.add(new Test<LinkedList<Integer>>("addFirst") { 
      int test(LinkedList<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          list.clear(); 
          for(int j = 0; j < size; j++) 
            list.addFirst(47); 
        } 
        return loops * size; 
      } 
    }); 
    qTests.add(new Test<LinkedList<Integer>>("addLast") { 
      int test(LinkedList<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          list.clear(); 
          for(int j = 0; j < size; j++) 
            list.addLast(47); 
        } 
        return loops * size; 
      } 

622 Thinking in Java Bruce Eckel 



 

    }); 
    qTests.add( 
      new Test<LinkedList<Integer>>("rmFirst") { 
        int test(LinkedList<Integer> list, TestParam tp) { 
          int loops = tp.loops; 
          int size = tp.size; 
          for(int i = 0; i < loops; i++) { 
            list.clear(); 
            list.addAll(new CountingIntegerList(size)); 
            while(list.size() > 0) 
              list.removeFirst(); 
          } 
          return loops * size; 
        } 
      }); 
    qTests.add(new Test<LinkedList<Integer>>("rmLast") { 
      int test(LinkedList<Integer> list, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          list.clear(); 
          list.addAll(new CountingIntegerList(size)); 
          while(list.size() > 0) 
            list.removeLast(); 
        } 
        return loops * size; 
      } 
    }); 
  } 
  static class ListTester extends Tester<List<Integer>> { 
    public ListTester(List<Integer> container, 
        List<Test<List<Integer>>> tests) { 
      super(container, tests); 
    } 
    // Fill to the appropriate size before each test: 
    @Override protected List<Integer> initialize(int size){ 
      container.clear(); 
      container.addAll(new CountingIntegerList(size)); 
      return container; 
    } 
    // Convenience method: 
    public static void run(List<Integer> list, 
        List<Test<List<Integer>>> tests) { 
      new ListTester(list, tests).timedTest(); 
    } 
  } 
  public static void main(String[] args) { 
    if(args.length > 0) 
      Tester.defaultParams = TestParam.array(args); 
    // Can only do these two tests on an array: 
    Tester<List<Integer>> arrayTest = 
      new Tester<List<Integer>>(null, tests.subList(1, 3)){ 
        // This will be called before each test. It 
        // produces a non-resizeable array-backed list: 
        @Override protected 
        List<Integer> initialize(int size) { 
          Integer[] ia = Generated.array(Integer.class, 
            new CountingGenerator.Integer(), size); 
          return Arrays.asList(ia); 
        } 
      }; 
    arrayTest.setHeadline("Array as List"); 
    arrayTest.timedTest(); 

Containers in Depth 623 



 

    Tester.defaultParams= TestParam.array( 
      10, 5000, 100, 5000, 1000, 1000, 10000, 200); 
    if(args.length > 0) 
      Tester.defaultParams = TestParam.array(args); 
    ListTester.run(new ArrayList<Integer>(), tests); 
    ListTester.run(new LinkedList<Integer>(), tests); 
    ListTester.run(new Vector<Integer>(), tests); 
    Tester.fieldWidth = 12; 
    Tester<LinkedList<Integer>> qTest = 
      new Tester<LinkedList<Integer>>( 
        new LinkedList<Integer>(), qTests); 
    qTest.setHeadline("Queue tests"); 
    qTest.timedTest(); 
  } 
} /* Output: (Sample) 
--- Array as List --- 
 size     get     set 
   10     130     183 
  100     130     164 
 1000     129     165 
10000     129     165 
--------------------- ArrayList --------------------- 
 size     add     get     set iteradd  insert  remove 
   10     121     139     191     435    3952     446 
  100      72     141     191     247    3934     296 
 1000      98     141     194     839    2202     923 
10000     122     144     190    6880   14042    7333 
--------------------- LinkedList --------------------- 
 size     add     get     set iteradd  insert  remove 
   10     182     164     198     658     366     262 
  100     106     202     230     457     108     201 
 1000     133    1289    1353     430     136     239 
10000     172   13648   13187     435     255     239 
----------------------- Vector ----------------------- 
 size     add     get     set iteradd  insert  remove 
   10     129     145     187     290    3635     253 
  100      72     144     190     263    3691     292 
 1000      99     145     193     846    2162     927 
10000     108     145     186    6871   14730    7135 
-------------------- Queue tests -------------------- 
 size    addFirst     addLast     rmFirst      rmLast 
   10         199         163         251         253 
  100          98          92         180         179 
 1000          99          93         216         212 
10000         111         109         262         384 
*///:~ 

Each test requires careful thought to ensure that you are producing meaningful results. For 
example, the "add" test clears the List and then refills it to the specified list size. The call to 
clear( ) is thus part of the test, and may have an impact on the time, especially for small 
tests. Although the results here seem fairly reasonable, you could imagine rewriting the test 
framework so that there is a call to a preparation method (which would, in this case, include 
the clear( ) call) outside of the timing loop.  

Note that for each test, you must accurately calculate the number of operations that occur 
and return that value from test( ), so the timing is correct.  

The "get" and "set" tests both use the random number generator to perform random 
accesses to the List. In the output, you can see that, for a List backed by an array and for an 
ArrayList, these accesses are fast and very consistent regardless of the list size, whereas for 

624 Thinking in Java Bruce Eckel 



 

a LinkedList, the access times grow very significantly for larger lists. Clearly, linked lists are 
not a good choice if you will be performing many random accesses.  

The "iteradd" test uses an iterator in the middle of the list to insert new elements. For an 
ArrayList this gets expensive as the list gets bigger, but for a LinkedList it is relatively 
cheap, and constant regardless of size. This makes sense because an ArrayList must create 
space and copy all its references forward during an insertion. This becomes expensive as the 
ArrayList gets bigger. A LinkedList only needs to link in a new element, and doesn’t have 
to modify the rest of the list, so you expect the cost to be roughly the same regardless of the 
list size.  

The "insert" and "remove" tests both use location number 5 as the point of insertion or 
removal, rather than either end of the List. A LinkedList treats the endpoints of the List 
specially—this improves the speed when using a LinkedList as a Queue. However, if you 
add or remove elements in the middle of the list, you include the cost of random access, 
which we’ve already seen varies with the different List implementations. By performing the 
insertions and removals at location 5, the cost of the random access should be negligible and 
we should see only the cost of insertion and removal, but we will not see any specialized 
optimization for the end of a LinkedList. You can see from the output that the cost of 
insertion and removal in a LinkedList is quite cheap and doesn’t vary with the list size, but 
with an ArrayList, insertions especially are very expensive, and the cost increases with list 
size.  

From the Queue tests, you can see how quickly a LinkedList can insert and remove 
elements from the endpoints of the list, which is optimal for Queue behavior.  

Normally, you can just call Tester.run( ), passing the container and the tests list. Here, 
however, we must override the initialize( ) method so that the List is cleared and refilled 
before each test—otherwise the List control over the size of the List would be lost during the 
various tests. ListTester inherits from Tester and performs this initialization using 
CountingIntegerList. The run( ) convenience method is also overridden. We’d also like to 
compare array access to container access (primarily against ArrayList). In the first test in 
main( ), a special Test object is created using an anonymous inner class. The initialize( ) 
method is overridden to create a new object each time it is called (ignoring the stored 
container object, so null is the container argument for this Tester constructor). The new 
object is created using Generated.array( ) (which was defined in the Arrays chapter) and 
Arrays.asList( ). Only two of the tests can be performed in this case, because you cannot 
insert or remove elements when using a List backed by an array, so the List.subList( ) 
method is used to select the desired tests from the tests list.  

For random-access get( ) and set( ) operations, a List backed by an array is slightly faster 
than an ArrayList, but the same operations are dramatically more expensive for a 
LinkedList because it is not designed for randomaccess operations.  

Vector should be avoided; it’s only in the library for legacy code support (the only reason it 
works in this program is because it was adapted to be a List for forward compatibility).  

The best approach is probably to choose an ArrayList as your default and to change to a 
LinkedList if you need its extra functionality or you discover performance problems due to 
many insertions and removals from the middle of the list. If you are working with a fixed-
sized group of elements, either use a List backed by an array (as produced by 
Arrays.asList( )), or if necessary, an actual array.  

CopyOnWriteArrayList is a special implementation of List used in concurrent 
programming, and will be discussed in the Concurrency chapter.  

Exercise 29:   (2) Modify ListPerformance.java so that the Lists hold String objects 
instead of Integers. Use a Generator from the Arrays chapter to create test values.  

Containers in Depth 625 



 

Exercise 30:   (3) Compare the performance of Collections.sort( ) between an 
ArrayList and a LinkedList.  

Exercise 31:   (5) Create a container that encapsulates an array of String, and that only 
allows adding Strings and getting Strings, so that there are no casting issues during use. If 
the internal array isn’t big enough for the next add, your container should automatically 
resize it. In main( ), compare the performance of your container with an 
ArrayList<String>.  

Exercise 32:   (2) Repeat the previous exercise for a container of int, and compare the 
performance to an ArrayList<Integer>. In your performance comparison, include the 
process of incrementing each object in the container.  

Exercise 33:   (5) Create a FastTraversalLinkedList that internally uses a LinkedList 
for rapid insertions and removals, and an ArrayList for rapid traversals and get( ) 
operations. Test it by modifying ListPerformance.java.  

Microbenchmarking dangers 

When writing so-called microbenchmarks, you must be careful not to assume too much, and 
to narrow your tests so that as much as possible they are only timing the items of interest. 
You must also be careful to ensure that your tests run long enough to produce interesting 
data, and take into account that some of the Java HotSpot technologies will only kick in when 
a program runs for a certain time (this is important to consider for short-running programs, 
as well).  

Results will be different according to the computer and JVM you are using, so you should run 
these tests yourself to verify that the results are similar to those shown in this book. You 
should not be so concerned with absolute numbers as with the performance comparisons 
between one type of container and another.  

Also, a profiler may do a better job of performance analysis than you can. Java comes with a 
profiler (see the supplement at http://MindView.net/Books/BetterJava) and there are third-
party profilers available, both free/open-source and commercial.  

A related example concerns Math.random( ). Does it produce a value from zero to one, 
inclusive or exclusive of the value "1"? In math lingo, is it (0,1), or [0,1], or (0,1] or [0,1)? (The 
square bracket means "includes," whereas the parenthesis means "doesn’t include.") A test 
program might provide the answer:  

//: containers/RandomBounds.java 
// Does Math.random() produce 0.0 and 1.0? 
// {RunByHand} 
import static net.mindview.util.Print.*; 
 
public class RandomBounds { 
  static void usage() { 
    print("Usage:"); 
    print("\tRandomBounds lower"); 
    print("\tRandomBounds upper"); 
    System.exit(1); 
  } 
  public static void main(String[] args) { 
    if(args.length != 1) usage(); 
    if(args[0].equals("lower")) { 
      while(Math.random() != 0.0) 
        ; // Keep trying 

626 Thinking in Java Bruce Eckel 



 

      print("Produced 0.0!"); 
    } 
    else if(args[0].equals("upper")) { 
      while(Math.random() != 1.0) 
        ; // Keep trying 
      print("Produced 1.0!"); 
    } 
    else 
      usage(); 
  } 
} ///:~ 
 

To run the program, you type a command line of either:  

java RandomBounds lower  

or  

java RandomBounds upper  

In both cases, you are forced to break out of the program manually, so it would appear that 
Math.random( ) never produces either o.o or l.o. But this is where such an experiment can 
be deceiving. If you consider that there are about 262 different double fractions between o 
and 1, the likelihood of reaching any one value experimentally might exceed the lifetime of 
one computer, or even one experimenter. It turns out that 0.0 is included in the output of 
Math.random( ). Or, in math lingo, it is [0,1). Thus, you must be careful to analyze your 
experiments and to understand their limitations.  

Choosing between Sets 

Depending on the behavior you desire, you can choose a TreeSet, a HashSet, or a 
LinkedHashSet. The following test program gives an indication of the performance trade-
off between these implementations:  

//: containers/SetPerformance.java 
// Demonstrates performance differences in Sets. 
// {Args: 100 5000} Small to keep build testing short 
import java.util.*; 
 
public class SetPerformance { 
  static List<Test<Set<Integer>>> tests = 
    new ArrayList<Test<Set<Integer>>>(); 
  static { 
    tests.add(new Test<Set<Integer>>("add") { 
      int test(Set<Integer> set, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          set.clear(); 
          for(int j = 0; j < size; j++) 
            set.add(j); 
        } 
        return loops * size; 
      } 
    }); 
    tests.add(new Test<Set<Integer>>("contains") { 
      int test(Set<Integer> set, TestParam tp) { 
        int loops = tp.loops; 

Containers in Depth 627 



 

        int span = tp.size * 2; 
        for(int i = 0; i < loops; i++) 
          for(int j = 0; j < span; j++) 
            set.contains(j); 
        return loops * span; 
      } 
    }); 
    tests.add(new Test<Set<Integer>>("iterate") { 
      int test(Set<Integer> set, TestParam tp) { 
        int loops = tp.loops * 10; 
        for(int i = 0; i < loops; i++) { 
          Iterator<Integer> it = set.iterator(); 
          while(it.hasNext()) 
            it.next(); 
        } 
        return loops * set.size(); 
      } 
    }); 
  } 
  public static void main(String[] args) { 
    if(args.length > 0) 
      Tester.defaultParams = TestParam.array(args); 
    Tester.fieldWidth = 10; 
    Tester.run(new TreeSet<Integer>(), tests); 
    Tester.run(new HashSet<Integer>(), tests); 
    Tester.run(new LinkedHashSet<Integer>(), tests); 
  } 
} /* Output: (Sample) 
------------- TreeSet ------------- 
 size       add  contains   iterate 
   10       746       173        89 
  100       501       264        68 
 1000       714       410        69 
10000      1975       552        69 
------------- HashSet ------------- 
 size       add  contains   iterate 
   10       308        91        94 
  100       178        75        73 
 1000       216       110        72 
10000       711       215       100 
---------- LinkedHashSet ---------- 
 size       add  contains   iterate 
   10       350        65        83 
  100       270        74        55 
 1000       303       111        54 
10000      1615       256        58 
*///:~ 

The performance of HashSet is generally superior to TreeSet, but especially when adding 
elements and looking them up, which are the two most important operations. TreeSet exists 
because it maintains its elements in sorted order, so you use it only when you need a sorted 
Set. Because of the internal structure necessary to support sorting and because iteration is 
something you’re more likely to do, iteration is usually faster with a TreeSet than a 
HashSet.  

Note that LinkedHashSet is more expensive for insertions than HashSet; this is because 
of the extra cost of maintaining the linked list along with the hashed container.  

Exercise 34:   (1) Modify SetPerformance.java so that the Sets hold String objects 
instead of Integers. Use a Generator from the Arrays chapter to create test values.  

628 Thinking in Java Bruce Eckel 



 

Choosing between Maps 

This program gives an indication of the trade-off between Map implementations:  

//: containers/MapPerformance.java 
// Demonstrates performance differences in Maps. 
// {Args: 100 5000} Small to keep build testing short 
import java.util.*; 
 
public class MapPerformance { 
  static List<Test<Map<Integer,Integer>>> tests = 
    new ArrayList<Test<Map<Integer,Integer>>>(); 
  static { 
    tests.add(new Test<Map<Integer,Integer>>("put") { 
      int test(Map<Integer,Integer> map, TestParam tp) { 
        int loops = tp.loops; 
        int size = tp.size; 
        for(int i = 0; i < loops; i++) { 
          map.clear(); 
          for(int j = 0; j < size; j++) 
            map.put(j, j); 
        } 
        return loops * size; 
      } 
    }); 
    tests.add(new Test<Map<Integer,Integer>>("get") { 
      int test(Map<Integer,Integer> map, TestParam tp) { 
        int loops = tp.loops; 
        int span = tp.size * 2; 
        for(int i = 0; i < loops; i++) 
          for(int j = 0; j < span; j++) 
            map.get(j); 
        return loops * span; 
      } 
    }); 
    tests.add(new Test<Map<Integer,Integer>>("iterate") { 
      int test(Map<Integer,Integer> map, TestParam tp) { 
        int loops = tp.loops * 10; 
        for(int i = 0; i < loops; i ++) { 
          Iterator it = map.entrySet().iterator(); 
          while(it.hasNext()) 
            it.next(); 
        } 
        return loops * map.size(); 
      } 
    }); 
  } 
  public static void main(String[] args) { 
    if(args.length > 0) 
      Tester.defaultParams = TestParam.array(args); 
    Tester.run(new TreeMap<Integer,Integer>(), tests); 
    Tester.run(new HashMap<Integer,Integer>(), tests); 
    Tester.run(new LinkedHashMap<Integer,Integer>(),tests); 
    Tester.run( 
      new IdentityHashMap<Integer,Integer>(), tests); 
    Tester.run(new WeakHashMap<Integer,Integer>(), tests); 
    Tester.run(new Hashtable<Integer,Integer>(), tests); 
  } 
} /* Output: (Sample) 
---------- TreeMap ---------- 
 size     put     get iterate 

Containers in Depth 629 



 

   10     748     168     100 
  100     506     264      76 
 1000     771     450      78 
10000    2962     561      83 
---------- HashMap ---------- 
 size     put     get iterate 
   10     281      76      93 
  100     179      70      73 
 1000     267     102      72 
10000    1305     265      97 
------- LinkedHashMap ------- 
 size     put     get iterate 
   10     354     100      72 
  100     273      89      50 
 1000     385     222      56 
10000    2787     341      56 
------ IdentityHashMap ------ 
 size     put     get iterate 
   10     290     144     101 
  100     204     287     132 
 1000     508     336      77 
10000     767     266      56 
-------- WeakHashMap -------- 
 size     put     get iterate 
   10     484     146     151 
  100     292     126     117 
 1000     411     136     152 
10000    2165     138     555 
--------- Hashtable --------- 
 size     put     get iterate 
   10     264     113     113 
  100     181     105      76 
 1000     260     201      80 
10000    1245     134      77 
*///:~ 

Insertions for all the Map implementations except for IdentityHashMap get significantly 
slower as the size of the Map gets large. In general, however, lookup is much cheaper than 
insertion, which is good because you’ll typically be looking items up much more often than 
you insert them.  

Hashtable performance is roughly the same as HashMap. Since HashMap is intended to 
replace Hashtable, and thus uses the same underlying storage and lookup mechanism 
(which you will learn about later), this is not too surprising.  

A TreeMap is generally slower than a HashMap. As with TreeSet, a TreeMap is a way to 
create an ordered list. The behavior of a tree is such that it’s always in order and doesn’t have 
to be specially sorted. Once you fill a TreeMap, you can call keySet( ) to get a Set view of 
the keys, then toArray( ) to produce an array of those keys. You can then use the static 
method Arrays.binarySearch( ) to rapidly find objects in your sorted array. Of course, 
this only makes sense if the behavior of a HashMap is unacceptable, since HashMap is 
designed to rapidly find keys. Also, you can easily create a HashMap from a TreeMap with 
a single object creation or call to putAll( ). In the end, when you’re using a Map, your first 
choice should be HashMap, and only if you need a constantly sorted Map will you need 
TreeMap.  

LinkedHashMap tends to be slower than HashMap for insertions because it maintains 
the linked list (to preserve insertion order) in addition to the hashed data structure. Because 
of this list, iteration is faster.  

630 Thinking in Java Bruce Eckel 



 

Containers in Depth 631 

IdentityHashMap has different performance because it uses == rather than equals( ) for 
comparisons. WeakHashMap is described later in this chapter.  

Exercise 35:   (1) Modify MapPerformance.java to include tests of SlowMap.  

Exercise 36:   (5) Modify SlowMap so that instead of two ArrayLists, it holds a single 
ArrayList of MapEntry objects. Verify that the modified version works correctly. Using 
MapPerformance.java, test the speed of your new Map. Now change the put( ) method 
so that it performs a sort( ) after each pair is entered, and modify get( ) to use 
Collections.binarySearch( ) to look up the key. Compare the performance of the new 
version with the old ones.  

Exercise 37:   (2) Modify SimpleHashMap to use ArrayLists instead of LinkedLists. 
Modify MapPerformance.java to compare the performance of the two implementations.  

HashMap performance factors 

It’s possible to hand-tune a HashMap to increase its performance for your particular 
application. So that you can understand performance issues when tuning a HashMap, some 
terminology is necessary:  
 

Capacity: The number of buckets in the table.  
 
Initial capacity: The number of buckets when the table is created. HashMap and 
HashSet have constructors that allow you to specify the initial capacity.  
 
Size: The number of entries currently in the table.  
 
Load factor: Size/capacity. A load factor of o is an empty table, 0.5 is a half-full table, 
etc. A lightly loaded table will have few collisions and so is optimal for insertions and 
lookups (but will slow down the process of traversing with an iterator). HashMap and 
HashSet have constructors that allow you to specify the load factor, which means that 
when this load factor is reached, the container will automatically increase the capacity 
(the number of buckets) by roughly doubling it and will redistribute the existing objects 
into the new set of buckets (this is called rehashing).  
 

The default load factor used by HashMap is 0.75 (it doesn’t rehash until the table is three-
fourths full). This seems to be a good trade-off between time and space costs. A higher load 
factor decreases the space required by the table but increases the lookup cost, which is 
important because lookup is what you do most of the time (including both get( ) and put( 
)).  

If you know that you’ll be storing many entries in a HashMap, creating it with an 
appropriately large initial capacity will prevent the overhead of automatic rehashing.11

  

Exercise 38:   (3) Look up the HashMap class in the JDK documentation. Create a 
HashMap, fill it with elements, and determine the load factor. Test the lookup speed with 
this map, then attempt to increase the speed by making a new HashMap with a larger initial 
capacity and copying the old map into the new one, then run your lookup speed test again on 
the new map.  

                                                            
11 In a private message, Joshua Bloch wrote: "... I believe that we erred by allowing implementation details (such as hash 
table size and load factor) into our APIs. The client should perhaps tell us the maximum expected size of a collection, and 
we should take it from there. Clients can easily do more harm than good by choosing values for these parameters. As an 
extreme example, consider Vector’s capacitylncrement. No one should ever set this, and we shouldn’t have provided 
it. If you set it to any nonzero value, the asymptotic cost of a sequence of appends goes from linear to quadratic. In other 
words, it destroys your performance. Over time, we’re beginning to wise up about this sort of thing. If you look at 
IdentityHashMap, you’ll see that it has no low-level tuning parameters." 



 

Exercise 39:   (6) Add a private rehash( ) method to SimpleHashMap that is 
invoked when the load factor exceeds 0.75. During rehashing, double the number of buckets, 
then search for the first prime number greater than that to determine the new number of 
buckets.  

Utilities 
There are a number of standalone utilities for containers, expressed as static methods inside 
the java.util.Collections class. You’ve already seen some of these, such as addAll( ), 
reverseOrder( ) and binarySearch( ). Here are the others (the synchronized and 
unmodifiable utilities will be covered in sections that follow). In this table, generics are 
used when they are relevant: 

checkedCollection( 
Collection<T>, Class<T> type) 
checkedList( 
List<T>, Class<T> type) 
checkedMap(Map<K,V>,  
Class <K> keyType,  
Class <V> valueType) 
checkedSet(Set<T>,  
Class<T> type) 
checkedSortedMap( 
SortedMap<K,V>,  
Class<K> keyType,  
Class <V> valueType) 
checkedSortedSet( 
SortedSet<T>,  
Class<T> type) 

Produces a dynamically type-safe 
view of a Collection, or a specific 
subtype of Collection. Use this 
when it’s not possible to use the 
statically checked version.  

These were shown in the Generics 
chapter under the heading 
"Dynamic type safety." 

max(Collection) 
min(Collection) 

Produces the maximum or 
minimum element in the argument 
using the natural comparison 
method of the objects in the 
Collection. 

max(Collection, Comparator) 
min(Collection, Comparator) 

Produces the maximum or 
minimum element in the 
Collection using the 
Comparator. 

indexOfSubList(List source, 
List target) 

Produces starting index of the first 
place where target appears inside 
source, or -1 if none occurs. 

lastIndexOfSubList(List 
source, List target) 

Produces starting index of the last 
place where target appears inside 
source, or -1 if none occurs. 

replaceAll(List<T>, 
T oldVal, T newVal) 

Replaces all oldVal with newVal. 

reverse(List) Reverses all the elements in place. 

reverseOrder( )  
reverseOrder(  
Comparator<T>) 

Returns a Comparator that 
reverses the natural ordering of a 
collection of objects that implement 
Comparable<T>. The second 
version reverses the order of the 
supplied Comparator. 

632 Thinking in Java Bruce Eckel 



 

rotate(List, int distance) Moves all elements forward by 
distance, taking the ones off the 
end and placing them at the 
beginning. 

shuffle(List) 
shuffle(List, Random) 

Randomly permutes the specified 
list. The first form provides its own 
randomization source, or you may 
provide your own with the second 
form. 

sort(List<T>) 
sort(List<T>,  
Comparator<? super T> c) 

Sorts the List<T> using its natural 
ordering. The second form allows 
you to provide a Comparator for 
sorting. 

copy(List<? super T> dest, 
List<? extends T> src) 

Copies elements from src to dest. 

swap(List, int i, int j) Swaps elements at locations i and j 
in the List. Probably faster than 
what you’d write by hand. 

fill(List<? super T>, T x) Replaces all the elements of list 
with x. 

nCopies(int n, T x) Returns an immutable List<T> of 
size n whose references all point to 
x. 

disjoint(Collection, Collection) Returns true if the two collections 
have no elements in common. 

frequency(Collection, Object x) Returns the number of elements in 
the Collection equal to x. 

emptyList( ) 
emptyMap( ) 
emptySet( ) 

Returns an immutable empty List, 
Map, or Set. These are generic, so 
the resulting Collection will be 
parameterized to the desired type. 

singleton(T x) 
singletonList(T x) 
singletonMap(K key, V value) 

Produces an immutable Set<T>, 
List<T>, or Map<K,V> 
containing a single entry based on 
the given argument(s). 

list(Enumeration<T> e) Produces an ArrayList<T> 
containing the elements in the 
order in which they are returned by 
the (old-style) Enumeration 
(predecessor to the Iterator). For 
converting from legacy code. 

enumeration(Collection<T>) Produces an old-style 
Enumeration<T> for the 
argument. 

Note that min( ) and max( ) work with Collection objects, not with Lists, so you don’t 
need to worry about whether the Collection should be sorted or not. (As mentioned earlier, 
you do need to sort( ) a List or an array before performing a binarySearch( ).)  

Here’s an example showing the basic use of most of the utilities in the above table:  

Containers in Depth 633 



 

//: containers/Utilities.java 
// Simple demonstrations of the Collections utilities. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Utilities { 
  static List<String> list = Arrays.asList( 
    "one Two three Four five six one".split(" ")); 
  public static void main(String[] args) { 
    print(list); 
    print("‘list’ disjoint (Four)?: " + 
      Collections.disjoint(list, 
        Collections.singletonList("Four"))); 
    print("max: " + Collections.max(list)); 
    print("min: " + Collections.min(list)); 
    print("max w/ comparator: " + Collections.max(list, 
      String.CASE_INSENSITIVE_ORDER)); 
    print("min w/ comparator: " + Collections.min(list, 
      String.CASE_INSENSITIVE_ORDER)); 
    List<String> sublist = 
      Arrays.asList("Four five six".split(" ")); 
    print("indexOfSubList: " + 
      Collections.indexOfSubList(list, sublist)); 
    print("lastIndexOfSubList: " + 
      Collections.lastIndexOfSubList(list, sublist)); 
    Collections.replaceAll(list, "one", "Yo"); 
    print("replaceAll: " + list); 
    Collections.reverse(list); 
    print("reverse: " + list); 
    Collections.rotate(list, 3); 
    print("rotate: " + list); 
    List<String> source = 
      Arrays.asList("in the matrix".split(" ")); 
    Collections.copy(list, source); 
    print("copy: " + list); 
    Collections.swap(list, 0, list.size() - 1); 
    print("swap: " + list); 
    Collections.shuffle(list, new Random(47)); 
    print("shuffled: " + list); 
    Collections.fill(list, "pop"); 
    print("fill: " + list); 
    print("frequency of ‘pop’: " + 
      Collections.frequency(list, "pop")); 
    List<String> dups = Collections.nCopies(3, "snap"); 
    print("dups: " + dups); 
    print("‘list’ disjoint ‘dups’?: " + 
      Collections.disjoint(list, dups)); 
    // Getting an old-style Enumeration: 
    Enumeration<String> e = Collections.enumeration(dups); 
    Vector<String> v = new Vector<String>(); 
    while(e.hasMoreElements()) 
      v.addElement(e.nextElement()); 
    // Converting an old-style Vector 
    // to a List via an Enumeration: 
    ArrayList<String> arrayList = 
      Collections.list(v.elements()); 
    print("arrayList: " + arrayList); 
  } 
} /* Output: 
[one, Two, three, Four, five, six, one] 
‘list’ disjoint (Four)?: false 
max: three 
min: Four 

634 Thinking in Java Bruce Eckel 



 

max w/ comparator: Two 
min w/ comparator: five 
indexOfSubList: 3 
lastIndexOfSubList: 3 
replaceAll: [Yo, Two, three, Four, five, six, Yo] 
reverse: [Yo, six, five, Four, three, Two, Yo] 
rotate: [three, Two, Yo, Yo, six, five, Four] 
copy: [in, the, matrix, Yo, six, five, Four] 
swap: [Four, the, matrix, Yo, six, five, in] 
shuffled: [six, matrix, the, Four, Yo, five, in] 
fill: [pop, pop, pop, pop, pop, pop, pop] 
frequency of ‘pop’: 7 
dups: [snap, snap, snap] 
‘list’ disjoint ‘dups’?: true 
arrayList: [snap, snap, snap] 
*///:~ 

The output explains the behavior of each utility method. Note the difference in min( ) and 
max( ) with the String.CASE_INSENSITIVE_ORDER Comparator because of 
capitalization. 

Sorting and searching Lists 

Utilities to perform sorting and searching for Lists have the same names and signatures as 
those for sorting arrays of objects, but are static methods of Collections instead of Arrays. 
Here’s an example that uses the list data from Utilities.java:  

//: containers/ListSortSearch.java 
// Sorting and searching Lists with Collections utilities. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ListSortSearch { 
  public static void main(String[] args) { 
    List<String> list = 
      new ArrayList<String>(Utilities.list); 
    list.addAll(Utilities.list); 
    print(list); 
    Collections.shuffle(list, new Random(47)); 
    print("Shuffled: " + list); 
    // Use a ListIterator to trim off the last elements: 
    ListIterator<String> it = list.listIterator(10); 
    while(it.hasNext()) { 
      it.next(); 
      it.remove(); 
    } 
    print("Trimmed: " + list); 
    Collections.sort(list); 
    print("Sorted: " + list); 
    String key = list.get(7); 
    int index = Collections.binarySearch(list, key); 
    print("Location of " + key + " is " + index + 
      ", list.get(" + index + ") = " + list.get(index)); 
    Collections.sort(list, String.CASE_INSENSITIVE_ORDER); 
    print("Case-insensitive sorted: " + list); 
    key = list.get(7); 
    index = Collections.binarySearch(list, key, 
      String.CASE_INSENSITIVE_ORDER); 
    print("Location of " + key + " is " + index + 
      ", list.get(" + index + ") = " + list.get(index)); 
  } 

Containers in Depth 635 



 

} /* Output: 
[one, Two, three, Four, five, six, one, one, Two, three, Four, five, 
six, one] 
Shuffled: [Four, five, one, one, Two, six, six, three, three, five, 
Four, Two, one, one] 
Trimmed: [Four, five, one, one, Two, six, six, three, three, five] 
Sorted: [Four, Two, five, five, one, one, six, six, three, three] 
Location of six is 7, list.get(7) = six 
Case-insensitive sorted: [five, five, Four, one, one, six, six, three, 
three, Two] 
Location of three is 7, list.get(7) = three 
*///:~ 

Just as when searching and sorting with arrays, if you sort using a Comparator, you must 
binarySearch( ) using the same Comparator.  

This program also demonstrates the shuffle( ) method in Collections, which randomizes 
the order of a List. A ListIterator is created at a particular location in the shuffled list, and 
used to remove the elements from that location until the end of the list.  

Exercise 40:   (5) Create a class containing two String objects and make it Comparable 
so that the comparison only cares about the first String. Fill an array and an ArrayList with 
objects of your class, using the RandomGenerator generator. Demonstrate that sorting 
works properly. Now make a Comparator that only cares about the second String, and 
demonstrate that sorting works properly. Also perform a binary search using your 
Comparator.  

Exercise 41:   (3) Modify the class in the previous exercise so that it will work with 
HashSets and as a key in HashMaps.  

Exercise 42:   (2) Modify Exercise 40 so that an alphabetic sort is used.  

Making a Collection or Map 
unmodifiable 

Often it is convenient to create a read-only version of a Collection or Map. The 
Collections class allows you to do this by passing the original container into a method that 
hands back a read-only version. There are a number of variations on this method, for 
Collections (if you can’t treat a Collection as a more specific type), Lists, Sets, and Maps. 
This example shows the proper way to build read-only versions of each:  

//: containers/ReadOnly.java 
// Using the Collections.unmodifiable methods. 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class ReadOnly { 
  static Collection<String> data = 
    new ArrayList<String>(Countries.names(6)); 
  public static void main(String[] args) { 
    Collection<String> c = 
      Collections.unmodifiableCollection( 
        new ArrayList<String>(data)); 
    print(c); // Reading is OK 
    //! c.add("one"); // Can’t change it 
 
    List<String> a = Collections.unmodifiableList( 

636 Thinking in Java Bruce Eckel 



 

        new ArrayList<String>(data)); 
    ListIterator<String> lit = a.listIterator(); 
    print(lit.next()); // Reading is OK 
    //! lit.add("one"); // Can’t change it 
 
    Set<String> s = Collections.unmodifiableSet( 
      new HashSet<String>(data)); 
    print(s); // Reading is OK 
    //! s.add("one"); // Can’t change it 
 
    // For a SortedSet: 
    Set<String> ss = Collections.unmodifiableSortedSet( 
      new TreeSet<String>(data)); 
 
    Map<String,String> m = Collections.unmodifiableMap( 
      new HashMap<String,String>(Countries.capitals(6))); 
    print(m); // Reading is OK 
    //! m.put("Ralph", "Howdy!"); 
 
    // For a SortedMap: 
    Map<String,String> sm = 
      Collections.unmodifiableSortedMap( 
        new TreeMap<String,String>(Countries.capitals(6))); 
  } 
} /* Output: 
[ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO] 
ALGERIA 
[BULGARIA, BURKINA FASO, BOTSWANA, BENIN, ANGOLA, ALGERIA] 
{BULGARIA=Sofia, BURKINA FASO=Ouagadougou, BOTSWANA=Gaberone, 
BENIN=Porto-Novo, ANGOLA=Luanda, ALGERIA=Algiers} 
*///:~ 

Calling the "unmodifiable" method for a particular type does not cause compile-time 
checking, but once the transformation has occurred, any calls to methods that modify the 
contents of a particular container will produce an UnsupportedOperationException.  

In each case, you must fill the container with meaningful data before you make it read-only. 
Once it is loaded, the best approach is to replace the existing reference with the reference that 
is produced by the "unmodifiable" call. That way, you don’t run the risk of accidentally trying 
to change the contents once you’ve made it unmodifiable. On the other hand, this tool also 
allows you to keep a modifiable container as private within a class and to return a read-only 
reference to that container from a method call. So, you can change it from within the class, 
but everyone else can only read it.  

Synchronizing a Collection or Map 

The synchronized keyword is an important part of the subject of multithreading, a more 
complicated topic that will not be introduced until the Concurrency chapter. Here, I shall 
note only that the Collections class contains a way to automatically synchronize an entire 
container. The syntax is similar to the "unmodifiable" methods:  

//: containers/Synchronization.java 
// Using the Collections.synchronized methods. 
import java.util.*; 
 
public class Synchronization { 
  public static void main(String[] args) { 
    Collection<String> c = 
      Collections.synchronizedCollection( 
        new ArrayList<String>()); 

Containers in Depth 637 



 

    List<String> list = Collections.synchronizedList( 
      new ArrayList<String>()); 
    Set<String> s = Collections.synchronizedSet( 
      new HashSet<String>()); 
    Set<String> ss = Collections.synchronizedSortedSet( 
      new TreeSet<String>()); 
    Map<String,String> m = Collections.synchronizedMap( 
      new HashMap<String,String>()); 
    Map<String,String> sm = 
      Collections.synchronizedSortedMap( 
        new TreeMap<String,String>()); 
  } 
} ///:~ 

It is best to immediately pass the new container through the appropriate "synchronized" 
method, as shown above. That way, there’s no chance of accidentally exposing the 
unsynchronized version.  

Fail fast 

The Java containers also have a mechanism to prevent more than one process from 
modifying the contents of a container. The problem occurs if you’re in the middle of iterating 
through a container, and then some other process steps in and inserts, removes, or changes 
an object in that container. Maybe you’ve already passed that element in the container, 
maybe it’s ahead of you, maybe the size of the container shrinks after you call size( )—there 
are many scenarios for disaster. The Java containers library uses a fail-fast mechanism that 
looks for any changes to the container other than the ones your process is personally 
responsible for. If it detects that someone else is modifying the container, it immediately 
produces a ConcurrentModification- Exception. This is the "fail-fast" aspect—it doesn’t 
try to detect a problem later on using a more complex algorithm.  

It’s quite easy to see the fail-fast mechanism in operation—all you must do is create an 
iterator and then add something to the collection that the iterator is pointing to, like this:  

//: containers/FailFast.java 
// Demonstrates the "fail-fast" behavior. 
import java.util.*; 
 
public class FailFast { 
  public static void main(String[] args) { 
    Collection<String> c = new ArrayList<String>(); 
    Iterator<String> it = c.iterator(); 
    c.add("An object"); 
    try { 
      String s = it.next(); 
    } catch(ConcurrentModificationException e) { 
      System.out.println(e); 
    } 
  } 
} /* Output: 
java.util.ConcurrentModificationException 
*///:~ 

The exception happens because something is placed in the container after the iterator is 
acquired from the container. The possibility that two parts of the program might modify the 
same container produces an uncertain state, so the exception notifies you that you should 
change your code—in this case, acquire the iterator after you have added all the elements to 
the container.  

638 Thinking in Java Bruce Eckel 



 

The ConcurrentHashMap, CopyOnWriteArrayList, and CopyOnWriteArraySet use 
techniques that avoid ConcurrentModificationExceptions.  

Holding references 
The java.lang.ref library contains a set of classes that allow greater flexibility in garbage 
collection. These classes are especially useful when you have large objects that may cause 
memory exhaustion. There are three classes inherited from the abstract class Reference: 
SoftReference, WeakReference, and PhantomReference. Each of these provides a 
different level of indirection for the garbage collector if the object in question is only 
reachable through one of these Reference objects.  

If an object is reachable, it means that somewhere in your program the object can be found. 
This could mean that you have an ordinary reference on the stack that goes right to the 
object, but you might also have a reference to an object that has a reference to the object in 
question; there can be many intermediate links. If an object is reachable, the garbage 
collector cannot release it because it’s still in use by your program. If an object isn’t 
reachable, there’s no way for your program to use it, so it’s safe to garbage collect that object.  

You use Reference objects when you want to continue to hold on to a reference to that 
object—you want to reach that object—but you also want to allow the garbage collector to 
release that object. Thus, you have a way to use the object, but if memory exhaustion is 
imminent, you allow that object to be released.  

You accomplish this by using a Reference object as an intermediary (a proxy) between you 
and the ordinary reference. In addition, there must be no ordinary references to the object 
(ones that are not wrapped inside Reference objects). If the garbage collector discovers that 
an object is reachable through an ordinary reference, it will not release that object.  

In the order of SoftReference, WeakReference, and PhantomReference, each one is 
"weaker" than the last and corresponds to a different level of reachability. Soft references are 
for implementing memory-sensitive caches. Weak references are for implementing 
"canonicalizing mappings"—where instances of objects can be simultaneously used in 
multiple places in a program, to save storage—that do not prevent their keys (or values) from 
being reclaimed. Phantom references are for scheduling pre-mortem cleanup actions in a 
more flexible way than is possible with the Java finalization mechanism.  

With SoftReferences and WeakReferences, you have a choice about whether to place 
them on a ReferenceQueue (the device used for premortem cleanup actions), but a 
PhantomReference can only be built on a ReferenceQueue. Here’s a simple 
demonstration:  

//: containers/References.java 
// Demonstrates Reference objects 
import java.lang.ref.*; 
import java.util.*; 
 
class VeryBig { 
  private static final int SIZE = 10000; 
  private long[] la = new long[SIZE]; 
  private String ident; 
  public VeryBig(String id) { ident = id; } 
  public String toString() { return ident; } 
  protected void finalize() { 
    System.out.println("Finalizing " + ident); 
  } 
} 
 

Containers in Depth 639 



 

public class References { 
  private static ReferenceQueue<VeryBig> rq = 
    new ReferenceQueue<VeryBig>(); 
  public static void checkQueue() { 
    Reference<? extends VeryBig> inq = rq.poll(); 
    if(inq != null) 
      System.out.println("In queue: " + inq.get()); 
  } 
  public static void main(String[] args) { 
    int size = 10; 
    // Or, choose size via the command line: 
    if(args.length > 0) 
      size = new Integer(args[0]); 
    LinkedList<SoftReference<VeryBig>> sa = 
      new LinkedList<SoftReference<VeryBig>>(); 
    for(int i = 0; i < size; i++) { 
      sa.add(new SoftReference<VeryBig>( 
        new VeryBig("Soft " + i), rq)); 
      System.out.println("Just created: " + sa.getLast()); 
      checkQueue(); 
    } 
    LinkedList<WeakReference<VeryBig>> wa = 
      new LinkedList<WeakReference<VeryBig>>(); 
    for(int i = 0; i < size; i++) { 
      wa.add(new WeakReference<VeryBig>( 
        new VeryBig("Weak " + i), rq)); 
      System.out.println("Just created: " + wa.getLast()); 
      checkQueue(); 
    } 
    SoftReference<VeryBig> s = 
      new SoftReference<VeryBig>(new VeryBig("Soft")); 
    WeakReference<VeryBig> w = 
      new WeakReference<VeryBig>(new VeryBig("Weak")); 
    System.gc(); 
    LinkedList<PhantomReference<VeryBig>> pa = 
      new LinkedList<PhantomReference<VeryBig>>(); 
    for(int i = 0; i < size; i++) { 
      pa.add(new PhantomReference<VeryBig>( 
        new VeryBig("Phantom " + i), rq)); 
      System.out.println("Just created: " + pa.getLast()); 
      checkQueue(); 
    } 
  } 
} /* (Execute to see output) *///:~ 

When you run this program (you’ll want to redirect the output into a text file so that you can 
view the output in pages), you’ll see that the objects are garbage collected, even though you 
still have access to them through the Reference object (to get the actual object reference, 
you use get( )). You’ll also see that the ReferenceQueue always produces a Reference 
containing a null object. To use this, inherit from a particular Reference class and add 
more useful methods to the new class.  

The WeakHashMap 

The containers library has a special Map to hold weak references: the WeakHashMap. 
This class is designed to make the creation of canonicalized mappings easier. In such a 
mapping, you are saving storage by creating only one instance of a particular value. When the 
program needs that value, it looks up the existing object in the mapping and uses that (rather 
than creating one from scratch). The mapping may make the values as part of its 
initialization, but it’s more likely that the values are made on demand.  

640 Thinking in Java Bruce Eckel 



 

Since this is a storage-saving technique, it’s very convenient that the WeakHashMap allows 
the garbage collector to automatically clean up the keys and values. You don’t have to do 
anything special to the keys and values you want to place in the WeakHashMap; these are 
automatically wrapped in WeakReferences by the map. The trigger to allow cleanup is that 
the key is no longer in use, as demonstrated here:  

//: containers/CanonicalMapping.java 
// Demonstrates WeakHashMap. 
import java.util.*; 
 
class Element { 
  private String ident; 
  public Element(String id) { ident = id; } 
  public String toString() { return ident; } 
  public int hashCode() { return ident.hashCode(); } 
  public boolean equals(Object r) { 
    return r instanceof Element && 
      ident.equals(((Element)r).ident); 
  } 
  protected void finalize() { 
    System.out.println("Finalizing " + 
      getClass().getSimpleName() + " " + ident); 
  } 
} 
 
class Key extends Element { 
  public Key(String id) { super(id); } 
} 
 
class Value extends Element { 
  public Value(String id) { super(id); } 
} 
 
public class CanonicalMapping { 
  public static void main(String[] args) { 
    int size = 1000; 
    // Or, choose size via the command line: 
    if(args.length > 0) 
      size = new Integer(args[0]); 
    Key[] keys = new Key[size]; 
    WeakHashMap<Key,Value> map = 
      new WeakHashMap<Key,Value>(); 
    for(int i = 0; i < size; i++) { 
      Key k = new Key(Integer.toString(i)); 
      Value v = new Value(Integer.toString(i)); 
      if(i % 3 == 0) 
        keys[i] = k; // Save as "real" references 
      map.put(k, v); 
    } 
    System.gc(); 
  } 
} /* (Execute to see output) *///:~ 

The Key class must have a hashCode( ) and an equals( ) since it is being used as a key in a 
hashed data structure. The subject of hashCode( ) was described earlier in this chapter.  

When you run the program, you’ll see that the garbage collector will skip every third key, 
because an ordinary reference to that key has also been placed in the keys array, and thus 
those objects cannot be garbage collected.  

 

Containers in Depth 641 



 

Java 1.0/1.1 containers 
Unfortunately, a lot of code was written using the Java 1.0/1.1 containers, and even new code 
is sometimes written using these classes. So although you should never use the old containers 
when writing new code, you’ll still need to be aware of them. However, the old containers 
were quite limited, so there’s not that much to say about them, and since they are 
anachronistic, I will try to refrain from overemphasizing some of their hideous design 
decisions.  

Vector & Enumeration 

The only self-expanding sequence in Java 1.0/1.1 was the Vector, so it saw a lot of use. Its 
flaws are too numerous to describe here (see the 1st edition of this book, available as a free 
download from www.MindView.net). Basically, you can think of it as an ArrayList with 
long, awkward method names. In the revised Java container library, Vector was adapted so 
that it could work as a Collection and a List. This turns out to be a bit perverse, as it may 
confuse some people into thinking that Vector has gotten better, when it is actually included 
only to support older Java code.  

The Java 1.0/1.1 version of the iterator chose to invent a new name, "enumeration," instead 
of using a term that everyone was already familiar with ("iterator"). The Enumeration 
interface is smaller than Iterator, with only two methods, and it uses longer method names: 
boolean hasMoreElements( ) produces true if this enumeration contains more 
elements, and Object nextElement( ) returns the next element of this enumeration if there 
are any more (otherwise it throws an exception).  

Enumeration is only an interface, not an implementation, and even new libraries 
sometimes still use the old Enumeration, which is unfortunate but generally harmless. 
Even though you should always use Iterator when you can in your own code, you must be 
prepared for libraries that want to hand you an Enumeration.  

In addition, you can produce an Enumeration for any Collection by using the 
Collections.enumeration( ) method, as seen in this example:  

//: containers/Enumerations.java 
// Java 1.0/1.1 Vector and Enumeration. 
import java.util.*; 
import net.mindview.util.*; 
 
public class Enumerations { 
  public static void main(String[] args) { 
    Vector<String> v = 
      new Vector<String>(Countries.names(10)); 
    Enumeration<String> e = v.elements(); 
    while(e.hasMoreElements()) 
      System.out.print(e.nextElement() + ", "); 
    // Produce an Enumeration from a Collection: 
    e = Collections.enumeration(new ArrayList<String>()); 
  } 
} /* Output: 
ALGERIA, ANGOLA, BENIN, BOTSWANA, BULGARIA, BURKINA FASO, BURUNDI, 
CAMEROON, CAPE VERDE, CENTRAL AFRICAN REPUBLIC, 
*///:~ 

To produce an Enumeration, you call elements( ), then you can use it to perform a 
forward iteration.  

642 Thinking in Java Bruce Eckel 



 

The last line creates an ArrayList and uses enumeration( ) to adapt an Enumeration 
from the ArrayList Iterator. Thus, if you have old code that wants an Enumeration, you 
can still use the new containers.  

Hashtable 

As you’ve seen in the performance comparison in this chapter, the basic Hashtable is very 
similar to the HashMap, even down to the method names. There’s no reason to use 
Hashtable instead of HashMap in new code.  

Stack 

The concept of the stack was introduced earlier, with the LinkedList. What’s rather odd 
about the Java 1.0/1.1 Stack is that instead of using a Vector with composition, Stack is 
inherited from Vector. So it has all of the characteristics and behaviors of a Vector plus 
some extra Stack behaviors. It’s difficult to know whether the designers consciously thought 
that this was an especially useful way of doing things, or whether it was just a naive design; in 
any event it was clearly not reviewed before it was rushed into distribution, so this bad design 
is still hanging around (but you shouldn’t use it).  

Here’s a simple demonstration of Stack that pushes each String representation of an 
enum. It also shows how you can just as easily use a LinkedList as a stack, or the Stack 
class created in the Holding Your Objects chapter:  

//: containers/Stacks.java 
// Demonstration of Stack Class. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
enum Month { JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, 
  JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER } 
 
public class Stacks { 
  public static void main(String[] args) { 
    Stack<String> stack = new Stack<String>(); 
    for(Month m : Month.values()) 
      stack.push(m.toString()); 
    print("stack = " + stack); 
    // Treating a stack as a Vector: 
    stack.addElement("The last line"); 
    print("element 5 = " + stack.elementAt(5)); 
    print("popping elements:"); 
    while(!stack.empty()) 
      printnb(stack.pop() + " "); 
 
    // Using a LinkedList as a Stack: 
    LinkedList<String> lstack = new LinkedList<String>(); 
    for(Month m : Month.values()) 
      lstack.addFirst(m.toString()); 
    print("lstack = " + lstack); 
    while(!lstack.isEmpty()) 
      printnb(lstack.removeFirst() + " "); 
 
    // Using the Stack class from 
    // the Holding Your Objects Chapter: 
    net.mindview.util.Stack<String> stack2 = 
      new net.mindview.util.Stack<String>(); 
    for(Month m : Month.values()) 
      stack2.push(m.toString()); 

Containers in Depth 643 



 

    print("stack2 = " + stack2); 
    while(!stack2.empty()) 
      printnb(stack2.pop() + " "); 
 
  } 
} /* Output: 
stack = [JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST, 
SEPTEMBER, OCTOBER, NOVEMBER] 
element 5 = JUNE 
popping elements: 
The last line NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL 
MARCH FEBRUARY JANUARY lstack = [NOVEMBER, OCTOBER, SEPTEMBER, AUGUST, 
JULY, JUNE, MAY, APRIL, MARCH, FEBRUARY, JANUARY] 
NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL MARCH FEBRUARY 
JANUARY stack2 = [NOVEMBER, OCTOBER, SEPTEMBER, AUGUST, JULY, JUNE, MAY, 
APRIL, MARCH, FEBRUARY, JANUARY] 
NOVEMBER OCTOBER SEPTEMBER AUGUST JULY JUNE MAY APRIL MARCH FEBRUARY 
JANUARY 
*///:~ 

A String representation is generated from the Month enum constants, inserted into the 
Stack with push( ), and later fetched from the top of the stack with a pop( ). To make a 
point, Vector operations are also performed on the Stack object. This is possible because, 
by virtue of inheritance, a Stack is a Vector. Thus, all operations that can be performed on a 
Vector can also be performed on a Stack, such as elementAt( ).  

As mentioned earlier, you should use a LinkedList when you want stack behavior, or the 
net.mindview.util.Stack class created from the LinkedList class.  

BitSet 

A BitSet is used if you want to efficiently store a lot of on-off information. It’s efficient only 
from the standpoint of size; if you’re looking for efficient access, it is slightly slower than 
using a native array.  

In addition, the minimum size of the BitSet is that of a long: 64 bits. This implies that if 
you’re storing anything smaller, like 8 bits, a BitSet will be wasteful; you’re better off 
creating your own class, or just an array, to hold your flags if size is an issue. (This will only 
be the case if you’re creating a lot of objects containing lists of on-off information, and should 
only be decided based on profiling and other metrics. If you make this decision because you 
just think something is too big, you will end up creating needless complexity and wasting a 
lot of time.)  

A normal container expands as you add more elements, and the BitSet does this as well. The 
following example shows how the BitSet works:  

//: containers/Bits.java 
// Demonstration of BitSet. 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Bits { 
  public static void printBitSet(BitSet b) { 
    print("bits: " + b); 
    StringBuilder bbits = new StringBuilder(); 
    for(int j = 0; j < b.size() ; j++) 
      bbits.append(b.get(j) ? "1" : "0"); 
    print("bit pattern: " + bbits); 
  } 

644 Thinking in Java Bruce Eckel 



 

  public static void main(String[] args) { 
    Random rand = new Random(47); 
    // Take the LSB of nextInt(): 
    byte bt = (byte)rand.nextInt(); 
    BitSet bb = new BitSet(); 
    for(int i = 7; i >= 0; i--) 
      if(((1 << i) &  bt) != 0) 
        bb.set(i); 
      else 
        bb.clear(i); 
    print("byte value: " + bt); 
    printBitSet(bb); 
 
    short st = (short)rand.nextInt(); 
    BitSet bs = new BitSet(); 
    for(int i = 15; i >= 0; i--) 
      if(((1 << i) &  st) != 0) 
        bs.set(i); 
      else 
        bs.clear(i); 
    print("short value: " + st); 
    printBitSet(bs); 
 
    int it = rand.nextInt(); 
    BitSet bi = new BitSet(); 
    for(int i = 31; i >= 0; i--) 
      if(((1 << i) &  it) != 0) 
        bi.set(i); 
      else 
        bi.clear(i); 
    print("int value: " + it); 
    printBitSet(bi); 
 
    // Test bitsets >= 64 bits: 
    BitSet b127 = new BitSet(); 
    b127.set(127); 
    print("set bit 127: " + b127); 
    BitSet b255 = new BitSet(65); 
    b255.set(255); 
    print("set bit 255: " + b255); 
    BitSet b1023 = new BitSet(512); 
    b1023.set(1023); 
    b1023.set(1024); 
    print("set bit 1023: " + b1023); 
  } 
} /* Output: 
byte value: -107 
bits: {0, 2, 4, 7} 
bit pattern: 
1010100100000000000000000000000000000000000000000000000000000000 
short value: 1302 
bits: {1, 2, 4, 8, 10} 
bit pattern: 
0110100010100000000000000000000000000000000000000000000000000000 
int value: -2014573909 
bits: {0, 1, 3, 5, 7, 9, 11, 18, 19, 21, 22, 23, 24, 25, 26, 31} 
bit pattern: 
1101010101010000001101111110000100000000000000000000000000000000 
set bit 127: {127} 
set bit 255: {255} 
set bit 1023: {1023, 1024} 
*///:~ 

Containers in Depth 645 



 

646 Thinking in Java Bruce Eckel 

The random number generator is used to create a random byte, short, and int, and each 
one is transformed into a corresponding bit pattern in a BitSet. This works fine because a 
BitSet is 64 bits, so none of these cause it to increase in size. Then larger BitSets are 
created. You can see that the BitSet is expanded as necessary.  

An EnumSet (see the Enumerated Types chapter) is usually a better choice than a BitSet if 
you have a fixed set of flags that you can name, because the EnumSet allows you to 
manipulate the names rather than numerical bit locations, and thus reduces errors. 
EnumSet also prevents you from accidentally adding new flag locations, which could cause 
some serious, difficult-to-find bugs. The only reasons you should use BitSet instead of 
EnumSet is if you don’t know how many flags you will need until run time, or if it is 
unreasonable to assign names to the flags, or you need one of the special operations in 
BitSet (see the JDK documentation for BitSet and EnumSet).  

Summary 
The containers library is arguably the most important library for an objectoriented language. 
Most programming will use containers more than any other library components. Some 
languages (Python, for example) even include the fundamental container components (lists, 
maps and sets) as built-ins.  

As you saw in the Holding Your Objects chapter, it’s possible to do a number of very 
interesting things using containers, without much effort. However, at some point you’re 
forced to know more about containers in order to use them properly—in particular, you must 
know enough about hashing operations to write your own hashCode( ) method (and you 
must know when it is necessary), and you must know enough about the various container 
implementations that you can choose the appropriate one for your needs. This chapter 
covered these concepts and discussed additional useful details about the container library. At 
this point you should be reasonably well prepared to use the Java containers in your everyday 
programming tasks.  

The design of a containers library is difficult (this is true of most library design problems). In 
C++, the container classes covered the bases with many different classes. This was better 
than what was available prior to the C++ container classes (nothing), but it didn’t translate 
well into Java. At the other extreme, I’ve seen a containers library that consists of a single 
class, "container," which acts like both a linear sequence and an associative array at the same 
time. The Java container library strikes a balance: the full functionality that you expect from 
a mature container library, but easier to learn and use than the C++ container classes and 
other similar container libraries. The result can seem a bit odd in places. Unlike some of the 
decisions made in the early Java libraries, these oddities were not accidents, but carefully 
considered decisions based on trade-offs in complexity.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

 



 

I/O 
Creating a good input/output (I/O) system is one of the more difficult 
tasks for a language designer. This is evidenced by the number of 
different approaches.  

The challenge seems to be in covering all possibilities. Not only are there different sources 
and sinks of I/O that you want to communicate with (files, the console, network connections, 
etc.), but you need to talk to them in a wide variety of ways (sequential, random-access, 
buffered, binary, character, by lines, by words, etc.). The Java library designers attacked this 
problem by creating lots of classes. In fact, there are so many classes for Java’s I/O system 
that it can be intimidating at first (ironically, the Java I/O design actually prevents an 
explosion of classes). There was also a significant change in the I/O library after Java i.o, 
when the original byte-oriented library was supplemented with char-oriented, Unicode-
based I/O classes. The nio classes (for "new I/O," a name we’ll still be using years from now 
even though they were introduced in JDK 1.4 and so are already "old") were added for 
improved performance and functionality. As a result, there are a fair number of classes to 
learn before you understand enough of Java’s I/O picture that you can use it properly. In 
addition, it’s rather important to understand the evolution of the I/O library, even if your 
first reaction is "Don’t bother me with history, just show me how to use it!" The problem is 
that without the historical perspective, you will rapidly become confused with some of the 
classes and when you should and shouldn’t use them. This chapter will give you an 
introduction to the variety of I/O classes in the standard Java library and how to use them.  

The File class 
Before getting into the classes that actually read and write data to streams, we’ll look at a 
library utility that assists you with file directory issues. The File class has a deceiving name; 
you might think it refers to a file, but it doesn’t. In fact, "FilePath" would have been a better 
name for the class. It can represent either the name of a particular file or the names of a set 
of files in a directory. If it’s a set of files, you can ask for that set using the list( ) method, 
which returns an array of String. It makes sense to return an array rather than one of the 
flexible container classes, because the number of elements is fixed, and if you want a 
different directory listing, you just create a different File object. This section shows an 
example of the use of this class, including the associated FilenameFilter interface.  

A directory lister 

Suppose you’d like to see a directory listing. The File object can be used in two ways. If you 
call list( ) with no arguments, you’ll get the full list that the File object contains. However, if 
you want a restricted list—for example, if you want all of the files with an extension of .Java—
then you use a "directory filter," which is a class that tells how to select the File objects for 
display. Here’s the example. Note that the result has been effortlessly sorted (alphabetically) 
using the java.util.Arrays.sort( ) method and the 
String.CASE_INSENSITIVE_ORDER Comparator:  

//: io/DirList.java 
// Display a directory listing using regular expressions. 
// {Args: "D.*\.java"} 
import java.util.regex.*; 
import java.io.*; 

 



 

import java.util.*; 
 
public class DirList { 
  public static void main(String[] args) { 
    File path = new File("."); 
    String[] list; 
    if(args.length == 0) 
      list = path.list(); 
    else 
      list = path.list(new DirFilter(args[0])); 
    Arrays.sort(list, String.CASE_INSENSITIVE_ORDER); 
    for(String dirItem : list) 
      System.out.println(dirItem); 
  } 
} 
 
class DirFilter implements FilenameFilter { 
  private Pattern pattern; 
  public DirFilter(String regex) { 
    pattern = Pattern.compile(regex); 
  } 
  public boolean accept(File dir, String name) { 
    return pattern.matcher(name).matches(); 
  } 
} /* Output: 
DirectoryDemo.java 
DirList.java 
DirList2.java 
DirList3.java 
*///:~ 

The DirFilter class implements the interface FilenameFilter. Notice how simple the 
FilenameFilter interface is:  

public interface FilenameFilter { 
  boolean accept(File dir, String name); 
} 

DirFilter’s sole reason for existence is to provide the accept( ) method to the list( ) 
method so that list( ) can "call back" accept( ) to determine which file names should be 
included in the list. Thus, this structure is often referred to as a callback. More specifically, 
this is an example of the Strategy design pattern, because list( ) implements basic 
functionality, and you provide the Strategy in the form of a FilenameFilter in order to 
complete the algorithm necessary for list( ) to provide its service. Because list( ) takes a 
FilenameFilter object as its argument, it means that you can pass an object of any class 
that implements FilenameFilter to choose (even at run time) how the list( ) method will 
behave. The purpose of a Strategy is to provide flexibility in the behavior of code. 

The accept( ) method must accept a File object representing the directory that a particular 
file is found in, and a String containing the name of that file. Remember that the list( ) 
method is calling accept( ) for each of the file names in the directory object to see which one 
should be included; this is indicated by the boolean result returned by accept( ).  

accept( ) uses a regular expression matcher object to see if the regular expression regex 
matches the name of the file. Using accept( ), the list( ) method returns an array.  

 

 

648 Thinking in Java Bruce Eckel 



 

Anonymous inner classes 

This example is ideal for rewriting using an anonymous inner class (described in Inner 
Classes). As a first cut, a method filter( ) is created that returns a reference to a 
FilenameFilter:  

//: io/DirList2.java 
// Uses anonymous inner classes. 
// {Args: "D.*\.java"} 
import java.util.regex.*; 
import java.io.*; 
import java.util.*; 
 
public class DirList2 { 
  public static FilenameFilter filter(final String regex) { 
    // Creation of anonymous inner class: 
    return new FilenameFilter() { 
      private Pattern pattern = Pattern.compile(regex); 
      public boolean accept(File dir, String name) { 
        return pattern.matcher(name).matches(); 
      } 
    }; // End of anonymous inner class 
  } 
  public static void main(String[] args) { 
    File path = new File("."); 
    String[] list; 
    if(args.length == 0) 
      list = path.list(); 
    else 
      list = path.list(filter(args[0])); 
    Arrays.sort(list, String.CASE_INSENSITIVE_ORDER); 
    for(String dirItem : list) 
      System.out.println(dirItem); 
  } 
} /* Output: 
DirectoryDemo.java 
DirList.java 
DirList2.java 
DirList3.java 
*///:~ 

Note that the argument to filter( ) must be final. This is required by the anonymous inner 
class so that it can use an object from outside its scope. This design is an improvement 
because the FilenameFilter class is now tightly bound to DirList2. However, you can take 
this approach one step further and define the anonymous inner class as an argument to 
list(), in which case it’s even smaller:  

//: io/DirList3.java 
// Building the anonymous inner class "in-place." 
// {Args: "D.*\.java"} 
import java.util.regex.*; 
import java.io.*; 
import java.util.*; 
 
public class DirList3 { 
  public static void main(final String[] args) { 
    File path = new File("."); 
    String[] list; 
    if(args.length == 0) 
      list = path.list(); 
    else 

I/O 649 



 

      list = path.list(new FilenameFilter() { 
        private Pattern pattern = Pattern.compile(args[0]); 
        public boolean accept(File dir, String name) { 
          return pattern.matcher(name).matches(); 
        } 
      }); 
    Arrays.sort(list, String.CASE_INSENSITIVE_ORDER); 
    for(String dirItem : list) 
      System.out.println(dirItem); 
  } 
} /* Output: 
DirectoryDemo.java 
DirList.java 
DirList2.java 
DirList3.java 
*///:~ 

The argument to main( ) is now final, since the anonymous inner class uses args[0] 
directly.  

This shows you how anonymous inner classes allow the creation of specific, one-off classes to 
solve problems. One benefit of this approach is that it keeps the code that solves a particular 
problem isolated in one spot. On the other hand, it is not always as easy to read, so you must 
use it judiciously.  

Exercise 1:   (3) Modify DirList.java (or one of its variants) so that the FilenameFilter 
opens and reads each file (using the net.mindview.util.TextFile utility) and accepts the 
file based on whether any of the trailing arguments on the command line exist in that file.  

Exercise 2:   (2) Create a class called SortedDirList with a constructor that takes a File 
object and builds a sorted directory list from the files at that File. Add to this class two 
overloaded list( ) methods: the first produces the whole list, and the second produces the 
subset of the list that matches its argument (which is a regular expression).  

Exercise 3:   (3) Modify DirList.java (or one of its variants) so that it sums up the file 
sizes of the selected files.  

Directory utilities 

A common task in programming is to perform operations on sets of files, either in the local 
directory or by walking the entire directory tree. It is useful to have a tool that will produce 
the set of files for you. The following utility class produces either an array of File objects in 
the local directory using the local( ) method, or a List<File> of the entire directory tree 
starting at the given directory using walk( ) (File objects are more useful than file names 
because File objects contain more information). The files are chosen based on the regular 
expression that you provide:  

//: net/mindview/util/Directory.java 
// Produce a sequence of File objects that match a 
// regular expression in either a local directory, 
// or by walking a directory tree. 
package net.mindview.util; 
import java.util.regex.*; 
import java.io.*; 
import java.util.*; 
 
public final class Directory { 
  public static File[] 

650 Thinking in Java Bruce Eckel 



 

  local(File dir, final String regex) { 
    return dir.listFiles(new FilenameFilter() { 
      private Pattern pattern = Pattern.compile(regex); 
      public boolean accept(File dir, String name) { 
        return pattern.matcher( 
          new File(name).getName()).matches(); 
      } 
    }); 
  } 
  public static File[] 
  local(String path, final String regex) { // Overloaded 
    return local(new File(path), regex); 
  } 
  // A two-tuple for returning a pair of objects: 
  public static class TreeInfo implements Iterable<File> { 
    public List<File> files = new ArrayList<File>(); 
    public List<File> dirs = new ArrayList<File>(); 
    // The default iterable element is the file list: 
    public Iterator<File> iterator() { 
      return files.iterator(); 
    } 
    void addAll(TreeInfo other) { 
      files.addAll(other.files); 
      dirs.addAll(other.dirs); 
    } 
    public String toString() { 
      return "dirs: " + PPrint.pformat(dirs) + 
        "\n\nfiles: " + PPrint.pformat(files); 
    } 
  } 
  public static TreeInfo 
  walk(String start, String regex) { // Begin recursion 
    return recurseDirs(new File(start), regex); 
  } 
  public static TreeInfo 
  walk(File start, String regex) { // Overloaded 
    return recurseDirs(start, regex); 
  } 
  public static TreeInfo walk(File start) { // Everything 
    return recurseDirs(start, ".*"); 
  } 
  public static TreeInfo walk(String start) { 
    return recurseDirs(new File(start), ".*"); 
  } 
  static TreeInfo recurseDirs(File startDir, String regex){ 
    TreeInfo result = new TreeInfo(); 
    for(File item : startDir.listFiles()) { 
      if(item.isDirectory()) { 
        result.dirs.add(item); 
        result.addAll(recurseDirs(item, regex)); 
      } else // Regular file 
        if(item.getName().matches(regex)) 
          result.files.add(item); 
    } 
    return result; 
  } 
  // Simple validation test: 
  public static void main(String[] args) { 
    if(args.length == 0) 
      System.out.println(walk(".")); 
    else 
      for(String arg : args) 
       System.out.println(walk(arg)); 

I/O 651 



 

  } 
} ///:~ 

The local( ) method uses a variant of File.list( ) called listFiles( ) that produces an array 
of File. You can see that it also uses a FilenameFilter. If you need a List instead of an 
array, you can convert the result yourself using Arrays.asList( ).  

The walk( ) method converts the name of the starting directory into a File object and calls 
recurseDirs( ), which performs a recursive directory walk, collecting more information 
with each recursion. To distinguish ordinary files from directories, the return value is 
effectively a "tuple" of objects—a List holding ordinary files, and another holding directories. 
The fields are intentionally made public here, because the point of Treelnfo is simply to 
collect the objects together—if you were just returning a List, you wouldn’t make it private, 
so just because you are returning a pair of objects, it doesn’t mean you need to make them 
private. Note that Treelnfo implements Iterable<File>, which produces the files, so that 
you have a "default iteration" over the file list, whereas you can specify directories by saying 
".dirs".  

The Treelnfo.toString( ) method uses a "pretty printer" class so that the output is easer to 
view. The default toString( ) methods for containers print all the elements for a container 
on a single line. For large collections this can become difficult to read, so you may want to use 
an alternate formatting. Here’s a tool that adds newlines and indents each element:  

//: net/mindview/util/PPrint.java 
// Pretty-printer for collections 
package net.mindview.util; 
import java.util.*; 
 
public class PPrint { 
  public static String pformat(Collection<?> c) { 
    if(c.size() == 0) return "[]"; 
    StringBuilder result = new StringBuilder("["); 
    for(Object elem : c) { 
      if(c.size() != 1) 
        result.append("\n  "); 
      result.append(elem); 
    } 
    if(c.size() != 1) 
      result.append("\n"); 
    result.append("]"); 
    return result.toString(); 
  } 
  public static void pprint(Collection<?> c) { 
    System.out.println(pformat(c)); 
  } 
  public static void pprint(Object[] c) { 
    System.out.println(pformat(Arrays.asList(c))); 
  } 
} ///:~ 

The pformat( ) method produces a formatted String from a Collection, and the pprint( ) 
method uses pformat( ) to do its job. Note that the special cases of no elements and a single 
element are handled differently. There’s also a version of pprint( ) for arrays.  

The Directory utility is placed in the net.mindview.util package so that it is easily 
available. Here’s a sample of how you can use it:  

//: io/DirectoryDemo.java 
// Sample use of Directory utilities. 
import java.io.*; 

652 Thinking in Java Bruce Eckel 



 

import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class DirectoryDemo { 
  public static void main(String[] args) { 
    // All directories: 
    PPrint.pprint(Directory.walk(".").dirs); 
    // All files beginning with ‘T’ 
    for(File file : Directory.local(".", "T.*")) 
      print(file); 
    print("----------------------"); 
    // All Java files beginning with ‘T’: 
    for(File file : Directory.walk(".", "T.*\\.java")) 
      print(file); 
    print("======================"); 
    // Class files containing "Z" or "z": 
    for(File file : Directory.walk(".",".*[Zz].*\\.class")) 
      print(file); 
  } 
} /* Output: (Sample) 
[.\xfiles] 
.\TestEOF.class 
.\TestEOF.java 
.\TransferTo.class 
.\TransferTo.java 
---------------------- 
.\TestEOF.java 
.\TransferTo.java 
.\xfiles\ThawAlien.java 
====================== 
.\FreezeAlien.class 
.\GZIPcompress.class 
.\ZipCompress.class 
*///:~ 

You may need to refresh your knowledge of regular expressions from the Strings chapter in 
order to understand the second arguments in local( ) and walk( ).  

We can take this a step further and create a tool that will walk directories and process the 
files within them according to a Strategy object (this is another example of the Strategy 
design pattern):  

//: net/mindview/util/ProcessFiles.java 
package net.mindview.util; 
import java.io.*; 
 
public class ProcessFiles { 
  public interface Strategy { 
    void process(File file); 
  } 
  private Strategy strategy; 
  private String ext; 
  public ProcessFiles(Strategy strategy, String ext) { 
    this.strategy = strategy; 
    this.ext = ext; 
  } 
  public void start(String[] args) { 
    try { 
      if(args.length == 0) 
        processDirectoryTree(new File(".")); 
      else 
        for(String arg : args) { 

I/O 653 



 

          File fileArg = new File(arg); 
          if(fileArg.isDirectory()) 
            processDirectoryTree(fileArg); 
          else { 
            // Allow user to leave off extension: 
            if(!arg.endsWith("." + ext)) 
              arg += "." + ext; 
            strategy.process( 
              new File(arg).getCanonicalFile()); 
          } 
        } 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
  } 
  public void 
  processDirectoryTree(File root) throws IOException { 
    for(File file : Directory.walk( 
        root.getAbsolutePath(), ".*\\." + ext)) 
      strategy.process(file.getCanonicalFile()); 
  } 
  // Demonstration of how to use it: 
  public static void main(String[] args) { 
    new ProcessFiles(new ProcessFiles.Strategy() { 
      public void process(File file) { 
        System.out.println(file); 
      } 
    }, "java").start(args); 
  } 
} /* (Execute to see output) *///:~ 

The Strategy interface is nested within ProcessFiles, so that if you want to implement it 
you must implement ProcessFiles.Strategy, which provides more context for the reader. 
ProcessFiles does all the work of finding the files that have a particular extension (the ext 
argument to the constructor), and when it finds a matching file, it simply hands it to the 
Strategy object (which is also an argument to the constructor).  

If you don’t give it any arguments, ProcessFiles assumes that you want to traverse all the 
directories off of the current directory. You can also specify a particular file, with or without 
the extension (it will add the extension if necessary), or one or more directories.  

In main( ) you see a basic example of how to use the tool; it prints the names of all the Java 
source files according to the command line that you provide.  

Exercise 4:   (2) Use Directory.walk( ) to sum the sizes of all files in a directory tree 
whose names match a particular regular expression.  

Exercise 5:   (1) Modify ProcessFiles.java so that it matches a regular expression rather 
than a fixed extension.  

Checking for and creating directories 

The File class is more than just a representation for an existing file or directory. You can also 
use a File object to create a new directory or an entire directory path if it doesn’t exist. You 
can also look at the characteristics of files (size, last modification date, read/write), see 
whether a File object represents a file or a directory, and delete a file. The following example 
shows some of the other methods available with the File class (see the JDK documentation 
from http://java.sun.com for the full set):  

654 Thinking in Java Bruce Eckel 



 

//: io/MakeDirectories.java 
// Demonstrates the use of the File class to 
// create directories and manipulate files. 
// {Args: MakeDirectoriesTest} 
import java.io.*; 
 
public class MakeDirectories { 
  private static void usage() { 
    System.err.println( 
      "Usage:MakeDirectories path1 ...\n" + 
      "Creates each path\n" + 
      "Usage:MakeDirectories -d path1 ...\n" + 
      "Deletes each path\n" + 
      "Usage:MakeDirectories -r path1 path2\n" + 
      "Renames from path1 to path2"); 
    System.exit(1); 
  } 
  private static void fileData(File f) { 
    System.out.println( 
      "Absolute path: " + f.getAbsolutePath() + 
      "\n Can read: " + f.canRead() + 
      "\n Can write: " + f.canWrite() + 
      "\n getName: " + f.getName() + 
      "\n getParent: " + f.getParent() + 
      "\n getPath: " + f.getPath() + 
      "\n length: " + f.length() + 
      "\n lastModified: " + f.lastModified()); 
    if(f.isFile()) 
      System.out.println("It’s a file"); 
    else if(f.isDirectory()) 
      System.out.println("It’s a directory"); 
  } 
  public static void main(String[] args) { 
    if(args.length < 1) usage(); 
    if(args[0].equals("-r")) { 
      if(args.length != 3) usage(); 
      File 
        old = new File(args[1]), 
        rname = new File(args[2]); 
      old.renameTo(rname); 
      fileData(old); 
      fileData(rname); 
      return; // Exit main 
    } 
    int count = 0; 
    boolean del = false; 
    if(args[0].equals("-d")) { 
      count++; 
      del = true; 
    } 
    count--; 
    while(++count < args.length) { 
      File f = new File(args[count]); 
      if(f.exists()) { 
        System.out.println(f + " exists"); 
        if(del) { 
          System.out.println("deleting..." + f); 
          f.delete(); 
        } 
      } 
      else { // Doesn’t exist 
        if(!del) { 
          f.mkdirs(); 

I/O 655 



 

          System.out.println("created " + f); 
        } 
      } 
      fileData(f); 
    } 
  } 
} /* Output: (80% match) 
created MakeDirectoriesTest 
Absolute path: d:\aaa-TIJ4\code\io\MakeDirectoriesTest 
 Can read: true 
 Can write: true 
 getName: MakeDirectoriesTest 
 getParent: null 
 getPath: MakeDirectoriesTest 
 length: 0 
 lastModified: 1101690308831 
It’s a directory 
*///:~ 

In fileData( ) you can see various file investigation methods used to display information 
about the file or directory path.  

The first method that’s exercised by main( ) is renameTo( ), which allows you to rename 
(or move) a file to an entirely new path represented by the argument, which is another File 
object. This also works with directories of any length.  

If you experiment with the preceding program, you’ll find that you can make a directory path 
of any complexity, because mkdirs( ) will do all the work for you.  

Exercise 6:   (5) Use ProcessFiles to find all the Java source-code files in a particular 
directory subtree that have been modified after a particular date.  

Input and output 
Programming language I/O libraries often use the abstraction of a stream, which represents 
any data source or sink as an object capable of producing or receiving pieces of data. The 
stream hides the details of what happens to the data inside the actual I/O device.  

The Java library classes for I/O are divided by input and output, as you can see by looking at 
the class hierarchy in the JDK documentation. Through inheritance, everything derived from 
the InputStream or Reader classes has basic methods called read( ) for reading a single 
byte or an array of bytes. Likewise, everything derived from OutputStream or Writer 
classes has basic methods called write( ) for writing a single byte or an array of bytes. 
However, you won’t generally use these methods; they exist so that other classes can use 
them—these other classes provide a more useful interface. Thus, you’ll rarely create your 
stream object by using a single class, but instead will layer multiple objects together to 
provide your desired functionality (this is the Decorator design pattern, as you shall see in 
this section). The fact that you create more than one object to produce a single stream is the 
primary reason that Java’s I/O library is confusing.  

It’s helpful to categorize the classes by their functionality. In Java l.o, the library designers 
started by deciding that all classes that had anything to do with input would be inherited 
from InputStream, and all classes that were associated with output would be inherited 
from OutputStream.  

656 Thinking in Java Bruce Eckel 



 

As is the practice in this book, I will attempt to provide an overview of the classes, but 
assume that you will use the JDK documentation to determine all the details, such as the 
exhaustive list of methods of a particular class.  

Types of InputStream 

InputStream’s job is to represent classes that produce input from different sources. These 
sources can be:  

1. An array of bytes.  
 

2. A String obj ect.  
 

3. A file.  
 

4. A "pipe," which works like a physical pipe: You put things in at one end and they come 
out the other.  

 
5. A sequence of other streams, so you can collect them together into a single stream.  

 
6. Other sources, such as an Internet connection. (This is covered in Thinking in 

Enterprise Java, available at www.MindView.net.)  
 

Each of these has an associated subclass of InputStream. In addition, the 
FilterInputStream is also a type of InputStream, to provide a base class for "decorator" 
classes that attach attributes or useful interfaces to input streams. This is discussed later.  

Table I/O-1. Types of InputStream  

Class Function Constructor arguments 

  
How to use it 

ByteArray-
InputStream 

Allows a buffer in 
memory to be used 
as an 
InputStream. 

The buffer from which to 
extract the bytes. 

As a source of data: Connect 
it to a FilterlnputStream 
object to provide a useful 
interface. 

StringBuffer-
InputStream 

Converts a String 
into an 
InputStream. 

A String. The underlying 
implementation actually 
uses a StringBuffer. 

As a source of data: Connect 
it to a FilterlnputStream 
object to provide a useful 
interface. 

File-
InputStream 

For reading 
information from a 
file. 

A String representing the 
file name, or a File or 
FileDescriptor object. 

As a source of data: Connect 
it to a FilterlnputStream 
object to provide a useful 
interface. 

I/O 657 



 

658 Thinking in Java Bruce Eckel 

Class Function Constructor arguments 

  
How to use it 

Piped-
InputStream 

Produces the data 
that’s being written 
to the associated 
PipedOutput-
Stream. 
Implements the 
"piping" concept. 

PipedOutputStream 

As a source of data in 
multithreading: Connect it 
to a FilterlnputStream 
object to provide a useful 
interface. 

Sequence-
InputStream 

Converts two or 
more 
InputStream 
objects into a single 
InputStream. 

Two InputStream objects 
or an Enumeration for a 
container of InputStream 
objects. 

As a source of data: Connect 
it to a FilterlnputStream 
object to provide a useful 
interface. 

Filter-
InputStream 

Abstract class that is 
an interface for 
decorators that 
provide useful 
functionality to the 
other 
InputStream 
classes. See Table 
I/O-3. 

See Table I/O-3. 

See Table I/O-3. 

Types of OutputStream 

This category includes the classes that decide where your output will go: an array of bytes 
(but not a String—presumably, you can create one using the array of bytes), a file, or a 
"pipe."  

In addition, the FilterOutputStream provides a base class for "decorator" classes that 
attach attributes or useful interfaces to output streams. This is discussed later.  

Table I/O-2. Types of OutputStream  

Class Function Constructor arguments 

  
How to use it 

ByteArray-
OutputStream 

Creates a buffer in 
memory. All the data 
that you send to the 
stream is placed in 
this buffer. 

Optional initial size of the 
buffer. 

 

To designate the destination 
of your data: Connect it to a 
FilterOutputStream 
object to provide a useful 
interface. 

File-
OutputStream 

For sending 
information to a file. 

A String representing the 
file name, or a File or 
FileDescriptor object. 



 

I/O 659 

Class Function Constructor arguments 

  
How to use it 

To designate the destination 
of your data: Connect it to a 
FilterOutputStream 
object to provide a useful 
interface. 

Piped-
OutputStream 

Any information you 
write to this 
automatically ends 
up as input for the 
associated 
Pipedlnput-
Stream. Implements 
the "piping" concept. 

PipedlnputStream 

 

 

To designate the destination 
of your data for 
multithreading: Connect it to 
a FilterOutputStream 
object to provide a useful 
interface. 

Filter-
OutputStream 

Abstract class that is 
an interface for 
decorators that 
provide useful 
functionality to the 
other 
OutputStream 
classes. See Table 
1/O-4- 

See Table I/O-4. 

See Table I/O-4. 

Adding attributes 
     and useful interfaces 

Decorators were introduced in the Generics chapter, on page 717. The Java I/O library 
requires many different combinations of features, and this is the justification for using the 
Decorator design pattern.1

 The reason for the existence of the "filter" classes in the Java I/O 
library is that the abstract "filter" class is the base class for all the decorators. A decorator 
must have the same interface as the object it decorates, but the decorator can also extend the 
interface, which occurs in several of the "filter" classes.  

There is a drawback to Decorator, however. Decorators give you much more flexibility while 
you’re writing a program (since you can easily mix and match attributes), but they add 
complexity to your code. The reason that the Java I/O library is awkward to use is that you 
must create many classes—the "core" I/O type plus all the decorators—in order to get the 
single I/O object that you want.  

The classes that provide the decorator interface to control a particular InputStream or 
OutputStream are the FilterlnputStream and FilterOutputStream, which don’t have 
very intuitive names. FilterlnputStream and FilterOutputStream are derived from the 
base classes of the I/O library, InputStream and OutputStream, which is a key 
requirement of the decorator (so that it provides the common interface to all the objects that 
are being decorated).  

                                                            
1 It’s not clear that this was a good design decision, especially compared to the simplicity of I/O libraries in other 
languages. But it’s the justification for the decision. 



 

Reading from an InputStream with 
FilterlnputStream 

The FilterlnputStream classes accomplish two significantly different things. 
DatalnputStream allows you to read different types of primitive data as well as String 
objects. (All the methods start with "read," such as readByte( ), readFloat( ), etc.) This, 
along with its companion DataOutputStream, allows you to move primitive data from one 
place to another via a stream. These "places" are determined by the classes in Table I/O-1.  

The remaining FilterlnputStream classes modify the way an InputStream behaves 
internally: whether it’s buffered or unbuffered, whether it keeps track of the lines it’s reading 
(allowing you to ask for line numbers or set the line number), and whether you can push back 
a single character. The last two classes look a lot like support for building a compiler (they 
were probably added to support the experiment of "building a Java compiler in Java"), so you 
probably won’t use them in general programming.  

You’ll need to buffer your input almost every time, regardless of the I/O device you’re 
connecting to, so it would have made more sense for the I/O library to have a special case (or 
simply a method call) for unbuffered input rather than buffered input.  

Table I/O-3. Types of FilterlnputStream 

Class Function Constructor 
arguments 

  
How to use it 

Data-
InputStream 

Used in concert with 
DataOutputStream, so 
you can read primitives 
(int, char, long, etc.) 
from a stream in a 
portable fashion. 

 

InputStream 

 

 

Contains a full interface 
to allow you to read 
primitive types. 

Buffered- 

InputStream 

Use this to prevent a 
physical read every time 
you want more data. 
You’re saying, "Use a 
buffer." 

InputStream, with 
optional buffer size. 

This doesn’t provide an 
interface per se. It just 
adds buffering to the 
process. Attach an 
interface object. 

LineNumber-
InputStream 

Keeps track of line 
numbers in the input 
stream; you can call 
getLineNumber( ) and 
setLineNumber (int). 

InputStream 

 

 

This just adds line 
numbering, so you’ll 
probably attach an 
interface object. 

Pushback-
InputStream 

Has a one-byte pushback 
buffer so that you can 
push back the last 
character read. 

InputStream 

 

 

Generally used in the 

660 Thinking in Java Bruce Eckel 



 

I/O 661 

Class Function Constructor 
arguments 

  
How to use it 

scanner for a compiler. 
You probably won’t use 
this. 

Writing to an OutputStream 
with FilterOutputStream 

The complement to DatalnputStream is DataOutputStream, which formats each of the 
primitive types and String objects onto a stream in such a way that any DatalnputStream, 
on any machine, can read them. All the methods start with "write," such as writeByte( ), 
writeFloat( ), etc.  

The original intent of PrintStream was to print all of the primitive data types and String 
objects in a viewable format. This is different from DataOutputStream, whose goal is to 
put data elements on a stream in a way that DatalnputStream can portably reconstruct 
them.  

The two important methods in PrintStream are print( ) and println( ), which are 
overloaded to print all the various types. The difference between print( ) and println( ) is 
that the latter adds a newline when it’s done.  

PrintStream can be problematic because it traps all IOExceptions (you must explicitly test 
the error status with checkError( ), which returns true if an error has occurred). Also, 
PrintStream doesn’t internationalize properly and doesn’t handle line breaks in a platform-
independent way. These problems are solved with PrintWriter, described later.  

BufferedOutputStream is a modifier and tells the stream to use buffering so you don’t get 
a physical write every time you write to the stream. You’ll probably always want to use this 
when doing output.  

Table I/O-4. Types of FilterOutputStream 

Class Function Constructor 
arguments 

  
How to use it 

Data-
OutputStream 

Used in concert with 
DataInputStream so 
you can write primitives 
(int, char, long, etc.) to 
a stream in a portable 
fashion. 

OutputStream 

 

 

Contains a full 
interface to allow you 
to write primitive 
types. 

PrintStream For producing formatted 
output. While 
DataOutputStream 
handles the storage of 
data, PrintStream 
handles display. 

OutputStream, with 
optional boolean 
indicating that the 
buffer is flushed with 
every newline. 

Should be the "final" 



 

662 Thinking in Java Bruce Eckel 

Class Function Constructor 
arguments 

  
How to use it 

wrapping for your 
OutputStream 
object. You’ll probably 
use this a lot. 

Buffered-
OutputStream 

Use this to prevent a 
physical write every time 
you send a piece of data. 
You’re saying, "Use a 
buffer." You can call 
flush( ) to flush the 
buffer. 

OutputStream, with 
optional buffer size. 

 

This doesn’t provide an 
interface per se. It just 
adds buffering to the 
process. Attach an 
interface object. 

Readers & Writers 
Java 1.1 made significant modifications to the fundamental I/O stream library. When you see 
the Reader and Writer classes, your first thought (like mine) might be that these were 
meant to replace the InputStream and OutputStream classes. But that’s not the case. 
Although some aspects of the original streams library are deprecated (if you use them you 
will receive a warning from the compiler), the InputStream and OutputStream classes 
still provide valuable functionality in the form of byte-oriented I/O, whereas the Reader and 
Writer classes provide Unicode-compliant, character-based I/O. In addition:  

1. Java 1.1 added new classes into the InputStream and OutputStream hierarchy, so 
it’s obvious those hierarchies weren’t being replaced.  
 

2. There are times when you must use classes from the "byte" hierarchy in combination 
with classes in the "character" hierarchy. To accomplish this, there are "adapter" 
classes: InputStreamReader converts an InputStream to a Reader, and 
OutputStreamWriter converts an OutputStream to a Writer.  

 
The most important reason for the Reader and Writer hierarchies is for 
internationalization. The old I/O stream hierarchy supports only 8-bit byte streams and 
doesn’t handle the 16-bit Unicode characters well. Since Unicode is used for 
internationalization (and Java’s native char is 16-bit Unicode), the Reader and Writer 
hierarchies were added to support Unicode in all I/O operations. In addition, the new 
libraries are designed for faster operations than the old.  

Sources and sinks of data 

Almost all of the original Java I/O stream classes have corresponding Reader and Writer 
classes to provide native Unicode manipulation. However, there are some places where the 
byte-oriented InputStreams and OutputStreams are the correct solution; in particular, 
thejava.util.zip libraries are byte-oriented rather than char-oriented. So the most sensible 
approach to take is to try to use the Reader and Writer classes whenever you can. You’ll 
discover the situations when you have to use the byte-oriented libraries because your code 
won’t compile.  

Here is a table that shows the correspondence between the sources and sinks of information 
(that is, where the data physically comes from or goes to) in the two hierarchies.  



 

Sources & sinks: 

Java 1.0 class 

Corresponding Java 1.1 class 

InputStream Reader 

adapter: 

InputStreamReader 

OutputStream Writer 

adapter: 

OutputStreamWriter 

FilelnputStream FileReader 

FileOutputStream FileWriter 

StringBufferlnputStream 

(deprecated) 

StringReader 

(no corresponding class) StringWriter 

ByteArrayInputStream CharArrayReader 

ByteArrayOutputStream CharArrayWriter 

PipedInputStream PipedReader 

PipedOutputStream PipedWriter 

In general, you’ll find that the interfaces for the two different hierarchies are similar, if not 
identical.  

Modifying stream behavior 

For InputStreams and OutputStreams, streams were adapted for particular needs using 
"decorator" subclasses of FilterInputStream and FilterOutputStream. The Reader 
and Writer class hierarchies continue the use of this idea—but not exactly.  

In the following table, the correspondence is a rougher approximation than in the previous 
table. The difference is because of the class organization; although 
BufferedOutputStream is a subclass of FilterOutputStream, BufferedWriter is not a 
subclass of FilterWriter (which, even though it is abstract, has no subclasses and so 
appears to have been put in either as a placeholder or simply so you don’t wonder where it 
is). However, the interfaces to the classes are quite a close match. 

Filters: 

Java 1.0 class 

Corresponding Java 1.1 class 

FilterInputStream FilterReader 

FilterOutputStream FilterWriter (abstract class with no 
subclasses) 

BufferedInputStream BufferedReader 

(also has readLine( )) 

BufferedOutputStream BufferedWriter 

DataInputStream Use DataInputStream 

(except when you need to use 
readLine( ), when you should use a 

I/O 663 



 

664 Thinking in Java Bruce Eckel 

Filters: 

Java 1.0 class 

Corresponding Java 1.1 class 

BufferedReader) 

PrintStream PrintWriter 

LineNumberInputStream 

(deprecated) 

LineNumberReader 

StreamTokenizer StreamTokenizer 

(Use the constructor that takes a 

Reader instead) 

PushbacklnputStream PushbackReader 

 

There’s one direction that’s quite clear: Whenever you want to use readLine( ), you 
shouldn’t do it with a DataInputStream (this is met with a deprecation message at compile 
time), but instead use a BufferedReader. Other than this, DataInputStream is still a 
"preferred" member of the I/O library.  

To make the transition to using a PrintWriter easier, it has constructors that take any 
OutputStream object as well as Writer objects. PrintWriter’s formatting interface is 
virtually the same as PrintStream.  

In Java SE5, PrintWriter constructors were added to simplify the creation of files when 
writing output, as you shall see shortly.  

One PrintWriter constructor also has an option to perform automatic flushing, which 
happens after every println( ) if the constructor flag is set.  

Unchanged classes 

Some classes were left unchanged between Java 1.0 and Java 1.1: 

Java 1.0 classes without 
corresponding Java 1.1 
classes 

DataOutputStream 

File 

RandomAccessFile 

SequenceInputStream 

DataOutputStream, in particular, is used without change, so for storing and retrieving 
data in a transportable format, you use the InputStream and OutputStream hierarchies.  



 

Off by itself: 
     RandomAccessFile 

RandomAccessFile is used for files containing records of known size so that you can move 
from one record to another using seek( ), then read or change the records. The records don’t 
have to be the same size; you just have to determine how big they are and where they are 
placed in the file.  

At first it’s a little bit hard to believe that RandomAccessFile is not part of the 
InputStream or OutputStream hierarchy. However, it has no association with those 
hierarchies other than that it happens to implement the DataInput and DataOutput 
interfaces (which are also implemented by DataInputStream and DataOutputStream). 
It doesn’t even use any of the functionality of the existing InputStream or OutputStream 
classes; it’s a completely separate class, written from scratch, with all of its own (mostly 
native) methods. The reason for this may be that RandomAccessFile has essentially 
different behavior than the other I/O types, since you can move forward and backward within 
a file. In any event, it stands alone, as a direct descendant of Object.  

Essentially, a RandomAccessFile works like a DataInputStream pasted together with a 
DataOutputStream, along with the methods getFilePointer( ) to find out where you are 
in the file, seek( ) to move to a new point in the file, and length( ) to determine the 
maximum size of the file. In addition, the constructors require a second argument (identical 
to fopen( ) in C) indicating whether you are just randomly reading ("r") or reading and 
writing ("rw"). There’s no support for write-only files, which could suggest that 
RandomAccessFile might have worked well if it were inherited from DataInputStream.  

The seeking methods are available only in RandomAccessFile, which works for files only. 
BufferedInputStream does allow you to mark( ) a position (whose value is held in a 
single internal variable) and reset( ) to that position, but this is limited and not very useful.  

Most, if not all, of the RandomAccessFile functionality is superseded as of JDK 1.4 with 
the nio memory-mapped files, which will be described later in this chapter.  

Typical uses of I/O streams 
Although you can combine the I/O stream classes in many different ways, you’ll probably just 
use a few combinations. The following examples can be used as a basic reference for typical 
I/O usage.  

In these examples, exception handing will be simplified by passing exceptions out to the 
console, but this is appropriate only in small examples and utilities. In your code you’ll want 
to consider more sophisticated error-handling approaches.  

Buffered input file 

To open a file for character input, you use a FileInputReader with a String or a File 
object as the file name. For speed, you’ll want that file to be buffered so you give the resulting 
reference to the constructor for a BufferedReader. Since BufferedReader also provides 
the readLine( ) method, this is your final object and the interface you read from. When 
readLine( ) returns null, you’re at the end of the file.  

//: io/BufferedInputFile.java 
import java.io.*; 

I/O 665 



 

666 Thinking in Java Bruce Eckel 

 
public class BufferedInputFile { 
  // Throw exceptions to console: 
  public static String 
  read(String filename) throws IOException { 
    // Reading input by lines: 
    BufferedReader in = new BufferedReader( 
      new FileReader(filename)); 
    String s; 
    StringBuilder sb = new StringBuilder(); 
    while((s = in.readLine())!= null) 
      sb.append(s + "\n"); 
    in.close(); 
    return sb.toString(); 
  } 
  public static void main(String[] args) 
  throws IOException { 
    System.out.print(read("BufferedInputFile.java")); 
  } 
} /* (Execute to see output) *///:~ 

The StringBuilder sb is used to accumulate the entire contents of the file (including 
newlines that must be added since readLine( ) strips them off). Finally, close( ) is called to 
close the file.2

  

Exercise 7:   (2) Open a text file so that you can read the file one line at a time. Read each 
line as a String and place that String object into a LinkedList. Print all of the lines in the 
LinkedList in reverse order.  

Exercise 8:   (1) Modify Exercise 7 so that the name of the file you read is provided as a 
command-line argument.  

Exercise 9:   (1) Modify Exercise 8 to force all the lines in the LinkedList to uppercase 
and send the results to System.out.  

Exercise 10:   (2) Modify Exercise 8 to take additional command-line arguments of words 
to find in the file. Print all lines in which any of the words match.  

Exercise 11:   (2) In the innerclasses/GreenhouseController.java example, 
GreenhouseController contains a hard-coded set of events. Change the program so that it 
reads the events and their relative times from a text file, ((difficulty level 8): Use a Factory 
Method design pattern to build the events—see Thinking in Patterns (with Java) at 
www.MindView.net.)  

Input from memory 

Here, the String result from BufferedInputFile.read( ) is used to create a 
StringReader. Then read( ) is used to read each character one at a time and send it out to 
the console:  

//: io/MemoryInput.java 
import java.io.*; 
 

                                                            
2 In the original design, close( ) was supposed to be called when finalize( ) ran, and you will see finalize( ) defined this 
way for I/O classes. However, as is discussed elsewhere in this book, the finalize( ) feature didn’t work out the way the 
Java designers originally envisioned it (that is to say, it’s irreparably broken), so the only safe approach is to explicitly call 
close( ) for files. 



 

public class MemoryInput { 
  public static void main(String[] args) 
  throws IOException { 
    StringReader in = new StringReader( 
      BufferedInputFile.read("MemoryInput.java")); 
    int c; 
    while((c = in.read()) != -1) 
      System.out.print((char)c); 
  } 
} /* (Execute to see output) *///:~ 

Note that read( ) returns the next character as an int and thus it must be cast to a char to 
print properly.  

Formatted memory input 

To read "formatted" data, you use a DataInputStream, which is a byteoriented I/O class 
(rather than char-oriented). Thus you must use all InputStream classes rather than 
Reader classes. Of course, you can read anything (such as a file) as bytes using 
InputStream classes, but here a String is used:  

//: io/FormattedMemoryInput.java 
import java.io.*; 
 
public class FormattedMemoryInput { 
  public static void main(String[] args) 
  throws IOException { 
    try { 
      DataInputStream in = new DataInputStream( 
        new ByteArrayInputStream( 
         BufferedInputFile.read( 
          "FormattedMemoryInput.java").getBytes())); 
      while(true) 
        System.out.print((char)in.readByte()); 
    } catch(EOFException e) { 
      System.err.println("End of stream"); 
    } 
  } 
} /* (Execute to see output) *///:~ 

A ByteArrayInputStream must be given an array of bytes. To produce this, String has a 
getBytes( ) method. The resulting ByteArrayInputStream is an appropriate 
InputStream to hand to DataInputStream.  

If you read the characters from a DataInputStream one byte at a time using readByte( ), 
any byte value is a legitimate result, so the return value cannot be used to detect the end of 
input. Instead, you can use the available( ) method to find out how many more characters 
are available. Here’s an example that shows how to read a file one byte at a time:  

//: io/TestEOF.java 
// Testing for end of file while reading a byte at a time. 
import java.io.*; 
 
public class TestEOF { 
  public static void main(String[] args) 
  throws IOException { 
    DataInputStream in = new DataInputStream( 
      new BufferedInputStream( 
        new FileInputStream("TestEOF.java"))); 
    while(in.available() != 0) 

I/O 667 



 

      System.out.print((char)in.readByte()); 
  } 
} /* (Execute to see output) *///:~ 

Note that available( ) works differently depending on what sort of medium you’re reading 
from; it’s literally "the number of bytes that can be read without blocking." With a file, this 
means the whole file, but with a different kind of stream this might not be true, so use it 
thoughtfully.  

You could also detect the end of input in cases like these by catching an exception. However, 
the use of exceptions for control flow is considered a misuse of that feature.  

Basic file output 

A FileWriter object writes data to a file. You’ll virtually always want to buffer the output by 
wrapping it in a BufferedWriter (try removing this wrapping to see the impact on the 
performance—buffering tends to dramatically increase performance of I/O operations). In 
this example, it’s decorated as a PrintWriter to provide formatting. The data file created 
this way is readable as an ordinary text file:  

//: io/BasicFileOutput.java 
import java.io.*; 
 
public class BasicFileOutput { 
  static String file = "BasicFileOutput.out"; 
  public static void main(String[] args) 
  throws IOException { 
    BufferedReader in = new BufferedReader( 
      new StringReader( 
        BufferedInputFile.read("BasicFileOutput.java"))); 
    PrintWriter out = new PrintWriter( 
      new BufferedWriter(new FileWriter(file))); 
    int lineCount = 1; 
    String s; 
    while((s = in.readLine()) != null ) 
      out.println(lineCount++ + ": " + s); 
    out.close(); 
    // Show the stored file: 
    System.out.println(BufferedInputFile.read(file)); 
  } 
} /* (Execute to see output) *///:~ 

As the lines are written to the file, line numbers are added. Note that LineNumberReader 
is not used, because it’s a silly class and you don’t need it. You can see from this example that 
it’s trivial to keep track of your own line numbers.  

When the input stream is exhausted, readLine( ) returns null. You’ll see an explicit 
close( ) for out, because if you don’t call close( ) for all your output files, you might 
discover that the buffers don’t get flushed, so the file will be incomplete.  

Text file output shortcut 

Java SE5 added a helper constructor to PrintWriter so that you don’t have to do all the 
decoration by hand every time you want to create a text file and write to it. Here’s 
BasicFileOutput.java rewritten to use this shortcut:  

//: io/FileOutputShortcut.java 
import java.io.*; 

668 Thinking in Java Bruce Eckel 



 

 
public class FileOutputShortcut { 
  static String file = "FileOutputShortcut.out"; 
  public static void main(String[] args) 
  throws IOException { 
    BufferedReader in = new BufferedReader( 
      new StringReader( 
       BufferedInputFile.read("FileOutputShortcut.java"))); 
    // Here’s the shortcut: 
    PrintWriter out = new PrintWriter(file); 
    int lineCount = 1; 
    String s; 
    while((s = in.readLine()) != null ) 
      out.println(lineCount++ + ": " + s); 
    out.close(); 
    // Show the stored file: 
    System.out.println(BufferedInputFile.read(file)); 
  } 
} /* (Execute to see output) *///:~ 

You still get buffering, you just don’t have to do it yourself. Unfortunately, other commonly 
written tasks were not given shortcuts, so typical I/O will still involve a lot of redundant text. 
However, the TextFile utility that is used in this book, and which will be defined a little later 
in this chapter, does simplify these common tasks.  

Exercise 12:   (3) Modify Exercise 8 to also open a text file so you can write text into it. 
Write the lines in the LinkedList, along with line numbers (do not attempt to use the 
"LineNumber" classes), out to the file.  

Exercise 13:   (3) Modify BasicFileOutput.java so that it uses LineNumberReader 
to keep track of the line count. Note that it’s much easier to just keep track programmatically.  

Exercise 14:   (2) Starting with BasicFileOutput.java, write a program that compares 
the performance of writing to a file when using buffered and unbuffered I/O.  

Storing and recovering data 

A PrintWriter formats data so that it’s readable by a human. However, to output data for 
recovery by another stream, you use a DataOutputStream to write the data and a 
DataInputStream to recover the data. Of course, these streams can be anything, but the 
following example uses a file, buffered for both reading and writing. DataOutputStream 
and DataInputStream are byte-oriented and thus require InputStreams and 
OutputStreams:  

//: io/StoringAndRecoveringData.java 
import java.io.*; 
 
public class StoringAndRecoveringData { 
  public static void main(String[] args) 
  throws IOException { 
    DataOutputStream out = new DataOutputStream( 
      new BufferedOutputStream( 
        new FileOutputStream("Data.txt"))); 
    out.writeDouble(3.14159); 
    out.writeUTF("That was pi"); 
    out.writeDouble(1.41413); 
    out.writeUTF("Square root of 2"); 
    out.close(); 
    DataInputStream in = new DataInputStream( 

I/O 669 



 

670 Thinking in Java Bruce Eckel 

      new BufferedInputStream( 
        new FileInputStream("Data.txt"))); 
    System.out.println(in.readDouble()); 
    // Only readUTF() will recover the 
    // Java-UTF String properly: 
    System.out.println(in.readUTF()); 
    System.out.println(in.readDouble()); 
    System.out.println(in.readUTF()); 
  } 
} /* Output: 
3.14159 
That was pi 
1.41413 
Square root of 2 
*///:~ 

If you use a DataOutputStream to write the data, then Java guarantees that you can 
accurately recover the data using a DataInputStream— regardless of what different 
platforms write and read the data. This is incredibly valuable, as anyone knows who has 
spent time worrying about platform-specific data issues. That problem vanishes if you have 
Java on both platforms.3  

When you are using a DataOutputStream, the only reliable way to write a String so that it 
can be recovered by a DataInputStream is to use UTF-8 encoding, accomplished in this 
example using writeUTF( ) and readUTF( ). UTF-8 is a multi-byte format, and the length 
of encoding varies according to the actual character set in use. If you’re working with ASCII 
or mostly ASCII characters (which occupy only seven bits), Unicode is a tremendous waste of 
space and/or bandwidth, so UTF-8 encodes ASCII characters in a single byte, and non-ASCII 
characters in two or three bytes. In addition, the length of the string is stored in the first two 
bytes of the UTF-8 string. However, writeUTF( ) and readUTF( ) use a special variation of 
UTF-8 for Java (which is completely described in the JDK documentation for those 
methods), so if you read a string written with writeUTF( ) using a non-Java program, you 
must write special code in order to read the string properly.  

With writeUTF( ) and readUTF( ), you can intermingle Strings and other types of data 
using a DataOutputStream, with the knowledge that the Strings will be properly stored 
as Unicode and will be easily recoverable with a DataInputStream.  

The writeDouble( ) method stores the double number to the stream, and the 
complementary readDouble( ) method recovers it (there are similar methods for reading 
and writing the other types). But for any of the reading methods to work correctly, you must 
know the exact placement of the data item in the stream, since it would be equally possible to 
read the stored double as a simple sequence of bytes, or as a char, etc. So you must either 
have a fixed format for the data in the file, or extra information must be stored in the file that 
you parse to determine where the data is located. Note that object serialization or XML (both 
described later in this chapter) may be easier ways to store and retrieve complex data 
structures.  

Exercise 15:   (4) Look up DataOutputStream and DataInputStream in the JDK 
documentation. Starting with StoringAndRecoveringData.java, create a program that 
stores and then retrieves all the different possible types provided by the 
DataOutputStream and DataInputStream classes. Verify that the values are stored and 
retrieved accurately.  

Reading and writing  
                                                            
3 XML is another way to solve the problem of moving data across different computing platforms, and does not depend on 
having Java on all platforms. XML is introduced later in this chapter. 



 

random-access files 

Using a RandomAccessFile is like using a combined DataInputStream and 
DataOutputStream (because it implements the same interfaces: DataInput and 
DataOutput). In addition, you can use seek( ) to move about in the file and change the 
values.  

When using RandomAccessFile, you must know the layout of the file so that you can 
manipulate it properly. RandomAccessFile has specific methods to read and write primitives 
and UTF-8 strings. Here’s an example:  

//: io/UsingRandomAccessFile.java 
import java.io.*; 
 
public class UsingRandomAccessFile { 
  static String file = "rtest.dat"; 
  static void display() throws IOException { 
    RandomAccessFile rf = new RandomAccessFile(file, "r"); 
    for(int i = 0; i < 7; i++) 
      System.out.println( 
        "Value " + i + ": " + rf.readDouble()); 
    System.out.println(rf.readUTF()); 
    rf.close(); 
  } 
  public static void main(String[] args) 
  throws IOException { 
    RandomAccessFile rf = new RandomAccessFile(file, "rw"); 
    for(int i = 0; i < 7; i++) 
      rf.writeDouble(i*1.414); 
    rf.writeUTF("The end of the file"); 
    rf.close(); 
    display(); 
    rf = new RandomAccessFile(file, "rw"); 
    rf.seek(5*8); 
    rf.writeDouble(47.0001); 
    rf.close(); 
    display(); 
  } 
} /* Output: 
Value 0: 0.0 
Value 1: 1.414 
Value 2: 2.828 
Value 3: 4.242 
Value 4: 5.656 
Value 5: 7.069999999999999 
Value 6: 8.484 
The end of the file 
Value 0: 0.0 
Value 1: 1.414 
Value 2: 2.828 
Value 3: 4.242 
Value 4: 5.656 
Value 5: 47.0001 
Value 6: 8.484 
The end of the file 
*///:~ 

The display( ) method opens a file and displays seven elements within as double values. In 
main( ), the file is created, then opened and modified. Since a double is always eight bytes 
long, to seek( ) to double number 5 you just multiply 5*8 to produce the seek value.  

I/O 671 



 

As previously noted, RandomAccessFile is effectively separate from the rest of the I/O 
hierarchy, save for the fact that it implements the DataInput and DataOutput interfaces. 
It doesn’t support decoration, so you cannot combine it with any of the aspects of the 
InputStream and OutputStream subclasses. You must assume that a 
RandomAccessFile is properly buffered since you cannot add that.  

The one option you have is in the second constructor argument: You can open a 
RandomAccessFile to read ("r") or read and write ("rw").  

You may want to consider using nio memory-mapped files instead of RandomAccessFile.  

Exercise 16:   (2) Look up RandomAccessFile in the JDK documentation. Starting with 
UsingRandomAccessFile.java, create a program that stores and then retrieves all the 
different possible types provided by the RandomAccessFile class. Verify that the values 
are stored and retrieved accurately.  

Piped streams 

The PipedInputStream, PipedOutputStream, PipedReader and PipedWriter have 
been mentioned only briefly in this chapter. This is not to suggest that they aren’t useful, but 
their value is not apparent until you begin to understand concurrency, since the piped 
streams are used to communicate between tasks. This is covered along with an example in 
the Concurrency chapter.  

File reading & writing utilities 
A very common programming task is to read a file into memory, modify it, and then write it 
out again. One of the problems with the Java I/O library is that it requires you to write quite 
a bit of code in order to perform these common operations—there are no basic helper 
functions to do them for you. What’s worse, the decorators make it rather hard to remember 
how to open files. Thus, it makes sense to add helper classes to your library that will easily 
perform these basic tasks for you. Java SE5 has added a convenience constructor to 
PrintWriter so you can easily open a text file for writing. However, there are many other 
common tasks that you will want to do over and over, and it makes sense to eliminate the 
redundant code associated with those tasks.  

Here’s the TextFile class that has been used in previous examples in this book to simplify 
reading and writing files. It contains static methods to read and write text files as a single 
string, and you can create a TextFile object that holds the lines of the file in an ArrayList 
(so you have all the ArrayList functionality while manipulating the file contents):  

//: net/mindview/util/TextFile.java 
// Static functions for reading and writing text files as 
// a single string, and treating a file as an ArrayList. 
package net.mindview.util; 
import java.io.*; 
import java.util.*; 
 
public class TextFile extends ArrayList<String> { 
  // Read a file as a single string: 
  public static String read(String fileName) { 
    StringBuilder sb = new StringBuilder(); 
    try { 
      BufferedReader in= new BufferedReader(new FileReader( 
        new File(fileName).getAbsoluteFile())); 
      try { 
        String s; 

672 Thinking in Java Bruce Eckel 



 

        while((s = in.readLine()) != null) { 
          sb.append(s); 
          sb.append("\n"); 
        } 
      } finally { 
        in.close(); 
      } 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
    return sb.toString(); 
  } 
  // Write a single file in one method call: 
  public static void write(String fileName, String text) { 
    try { 
      PrintWriter out = new PrintWriter( 
        new File(fileName).getAbsoluteFile()); 
      try { 
        out.print(text); 
      } finally { 
        out.close(); 
      } 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
  } 
  // Read a file, split by any regular expression: 
  public TextFile(String fileName, String splitter) { 
    super(Arrays.asList(read(fileName).split(splitter))); 
    // Regular expression split() often leaves an empty 
    // String at the first position: 
    if(get(0).equals("")) remove(0); 
  } 
  // Normally read by lines: 
  public TextFile(String fileName) { 
    this(fileName, "\n"); 
  } 
  public void write(String fileName) { 
    try { 
      PrintWriter out = new PrintWriter( 
        new File(fileName).getAbsoluteFile()); 
      try { 
        for(String item : this) 
          out.println(item); 
      } finally { 
        out.close(); 
      } 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
  } 
  // Simple test: 
  public static void main(String[] args) { 
    String file = read("TextFile.java"); 
    write("test.txt", file); 
    TextFile text = new TextFile("test.txt"); 
    text.write("test2.txt"); 
    // Break into unique sorted list of words: 
    TreeSet<String> words = new TreeSet<String>( 
      new TextFile("TextFile.java", "\\W+")); 
    // Display the capitalized words: 
    System.out.println(words.headSet("a")); 
  } 

I/O 673 



 

} /* Output: 
[0, ArrayList, Arrays, Break, BufferedReader, BufferedWriter, Clean, 
Display, File, FileReader, FileWriter, IOException, Normally, Output, 
PrintWriter, Read, Regular, RuntimeException, Simple, Static, String, 
StringBuilder, System, TextFile, Tools, TreeSet, W, Write] 
*///:~ 

read( ) appends each line to a StringBuilder, followed by a newline, because that is 
stripped out during reading. Then it returns a String containing the whole file. write( ) 
opens and writes the text String to the file.  

Notice that any code that opens a file guards the file’s close( ) call in a finally clause to 
guarantee that the file will be properly closed.  

The constructor uses the read( ) method to turn the file into a String, then uses 
String.split( ) to divide the result into lines along newline boundaries (if you use this class 
a lot, you may want to rewrite this constructor to improve efficiency). Alas, there is no 
corresponding "join" method, so the non-static write( ) method must write the lines out by 
hand.  

Because this class is intended to trivialize the process of reading and writing files, all 
IOExceptions are converted to RuntimeExceptions, so the user doesn’t have to use try-
catch blocks. However, you may need to create another version that passes IOExceptions 
out to the caller.  

In main( ), a basic test is performed to ensure that the methods work.  

Although this utility did not require much code to create, using it can save a lot of time and 
make your life easier, as you’ll see in some of the examples later in this chapter.  

Another way to solve the problem of reading text files is to use the java.util.Scanner class 
introduced in Java SE5. However, this is only for reading files, not writing them, and that 
tool (which you’ll notice is nor in java.io) is primarily designed for creating programming-
language scanners or "little languages."  

Exercise 17:   (4) Using TextFile and a Map<Character,Integer>, create a program 
that counts the occurrence of all the different characters in a file. (So if there are 12 
occurrences of the letter ‘a’ in the file, the Integer associated with the Character 
containing ‘a’ in the Map contains ‘12’).  

Exercise 18:   (1) Modify TextFile.java so that it passes IOExceptions out to the caller.  

Reading binary files 

This utility is similar to TextFile.java in that it simplifies the process of reading binary files:  

//: net/mindview/util/BinaryFile.java 
// Utility for reading files in binary form. 
package net.mindview.util; 
import java.io.*; 
 
public class BinaryFile { 
  public static byte[] read(File bFile) throws IOException{ 
    BufferedInputStream bf = new BufferedInputStream( 
      new FileInputStream(bFile)); 
    try { 
      byte[] data = new byte[bf.available()]; 

674 Thinking in Java Bruce Eckel 



 

      bf.read(data); 
      return data; 
    } finally { 
      bf.close(); 
    } 
  } 
  public static byte[] 
  read(String bFile) throws IOException { 
    return read(new File(bFile).getAbsoluteFile()); 
  } 
} ///:~ 

One overloaded method takes a File argument; the second takes a String argument, which 
is the file name. Both return the resulting byte array.  

The available( ) method is used to produce the appropriate array size, and this particular 
version of the overloaded read( ) method fills the array.  

Exercise 19:   (2) Using BinaryFile and a Map<Byte,Integer>, create a program that 
counts the occurrence of all the different bytes in a file.  

Exercise 20:   (4) Using Directory.walk( ) and BinaryFile, verify that all .class files 
in a directory tree begin with the hex characters ‘CAFEBABE’.  

Standard I/O 
The term standard I/O refers to the Unix concept of a single stream of information that is 
used by a program (this idea is reproduced in some form in Windows and many other 
operating systems). All of the program’s input can come from standard input, all of its 
output can go to standard output, and all of its error messages can be sent to standard error. 
The value of standard I/O is that programs can easily be chained together, and one program’s 
standard output can become the standard input for another program. This is a powerful tool.  

Reading from standard input 

Following the standard I/O model, Java has System.in, System.out, and System.err. 
Throughout this book, you’ve seen how to write to standard output using System.out, which 
is already pre-wrapped as a PrintStream object. System.err is likewise a PrintStream, 
but System.in is a raw InputStream with no wrapping. This means that although you can 
use System.out and System.err right away, System.in must be wrapped before you can 
read from it.  

You’ll typically read input a line at a time using readLine( ). To do this, wrap System.in in 
a BufferedReader, which requires you to convert System.in to a Reader using 
InputStreamReader. Here’s an example that simply echoes each line that you type in:  

//: io/Echo.java 
// How to read from standard input. 
// {RunByHand} 
import java.io.*; 
 
public class Echo { 
  public static void main(String[] args) 
  throws IOException { 
    BufferedReader stdin = new BufferedReader( 
      new InputStreamReader(System.in)); 
    String s; 

I/O 675 



 

676 Thinking in Java Bruce Eckel 

    while((s = stdin.readLine()) != null && s.length()!= 0) 
      System.out.println(s); 
    // An empty line or Ctrl-Z terminates the program 
  } 
} ///:~ 

The reason for the exception specification is that readLine( ) can throw an IOException. 
Note that System.in should usually be buffered, as with most streams.  

Exercise 21:   (1) Write a program that takes standard input and capitalizes all characters, 
then puts the results on standard output. Redirect the contents of a file into this program 
(the process of redirection will vary depending on your operating system).  

Changing System.out to a 
PrintWriter 

System.out is a PrintStream, which is an OutputStream. PrintWriter has a 
constructor that takes an OutputStream as an argument. Thus, if you want, you can 
convert System.out into a PrintWriter using that constructor:  

//: io/ChangeSystemOut.java 
// Turn System.out into a PrintWriter. 
import java.io.*; 
 
public class ChangeSystemOut { 
  public static void main(String[] args) { 
    PrintWriter out = new PrintWriter(System.out, true); 
    out.println("Hello, world"); 
  } 
} /* Output: 
Hello, world 
*///:~ 

It’s important to use the two-argument version of the PrintWriter constructor and to set 
the second argument to true in order to enable automatic flushing; otherwise, you may not 
see the output.  

Redirecting standard I/O 

The Java System class allows you to redirect the standard input, output, and error I/O 
streams using simple static method calls:  

setIn(InputStream) 
setOut(PrintStream) 
setErr(PrintStream) 
 
Redirecting output is especially useful if you suddenly start creating a large amount of output 
on your screen, and it’s scrolling past faster than you can read it.4 Redirecting input is 
valuable for a command-line program in which you want to test a particular user-input 
sequence repeatedly. Here’s a simple example that shows the use of these methods:  

//: io/Redirecting.java 
// Demonstrates standard I/O redirection. 

                                                            
4 The Graphical User Interfaces chapter shows an even more convenient solution for this: a GUI program with a scrolling 
text area. 



 

import java.io.*; 
 
public class Redirecting { 
  public static void main(String[] args) 
  throws IOException { 
    PrintStream console = System.out; 
    BufferedInputStream in = new BufferedInputStream( 
      new FileInputStream("Redirecting.java")); 
    PrintStream out = new PrintStream( 
      new BufferedOutputStream( 
        new FileOutputStream("test.out"))); 
    System.setIn(in); 
    System.setOut(out); 
    System.setErr(out); 
    BufferedReader br = new BufferedReader( 
      new InputStreamReader(System.in)); 
    String s; 
    while((s = br.readLine()) != null) 
      System.out.println(s); 
    out.close(); // Remember this! 
    System.setOut(console); 
  } 
} ///:~ 

This program attaches standard input to a file and redirects standard output and standard 
error to another file. Notice that it stores a reference to the original System.out object at the 
beginning of the program, and restores the system output to that object at the end.  

I/O redirection manipulates streams of bytes, not streams of characters; thus, 
InputStreams and OutputStreams are used rather than Readers and Writers.  

Process control 
You will often need to execute other operating system programs from inside Java, and to 
control the input and output from such programs. The Java library provides classes to 
perform such operations.  

A common task is to run a program and send the resulting output to the console. This section 
contains a utility to simplify this task.  

Two types of errors can occur with this utility: the normal errors that result in exceptions—
for these we will just rethrow a runtime exception—and errors from the execution of the 
process itself. We want to report these errors with a separate exception:  

//: net/mindview/util/OSExecuteException.java 
package net.mindview.util; 
 
public class OSExecuteException extends RuntimeException { 
  public OSExecuteException(String why) { super(why); } 
} ///:~ 

To run a program, you pass OSExecute.command( ) a command string, which is the 
same command that you would type to run the program on the console. This command is 
passed to the java.lang.ProcessBuilder constructor (which requires it as a sequence of 
String objects), and the resulting ProcessBuilder object is started:  

//: net/mindview/util/OSExecute.java 
// Run an operating system command 

I/O 677 



 

// and send the output to the console. 
package net.mindview.util; 
import java.io.*; 
 
public class OSExecute { 
  public static void command(String command) { 
    boolean err = false; 
    try { 
      Process process = 
        new ProcessBuilder(command.split(" ")).start(); 
      BufferedReader results = new BufferedReader( 
        new InputStreamReader(process.getInputStream())); 
      String s; 
      while((s = results.readLine())!= null) 
        System.out.println(s); 
      BufferedReader errors = new BufferedReader( 
        new InputStreamReader(process.getErrorStream())); 
      // Report errors and return nonzero value 
      // to calling process if there are problems: 
      while((s = errors.readLine())!= null) { 
        System.err.println(s); 
        err = true; 
      } 
    } catch(Exception e) { 
      // Compensate for Windows 2000, which throws an 
      // exception for the default command line: 
      if(!command.startsWith("CMD /C")) 
        command("CMD /C " + command); 
      else 
        throw new RuntimeException(e); 
    } 
    if(err) 
      throw new OSExecuteException("Errors executing " + 
        command); 
  } 
} ///:~ 

To capture the standard output stream from the program as it executes, you call 
getInputStream( ). This is because an InputStream is something we can read from.  

The results from the program arrive a line at a time, so they are read using readLine( ). 
Here the lines are simply printed, but you may also want to capture and return them from 
command( ).  

The program’s errors are sent to the standard error stream, and are captured by calling 
getErrorStream( ). If there are any errors, they are printed and an 
OSExecuteException is thrown so the calling program will handle the problem.  

Here’s an example that shows how to use OSExecute:  

//: io/OSExecuteDemo.java 
// Demonstrates standard I/O redirection. 
import net.mindview.util.*; 
 
public class OSExecuteDemo { 
  public static void main(String[] args) { 
    OSExecute.command("javap OSExecuteDemo"); 
  } 
} /* Output: 
Compiled from "OSExecuteDemo.java" 
public class OSExecuteDemo extends java.lang.Object{ 

678 Thinking in Java Bruce Eckel 



 

    public OSExecuteDemo(); 
    public static void main(java.lang.String[]); 
} 
*///:~ 

This uses the javap decompiler (that comes with the JDK) to decompile the program.  

Exercise 22:   (5) Modify OSExecute.java so that, instead of printing the standard 
output stream, it returns the results of executing the program as a List of Strings. 
Demonstrate the use of this new version of the utility.  

New I/O 
The Java "new" I/O library, introduced in JDK 1.4 in the java.nio.* packages, has one goal: 
speed. In fact, the "old" I/O packages have been reimplemented using nio in order to take 
advantage of this speed increase, so you will benefit even if you don’t explicitly write code 
with nio. The speed increase occurs both in file I/O, which is explored here, and in network 
I/O, which is covered in Thinking in Enterprise Java.  

The speed comes from using structures that are closer to the operating system’s way of 
performing I/O: channels and buffers. You could think of it as a coal mine; the channel is the 
mine containing the seam of coal (the data), and the buffer is the cart that you send into the 
mine. The cart comes back full of coal, and you get the coal from the cart. That is, you don’t 
interact directly with the channel; you interact with the buffer and send the buffer into the 
channel. The channel either pulls data from the buffer, or puts data into the buffer.  

The only kind of buffer that communicates directly with a channel is a ByteBuffer—that is, 
a buffer that holds raw bytes. If you look at the JDK documentation for 
java.nio.ByteBuffer, you’ll see that it’s fairly basic: You create one by telling it how much 
storage to allocate, and there are methods to put and get data, in either raw byte form or as 
primitive data types. But there’s no way to put or get an object, or even a String. It’s fairly 
low-level, precisely because this makes a more efficient mapping with most operating 
systems.  

Three of the classes in the "old" I/O have been modified so that they produce a 
FileChannel: FileInputStream, FileOutputStream, and, for both reading and writing, 
RandomAccessFile. Notice that these are the byte manipulation streams, in keeping with 
the low-level nature of nio. The Reader and Writer character-mode classes do not produce 
channels, but the java.nio.channels.Channels class has utility methods to produce 
Readers and Writers from channels.  

Here’s a simple example that exercises all three types of stream to produce channels that are 
writeable, read/writeable, and readable:  

//: io/GetChannel.java 
// Getting channels from streams 
import java.nio.*; 
import java.nio.channels.*; 
import java.io.*; 
 
public class GetChannel { 
  private static final int BSIZE = 1024; 
  public static void main(String[] args) throws Exception { 
    // Write a file: 
    FileChannel fc = 
      new FileOutputStream("data.txt").getChannel(); 
    fc.write(ByteBuffer.wrap("Some text ".getBytes())); 

I/O 679 



 

    fc.close(); 
    // Add to the end of the file: 
    fc = 
      new RandomAccessFile("data.txt", "rw").getChannel(); 
    fc.position(fc.size()); // Move to the end 
    fc.write(ByteBuffer.wrap("Some more".getBytes())); 
    fc.close(); 
    // Read the file: 
    fc = new FileInputStream("data.txt").getChannel(); 
    ByteBuffer buff = ByteBuffer.allocate(BSIZE); 
    fc.read(buff); 
    buff.flip(); 
    while(buff.hasRemaining()) 
      System.out.print((char)buff.get()); 
  } 
} /* Output: 
Some text Some more 
*///:~ 

For any of the stream classes shown here, getChannel( ) will produce a FileChannel. A 
channel is fairly basic: You can hand it a ByteBuffer for reading or writing, and you can lock 
regions of the file for exclusive access (this will be described later).  

One way to put bytes into a ByteBuffer is to stuff them in directly using one of the "put" 
methods, to put one or more bytes, or values of primitive types. However, as seen here, you 
can also "wrap" an existing byte array in a ByteBuffer using the wrap( ) method. When 
you do this, the underlying array is not copied, but instead is used as the storage for the 
generated ByteBuffer. We say that the ByteBuffer is "backed by" the array.  

The data.txt file is reopened using a RandomAccessFile. Notice that you can move the 
FileChannel around in the file; here, it is moved to the end so that additional writes will be 
appended.  

For read-only access, you must explicitly allocate a ByteBuffer using the static allocate( ) 
method. The goal of nio is to rapidly move large amounts of data, so the size of the 
ByteBuffer should be significant—in fact, the lK used here is probably quite a bit smaller 
than you’d normally want to use (you’ll have to experiment with your working application to 
find the best size).  

It’s also possible to go for even more speed by using allocateDirect( ) instead of 
allocate( ) to produce a "direct" buffer that may have an even higher coupling with the 
operating system. However, the overhead in such an allocation is greater, and the actual 
implementation varies from one operating system to another, so again, you must experiment 
with your working application to discover whether direct buffers will buy you any advantage 
in speed.  

Once you call read( ) to tell the FileChannel to store bytes into the ByteBuffer, you must 
call flip( ) on the buffer to tell it to get ready to have its bytes extracted (yes, this seems a bit 
crude, but remember that it’s very low-level and is done for maximum speed). And if we were 
to use the buffer for further read( ) operations, we’d also have to call clear( ) to prepare it 
for each read( ). You can see this in a simple file-copying program:  

//: io/ChannelCopy.java 
// Copying a file using channels and buffers 
// {Args: ChannelCopy.java test.txt} 
import java.nio.*; 
import java.nio.channels.*; 
import java.io.*; 
 
public class ChannelCopy { 

680 Thinking in Java Bruce Eckel 



 

  private static final int BSIZE = 1024; 
  public static void main(String[] args) throws Exception { 
    if(args.length != 2) { 
      System.out.println("arguments: sourcefile destfile"); 
      System.exit(1); 
    } 
    FileChannel 
      in = new FileInputStream(args[0]).getChannel(), 
      out = new FileOutputStream(args[1]).getChannel(); 
    ByteBuffer buffer = ByteBuffer.allocate(BSIZE); 
    while(in.read(buffer) != -1) { 
      buffer.flip(); // Prepare for writing 
      out.write(buffer); 
      buffer.clear();  // Prepare for reading 
    } 
  } 
} ///:~ 

You can see that one FileChannel is opened for reading, and one for writing. A ByteBuffer 
is allocated, and when FileChannel.read( ) returns -1 (a holdover, no doubt, from Unix 
and C), it means that you’ve reached the end of the input. After each read( ), which puts 
data into the buffer, flip( ) prepares the buffer so that its information can be extracted by the 
write( ). After the write( ), the information is still in the buffer, and clear( ) resets all the 
internal pointers so that it’s ready to accept data during another read( ).  

The preceding program is not the ideal way to handle this kind of operation, however. Special 
methods transferTo( ) and transferFrom( ) allow you to connect one channel directly to 
another:  

//: io/TransferTo.java 
// Using transferTo() between channels 
// {Args: TransferTo.java TransferTo.txt} 
import java.nio.channels.*; 
import java.io.*; 
 
public class TransferTo { 
  public static void main(String[] args) throws Exception { 
    if(args.length != 2) { 
      System.out.println("arguments: sourcefile destfile"); 
      System.exit(1); 
    } 
    FileChannel 
      in = new FileInputStream(args[0]).getChannel(), 
      out = new FileOutputStream(args[1]).getChannel(); 
    in.transferTo(0, in.size(), out); 
    // Or: 
    // out.transferFrom(in, 0, in.size()); 
  } 
} ///:~ 

You won’t do this kind of thing very often, but it’s good to know about.  

Converting data 

If you look back at GetChannel.java, you’ll notice that, to print the information in the file, 
we are pulling the data out one byte at a time and casting each byte to a char. This seems a 
bit primitive—if you look at the java.nio.CharBuffer class, you’ll see that it has a 
toString( ) method that says, "Returns a string containing the characters in this buffer." 
Since a ByteBuffer can be viewed as a CharBuffer with the asCharBuffer( ) method, 

I/O 681 



 

why not use that? As you can see from the first line in the output statement below, this 
doesn’t work out:  

//: io/BufferToText.java 
// Converting text to and from ByteBuffers 
import java.nio.*; 
import java.nio.channels.*; 
import java.nio.charset.*; 
import java.io.*; 
 
public class BufferToText { 
  private static final int BSIZE = 1024; 
  public static void main(String[] args) throws Exception { 
    FileChannel fc = 
      new FileOutputStream("data2.txt").getChannel(); 
    fc.write(ByteBuffer.wrap("Some text".getBytes())); 
    fc.close(); 
    fc = new FileInputStream("data2.txt").getChannel(); 
    ByteBuffer buff = ByteBuffer.allocate(BSIZE); 
    fc.read(buff); 
    buff.flip(); 
    // Doesn’t work: 
    System.out.println(buff.asCharBuffer()); 
    // Decode using this system’s default Charset: 
    buff.rewind(); 
    String encoding = System.getProperty("file.encoding"); 
    System.out.println("Decoded using " + encoding + ": " 
      + Charset.forName(encoding).decode(buff)); 
    // Or, we could encode with something that will print: 
    fc = new FileOutputStream("data2.txt").getChannel(); 
    fc.write(ByteBuffer.wrap( 
      "Some text".getBytes("UTF-16BE"))); 
    fc.close(); 
    // Now try reading again: 
    fc = new FileInputStream("data2.txt").getChannel(); 
    buff.clear(); 
    fc.read(buff); 
    buff.flip(); 
    System.out.println(buff.asCharBuffer()); 
    // Use a CharBuffer to write through: 
    fc = new FileOutputStream("data2.txt").getChannel(); 
    buff = ByteBuffer.allocate(24); // More than needed 
    buff.asCharBuffer().put("Some text"); 
    fc.write(buff); 
    fc.close(); 
    // Read and display: 
    fc = new FileInputStream("data2.txt").getChannel(); 
    buff.clear(); 
    fc.read(buff); 
    buff.flip(); 
    System.out.println(buff.asCharBuffer()); 
  } 
} /* Output: 
???? 
Decoded using Cp1252: Some text 
Some text 
Some text 
*///:~ 

The buffer contains plain bytes, and to turn these into characters, we must either encode 
them as we put them in (so that they will be meaningful when they come out) or decode them 
as they come out of the buffer. This can be accomplished using the 

682 Thinking in Java Bruce Eckel 



 

java.nio.charset.Charset class, which provides tools for encoding into many different 
types of character sets:  

//: io/AvailableCharSets.java 
// Displays Charsets and aliases 
import java.nio.charset.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class AvailableCharSets { 
  public static void main(String[] args) { 
    SortedMap<String,Charset> charSets = 
      Charset.availableCharsets(); 
    Iterator<String> it = charSets.keySet().iterator(); 
    while(it.hasNext()) { 
      String csName = it.next(); 
      printnb(csName); 
      Iterator aliases = 
        charSets.get(csName).aliases().iterator(); 
      if(aliases.hasNext()) 
        printnb(": "); 
      while(aliases.hasNext()) { 
        printnb(aliases.next()); 
        if(aliases.hasNext()) 
          printnb(", "); 
      } 
      print(); 
    } 
  } 
} /* Output: 
Big5: csBig5 
Big5-HKSCS: big5-hkscs, big5hk, big5-hkscs:unicode3.0, big5hkscs, 
Big5_HKSCS 
EUC-JP: eucjis, x-eucjp, csEUCPkdFmtjapanese, eucjp, 
Extended_UNIX_Code_Packed_Format_for_Japanese, x-euc-jp, euc_jp 
EUC-KR: ksc5601, 5601, ksc5601_1987, ksc_5601, ksc5601-1987, euc_kr, 
ks_c_5601-1987, euckr, csEUCKR 
GB18030: gb18030-2000 
GB2312: gb2312-1980, gb2312, EUC_CN, gb2312-80, euc-cn, euccn, x-EUC-CN 
GBK: windows-936, CP936 
... 
*///:~ 

So, returning to BufferToText.java, if you rewind( ) the buffer (to go back to the 
beginning of the data) and then use that platform’s default character set to decode( ) the 
data, the resulting CharBuffer will print to the console just fine. To discover the default 
character set, use System.getProperty(“file.encoding"), which produces the string that 
names the character set. Passing this to Charset.forName( ) produces the Charset object 
that can be used to decode the string.  

Another alternative is to encode( ) using a character set that will result in something 
printable when the file is read, as you see in the third part of BufferToText.java. Here, 
UTF-16BE is used to write the text into the file, and when it is read, all you must do is convert 
it to a CharBuffer, and it produces the expected text.  

Finally, you see what happens if you write to the ByteBuffer through a CharBuffer (you’ll 
learn more about this later). Note that 24 bytes are allocated for the ByteBuffer. Since each 
char requires two bytes, this is enough for 12 chars, but "Some text" only has 9. The 
remaining zero bytes still appear in the representation of the CharBuffer produced by its 
toString( ), as you can see in the output.  

I/O 683 



 

Exercise 23:   (6) Create and test a utility method to print the contents of a CharBuffer 
up to the point where the characters are no longer printable.  

Fetching primitives 

Although a ByteBuffer only holds bytes, it contains methods to produce each of the 
different types of primitive values from the bytes it contains. This example shows the 
insertion and extraction of various values using these methods:  

//: io/GetData.java 
// Getting different representations from a ByteBuffer 
import java.nio.*; 
import static net.mindview.util.Print.*; 
 
public class GetData { 
  private static final int BSIZE = 1024; 
  public static void main(String[] args) { 
    ByteBuffer bb = ByteBuffer.allocate(BSIZE); 
    // Allocation automatically zeroes the ByteBuffer: 
    int i = 0; 
    while(i++ < bb.limit()) 
      if(bb.get() != 0) 
        print("nonzero"); 
    print("i = " + i); 
    bb.rewind(); 
    // Store and read a char array: 
    bb.asCharBuffer().put("Howdy!"); 
    char c; 
    while((c = bb.getChar()) != 0) 
      printnb(c + " "); 
    print(); 
    bb.rewind(); 
    // Store and read a short: 
    bb.asShortBuffer().put((short)471142); 
    print(bb.getShort()); 
    bb.rewind(); 
    // Store and read an int: 
    bb.asIntBuffer().put(99471142); 
    print(bb.getInt()); 
    bb.rewind(); 
    // Store and read a long: 
    bb.asLongBuffer().put(99471142); 
    print(bb.getLong()); 
    bb.rewind(); 
    // Store and read a float: 
    bb.asFloatBuffer().put(99471142); 
    print(bb.getFloat()); 
    bb.rewind(); 
    // Store and read a double: 
    bb.asDoubleBuffer().put(99471142); 
    print(bb.getDouble()); 
    bb.rewind(); 
  } 
} /* Output: 
i = 1025 
H o w d y ! 
12390 
99471142 
99471142 
9.9471144E7 
9.9471142E7 

684 Thinking in Java Bruce Eckel 



 

*///:~ 

After a ByteBuffer is allocated, its values are checked to see whether buffer allocation 
automatically zeroes the contents—and it does. All 1.024 values are checked (up to the 
limit( ) of the buffer), and all are zero.  

The easiest way to insert primitive values into a ByteBuffer is to get the appropriate "view" 
on that buffer using asCharBuffer( ), asShortBuffer( ), etc., and then to use that view’s 
put( ) method. You can see this is the process used for each of the primitive data types. The 
only one of these that is a little odd is the put( ) for the ShortBuffer, which requires a cast 
(note that the cast truncates and changes the resulting value). All the other view buffers do 
not require casting in their put( ) methods.  

View buffers 

A "view buffer" allows you to look at an underlying ByteBuffer through the window of a 
particular primitive type. The ByteBuffer is still the actual storage that’s "backing" the view, 
so any changes you make to the view are reflected in modifications to the data in the 
ByteBuffer. As seen in the previous example, this allows you to conveniently insert 
primitive types into a ByteBuffer. A view also allows you to read primitive values from a 
ByteBuffer, either one at a time (as ByteBuffer allows) or in batches (into arrays). Here’s 
an example that manipulates ints in a ByteBuffer via an IntBuffer:  

//: io/IntBufferDemo.java 
// Manipulating ints in a ByteBuffer with an IntBuffer 
import java.nio.*; 
 
public class IntBufferDemo { 
  private static final int BSIZE = 1024; 
  public static void main(String[] args) { 
    ByteBuffer bb = ByteBuffer.allocate(BSIZE); 
    IntBuffer ib = bb.asIntBuffer(); 
    // Store an array of int: 
    ib.put(new int[]{ 11, 42, 47, 99, 143, 811, 1016 }); 
    // Absolute location read and write: 
    System.out.println(ib.get(3)); 
    ib.put(3, 1811); 
    // Setting a new limit before rewinding the buffer. 
    ib.flip(); 
    while(ib.hasRemaining()) { 
      int i = ib.get(); 
      System.out.println(i); 
    } 
  } 
} /* Output: 
99 
11 
42 
47 
1811 
143 
811 
1016 
*///:~ 

The overloaded put( ) method is first used to store an array of int. The following get( ) and 
put( ) method calls directly access an int location in the underlying ByteBuffer. Note that 
these absolute location accesses are available for primitive types by talking directly to a 
ByteBuffer, as well.  

I/O 685 



 

Once the underlying ByteBuffer is filled with ints or some other primitive type via a view 
buffer, then that ByteBuffer can be written directly to a channel. You can just as easily read 
from a channel and use a view buffer to convert everything to a particular type of primitive. 
Here’s an example that interprets the same sequence of bytes as short, int, float, long, and 
double by producing different view buffers on the same ByteBuffer:  

//: io/ViewBuffers.java 
import java.nio.*; 
import static net.mindview.util.Print.*; 
 
public class ViewBuffers { 
  public static void main(String[] args) { 
    ByteBuffer bb = ByteBuffer.wrap( 
      new byte[]{ 0, 0, 0, 0, 0, 0, 0, ‘a’ }); 
    bb.rewind(); 
    printnb("Byte Buffer "); 
    while(bb.hasRemaining()) 
      printnb(bb.position()+ " -> " + bb.get() + ", "); 
    print(); 
    CharBuffer cb = 
      ((ByteBuffer)bb.rewind()).asCharBuffer(); 
    printnb("Char Buffer "); 
    while(cb.hasRemaining()) 
      printnb(cb.position() + " -> " + cb.get() + ", "); 
    print(); 
    FloatBuffer fb = 
      ((ByteBuffer)bb.rewind()).asFloatBuffer(); 
    printnb("Float Buffer "); 
    while(fb.hasRemaining()) 
      printnb(fb.position()+ " -> " + fb.get() + ", "); 
    print(); 
    IntBuffer ib = 
      ((ByteBuffer)bb.rewind()).asIntBuffer(); 
    printnb("Int Buffer "); 
    while(ib.hasRemaining()) 
      printnb(ib.position()+ " -> " + ib.get() + ", "); 
    print(); 
    LongBuffer lb = 
      ((ByteBuffer)bb.rewind()).asLongBuffer(); 
    printnb("Long Buffer "); 
    while(lb.hasRemaining()) 
      printnb(lb.position()+ " -> " + lb.get() + ", "); 
    print(); 
    ShortBuffer sb = 
      ((ByteBuffer)bb.rewind()).asShortBuffer(); 
    printnb("Short Buffer "); 
    while(sb.hasRemaining()) 
      printnb(sb.position()+ " -> " + sb.get() + ", "); 
    print(); 
    DoubleBuffer db = 
      ((ByteBuffer)bb.rewind()).asDoubleBuffer(); 
    printnb("Double Buffer "); 
    while(db.hasRemaining()) 
      printnb(db.position()+ " -> " + db.get() + ", "); 
  } 
} /* Output: 
Byte Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 0, 4 -> 0, 5 -> 0, 6 -> 0, 7 -> 
97, 
Char Buffer 0 ->  , 1 ->  , 2 ->  , 3 -> a, 
Float Buffer 0 -> 0.0, 1 -> 1.36E-43, 
Int Buffer 0 -> 0, 1 -> 97, 
Long Buffer 0 -> 97, 

686 Thinking in Java Bruce Eckel 



 

Short Buffer 0 -> 0, 1 -> 0, 2 -> 0, 3 -> 97, 
Double Buffer 0 -> 4.8E-322, 
*///:~ 

The ByteBuffer is produced by "wrapping" an eight-byte array, which is then displayed via 
view buffers of all the different primitive types. You can see in the following diagram the way 
the data appears differently when read from the different types of buffers:  

 

This corresponds to the output from the program.  

Exercise 24:   (1) Modify IntBufferDemo.java to use doubles.  

Endians 

Different machines may use different byte-ordering approaches to store data. "Big endian" 
places the most significant byte in the lowest memory address, and "little endian" places the 
most significant byte in the highest memory address. When storing a quantity that is greater 
than one byte, like int, float, etc., you may need to consider the byte ordering. A 
ByteBuffer stores data in big endian form, and data sent over a network always uses big 
endian order. You can change the endian-ness of a ByteBuffer using order( ) with an 
argument of ByteOrder.BIG_ENDIAN or ByteOrder.LITTLE_ENDIAN.  

Consider a ByteBuffer containing the following two bytes:  

 

If you read the data as a short (ByteBuffer.asShortBuffer( )), you will get the number 97 
(00000000 01100001), but if you change to little endian, you will get the number 24832 
(01100001 00000000).  

Here’s an example that shows how byte ordering is changed in characters depending on the 
endian setting:  

I/O 687 



 

//: io/Endians.java 
// Endian differences and data storage. 
import java.nio.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Endians { 
  public static void main(String[] args) { 
    ByteBuffer bb = ByteBuffer.wrap(new byte[12]); 
    bb.asCharBuffer().put("abcdef"); 
    print(Arrays.toString(bb.array())); 
    bb.rewind(); 
    bb.order(ByteOrder.BIG_ENDIAN); 
    bb.asCharBuffer().put("abcdef"); 
    print(Arrays.toString(bb.array())); 
    bb.rewind(); 
    bb.order(ByteOrder.LITTLE_ENDIAN); 
    bb.asCharBuffer().put("abcdef"); 
    print(Arrays.toString(bb.array())); 
  } 
} /* Output: 
[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102] 
[0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102] 
[97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0] 
*///:~ 

The ByteBuffer is given enough space to hold all the bytes in charArray as an external 
buffer so that the array( ) method can be called to display the underlying bytes. The 
array( ) method is "optional," and you can only call it on a buffer that is backed by an array; 
otherwise, you’ll get an UnsupportedOperationException.  

charArray is inserted into the ByteBuffer via a CharBuffer view. When the underlying 
bytes are displayed, you can see that the default ordering is the same as the subsequent big 
endian order, whereas the little endian order swaps the bytes.  

Data manipulation with buffers 

The following diagram illustrates the relationships between the nio classes, so that you can 
see how to move and convert data. For example, if you wish to write a byte array to a file, 
then you wrap the byte array using the ByteBuffer.wrap( ) method, open a channel on the 
FileOutputStream using the getChannel( ) method, and then write data into 
FileChannel from this ByteBuffer. 

688 Thinking in Java Bruce Eckel 



 

 

Note that ByteBuffer is the only way to move data into and out of channels, and that you 
can only create a standalone primitive-typed buffer, or get one from a ByteBuffer using an 
"as" method. That is, you cannot convert a primitive-typed buffer to a ByteBuffer. However, 
since you are able to move primitive data into and out of a ByteBuffer via a view buffer, this 
is not really a restriction.  

Buffer details 

I/O 689 



 

A Buffer consists of data and four indexes to access and manipulate this data efficiently: 
mark, position, limit and capacity. There are methods to set and reset these indexes and to 
query their value. 

capacity( ) Returns the buffer’s capacity. 

clear( ) Clears the buffer, sets the position to zero, and limit 
to capacity. You call this method to overwrite an 
existing buffer. 

flip( ) Sets limit to position and position to zero. This 
method is used to prepare the buffer for a read after 
data has been written into it. 

limit( ) Returns the value of limit. 

limit(int lim) Sets the value of limit. 

mark( ) Sets mark at position. 

position( ) Returns the value of position. 

position(int pos) Sets the value of position. 

remaining( ) Returns (limit - position). 

hasRemaining( ) Returns true if there are any elements between 
position and limit. 

Methods that insert and extract data from the buffer update these indexes to reflect the 
changes.  

This example uses a very simple algorithm (swapping adjacent characters) to scramble and 
unscramble characters in a CharBuffer:  

//: io/UsingBuffers.java 
import java.nio.*; 
import static net.mindview.util.Print.*; 
 
public class UsingBuffers { 
  private static void symmetricScramble(CharBuffer buffer){ 
    while(buffer.hasRemaining()) { 
      buffer.mark(); 
      char c1 = buffer.get(); 
      char c2 = buffer.get(); 
      buffer.reset(); 
      buffer.put(c2).put(c1); 
    } 
  } 
  public static void main(String[] args) { 
    char[] data = "UsingBuffers".toCharArray(); 
    ByteBuffer bb = ByteBuffer.allocate(data.length * 2); 
    CharBuffer cb = bb.asCharBuffer(); 
    cb.put(data); 
    print(cb.rewind()); 
    symmetricScramble(cb); 
    print(cb.rewind()); 
    symmetricScramble(cb); 
    print(cb.rewind()); 
  } 
} /* Output: 
UsingBuffers 
sUniBgfuefsr 

690 Thinking in Java Bruce Eckel 



 

UsingBuffers 
*///:~ 

Although you could produce a CharBuffer directly by calling wrap( ) with a char array, an 
underlying ByteBuffer is allocated instead, and a CharBuffer is produced as a view on the 
ByteBuffer. This emphasizes that the goal is always to manipulate a ByteBuffer, since that 
is what interacts with a channel.  

Here’s what the buffer looks like at the entrance of the symmetricScramble( ) method: 

 

The position points to the first element in the buffer, and the capacity and limit point to the 
last element.  

In symmetricScramble( ), the while loop iterates until position is equivalent to limit. The 
position of the buffer changes when a relative get( ) or put( ) function is called on it. You 
can also call absolute get( ) and put( ) methods that include an index argument, which is 
the location where the get( ) or put( ) takes place. These methods do not modify the value of 
the buffer’s position.  

When the control enters the while loop, the value of mark is set using a mark( ) call. The 
state of the buffer is then:  

 

The two relative get( ) calls save the value of the first two characters in variables c1 and c2. 
After these two calls, the buffer looks like this:  

 

To perform the swap, we need to write c2 at position = 0 and c1 at position = 1. We can 
either use the absolute put method to achieve this, or set the value of position to mark, which 
is what reset( ) does: 

I/O 691 



 

  

The two put( ) methods write c2 and then c1:  

 

During the next iteration of the loop, mark is set to the current value of position:  

 

The process continues until the entire buffer is traversed. At the end of the while loop, 
position is at the end of the buffer. If you print the buffer, only the characters between the 
position and limit are printed. Thus, if you want to show the entire contents of the buffer, you 
must set position to the start of the buffer using rewind( ). Here is the state of buffer after 
the rewind( ) call (the value of mark becomes undefined):  

 

When the function symmetricScramble( ) is called again, the CharBuffer undergoes the 
same process and is restored to its original state.  

Memory-mapped files 

Memory-mapped files allow you to create and modify files that are too big to bring into 
memory. With a memory-mapped file, you can pretend that the entire file is in memory and 
that you can access it by simply treating it as a very large array. This approach greatly 
simplifies the code you write in order to modify the file. Here’s a small example:  

//: io/LargeMappedFiles.java 
// Creating a very large file using mapping. 
// {RunByHand} 
import java.nio.*; 
import java.nio.channels.*; 

692 Thinking in Java Bruce Eckel 



 

import java.io.*; 
import static net.mindview.util.Print.*; 
 
public class LargeMappedFiles { 
  static int length = 0x8FFFFFF; // 128 MB 
  public static void main(String[] args) throws Exception { 
    MappedByteBuffer out = 
      new RandomAccessFile("test.dat", "rw").getChannel() 
      .map(FileChannel.MapMode.READ_WRITE, 0, length); 
    for(int i = 0; i < length; i++) 
      out.put((byte)’x’); 
    print("Finished writing"); 
    for(int i = length/2; i < length/2 + 6; i++) 
      printnb((char)out.get(i)); 
  } 
} ///:~ 

To do both writing and reading, we start with a RandomAccessFile, get a channel for that 
file, and then call map( ) to produce a MappedByteBuffer, which is a particular kind of 
direct buffer. Note that you must specify the starting point and the length of the region that 
you want to map in the file; this means that you have the option to map smaller regions of a 
large file.  

MappedByteBuffer is inherited from ByteBuffer, so it has all of ByteBuffer’s methods. 
Only the very simple uses of put( ) and get( ) are shown here, but you can also use methods 
like asCharBuffer( ), etc.  

The file created with the preceding program is 128 MB long, which is probably larger than 
your OS will allow in memory at one time. The file appears to be accessible all at once 
because only portions of it are brought into memory, and other parts are swapped out. This 
way a very large file (up to 2 GB) can easily be modified. Note that the file-mapping facilities 
of the underlying operating system are used to maximize performance.  

Performance 

Although the performance of "old" stream I/O has been improved by implementing it with 
nio, mapped file access tends to be dramatically faster. This program does a simple 
performance comparison:  

//: io/MappedIO.java 
import java.nio.*; 
import java.nio.channels.*; 
import java.io.*; 
 
public class MappedIO { 
  private static int numOfInts = 4000000; 
  private static int numOfUbuffInts = 200000; 
  private abstract static class Tester { 
    private String name; 
    public Tester(String name) { this.name = name; } 
    public void runTest() { 
      System.out.print(name + ": "); 
      try { 
        long start = System.nanoTime(); 
        test(); 
        double duration = System.nanoTime() - start; 
        System.out.format("%.2f\n", duration/1.0e9); 
      } catch(IOException e) { 
        throw new RuntimeException(e); 
      } 

I/O 693 



 

    } 
    public abstract void test() throws IOException; 
  } 
  private static Tester[] tests = { 
    new Tester("Stream Write") { 
      public void test() throws IOException { 
        DataOutputStream dos = new DataOutputStream( 
          new BufferedOutputStream( 
            new FileOutputStream(new File("temp.tmp")))); 
        for(int i = 0; i < numOfInts; i++) 
          dos.writeInt(i); 
        dos.close(); 
      } 
    }, 
    new Tester("Mapped Write") { 
      public void test() throws IOException { 
        FileChannel fc = 
          new RandomAccessFile("temp.tmp", "rw") 
          .getChannel(); 
        IntBuffer ib = fc.map( 
          FileChannel.MapMode.READ_WRITE, 0, fc.size()) 
          .asIntBuffer(); 
        for(int i = 0; i < numOfInts; i++) 
          ib.put(i); 
        fc.close(); 
      } 
    }, 
    new Tester("Stream Read") { 
      public void test() throws IOException { 
        DataInputStream dis = new DataInputStream( 
          new BufferedInputStream( 
            new FileInputStream("temp.tmp"))); 
        for(int i = 0; i < numOfInts; i++) 
          dis.readInt(); 
        dis.close(); 
      } 
    }, 
    new Tester("Mapped Read") { 
      public void test() throws IOException { 
        FileChannel fc = new FileInputStream( 
          new File("temp.tmp")).getChannel(); 
        IntBuffer ib = fc.map( 
          FileChannel.MapMode.READ_ONLY, 0, fc.size()) 
          .asIntBuffer(); 
        while(ib.hasRemaining()) 
          ib.get(); 
        fc.close(); 
      } 
    }, 
    new Tester("Stream Read/Write") { 
      public void test() throws IOException { 
        RandomAccessFile raf = new RandomAccessFile( 
          new File("temp.tmp"), "rw"); 
        raf.writeInt(1); 
        for(int i = 0; i < numOfUbuffInts; i++) { 
          raf.seek(raf.length() - 4); 
          raf.writeInt(raf.readInt()); 
        } 
        raf.close(); 
      } 
    }, 
    new Tester("Mapped Read/Write") { 
      public void test() throws IOException { 

694 Thinking in Java Bruce Eckel 



 

        FileChannel fc = new RandomAccessFile( 
          new File("temp.tmp"), "rw").getChannel(); 
        IntBuffer ib = fc.map( 
          FileChannel.MapMode.READ_WRITE, 0, fc.size()) 
          .asIntBuffer(); 
        ib.put(0); 
        for(int i = 1; i < numOfUbuffInts; i++) 
          ib.put(ib.get(i - 1)); 
        fc.close(); 
      } 
    } 
  }; 
  public static void main(String[] args) { 
    for(Tester test : tests) 
      test.runTest(); 
  } 
} /* Output: (90% match) 
Stream Write: 0.56 
Mapped Write: 0.12 
Stream Read: 0.80 
Mapped Read: 0.07 
Stream Read/Write: 5.32 
Mapped Read/Write: 0.02 
*///:~ 

As seen in earlier examples in this book, runTest( ) is used by the Template Method to 
create a testing framework for various implementations of test( ) defined in anonymous 
inner subclasses. Each of these subclasses performs one kind of test, so the test( ) methods 
also give you a prototype for performing the various I/O activities.  

Although a mapped write would seem to use a FileOutputStream, all output in file 
mapping must use a RandomAccessFile, just as read/write does in the preceding code.  

Note that the test( ) methods include the time for initialization of the various I/O objects, so 
even though the setup for mapped files can be expensive, the overall gain compared to 
stream I/O is significant.  

Exercise 25:   (6) Experiment with changing the ByteBuffer.allocate( ) statements in 
the examples in this chapter to ByteBuffer.allocateDirect( ). Demonstrate performance 
differences, but also notice whether the startup time of the programs noticeably changes.  

Exercise 26: (3) Modify strings/JGrep.java to use Java nio memorymapped files.  

File locking 

File locking allows you to synchronize access to a file as a shared resource. However, two 
threads that contend for the same file may be in different JVMs, or one may be a Java thread 
and the other some native thread in the operating system. The file locks are visible to other 
operating system processes because Java file locking maps directly to the native operating 
system locking facility.  

Here is a simple example of file locking.  

//: io/FileLocking.java 
import java.nio.channels.*; 
import java.util.concurrent.*; 
import java.io.*; 
 
public class FileLocking { 

I/O 695 



 

  public static void main(String[] args) throws Exception { 
    FileOutputStream fos= new FileOutputStream("file.txt"); 
    FileLock fl = fos.getChannel().tryLock(); 
    if(fl != null) { 
      System.out.println("Locked File"); 
      TimeUnit.MILLISECONDS.sleep(100); 
      fl.release(); 
      System.out.println("Released Lock"); 
    } 
    fos.close(); 
  } 
} /* Output: 
Locked File 
Released Lock 
*///:~ 

You get a FileLock on the entire file by calling either tryLock( ) or lock( ) on a 
FileChannel. (SocketChannel, DatagramChannel, and ServerSocketChannel do 
not need locking since they are inherently singleprocess entities; you don’t generally share a 
network socket between two processes.) tryLock( ) is non-blocking. It tries to grab the lock, 
but if it cannot (when some other process already holds the same lock and it is not shared), it 
simply returns from the method call. lock( ) blocks until the lock is acquired, or the thread 
that invoked lock( ) is interrupted, or the channel on which the lock( ) method is called is 
closed. A lock is released using FileLock.release( ).  

It is also possible to lock a part of the file by using  

tryLock(long position, long size, boolean shared)  

or 

lock(long position, long size, boolean shared)  

which locks the region (size - position). The third argument specifies whether this lock is 
shared.  

Although the zero-argument locking methods adapt to changes in the size of a file, locks with 
a fixed size do not change if the file size changes. If a lock is acquired for a region from 
position to position+size and the file increases beyond position+size, then the section 
beyond position+size is not locked. The zero-argument locking methods lock the entire file, 
even if it grows.  

Support for exclusive or shared locks must be provided by the underlying operating system. 
If the operating system does not support shared locks and a request is made for one, an 
exclusive lock is used instead. The type of lock (shared or exclusive) can be queried using 
FileLock.isShared( ).  

Locking portions of a mapped file 

As mentioned earlier, file mapping is typically used for very large files. You may need to lock 
portions of such a large file so that other processes may modify unlocked parts of the file. 
This is something that happens, for example, with a database, so that it can be available to 
many users at once.  

Here’s an example that has two threads, each of which locks a distinct portion of a file:  

//: io/LockingMappedFiles.java 
// Locking portions of a mapped file. 

696 Thinking in Java Bruce Eckel 



 

I/O 697 

// {RunByHand} 
import java.nio.*; 
import java.nio.channels.*; 
import java.io.*; 
 
public class LockingMappedFiles { 
  static final int LENGTH = 0x8FFFFFF; // 128 MB 
  static FileChannel fc; 
  public static void main(String[] args) throws Exception { 
    fc = 
      new RandomAccessFile("test.dat", "rw").getChannel(); 
    MappedByteBuffer out = 
      fc.map(FileChannel.MapMode.READ_WRITE, 0, LENGTH); 
    for(int i = 0; i < LENGTH; i++) 
      out.put((byte)’x’); 
    new LockAndModify(out, 0, 0 + LENGTH/3); 
    new LockAndModify(out, LENGTH/2, LENGTH/2 + LENGTH/4); 
  } 
  private static class LockAndModify extends Thread { 
    private ByteBuffer buff; 
    private int start, end; 
    LockAndModify(ByteBuffer mbb, int start, int end) { 
      this.start = start; 
      this.end = end; 
      mbb.limit(end); 
      mbb.position(start); 
      buff = mbb.slice(); 
      start(); 
    } 
    public void run() { 
      try { 
        // Exclusive lock with no overlap: 
        FileLock fl = fc.lock(start, end, false); 
        System.out.println("Locked: "+ start +" to "+ end); 
        // Perform modification: 
        while(buff.position() < buff.limit() - 1) 
          buff.put((byte)(buff.get() + 1)); 
        fl.release(); 
        System.out.println("Released: "+start+" to "+ end); 
      } catch(IOException e) { 
        throw new RuntimeException(e); 
      } 
    } 
  } 
} ///:~ 

The LockAndModify thread class sets up the buffer region and creates a slice( ) to be 
modified, and in run( ), the lock is acquired on the file channel (you can’t acquire a lock on 
the buffer—only the channel). The call to lock( ) is very similar to acquiring a threading lock 
on an object—you now have a "critical section" with exclusive access to that portion of the 
file.5  

The locks are automatically released when the JVM exits, or the channel on which it was 
acquired is closed, but you can also explicitly call release( ) on the FileLock object, as 
shown here.  

                                                            
5 More details about threads will be found in the Concurrency chapter. 



 

Compression 
The Java I/O library contains classes to support reading and writing streams in a compressed 
format. You wrap these around other I/O classes to provide compression functionality.  

These classes are not derived from the Reader and Writer classes, but instead are part of 
the InputStream and OutputStream hierarchies. This is because the compression library 
works with bytes, not characters. However, you might sometimes be forced to mix the two 
types of streams. (Remember that you can use InputStreamReader and OutputStream 
Writer to provide easy conversion between one type and another.) 

Compression class Function 

CheckedInputStream GetCheckSum( ) produces checksum 
for any InputStream (not just 
decompression). 

CheckedOutputStream GetCheckSum( ) produces checksum 

for any OutputStream (not just 

compression). 

DeflaterOutputStream Base class for compression classes. 

ZipOutputStream A DeflaterOutputStream that 
compresses data into the Zip file format. 

GZIPOutputStream A DeflaterOutputStream that 
compresses data into the GZIP file format. 

InflaterInputStream Base class for decompression classes. 

ZipInputStream An InflaterInputStream that 
decompresses data that has been stored in 
the Zip file format. 

GZIPInputStream An InflaterInputStream that 

decompresses data that has been stored in 

the GZIP file format. 

Although there are many compression algorithms, Zip and GZIP are possibly the most 
commonly used. Thus you can easily manipulate your compressed data with the many tools 
available for reading and writing these formats.  

Simple compression with GZIP 

The GZIP interface is simple and thus is probably more appropriate when you have a single 
stream of data that you want to compress (rather than a container of dissimilar pieces of 
data). Here’s an example that compresses a single file:  

//: io/GZIPcompress.java 
// {Args: GZIPcompress.java} 
import java.util.zip.*; 
import java.io.*; 
 
public class GZIPcompress { 
  public static void main(String[] args) 
  throws IOException { 
    if(args.length == 0) { 

698 Thinking in Java Bruce Eckel 



 

      System.out.println( 
        "Usage: \nGZIPcompress file\n" + 
        "\tUses GZIP compression to compress " + 
        "the file to test.gz"); 
      System.exit(1); 
    } 
    BufferedReader in = new BufferedReader( 
      new FileReader(args[0])); 
    BufferedOutputStream out = new BufferedOutputStream( 
      new GZIPOutputStream( 
        new FileOutputStream("test.gz"))); 
    System.out.println("Writing file"); 
    int c; 
    while((c = in.read()) != -1) 
      out.write(c); 
    in.close(); 
    out.close(); 
    System.out.println("Reading file"); 
    BufferedReader in2 = new BufferedReader( 
      new InputStreamReader(new GZIPInputStream( 
        new FileInputStream("test.gz")))); 
    String s; 
    while((s = in2.readLine()) != null) 
      System.out.println(s); 
  } 
} /* (Execute to see output) *///:~ 

The use of the compression classes is straightforward; you simply wrap your output stream in 
a GZIPOutputStream or ZipOutputStream, and your input stream in a 
GZIPInputStream or ZipInputStream. All else is ordinary I/O reading and writing. This 
is an example of mixing the char-oriented streams with the byte-oriented streams; in uses 
the Reader classes, whereas GZIPOutputStream’s constructor can accept only an 
OutputStream object, not a Writer object. When the file is opened, the 
GZIPInputStream is converted to a Reader.  

Multifile storage with Zip 

The library that supports the Zip format is more extensive. With it you can easily store 
multiple files, and there’s even a separate class to make the process of reading a Zip file easy. 
The library uses the standard Zip format so that it works seamlessly with all the Zip tools 
currently downloadable on the Internet. The following example has the same form as the 
previous example, but it handles as many command-line arguments as you want. In addition, 
it shows the use of the Checksum classes to calculate and verify the checksum for the file. 
There are two Checksum types: Adler32 (which is faster) and CRC32 (which is slower but 
slightly more accurate).  

//: io/ZipCompress.java 
// Uses Zip compression to compress any 
// number of files given on the command line. 
// {Args: ZipCompress.java} 
import java.util.zip.*; 
import java.io.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ZipCompress { 
  public static void main(String[] args) 
  throws IOException { 
    FileOutputStream f = new FileOutputStream("test.zip"); 
    CheckedOutputStream csum = 

I/O 699 



 

      new CheckedOutputStream(f, new Adler32()); 
     ZipOutputStream zos = new ZipOutputStream(csum); 
     BufferedOutputStream out = 
      new BufferedOutputStream(zos); 
    zos.setComment("A test of Java Zipping"); 
    // No corresponding getComment(), though. 
    for(String arg : args) { 
      print("Writing file " + arg); 
      BufferedReader in = 
        new BufferedReader(new FileReader(arg)); 
      zos.putNextEntry(new ZipEntry(arg)); 
      int c; 
      while((c = in.read()) != -1) 
        out.write(c); 
      in.close(); 
      out.flush(); 
    } 
    out.close(); 
    // Checksum valid only after the file has been closed! 
    print("Checksum: " + csum.getChecksum().getValue()); 
    // Now extract the files: 
    print("Reading file"); 
    FileInputStream fi = new FileInputStream("test.zip"); 
    CheckedInputStream csumi = 
      new CheckedInputStream(fi, new Adler32()); 
    ZipInputStream in2 = new ZipInputStream(csumi); 
    BufferedInputStream bis = new BufferedInputStream(in2); 
    ZipEntry ze; 
    while((ze = in2.getNextEntry()) != null) { 
      print("Reading file " + ze); 
      int x; 
      while((x = bis.read()) != -1) 
        System.out.write(x); 
    } 
    if(args.length == 1) 
    print("Checksum: " + csumi.getChecksum().getValue()); 
    bis.close(); 
    // Alternative way to open and read Zip files: 
    ZipFile zf = new ZipFile("test.zip"); 
    Enumeration e = zf.entries(); 
    while(e.hasMoreElements()) { 
      ZipEntry ze2 = (ZipEntry)e.nextElement(); 
      print("File: " + ze2); 
      // ... and extract the data as before 
    } 
    /* if(args.length == 1) */ 
  } 
} /* (Execute to see output) *///:~ 

For each file to add to the archive, you must call putNextEntry( ) and pass it a ZipEntry 
object. The ZipEntry object contains an extensive interface that allows you to get and set all 
the data available on that particular entry in your Zip file: name, compressed and 
uncompressed sizes, date, CRC checksum, extra field data, comment, compression method, 
and whether it’s a directory entry. However, even though the Zip format has a way to set a 
password, this is not supported in Java’s Zip library. And although CheckedInputStream 
and CheckedOutputStream support both Adler32 and CRC32 checksums, the 
ZipEntry class supports only an interface for CRC. This is a restriction of the underlying Zip 
format, but it might limit you from using the faster Adler32.  

To extract files, ZipInputStream has a getNextEntry( ) method that returns the next 
ZipEntry if there is one. As a more succinct alternative, you can read the file using a 

700 Thinking in Java Bruce Eckel 



 

ZipFile object, which has a method entries( ) to return an Enumeration to the 
ZipEntries.  

In order to read the checksum, you must somehow have access to the associated Checksum 
object. Here, a reference to the CheckedOutputStream and CheckedInputStream 
objects is retained, but you could also just hold on to a reference to the Checksum object.  

A baffling method in Zip streams is setComment( ). As shown in ZipCompress.java, you 
can set a comment when you’re writing a file, but there’s no way to recover the comment in 
the ZipInputStream. Comments appear to be supported fully on an entry-by-entry basis 
only via ZipEntry. Of course, you are not limited to files when using the GZIP or Zip 
libraries— you can compress anything, including data to be sent through a network 
connection.  

Java ARchives (JARs) 

The Zip format is also used in the JAR (Java ARchive) file format, which is a way to collect a 
group of files into a single compressed file, just like Zip. However, like everything else in 
Java, JAR files are cross-platform, so you don’t need to worry about platform issues. You can 
also include audio and image files as well as class files.  

JAR files are particularly helpful when you deal with the Internet. Before JAR files, your Web 
browser would have to make repeated requests of a Web server in order to download all the 
files that made up an applet. In addition, each of these files was uncompressed. By combining 
all of the files for a particular applet into a single JAR file, only one server request is 
necessary and the transfer is faster because of compression. And each entry in a JAR file can 
be digitally signed for security.  

A JAR file consists of a single file containing a collection of zipped files along with a 
"manifest" that describes them. (You can create your own manifest file; otherwise, the jar 
program will do it for you.) You can find out more about JAR manifests in the JDK 
documentation.  

The jar utility that comes with Sun’s JDK automatically compresses the files of your choice. 
You invoke it on the command line:  

jar [options] destination [manifest] inputfile(s)  

The options are simply a collection of letters (no hyphen or any other indicator is necessary). 
Unix/Linux users will note the similarity to the tar options. These are:  

c Creates a new or empty archive. 

t Lists the table of contents. 

x Extracts all files. 

x file Extracts the named file. 

f Says, "I’m going to give you the name of the file." If you 
don’t use this, jar assumes that its input will come from 
standard input, or, if it is creating a file, its output will go to 
standard output. 

m Says that the first argument will be the name of the user-
created manifest file. 

v Generates verbose output describing what jar is doing. 

I/O 701 



 

o Only stores the files; doesn’t compress the files (use to 

create a JAR file that you can put in your classpath). 

M Doesn’t automatically create a manifest file. 

 

If a subdirectory is included in the files to be put into the JAR file, that subdirectory is 
automatically added, including all of its subdirectories, etc. Path information is also 
preserved.  

Here are some typical ways to invoke jar. The following command creates a JAR file called 
myJarFile.jar that contains all of the class files in the current directory, along with an 
automatically generated manifest file:  

jar cf myJarFile.jar *.class  

The next command is like the previous example, but it adds a user-created manifest file 
called myManifestFile.mf:  

jar cmf myJarFile.jar myManifestFile.mf *.class 

This produces a table of contents of the files in myJarFile.jar:  

jar tf myJarFile.jar 

This adds the "verbose" flag to give more detailed information about the files in 
myJarFile.jar:  

jar tvf myJarFile.jar 

Assuming audio, classes, and image are subdirectories, this combines all of the 
subdirectories into the file myApp.jar. The "verbose" flag is also included to give extra 
feedback while the jar program is working:  

jar cvf myApp.jar audio classes image  

If you create a JAR file using the o (zero) option, that file can be placed in your CLASSPATH:  

CLASSPATH="libl.jar;lib2.jar;" 

Then Java can search lib1.jar and lib2.jar for class files.   

The jar tool isn’t as general-purpose as a Zip utility. For example, you can’t add or update 
files to an existing JAR file; you can create JAR files only from scratch. Also, you can’t move 
files into a JAR file, erasing them as they are moved. However, a JAR file created on one 
platform will be transparently readable by the jar tool on any other platform (a problem that 
sometimes plagues Zip utilities).  

As you will see in the Graphical User Interfaces chapter, JAR files are also used to package 
JavaBeans.  

702 Thinking in Java Bruce Eckel 



 

Object serialization 
When you create an object, it exists for as long as you need it, but under no circumstances 
does it exist when the program terminates. While this makes sense at first, there are 
situations in which it would be incredibly useful if an object could exist and hold its 
information even while the program wasn’t running. Then, the next time you started the 
program, the object would be there and it would have the same information it had the 
previous time the program was running. Of course, you can get a similar effect by writing the 
information to a file or to a database, but in the spirit of making everything an object, it 
would be quite convenient to declare an object to be "persistent," and have all the details 
taken care of for you.  

Java’s object serialization allows you to take any object that implements the Serializable 
interface and turn it into a sequence of bytes that can later be fully restored to regenerate the 
original object. This is even true across a network, which means that the serialization 
mechanism automatically compensates for differences in operating systems. That is, you can 
create an object on a Windows machine, serialize it, and send it across the network to a Unix 
machine, where it will be correctly reconstructed. You don’t have to worry about the data 
representations on the different machines, the byte ordering, or any other details.  

By itself, object serialization is interesting because it allows you to implement lightweight 
persistence. Persistence means that an object’s lifetime is not determined by whether a 
program is executing; the object lives in between invocations of the program. By taking a 
serializable object and writing it to disk, then restoring that object when the program is 
reinvoked, you’re able to produce the effect of persistence. The reason it’s called "lightweight" 
is that you can’t simply define an object using some kind of "persistent" keyword and let the 
system take care of the details (perhaps this will happen in the future). Instead, you must 
explicitly serialize and deserialize the objects in your program. If you need a more serious 
persistence mechanism, consider a tool like Hibernate (http://hibernate.sourceforge.net). 
For details, see Thinking in Enterprise Java, downloadable from www.MindView.net.  

Object serialization was added to the language to support two major features. Java’s Remote 
Method Invocation (RMI) allows objects that live on other machines to behave as if they live 
on your machine. When messages are sent to remote objects, object serialization is necessary 
to transport the arguments and return values. RMI is discussed in Thinking in Enterprise 
Java. Object serialization is also necessary for JavaBeans, described in the Graphical User 
Interfaces chapter. When a Bean is used, its state information is generally configured at 
design time. This state information must be stored and later recovered when the program is 
started; object serialization performs this task.  

Serializing an object is quite simple as long as the object implements the Serializable 
interface (this is a tagging interface and has no methods). When serialization was added to 
the language, many standard library classes were changed to make them serializable, 
including all of the wrappers for the primitive types, all of the container classes, and many 
others. Even Class objects can be serialized.  

To serialize an object, you create some sort of OutputStream object and then wrap it inside 
an ObjectOutputStream object. At this point you need only call writeObject( ), and your 
object is serialized and sent to the OutputStream (object serialization is byte-oriented, and 
thus uses the InputStream and OutputStream hierarchies). To reverse the process, you 
wrap an InputStream inside an ObjectlnputStream and call readObject( ). What 
comes back is, as usual, a reference to an upcast Object, so you must downcast to set things 
straight.  

A particularly clever aspect of object serialization is that it not only saves an image of your 
object, but it also follows all the references contained in your object and saves those objects, 
and follows all the references in each of those objects, etc. This is sometimes referred to as 

I/O 703 



 

the "web of objects" that a single object can be connected to, and it includes arrays of 
references to objects as well as member objects. If you had to maintain your own object 
serialization scheme, maintaining the code to follow all these links could be mindboggling. 
However, Java object serialization seems to pull it off flawlessly, no doubt using an optimized 
algorithm that traverses the web of objects. The following example tests the serialization 
mechanism by making a "worm" of linked objects, each of which has a link to the next segment in 
the worm as well as an array of references to objects of a different class, Data:  

//: io/Worm.java 
// Demonstrates object serialization. 
import java.io.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Data implements Serializable { 
  private int n; 
  public Data(int n) { this.n = n; } 
  public String toString() { return Integer.toString(n); } 
} 
 
public class Worm implements Serializable { 
  private static Random rand = new Random(47); 
  private Data[] d = { 
    new Data(rand.nextInt(10)), 
    new Data(rand.nextInt(10)), 
    new Data(rand.nextInt(10)) 
  }; 
  private Worm next; 
  private char c; 
  // Value of i == number of segments 
  public Worm(int i, char x) { 
    print("Worm constructor: " + i); 
    c = x; 
    if(--i > 0) 
      next = new Worm(i, (char)(x + 1)); 
  } 
  public Worm() { 
    print("Default constructor"); 
  } 
  public String toString() { 
    StringBuilder result = new StringBuilder(":"); 
    result.append(c); 
    result.append("("); 
    for(Data dat : d) 
      result.append(dat); 
    result.append(")"); 
    if(next != null) 
      result.append(next); 
    return result.toString(); 
  } 
  public static void main(String[] args) 
  throws ClassNotFoundException, IOException { 
    Worm w = new Worm(6, ‘a’); 
    print("w = " + w); 
    ObjectOutputStream out = new ObjectOutputStream( 
      new FileOutputStream("worm.out")); 
    out.writeObject("Worm storage\n"); 
    out.writeObject(w); 
    out.close(); // Also flushes output 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream("worm.out")); 
    String s = (String)in.readObject(); 

704 Thinking in Java Bruce Eckel 



 

    Worm w2 = (Worm)in.readObject(); 
    print(s + "w2 = " + w2); 
    ByteArrayOutputStream bout = 
      new ByteArrayOutputStream(); 
    ObjectOutputStream out2 = new ObjectOutputStream(bout); 
    out2.writeObject("Worm storage\n"); 
    out2.writeObject(w); 
    out2.flush(); 
    ObjectInputStream in2 = new ObjectInputStream( 
      new ByteArrayInputStream(bout.toByteArray())); 
    s = (String)in2.readObject(); 
    Worm w3 = (Worm)in2.readObject(); 
    print(s + "w3 = " + w3); 
  } 
} /* Output: 
Worm constructor: 6 
Worm constructor: 5 
Worm constructor: 4 
Worm constructor: 3 
Worm constructor: 2 
Worm constructor: 1 
w = :a(853):b(119):c(802):d(788):e(199):f(881) 
Worm storage 
w2 = :a(853):b(119):c(802):d(788):e(199):f(881) 
Worm storage 
w3 = :a(853):b(119):c(802):d(788):e(199):f(881) 
*///:~ 

To make things interesting, the array of Data objects inside Worm are initialized with 
random numbers. (This way, you don’t suspect the compiler of keeping some kind of meta-
information.) Each Worm segment is labeled with a char that’s automatically generated in 
the process of recursively generating the linked list of Worms. When you create a Worm, 
you tell the constructor how long you want it to be. To make the next reference, it calls the 
Worm constructor with a length of one less, etc. The final next reference is left as null, 
indicating the end of the Worm.  

The point of all this was to make something reasonably complex that couldn’t easily be 
serialized. The act of serializing, however, is quite simple. Once the ObjectOutputStream 
is created from some other stream, writeObject( ) serializes the object. Notice the call to 
writeObject( ) for a String, as well. You can also write all the primitive data types using 
the same methods as DataOutputStream (they share the same interface).  

There are two separate code sections that look similar. The first writes and reads a file, and 
the second, for variety, writes and reads a ByteArray. You can read and write an object 
using serialization to any DataInputStream or DataOutputStream, including, as you 
can see in Thinking in Enterprise Java, a network.  

You can see from the output that the deserialized object really does contain all of the links 
that were in the original object.  

Note that no constructor, not even the default constructor, is called in the process of 
deserializing a Serializable object. The entire object is restored by recovering data from the 
InputStream.  

Exercise 27:   (1) Create a Serializable class containing a reference to an object of a 
second Serializable class. Create an instance of your class, serialize it to disk, then restore it 
and verify that the process worked correctly.  

 

I/O 705 



 

Finding the class 

You might wonder what’s necessary for an object to be recovered from its serialized state. For 
example, suppose you serialize an object and send it as a file or through a network to another 
machine. Could a program on the other machine reconstruct the object using only the 
contents of the file?  

The best way to answer this question is (as usual) by performing an experiment. The 
following file goes in the subdirectory for this chapter:  

//: io/Alien.java 
// A serializable class. 
import java.io.*; 
public class Alien implements Serializable {} ///:~ 

The file that creates and serializes an Alien object goes in the same directory:  

//: io/FreezeAlien.java 
// Create a serialized output file. 
import java.io.*; 
 
public class FreezeAlien { 
  public static void main(String[] args) throws Exception { 
    ObjectOutput out = new ObjectOutputStream( 
      new FileOutputStream("X.file")); 
    Alien quellek = new Alien(); 
    out.writeObject(quellek); 
  } 
} ///:~ 

Rather than catching and handling exceptions, this program takes the quickand- dirty 
approach of passing the exceptions out of main( ), so they’ll be reported on the console.  

Once the program is compiled and run, it produces a file called X.file in the io directory. The 
following code is in a subdirectory called xfiles:  

//: io/xfiles/ThawAlien.java 
// Try to recover a serialized file without the 
// class of object that’s stored in that file. 
// {RunByHand} 
import java.io.*; 
 
public class ThawAlien { 
  public static void main(String[] args) throws Exception { 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream(new File("..", "X.file"))); 
    Object mystery = in.readObject(); 
    System.out.println(mystery.getClass()); 
  } 
} /* Output: 
class Alien 
*///:~ 

Even opening the file and reading in the object mystery requires the Class object for Alien; 
the JVM cannot find Alien.class (unless it happens to be in the classpath, which it shouldn’t 
be in this example). You’ll get a ClassNotFoundException. (Once again, all evidence of 
alien life vanishes before proof of its existence can be verified!) The JVM must be able to find 
the associated .class file.  

706 Thinking in Java Bruce Eckel 



 

Controlling serialization 

As you can see, the default serialization mechanism is trivial to use. But what if you have 
special needs? Perhaps you have special security issues and you don’t want to serialize 
portions of your object, or perhaps it just doesn’t make sense for one subobject to be 
serialized if that part needs to be created anew when the object is recovered.  

You can control the process of serialization by implementing the Externalizable interface 
instead of the Serializable interface. The Externalizable interface extends the 
Serializable interface and adds two methods, writeExternal( ) and readExternal( ), 
that are automatically called for your object during serialization and deserialization so that 
you can perform your special operations.  

The following example shows simple implementations of the Externalizable interface 
methods. Note that Blip1 and Blip2 are nearly identical except for a subtle difference (see if 
you can discover it by looking at the code):  

//: io/Blips.java 
// Simple use of Externalizable & a pitfall. 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
class Blip1 implements Externalizable { 
  public Blip1() { 
    print("Blip1 Constructor"); 
  } 
  public void writeExternal(ObjectOutput out) 
      throws IOException { 
    print("Blip1.writeExternal"); 
  } 
  public void readExternal(ObjectInput in) 
     throws IOException, ClassNotFoundException { 
    print("Blip1.readExternal"); 
  } 
} 
 
class Blip2 implements Externalizable { 
  Blip2() { 
    print("Blip2 Constructor"); 
  } 
  public void writeExternal(ObjectOutput out) 
      throws IOException { 
    print("Blip2.writeExternal"); 
  } 
  public void readExternal(ObjectInput in) 
     throws IOException, ClassNotFoundException { 
    print("Blip2.readExternal"); 
  } 
} 
 
public class Blips { 
  public static void main(String[] args) 
  throws IOException, ClassNotFoundException { 
    print("Constructing objects:"); 
    Blip1 b1 = new Blip1(); 
    Blip2 b2 = new Blip2(); 
    ObjectOutputStream o = new ObjectOutputStream( 
      new FileOutputStream("Blips.out")); 
    print("Saving objects:"); 
    o.writeObject(b1); 

I/O 707 



 

    o.writeObject(b2); 
    o.close(); 
    // Now get them back: 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream("Blips.out")); 
    print("Recovering b1:"); 
    b1 = (Blip1)in.readObject(); 
    // OOPS! Throws an exception: 
//! print("Recovering b2:"); 
//! b2 = (Blip2)in.readObject(); 
  } 
} /* Output: 
Constructing objects: 
Blip1 Constructor 
Blip2 Constructor 
Saving objects: 
Blip1.writeExternal 
Blip2.writeExternal 
Recovering b1: 
Blip1 Constructor 
Blip1.readExternal 
*///:~ 

The reason that the Blip2 object is not recovered is that trying to do so causes an exception. 
Can you see the difference between Blip1 and Blip2? The constructor for Blip1 is public, 
while the constructor for Blip2 is not, and that causes the exception upon recovery. Try 
making Blip2’s constructor public and removing the //! comments to see the correct 
results.  

When b1 is recovered, the Blip1 default constructor is called. This is different from 
recovering a Serializable object, in which the object is constructed entirely from its stored 
bits, with no constructor calls. With an Externalizable object, all the normal default 
construction behavior occurs (including the initializations at the point of field definition), 
and then readExternal( ) is called. You need to be aware of this—in particular, the fact that 
all the default construction always takes place—to produce the correct behavior in your 
Externalizable objects.  

Here’s an example that shows what you must do to fully store and retrieve an 
Externalizable object:  

//: io/Blip3.java 
// Reconstructing an externalizable object. 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
public class Blip3 implements Externalizable { 
  private int i; 
  private String s; // No initialization 
  public Blip3() { 
    print("Blip3 Constructor"); 
    // s, i not initialized 
  } 
  public Blip3(String x, int a) { 
    print("Blip3(String x, int a)"); 
    s = x; 
    i = a; 
    // s & i initialized only in non-default constructor. 
  } 
  public String toString() { return s + i; } 
  public void writeExternal(ObjectOutput out) 
  throws IOException { 

708 Thinking in Java Bruce Eckel 



 

    print("Blip3.writeExternal"); 
    // You must do this: 
    out.writeObject(s); 
    out.writeInt(i); 
  } 
  public void readExternal(ObjectInput in) 
  throws IOException, ClassNotFoundException { 
    print("Blip3.readExternal"); 
    // You must do this: 
    s = (String)in.readObject(); 
    i = in.readInt(); 
  } 
  public static void main(String[] args) 
  throws IOException, ClassNotFoundException { 
    print("Constructing objects:"); 
    Blip3 b3 = new Blip3("A String ", 47); 
    print(b3); 
    ObjectOutputStream o = new ObjectOutputStream( 
      new FileOutputStream("Blip3.out")); 
    print("Saving object:"); 
    o.writeObject(b3); 
    o.close(); 
    // Now get it back: 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream("Blip3.out")); 
    print("Recovering b3:"); 
    b3 = (Blip3)in.readObject(); 
    print(b3); 
  } 
} /* Output: 
Constructing objects: 
Blip3(String x, int a) 
A String 47 
Saving object: 
Blip3.writeExternal 
Recovering b3: 
Blip3 Constructor 
Blip3.readExternal 
A String 47 
*///:~ 

The fields s and i are initialized only in the second constructor, but not in the default 
constructor. This means that if you don’t initialize s and i in readExternal( ), s will be null 
and i will be zero (since the storage for the object gets wiped to zero in the first step of object 
creation). If you comment out the two lines of code following the phrases "You must do this:" 
and run the program, you’ll see that when the object is recovered, s is null and i is zero.  

If you are inheriting from an Externalizable object, you’ll typically call the base-class 
versions of writeExternal( ) and readExternal( ) to provide proper storage and retrieval 
of the base-class components.  

So to make things work correctly, you must not only write the important data from the object 
during the writeExternal( ) method (there is no default behavior that writes any of the 
member objects for an Externalizable object), but you must also recover that data in the 
readExternal( ) method. This can be a bit confusing at first because the default 
construction behavior for an Externalizable object can make it seem like some kind of 
storage and retrieval takes place automatically. It does not.  

Exercise 28 :   (2) In Blips.java, copy the file and rename it to BlipCheck.java and 
rename the class Blip2 to BlipCheck (making it public and removing the public scope 
from the class Blips in the process). Remove the //! marks in the file and execute the 

I/O 709 



 

program, including the offending lines. Next, comment out the default constructor for 
BlipCheck. Run it and explain why it works. Note that after compiling, you must execute the 
program with "Java Blips" because the main( ) method is still in the class Blips.  

Exercise 29:   (2) In Blip3.java, comment out the two lines after the phrases "You must 
do this:" and run the program. Explain the result and why it differs from when the two lines 
are in the program.  

The transient keyword 

When you’re controlling serialization, there might be a particular subobject that you don’t 
want Java’s serialization mechanism to automatically save and restore. This is commonly the 
case if that subobject represents sensitive information that you don’t want to serialize, such 
as a password. Even if that information is private in the object, once it has been serialized, 
it’s possible for someone to access it by reading a file or intercepting a network transmission.  

One way to prevent sensitive parts of your object from being serialized is to implement your 
class as Externalizable, as shown previously. Then nothing is automatically serialized, and 
you can explicitly serialize only the necessary parts inside writeExternal( ).  

If you’re working with a Serializable object, however, all serialization happens 
automatically. To control this, you can turn off serialization on a field-by-field basis using the 
transient keyword, which says, "Don’t bother saving or restoring this—I’ll take care of it."  

For example, consider a Logon object that keeps information about a particular login 
session. Suppose that, once you verify the login, you want to store the data, but without the 
password. The easiest way to do this is by implementing Serializable and marking the 
password field as transient. Here’s what it looks like:  

//: io/Logon.java 
// Demonstrates the "transient" keyword. 
import java.util.concurrent.*; 
import java.io.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Logon implements Serializable { 
  private Date date = new Date(); 
  private String username; 
  private transient String password; 
  public Logon(String name, String pwd) { 
    username = name; 
    password = pwd; 
  } 
  public String toString() { 
    return "logon info: \n   username: " + username + 
      "\n   date: " + date + "\n   password: " + password; 
  } 
  public static void main(String[] args) throws Exception { 
    Logon a = new Logon("Hulk", "myLittlePony"); 
    print("logon a = " + a); 
    ObjectOutputStream o = new ObjectOutputStream( 
      new FileOutputStream("Logon.out")); 
    o.writeObject(a); 
    o.close(); 
    TimeUnit.SECONDS.sleep(1); // Delay 
    // Now get them back: 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream("Logon.out")); 

710 Thinking in Java Bruce Eckel 



 

    print("Recovering object at " + new Date()); 
    a = (Logon)in.readObject(); 
    print("logon a = " + a); 
  } 
} /* Output: (Sample) 
logon a = logon info: 
   username: Hulk 
   date: Sat Nov 19 15:03:26 MST 2005 
   password: myLittlePony 
Recovering object at Sat Nov 19 15:03:28 MST 2005 
logon a = logon info: 
   username: Hulk 
   date: Sat Nov 19 15:03:26 MST 2005 
   password: null 
*///:~ 

You can see that the date and username fields are ordinary (not transient), and thus are 
automatically serialized. However, the password is transient, so it is not stored to disk; 
also, the serialization mechanism makes no attempt to recover it. When the object is 
recovered, the password field is null. Note that while toString( ) assembles a String 
object using the overloaded’+’ operator, a null reference is automatically converted to the 
string "null."  

You can also see that the date field is stored to and recovered from disk and not generated 
anew.  

Since Externalizable objects do not store any of their fields by default, the transient 
keyword is for use with Serializable objects only.  

An alternative to Externalizable 

If you’re not keen on implementing the Externalizable interface, there’s another approach. 
You can implement the Serializable interface and add (notice I say "add" and not 
"override" or "implement") methods called writeObject( ) and readObject( ) that will 
automatically be called when the object is serialized and deserialized, respectively. That is, if 
you provide these two methods, they will be used instead of the default serialization.  

The methods must have these exact signatures:  

private void writeObject(ObjectOutputStream stream) 
throws IOException; 
 
private void readObject(ObjectlnputStream stream) 
throws IOException, ClassNotFoundException 

From a design standpoint, things get really weird here. First of all, you might think that 
because these methods are not part of a base class or the Serializable interface, they ought 
to be defined in their own interface(s). But notice that they are defined as private, which 
means they are to be called only by other members of this class. However, you don’t actually 
call them from other members of this class, but instead the writeObject( ) and 
readObject( ) methods of the ObjectOutputStream and ObjectInputStream objects 
call your object’s writeObject( ) and readObject( ) methods. (Notice my tremendous 
restraint in not launching into a long diatribe about using the same method names here. In a 
word: confusing.) You might wonder how the ObjectOutputStream and 

I/O 711 



 

712 Thinking in Java Bruce Eckel 

ObjectInputStream objects have access to private methods of your class. We can only 
assume that this is part of the serialization magic.6

  

Anything defined in an interface is automatically public, so if writeObject( ) and 
readObject( ) must be private, then they can’t be part of an interface. Since you must 
follow the signatures exactly, the effect is the same as if you’re implementing an interface. 

It would appear that when you call ObjectOutputStream.writeObject( ), the 
Serializable object that you pass it to is interrogated (using reflection, no doubt) to see if it 
implements its own writeObject( ). If so, the normal serialization process is skipped and 
the custom writeObject( ) is called. The same situation exists for readObject( ).  

There’s one other twist. Inside your writeObject( ), you can choose to perform the default 
writeObject( ) action by calling defaultWriteObject( ). Likewise, inside readObject( ) 
you can call defaultReadObject( ). Here is a simple example that demonstrates how you 
can control the storage and retrieval of a Serializable object:  

//: io/SerialCtl.java 
// Controlling serialization by adding your own 
// writeObject() and readObject() methods. 
import java.io.*; 
 
public class SerialCtl implements Serializable { 
  private String a; 
  private transient String b; 
  public SerialCtl(String aa, String bb) { 
    a = "Not Transient: " + aa; 
    b = "Transient: " + bb; 
  } 
  public String toString() { return a + "\n" + b; } 
  private void writeObject(ObjectOutputStream stream) 
  throws IOException { 
    stream.defaultWriteObject(); 
    stream.writeObject(b); 
  } 
  private void readObject(ObjectInputStream stream) 
  throws IOException, ClassNotFoundException { 
    stream.defaultReadObject(); 
    b = (String)stream.readObject(); 
  } 
  public static void main(String[] args) 
  throws IOException, ClassNotFoundException { 
    SerialCtl sc = new SerialCtl("Test1", "Test2"); 
    System.out.println("Before:\n" + sc); 
    ByteArrayOutputStream buf= new ByteArrayOutputStream(); 
    ObjectOutputStream o = new ObjectOutputStream(buf); 
    o.writeObject(sc); 
    // Now get it back: 
    ObjectInputStream in = new ObjectInputStream( 
      new ByteArrayInputStream(buf.toByteArray())); 
    SerialCtl sc2 = (SerialCtl)in.readObject(); 
    System.out.println("After:\n" + sc2); 
  } 
} /* Output: 
Before: 
Not Transient: Test1 
Transient: Test2 
After: 

                                                            
6 The section "Interfaces and type information" at the end of the Type Information chapter shows how it’s possible to 
access private methods from outside of the class. 



 

Not Transient: Test1 
Transient: Test2 
*///:~ 

In this example, one String field is ordinary and the other is transient, to prove that the 
non-transient field is saved by the defaultWriteObject( ) method and the transient 
field is saved and restored explicitly. The fields are initialized inside the constructor rather 
than at the point of definition to prove that they are not being initialized by some automatic 
mechanism during deserialization.  

If you use the default mechanism to write the non-transient parts of your object, you must 
call defaultWriteObject( ) as the first operation in writeObject( ), and 
defaultReadObject( ) as the first operation in readObject( ). These are strange method 
calls. It would appear, for example, that you are calling defaultWriteObject( ) for an 
ObjectOutputStream and passing it no arguments, and yet it somehow turns around and 
knows the reference to your object and how to write all the non-transient parts. Spooky.  

The storage and retrieval of the transient objects uses more familiar code. And yet, think 
about what happens here. In main( ), a SerialCtl object is created, and then it’s serialized 
to an ObjectOutputStream. (Notice in this case that a buffer is used instead of a file—it’s 
all the same to the ObjectOutputStream.) The serialization occurs in the line:  

o.writeObject(sc); 

The writeObject( ) method must be examining sc to see if it has its own writeObject( ) 
method. (Not by checking the interface—there isn’t one—or the class type, but by actually 
hunting for the method using reflection.) If it does, it uses that. A similar approach holds true 
for readObject( ). Perhaps this was the only practical way that they could solve the 
problem, but it’s certainly strange.  

Versioning 

It’s possible that you might want to change the version of a serializable class (objects of the 
original class might be stored in a database, for example). This is supported, but you’ll 
probably do it only in special cases, and it requires an extra depth of understanding that we 
will not attempt to achieve here. The JDK documents downloadable from 
http://java.sun.com cover this topic quite thoroughly.  

You will also notice in the JDK documentation many comments that begin with:  

Warning: Serialized objects of this class will not be compatible with future Swing 
releases. The current serialization support is appropriate for short term storage or RMI 
between applications ...  

This is because the versioning mechanism is too simple to work reliably in all situations, 
especially with JavaBeans. They’re working on a correction for the design, and that’s what the 
warning is about.  

Using persistence 

It’s quite appealing to use serialization technology to store some of the state of your program 
so that you can easily restore the program to the current state later. But before you can do 
this, some questions must be answered. What happens if you serialize two objects that both 
have a reference to a third object? When you restore those two objects from their serialized 
state, do you get only one occurrence of the third object? What if you serialize your two 
objects to separate files and deserialize them in different parts of your code?  

I/O 713 



 

Here’s an example that shows the problem:  

//: io/MyWorld.java 
import java.io.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class House implements Serializable {} 
 
class Animal implements Serializable { 
  private String name; 
  private House preferredHouse; 
  Animal(String nm, House h) { 
    name = nm; 
    preferredHouse = h; 
  } 
  public String toString() { 
    return name + "[" + super.toString() + 
      "], " + preferredHouse + "\n"; 
  } 
} 
 
public class MyWorld { 
  public static void main(String[] args) 
  throws IOException, ClassNotFoundException { 
    House house = new House(); 
    List<Animal> animals = new ArrayList<Animal>(); 
    animals.add(new Animal("Bosco the dog", house)); 
    animals.add(new Animal("Ralph the hamster", house)); 
    animals.add(new Animal("Molly the cat", house)); 
    print("animals: " + animals); 
    ByteArrayOutputStream buf1 = 
      new ByteArrayOutputStream(); 
    ObjectOutputStream o1 = new ObjectOutputStream(buf1); 
    o1.writeObject(animals); 
    o1.writeObject(animals); // Write a 2nd set 
    // Write to a different stream: 
    ByteArrayOutputStream buf2 = 
      new ByteArrayOutputStream(); 
    ObjectOutputStream o2 = new ObjectOutputStream(buf2); 
    o2.writeObject(animals); 
    // Now get them back: 
    ObjectInputStream in1 = new ObjectInputStream( 
      new ByteArrayInputStream(buf1.toByteArray())); 
    ObjectInputStream in2 = new ObjectInputStream( 
      new ByteArrayInputStream(buf2.toByteArray())); 
    List 
      animals1 = (List)in1.readObject(), 
      animals2 = (List)in1.readObject(), 
      animals3 = (List)in2.readObject(); 
    print("animals1: " + animals1); 
    print("animals2: " + animals2); 
    print("animals3: " + animals3); 
  } 
} /* Output: (Sample) 
animals: [Bosco the dog[Animal@addbf1], House@42e816 
, Ralph the hamster[Animal@9304b1], House@42e816 
, Molly the cat[Animal@190d11], House@42e816 
] 
animals1: [Bosco the dog[Animal@de6f34], House@156ee8e 
, Ralph the hamster[Animal@47b480], House@156ee8e 
, Molly the cat[Animal@19b49e6], House@156ee8e 
] 

714 Thinking in Java Bruce Eckel 



 

animals2: [Bosco the dog[Animal@de6f34], House@156ee8e 
, Ralph the hamster[Animal@47b480], House@156ee8e 
, Molly the cat[Animal@19b49e6], House@156ee8e 
] 
animals3: [Bosco the dog[Animal@10d448], House@e0e1c6 
, Ralph the hamster[Animal@6ca1c], House@e0e1c6 
, Molly the cat[Animal@1bf216a], House@e0e1c6 
] 
*///:~ 

One thing that’s interesting here is that it’s possible to use object serialization to and from a 
byte array as a way of doing a "deep copy" of any object that’s Serializable. (A deep copy 
means that you’re duplicating the entire web of objects, rather than just the basic object and 
its references.) Object copying is covered in depth in the online supplements for this book.  

Animal objects contain fields of type House. In main( ), a List of these Animals is 
created and it is serialized twice to one stream and then again to a separate stream. When 
these are deserialized and printed, you see the output shown for one run (the objects will be 
in different memory locations each run).  

Of course, you expect that the deserialized objects have different addresses from their 
originals. But notice that in animals1 and animals2, the same addresses appear, including 
the references to the House object that both share. On the other hand, when animals3 is 
recovered, the system has no way of knowing that the objects in this other stream are aliases 
of the objects in the first stream, so it makes a completely different web of objects.  

As long as you’re serializing everything to a single stream, you’ll recover the same web of 
objects that you wrote, with no accidental duplication of objects. Of course, you can change 
the state of your objects in between the time you write the first and the last, but that’s your 
responsibility; the objects will be written in whatever state they are in (and with whatever 
connections they have to other objects) at the time you serialize them.  

The safest thing to do if you want to save the state of a system is to serialize as an "atomic" 
operation. If you serialize some things, do some other work, and serialize some more, etc., 
then you will not be storing the system safely. Instead, put all the objects that comprise the 
state of your system in a single container and simply write that container out in one 
operation. Then you can restore it with a single method call as well.  

The following example is an imaginary computer-aided design (CAD) system that 
demonstrates the approach. In addition, it throws in the issue of static fields; if you look at 
the JDK documentation, you’ll see that Class is Serializable, so it should be easy to store 
the static fields by simply serializing the Class object. That seems like a sensible approach, 
anyway.  

//: io/StoreCADState.java 
// Saving the state of a pretend CAD system. 
import java.io.*; 
import java.util.*; 
 
abstract class Shape implements Serializable { 
  public static final int RED = 1, BLUE = 2, GREEN = 3; 
  private int xPos, yPos, dimension; 
  private static Random rand = new Random(47); 
  private static int counter = 0; 
  public abstract void setColor(int newColor); 
  public abstract int getColor(); 
  public Shape(int xVal, int yVal, int dim) { 
    xPos = xVal; 
    yPos = yVal; 
    dimension = dim; 

I/O 715 



 

  } 
  public String toString() { 
    return getClass() + 
      "color[" + getColor() + "] xPos[" + xPos + 
      "] yPos[" + yPos + "] dim[" + dimension + "]\n"; 
  } 
  public static Shape randomFactory() { 
    int xVal = rand.nextInt(100); 
    int yVal = rand.nextInt(100); 
    int dim = rand.nextInt(100); 
    switch(counter++ % 3) { 
      default: 
      case 0: return new Circle(xVal, yVal, dim); 
      case 1: return new Square(xVal, yVal, dim); 
      case 2: return new Line(xVal, yVal, dim); 
    } 
  } 
} 
 
class Circle extends Shape { 
  private static int color = RED; 
  public Circle(int xVal, int yVal, int dim) { 
    super(xVal, yVal, dim); 
  } 
  public void setColor(int newColor) { color = newColor; } 
  public int getColor() { return color; } 
} 
 
class Square extends Shape { 
  private static int color; 
  public Square(int xVal, int yVal, int dim) { 
    super(xVal, yVal, dim); 
    color = RED; 
  } 
  public void setColor(int newColor) { color = newColor; } 
  public int getColor() { return color; } 
} 
 
class Line extends Shape { 
  private static int color = RED; 
  public static void 
  serializeStaticState(ObjectOutputStream os) 
  throws IOException { os.writeInt(color); } 
  public static void 
  deserializeStaticState(ObjectInputStream os) 
  throws IOException { color = os.readInt(); } 
  public Line(int xVal, int yVal, int dim) { 
    super(xVal, yVal, dim); 
  } 
  public void setColor(int newColor) { color = newColor; } 
  public int getColor() { return color; } 
} 
 
public class StoreCADState { 
  public static void main(String[] args) throws Exception { 
    List<Class<? extends Shape>> shapeTypes = 
      new ArrayList<Class<? extends Shape>>(); 
    // Add references to the class objects: 
    shapeTypes.add(Circle.class); 
    shapeTypes.add(Square.class); 
    shapeTypes.add(Line.class); 
    List<Shape> shapes = new ArrayList<Shape>(); 
    // Make some shapes: 

716 Thinking in Java Bruce Eckel 



 

    for(int i = 0; i < 10; i++) 
      shapes.add(Shape.randomFactory()); 
    // Set all the static colors to GREEN: 
    for(int i = 0; i < 10; i++) 
      ((Shape)shapes.get(i)).setColor(Shape.GREEN); 
    // Save the state vector: 
    ObjectOutputStream out = new ObjectOutputStream( 
      new FileOutputStream("CADState.out")); 
    out.writeObject(shapeTypes); 
    Line.serializeStaticState(out); 
    out.writeObject(shapes); 
    // Display the shapes: 
    System.out.println(shapes); 
  } 
} /* Output: 
[class Circlecolor[3] xPos[58] yPos[55] dim[93] 
, class Squarecolor[3] xPos[61] yPos[61] dim[29] 
, class Linecolor[3] xPos[68] yPos[0] dim[22] 
, class Circlecolor[3] xPos[7] yPos[88] dim[28] 
, class Squarecolor[3] xPos[51] yPos[89] dim[9] 
, class Linecolor[3] xPos[78] yPos[98] dim[61] 
, class Circlecolor[3] xPos[20] yPos[58] dim[16] 
, class Squarecolor[3] xPos[40] yPos[11] dim[22] 
, class Linecolor[3] xPos[4] yPos[83] dim[6] 
, class Circlecolor[3] xPos[75] yPos[10] dim[42] 
] 
*///:~ 

The Shape class implements Serializable, so anything that is inherited from Shape is 
automatically Serializable as well. Each Shape contains data, and each derived Shape 
class contains a static field that determines the color of all of those types of Shapes. 
(Placing a static field in the base class would result in only one field, since static fields are 
not duplicated in derived classes.) Methods in the base class can be overridden to set the 
color for the various types (static methods are not dynamically bound, so these are normal 
methods). The randomFactory( ) method creates a different Shape each time you call it, 
using random values for the Shape data.  

Circle and Square are straightforward extensions of Shape; the only difference is that 
Circle initializes color at the point of definition and Square initializes it in the constructor. 
We’ll leave the discussion of Line for later.  

In main( ), one ArrayList is used to hold the Class objects and the other to hold the 
shapes.  

Recovering the objects is fairly straightforward:  

//: io/RecoverCADState.java 
// Restoring the state of the pretend CAD system. 
// {RunFirst: StoreCADState} 
import java.io.*; 
import java.util.*; 
 
public class RecoverCADState { 
  @SuppressWarnings("unchecked") 
  public static void main(String[] args) throws Exception { 
    ObjectInputStream in = new ObjectInputStream( 
      new FileInputStream("CADState.out")); 
    // Read in the same order they were written: 
    List<Class<? extends Shape>> shapeTypes = 
      (List<Class<? extends Shape>>)in.readObject(); 
    Line.deserializeStaticState(in); 

I/O 717 



 

    List<Shape> shapes = (List<Shape>)in.readObject(); 
    System.out.println(shapes); 
  } 
} /* Output: 
[class Circlecolor[1] xPos[58] yPos[55] dim[93] 
, class Squarecolor[0] xPos[61] yPos[61] dim[29] 
, class Linecolor[3] xPos[68] yPos[0] dim[22] 
, class Circlecolor[1] xPos[7] yPos[88] dim[28] 
, class Squarecolor[0] xPos[51] yPos[89] dim[9] 
, class Linecolor[3] xPos[78] yPos[98] dim[61] 
, class Circlecolor[1] xPos[20] yPos[58] dim[16] 
, class Squarecolor[0] xPos[40] yPos[11] dim[22] 
, class Linecolor[3] xPos[4] yPos[83] dim[6] 
, class Circlecolor[1] xPos[75] yPos[10] dim[42] 
] 
*///:~ 

You can see that the values of xPos, yPos, and dim were all stored and recovered 
successfully, but there’s something wrong with the retrieval of the static information. It’s all 
"3" going in, but it doesn’t come out that way. Circles have a value of 1 (RED, which is the 
definition), and Squares have a value of 0 (remember, they are initialized in the 
constructor). It’s as if the statics didn’t get serialized at all! That’s right—even though class 
Class is Serializable, it doesn’t do what you expect. So if you want to serialize statics, you 
must do it yourself.  

This is what the serializeStaticState( ) and deserializeStaticState( ) static methods in 
Line are for. You can see that they are explicitly called as part of the storage and retrieval 
process. (Note that the order of writing to the serialize file and reading back from it must be 
maintained.) Thus to make these programs run correctly, you must:  

1. Add a serializeStaticState( ) and deserializeStaticState( ) to the shapes.  
 

2. Remove the ArrayList shapeTypes and all code related to it. 
 

3. Add calls to the new serialize and deserialize static methods in the shapes.  
 

Another issue you might have to think about is security, since serialization also saves 
private data. If you have a security issue, those fields should be marked as transient. But 
then you have to design a secure way to store that information so that when you do a restore, 
you can reset those private variables.  

Exercise 30:   (1) Repair the program CADState.java as described in the text.  

XML 
An important limitation of object serialization is that it is a Java-only solution: Only Java 
programs can deserialize such objects. A more interoperable solution is to convert data to 
XML format, which allows it to be consumed by a large variety of platforms and languages.  

Because of its popularity, there are a confusing number of options for programming with 
XML, including the javax.xml.* libraries distributed with the JDK. I’ve chosen to use 
Elliotte Rusty Harold’s open-source XOM library (downloads and documentation at 
www.xom.nu) because it seems to be the simplest and most straightforward way to produce 
and modify XML using Java. In addition, XOM emphasizes XML correctness.  

As an example, suppose you have Person objects containing first and last names that you’d 
like to serialize into XML. The following Person class has a getXML( ) method that uses 

718 Thinking in Java Bruce Eckel 



 

XOM to produce the Person data converted to an XML Element object, and a constructor 
that takes an Element and extracts the appropriate Person data (notice that the XML 
examples are in their own subdirectory):  

//: xml/Person.java 
// Use the XOM library to write and read XML 
// {Requires: nu.xom.Node; You must install 
// the XOM library from http://www.xom.nu } 
import nu.xom.*; 
import java.io.*; 
import java.util.*; 
 
public class Person { 
  private String first, last; 
  public Person(String first, String last) { 
    this.first = first; 
    this.last = last; 
  } 
  // Produce an XML Element from this Person object: 
  public Element getXML() { 
    Element person = new Element("person"); 
    Element firstName = new Element("first"); 
    firstName.appendChild(first); 
    Element lastName = new Element("last"); 
    lastName.appendChild(last); 
    person.appendChild(firstName); 
    person.appendChild(lastName); 
    return person; 
  } 
  // Constructor to restore a Person from an XML Element: 
  public Person(Element person) { 
    first= person.getFirstChildElement("first").getValue(); 
    last = person.getFirstChildElement("last").getValue(); 
  } 
  public String toString() { return first + " " + last; } 
  // Make it human-readable: 
  public static void 
  format(OutputStream os, Document doc) throws Exception { 
    Serializer serializer= new Serializer(os,"ISO-8859-1"); 
    serializer.setIndent(4); 
    serializer.setMaxLength(60); 
    serializer.write(doc); 
    serializer.flush(); 
  } 
  public static void main(String[] args) throws Exception { 
    List<Person> people = Arrays.asList( 
      new Person("Dr. Bunsen", "Honeydew"), 
      new Person("Gonzo", "The Great"), 
      new Person("Phillip J.", "Fry")); 
    System.out.println(people); 
    Element root = new Element("people"); 
    for(Person p : people) 
      root.appendChild(p.getXML()); 
    Document doc = new Document(root); 
    format(System.out, doc); 
    format(new BufferedOutputStream(new FileOutputStream( 
      "People.xml")), doc); 
  } 
} /* Output: 
[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry] 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<people> 
    <person> 

I/O 719 



 

        <first>Dr. Bunsen</first> 
        <last>Honeydew</last> 
    </person> 
    <person> 
        <first>Gonzo</first> 
        <last>The Great</last> 
    </person> 
    <person> 
        <first>Phillip J.</first> 
        <last>Fry</last> 
    </person> 
</people> 
*///:~ 

The XOM methods are fairly self-explanatory and can be found in the XOM documentation. 
XOM also contains a Serializer class that you can see used in the format( ) method to turn 
the XML into a more readable form. If you just call toXML( ) you’ll get everything run 
together, so the Serializer is a convenient tool.  

Deserializing Person objects from an XML file is also simple:  

//: xml/People.java 
// {Requires: nu.xom.Node; You must install 
// the XOM library from http://www.xom.nu } 
// {RunFirst: Person} 
import nu.xom.*; 
import java.util.*; 
 
public class People extends ArrayList<Person> { 
  public People(String fileName) throws Exception  { 
    Document doc = new Builder().build(fileName); 
    Elements elements = 
      doc.getRootElement().getChildElements(); 
    for(int i = 0; i < elements.size(); i++) 
      add(new Person(elements.get(i))); 
  } 
  public static void main(String[] args) throws Exception { 
    People p = new People("People.xml"); 
    System.out.println(p); 
  } 
} /* Output: 
[Dr. Bunsen Honeydew, Gonzo The Great, Phillip J. Fry] 
*///:~ 

The People constructor opens and reads a file using XOM’s Builder.build( ) method, and 
the getChildElements( ) method produces an Elements list (not a standard Java List, 
but an object that only has a size( ) and get( ) method—Harold did not want to force people 
to use Java SE5, but still wanted a type-safe container). Each Element in this list represents 
a Person object, so it is handed to the second Person constructor. Note that this requires 
that you know ahead of time the exact structure of your XML file, but this is often true with 
these kinds of problems. If the structure doesn’t match what you expect, XOM will throw an 
exception. It’s also possible for you to write more complex code that will explore the XML 
document rather than making assumptions about it, for cases when you have less concrete 
information about the incoming XML structure.  

In order to get these examples to compile, you will have to put the JAR files from the XOM 
distribution into your classpath.  

This has only been a brief introduction to XML programming with Java and the XOM library; 
for more information see www.xom.nu.  

720 Thinking in Java Bruce Eckel 



 

Exercise 31:   (2) Add appropriate address information to Person.java and 
People.java.  

Exercise 32:   (4) Using a Map<String,Integer> and the 
net.mindview.util.TextFile utility, write a program that counts the occurrence of words 
in a file (use "\\W+" as the second argument to the TextFile constructor). Store the results 
as an XML file.  

Preferences 
The Preferences API is much closer to persistence than it is to object serialization, because it 
automatically stores and retrieves your information. However, its use is restricted to small 
and limited data sets—you can only hold primitives and Strings, and the length of each 
stored String can’t be longer than 8K (not tiny, but you don’t want to build anything serious 
with it, either). As the name suggests, the Preferences API is designed to store and retrieve 
user preferences and program-configuration settings.  

Preferences are key-value sets (like Maps) stored in a hierarchy of nodes. Although the node 
hierarchy can be used to create complicated structures, it’s typical to create a single node 
named after your class and store the information there. Here’s a simple example:  

//: io/PreferencesDemo.java 
import java.util.prefs.*; 
import static net.mindview.util.Print.*; 
 
public class PreferencesDemo { 
  public static void main(String[] args) throws Exception { 
    Preferences prefs = Preferences 
      .userNodeForPackage(PreferencesDemo.class); 
    prefs.put("Location", "Oz"); 
    prefs.put("Footwear", "Ruby Slippers"); 
    prefs.putInt("Companions", 4); 
    prefs.putBoolean("Are there witches?", true); 
    int usageCount = prefs.getInt("UsageCount", 0); 
    usageCount++; 
    prefs.putInt("UsageCount", usageCount); 
    for(String key : prefs.keys()) 
      print(key + ": "+ prefs.get(key, null)); 
    // You must always provide a default value: 
    print("How many companions does Dorothy have? " + 
      prefs.getInt("Companions", 0)); 
  } 
} /* Output: (Sample) 
Location: Oz 
Footwear: Ruby Slippers 
Companions: 4 
Are there witches?: true 
UsageCount: 53 
How many companions does Dorothy have? 4 
*///:~ 

Here, userNodeForPackage( ) is used, but you could also choose 
systemNodeForPackage( ); the choice is somewhat arbitrary, but the idea is that "user" is 
for individual user preferences, and "system" is for general installation configuration. Since 
main( ) is static, PreferencesDemo.class is used to identify the node, but inside a 
nonstatic method, you’ll usually use getClass( ). You don’t need to use the current class as 
the node identifier, but that’s the usual practice.  

I/O 721 



 

Once you create the node, it’s available for either loading or reading data. This example loads 
the node with various types of items and then gets the keys( ). These come back as a 
String[], which you might not expect if you’re used to the keys( ) method in the collections 
library. Notice the second argument to get( ). This is the default value that is produced if 
there isn’t any entry for that key value. While iterating through a set of keys, you always know 
there’s an entry, so using null as the default is safe, but normally you’ll be fetching a named 
key, as in:  

prefs.getInt("Companions", 0)); 

In the normal case, you’ll want to provide a reasonable default value. In fact, a typical idiom 
is seen in the lines:  

int usageCount = prefs.getInt("UsageCount", 0);  
usageCount++;  
prefs.putInt("UsageCount", usageCount);  

This way, the first time you run the program, the UsageCount will be zero, but on 
subsequent invocations it will be nonzero.  

When you run PreferencesDemo.java you’ll see that the UsageCount does indeed 
increment every time you run the program, but where is the data stored? There’s no local file 
that appears after the program is run the first time. The Preferences API uses appropriate 
system resources to accomplish its task, and these will vary depending on the OS. In 
Windows, the registry is used (since it’s already a hierarchy of nodes with key-value pairs). 
But the whole point is that the information is magically stored for you so that you don’t have 
to worry about how it works from one system to another.  

There’s more to the Preferences API than shown here. Consult the JDK documentation, 
which is fairly understandable, for further details.  

Exercise 33:   (2) Write a program that displays the current value of a directory called 
"base directory" and prompts you for a new value. Use the Preferences API to store the value.  

Summary 
The Java I/O stream library does satisfy the basic requirements: You can perform reading 
and writing with the console, a file, a block of memory, or even across the Internet. With 
inheritance, you can create new types of input and output objects. And you can even add a 
simple extensibility to the kinds of objects a stream will accept by redefining the toString( ) 
method that’s automatically called when you pass an object to a method that’s expecting a 
String (Java’s limited "automatic type conversion").  

There are questions left unanswered by the documentation and design of the I/O stream 
library. For example, it would have been nice if you could say that you want an exception 
thrown if you try to overwrite a file when opening it for output—some programming systems 
allow you to specify that you want to open an output file, but only if it doesn’t already exist. 
In Java, it appears that you are supposed to use a File object to determine whether a file 
exists, because if you open it as a FileOutputStream or FileWriter, it will always get 
overwritten.  

The I/O stream library brings up mixed feelings; it does much of the job and it’s portable. But 
if you don’t already understand the Decorator design pattern, the design is not intuitive, so 
there’s extra overhead in learning and teaching it. It’s also incomplete; for example, I 
shouldn’t have to write utilities like TextFile (the new Java SE5 PrintWriter is a step in 
the right direction here, but is only a partial solution). There has been a big improvement in 

722 Thinking in Java Bruce Eckel 



 

I/O 723 

Java SE5: They’ve finally added the kind of output formatting that virtually every other 
language has always supported.  

Once you do understand the Decorator pattern and begin using the library in situations that 
require its flexibility, you can begin to benefit from this design, at which point its cost in extra 
lines of code may not bother you as much.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

 





 

Enumerated Types 
The enum keyword allows you to create a new type with a restricted 
set of named values, and to treat those values as regular program 
components. This turns out to be very useful.1  

Enumerations were introduced briefly at the end of Initialization & Cleanup. However, now 
that you understand some of the deeper issues in Java, we can take a more detailed look at 
the Java SE5 enumeration feature. You’ll see that there are some very interesting things that 
you can do with enums, but this chapter should also give you more insight into other 
language features that you’ve now seen, such as generics and reflection. You’ll also learn a 
few more design patterns.  

Basic enum features 
As shown in Initialization & Cleanup, you can step through the list of enum constants by 
calling values( ) on the enum. The values( ) method produces an array of the enum 
constants in the order in which they were declared, so you can use the resulting array in (for 
example) a foreach loop.  

When you create an enum, an associated class is produced for you by the compiler. This 
class is automatically inherited from java.lang.Enum, which provides certain capabilities 
that you can see in this example:  

//: enumerated/EnumClass.java 
// Capabilities of the Enum class 
import static net.mindview.util.Print.*; 
 
enum Shrubbery { GROUND, CRAWLING, HANGING } 
 
public class EnumClass { 
  public static void main(String[] args) { 
    for(Shrubbery s : Shrubbery.values()) { 
      print(s + " ordinal: " + s.ordinal()); 
      printnb(s.compareTo(Shrubbery.CRAWLING) + " "); 
      printnb(s.equals(Shrubbery.CRAWLING) + " "); 
      print(s == Shrubbery.CRAWLING); 
      print(s.getDeclaringClass()); 
      print(s.name()); 
      print("----------------------"); 
    } 
    // Produce an enum value from a string name: 
    for(String s : "HANGING CRAWLING GROUND".split(" ")) { 
      Shrubbery shrub = Enum.valueOf(Shrubbery.class, s); 
      print(shrub); 
    } 
  } 
} /* Output: 
GROUND ordinal: 0 
-1 false false 
class Shrubbery 

                                                            
1 Joshua Bloch was extremely helpful in developing this chapter. 

 



 

GROUND 
---------------------- 
CRAWLING ordinal: 1 
0 true true 
class Shrubbery 
CRAWLING 
---------------------- 
HANGING ordinal: 2 
1 false false 
class Shrubbery 
HANGING 
---------------------- 
HANGING 
CRAWLING 
GROUND 
*///:~ 

The ordinal( ) method produces an int indicating the declaration order of each enum 
instance, starting from zero. You can always safely compare enum instances using ==, and 
equals( ) and hashCode( ) are automatically created for you. The Enum class is 
Comparable, so there’s a compareTo( ) method, and it is also Serializable.  

If you call getDeclaringClass( ) on an enum instance, you’ll find out the enclosing enum 
class.  

The name( ) method produces the name exactly as it is declared, and this is what you get 
with toString( ), as well. valueOf( ) is a static member of Enum, and produces the enum 
instance that corresponds to the String name you pass to it, or throws an exception if there’s 
no match.  

Using static imports with enums 

Consider a variation of Burrito.java from the Initialization & Cleanup chapter:  

//: enumerated/Spiciness.java 
package enumerated; 
 
public enum Spiciness { 
  NOT, MILD, MEDIUM, HOT, FLAMING 
} ///:~ 
 
//: enumerated/Burrito.java 
package enumerated; 
import static enumerated.Spiciness.*; 
 
public class Burrito { 
  Spiciness degree; 
  public Burrito(Spiciness degree) { this.degree = degree;} 
  public String toString() { return "Burrito is "+ degree;} 
  public static void main(String[] args) { 
    System.out.println(new Burrito(NOT)); 
    System.out.println(new Burrito(MEDIUM)); 
    System.out.println(new Burrito(HOT)); 
  } 
} /* Output: 
Burrito is NOT 
Burrito is MEDIUM 
Burrito is HOT 
*///:~ 

726 Thinking in Java Bruce Eckel 



 

The static import brings all the enum instance identifiers into the local namespace, so 
they don’t need to be qualified. Is this a good idea, or is it better to be explicit and qualify all 
enum instances? It probably depends on the complexity of your code. The compiler certainly 
won’t let you use the wrong type, so your only concern is whether the code will be confusing 
to the reader. In many situations it will probably be fine but you should evaluate it on an 
individual basis.  

Note that it is not possible to use this technique if the enum is defined in the same file or the 
default package (apparently there were some arguments within Sun about whether to allow this).  

Adding methods to an enum 
Except for the fact that you can’t inherit from it, an enum can be treated much like a regular 
class. This means that you can add methods to an enum. It’s even possible for an enum to 
have a main( ).  

You may want to produce different descriptions for an enumeration than the default 
toString( ), which simply produces the name of that enum instance, as you’ve seen. To do 
this, you can provide a constructor to capture extra information, and additional methods to 
provide an extended description, like this:  

//: enumerated/OzWitch.java 
// The witches in the land of Oz. 
import static net.mindview.util.Print.*; 
 
public enum OzWitch { 
  // Instances must be defined first, before methods: 
  WEST("Miss Gulch, aka the Wicked Witch of the West"), 
  NORTH("Glinda, the Good Witch of the North"), 
  EAST("Wicked Witch of the East, wearer of the Ruby " + 
    "Slippers, crushed by Dorothy’s house"), 
  SOUTH("Good by inference, but missing"); 
  private String description; 
  // Constructor must be package or private access: 
  private OzWitch(String description) { 
    this.description = description; 
  } 
  public String getDescription() { return description; } 
  public static void main(String[] args) { 
    for(OzWitch witch : OzWitch.values()) 
      print(witch + ": " + witch.getDescription()); 
  } 
} /* Output: 
WEST: Miss Gulch, aka the Wicked Witch of the West 
NORTH: Glinda, the Good Witch of the North 
EAST: Wicked Witch of the East, wearer of the Ruby Slippers, crushed by 
Dorothy’s house 
SOUTH: Good by inference, but missing 
*///:~ 

Notice that if you are going to define methods you must end the sequence of enum instances 
with a semicolon. Also, Java forces you to define the instances as the first thing in the enum. 
You’ll get a compile-time error if you try to define them after any of the methods or fields.  

The constructor and methods have the same form as a regular class, because with a few 
restrictions this is a regular class. So you can do pretty much anything you want with enums 
(although you’ll usually keep them pretty ordinary).  

Enumerated Types 727 



 

Although the constructor has been made private here as an example, it doesn’t make much 
difference what access you use—the constructor can only be used to create the enum 
instances that you declare inside the enum definition; the compiler won’t let you use it to 
create any new instances once the enum definition is complete.  

Overriding enum methods 

Here’s another approach to producing different string values for enumerations. In this case, 
the instance names are OK but we want to reformat them for display. Overriding the 
toString( ) method for an enum is the same as overriding it for a regular class:  

//: enumerated/SpaceShip.java 
public enum SpaceShip { 
  SCOUT, CARGO, TRANSPORT, CRUISER, BATTLESHIP, MOTHERSHIP; 
  public String toString() { 
    String id = name(); 
    String lower = id.substring(1).toLowerCase(); 
    return id.charAt(0) + lower; 
  } 
  public static void main(String[] args) { 
    for(SpaceShip s : values()) { 
      System.out.println(s); 
    } 
  } 
} /* Output: 
Scout 
Cargo 
Transport 
Cruiser 
Battleship 
Mothership 
*///:~ 

The toString( ) method gets the Spaceship name by calling name( ), and modifies the 
result so that only the first letter is capitalized.  

enums in switch statements 
One very convenient capability of enums is the way that they can be used in switch 
statements. Ordinarily, a switch only works with an integral value, but since enums have an 
established integral order and the order of an instance can be produced with the ordinal( ) 
method (apparently the compiler does something like this), enums can be used in switch 
statements.  

Although normally you must qualify an enum instance with its type, you do not have to do 
this in a case statement. Here’s an example that uses an enum to create a little state 
machine:  

//: enumerated/TrafficLight.java 
// Enums in switch statements. 
import static net.mindview.util.Print.*; 
 
// Define an enum type: 
enum Signal { GREEN, YELLOW, RED, } 
 
public class TrafficLight { 
  Signal color = Signal.RED; 
  public void change() { 

728 Thinking in Java Bruce Eckel 



 

    switch(color) { 
      // Note that you don’t have to say Signal.RED 
      // in the case statement: 
      case RED:    color = Signal.GREEN; 
                   break; 
      case GREEN:  color = Signal.YELLOW; 
                   break; 
      case YELLOW: color = Signal.RED; 
                   break; 
    } 
  } 
  public String toString() { 
    return "The traffic light is " + color; 
  } 
  public static void main(String[] args) { 
    TrafficLight t = new TrafficLight(); 
    for(int i = 0; i < 7; i++) { 
      print(t); 
      t.change(); 
    } 
  } 
} /* Output: 
The traffic light is RED 
The traffic light is GREEN 
The traffic light is YELLOW 
The traffic light is RED 
The traffic light is GREEN 
The traffic light is YELLOW 
The traffic light is RED 
*///:~ 

The compiler does not complain that there is no default statement inside the switch, but 
that’s not because it notices that you have case statements for each Signal instance. If you 
comment out one of the case statements it still won’t complain. This means you will have to 
pay attention and ensure that you cover all the cases on your own. On the other hand, if you 
are calling return from case statements, the compiler will complain if you don’t have a 
default—even if you’ve covered all the possible values of the enum.  

Exercise 1:   (2) Use a static import to modify TrafficLight.java so you don’t have to 
qualify the enum instances.  

The mystery of values() 
As noted earlier, all enum classes are created for you by the compiler and extend the Enum 
class. However, if you look at Enum, you’ll see that there is no values( ) method, even 
though we’ve been using it. Are there any other "hidden" methods? We can write a small 
reflection program to find out:  

//: enumerated/Reflection.java 
// Analyzing enums using reflection. 
import java.lang.reflect.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
enum Explore { HERE, THERE } 
 
public class Reflection { 
  public static Set<String> analyze(Class<?> enumClass) { 
    print("----- Analyzing " + enumClass + " -----"); 

Enumerated Types 729 



 

    print("Interfaces:"); 
    for(Type t : enumClass.getGenericInterfaces()) 
      print(t); 
    print("Base: " + enumClass.getSuperclass()); 
    print("Methods: "); 
    Set<String> methods = new TreeSet<String>(); 
    for(Method m : enumClass.getMethods()) 
      methods.add(m.getName()); 
    print(methods); 
    return methods; 
  } 
  public static void main(String[] args) { 
    Set<String> exploreMethods = analyze(Explore.class); 
    Set<String> enumMethods = analyze(Enum.class); 
    print("Explore.containsAll(Enum)? " + 
      exploreMethods.containsAll(enumMethods)); 
    printnb("Explore.removeAll(Enum): "); 
    exploreMethods.removeAll(enumMethods); 
    print(exploreMethods); 
    // Decompile the code for the enum: 
    OSExecute.command("javap Explore"); 
  } 
} /* Output: 
----- Analyzing class Explore ----- 
Interfaces: 
Base: class java.lang.Enum 
Methods: 
[compareTo, equals, getClass, getDeclaringClass, hashCode, name, notify, 
notifyAll, ordinal, toString, valueOf, values, wait] 
----- Analyzing class java.lang.Enum ----- 
Interfaces: 
java.lang.Comparable<E> 
interface java.io.Serializable 
Base: class java.lang.Object 
Methods: 
[compareTo, equals, getClass, getDeclaringClass, hashCode, name, notify, 
notifyAll, ordinal, toString, valueOf, wait] 
Explore.containsAll(Enum)? true 
Explore.removeAll(Enum): [values] 
Compiled from "Reflection.java" 
final class Explore extends java.lang.Enum{ 
    public static final Explore HERE; 
    public static final Explore THERE; 
    public static final Explore[] values(); 
    public static Explore valueOf(java.lang.String); 
    static {}; 
} 
*///:~ 

So the answer is that values( ) is a static method that is added by the compiler. You can see 
that valueOf( ) is also added to Explore in the process of creating the enum. This is 
slightly confusing, because there’s also a valueOf( ) that is part of the Enum class, but that 
method has two arguments and the added method only has one. However, the use of the Set 
method here is only looking at method names, and not signatures, so after calling 
Explore.removeAll(Enum), the only thing that remains is [values].  

In the output, you can see that Explore has been made final by the compiler, so you cannot 
inherit from an enum. There’s also a static initialization clause, which as you’ll see later can 
be redefined.  

730 Thinking in Java Bruce Eckel 



 

Because of erasure (described in the Generics chapter), the decompiler does not have full 
information about Enum, so it shows the base class of Explore as a raw Enum rather than 
the actual Enum<Explore>.  

Because values( ) is a static method inserted into the enum definition by the compiler, if 
you upcast an enum type to Enum, the values( ) method will not be available. Notice, 
however, that there is a getEnumConstants( ) method in Class, so even if values( ) is not 
part of the interface of Enum, you can still get the enum instances via the Class object:  

//: enumerated/UpcastEnum.java 
// No values() method if you upcast an enum 
 
enum Search { HITHER, YON } 
 
public class UpcastEnum { 
  public static void main(String[] args) { 
    Search[] vals = Search.values(); 
    Enum e = Search.HITHER; // Upcast 
    // e.values(); // No values() in Enum 
    for(Enum en : e.getClass().getEnumConstants()) 
      System.out.println(en); 
  } 
} /* Output: 
HITHER 
YON 
*///:~ 

Because getEnumConstants( ) is a method of Class, you can call it for a class that has no 
enumerations:  

//: enumerated/NonEnum.java 
 
public class NonEnum { 
  public static void main(String[] args) { 
    Class<Integer> intClass = Integer.class; 
    try { 
      for(Object en : intClass.getEnumConstants()) 
        System.out.println(en); 
    } catch(Exception e) { 
      System.out.println(e); 
    } 
  } 
} /* Output: 
java.lang.NullPointerException 
*///:~ 

However, the method returns null, so you get an exception if you try to use the result.  

   

Enumerated Types 731 



 

Implements, not inherits 
We’ve established that all enums extend java.lang.Enum. Since Java does not support 
multiple inheritance, this means that you cannot create an enum via inheritance:  

enum NotPossible extends Pet { ... // Won’t work 

However, it is possible to create an enum that implements one or more interfaces:  

//: enumerated/cartoons/EnumImplementation.java 
// An enum can implement an interface 
package enumerated.cartoons; 
import java.util.*; 
import net.mindview.util.*; 
 
enum CartoonCharacter 
implements Generator<CartoonCharacter> { 
  SLAPPY, SPANKY, PUNCHY, SILLY, BOUNCY, NUTTY, BOB; 
  private Random rand = new Random(47); 
  public CartoonCharacter next() { 
    return values()[rand.nextInt(values().length)]; 
  } 
} 
 
public class EnumImplementation { 
  public static <T> void printNext(Generator<T> rg) { 
    System.out.print(rg.next() + ", "); 
  } 
  public static void main(String[] args) { 
    // Choose any instance: 
    CartoonCharacter cc = CartoonCharacter.BOB; 
    for(int i = 0; i < 10; i++) 
      printNext(cc); 
  } 
} /* Output: 
BOB, PUNCHY, BOB, SPANKY, NUTTY, PUNCHY, SLAPPY, NUTTY, NUTTY, SLAPPY, 
*///:~ 

The result is slightly odd, because to call a method you must have an instance of the enum to 
call it on. However, a CartoonCharacter can now be accepted by any method that takes a 
Generator; for example, printNext( ).  

Exercise 2:   (2) Instead of implementing an interface, make next( ) a static method. 
What are the benefits and drawbacks of this approach?  

Random selection 
Many of the examples in this chapter require random selection from among enum instances, 
as you saw in CartoonCharacter.next( ). It’s possible to generalize this task using 
generics and put the result in the common library:  

//: net/mindview/util/Enums.java 
package net.mindview.util; 
import java.util.*; 
 
public class Enums { 
  private static Random rand = new Random(47); 

732 Thinking in Java Bruce Eckel 



 

  public static <T extends Enum<T>> T random(Class<T> ec) { 
    return random(ec.getEnumConstants()); 
  } 
  public static <T> T random(T[] values) { 
    return values[rand.nextInt(values.length)]; 
  } 
} ///:~ 

The rather odd syntax <T extends Enum<T>> describes T as an enum instance. By 
passing in Class<T>, we make the class object available, and the array of enum instances 
can thus be produced. The overloaded random( ) method only needs to know that it is 
getting a T[] because it doesn’t need to perform Enum operations; it only needs to select an 
array element at random. The return type is the exact type of the enum.  

Here’s a simple test of the random( ) method:  

//: enumerated/RandomTest.java 
import net.mindview.util.*; 
 
enum Activity { SITTING, LYING, STANDING, HOPPING, 
  RUNNING, DODGING, JUMPING, FALLING, FLYING } 
 
public class RandomTest { 
  public static void main(String[] args) { 
    for(int i = 0; i < 20; i++) 
      System.out.print(Enums.random(Activity.class) + " "); 
  } 
} /* Output: 
STANDING FLYING RUNNING STANDING RUNNING STANDING LYING DODGING SITTING 
RUNNING HOPPING HOPPING HOPPING RUNNING STANDING LYING FALLING RUNNING 
FLYING LYING 
*///:~ 

Although Enums is a small class, you’ll see that it prevents a fair amount of duplication in 
this chapter. Duplication tends to produce mistakes, so eliminating duplication is a useful 
pursuit.  

   

Enumerated Types 733 



 

Using interfaces for organization 
The inability to inherit from an enum can be a bit frustrating at times. The motivation for 
inheriting from an enum comes partly from wanting to extend the number of elements in 
the original enum, and partly from wanting to create subcategories by using subtypes.  

You can achieve categorization by grouping the elements together inside an interface and 
creating an enumeration based on that interface. For example, suppose you have different 
classes of food that you’d like to create as enums, but you’d still like each one to be a type of 
Food. Here’s what it looks like:  

//: enumerated/menu/Food.java 
// Subcategorization of enums within interfaces. 
package enumerated.menu; 
 
public interface Food { 
  enum Appetizer implements Food { 
    SALAD, SOUP, SPRING_ROLLS; 
  } 
  enum MainCourse implements Food { 
    LASAGNE, BURRITO, PAD_THAI, 
    LENTILS, HUMMOUS, VINDALOO; 
  } 
  enum Dessert implements Food { 
    TIRAMISU, GELATO, BLACK_FOREST_CAKE, 
    FRUIT, CREME_CARAMEL; 
  } 
  enum Coffee implements Food { 
    BLACK_COFFEE, DECAF_COFFEE, ESPRESSO, 
    LATTE, CAPPUCCINO, TEA, HERB_TEA; 
  } 
} ///:~ 

Since the only subtyping available for an enum is that of interface implementation, each 
nested enum implements the surrounding interface Food. Now it’s possible to say that 
"everything is a type of Food" as you can see here:  

//: enumerated/menu/TypeOfFood.java 
package enumerated.menu; 
import static enumerated.menu.Food.*; 
 
public class TypeOfFood { 
  public static void main(String[] args) { 
    Food food = Appetizer.SALAD; 
    food = MainCourse.LASAGNE; 
    food = Dessert.GELATO; 
    food = Coffee.CAPPUCCINO; 
  } 
} ///:~ 

The upcast to Food works for each enum type that implements Food, so they are all 
types of Food.  

An interface, however, is not as useful as an enum when you want to deal with a set of types. 
If you want to have an "enum of enums" you can create a surrounding enum with one 
instance for each enum in Food:  

//: enumerated/menu/Course.java 
package enumerated.menu; 

734 Thinking in Java Bruce Eckel 



 

import net.mindview.util.*; 
 
public enum Course { 
  APPETIZER(Food.Appetizer.class), 
  MAINCOURSE(Food.MainCourse.class), 
  DESSERT(Food.Dessert.class), 
  COFFEE(Food.Coffee.class); 
  private Food[] values; 
  private Course(Class<? extends Food> kind) { 
    values = kind.getEnumConstants(); 
  } 
  public Food randomSelection() { 
    return Enums.random(values); 
  } 
} ///:~ 

Each of the above enums takes the corresponding Class object as a constructor argument, 
from which it can extract and store all the enum instances using getEnumConstants( ). 
These instances are later used in randomSelection( ), so now we can create a randomly 
generated meal by selecting one Food item from each Course:  

//: enumerated/menu/Meal.java 
package enumerated.menu; 
 
public class Meal { 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) { 
      for(Course course : Course.values()) { 
        Food food = course.randomSelection(); 
        System.out.println(food); 
      } 
      System.out.println("---"); 
    } 
  } 
} /* Output: 
SPRING_ROLLS 
VINDALOO 
FRUIT 
DECAF_COFFEE 
--- 
SOUP 
VINDALOO 
FRUIT 
TEA 
--- 
SALAD 
BURRITO 
FRUIT 
TEA 
--- 
SALAD 
BURRITO 
CREME_CARAMEL 
LATTE 
--- 
SOUP 
BURRITO 
TIRAMISU 
ESPRESSO 
--- 
*///:~ 

Enumerated Types 735 



 

In this case, the value of creating an enum of enums is to iterate through each Course. 
Later, in the VendingMachine.java example, you’ll see another approach to categorization 
which is dictated by different constraints.  

Another, more compact, approach to the problem of categorization is to nest enums within 
enums, like this:  

//: enumerated/SecurityCategory.java 
// More succinct subcategorization of enums. 
import net.mindview.util.*; 
 
enum SecurityCategory { 
  STOCK(Security.Stock.class), BOND(Security.Bond.class); 
  Security[] values; 
  SecurityCategory(Class<? extends Security> kind) { 
    values = kind.getEnumConstants(); 
  } 
  interface Security { 
    enum Stock implements Security { SHORT, LONG, MARGIN } 
    enum Bond implements Security { MUNICIPAL, JUNK } 
  } 
  public Security randomSelection() { 
    return Enums.random(values); 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < 10; i++) { 
      SecurityCategory category = 
        Enums.random(SecurityCategory.class); 
      System.out.println(category + ": " + 
        category.randomSelection()); 
    } 
  } 
} /* Output: 
BOND: MUNICIPAL 
BOND: MUNICIPAL 
STOCK: MARGIN 
STOCK: MARGIN 
BOND: JUNK 
STOCK: SHORT 
STOCK: LONG 
STOCK: LONG 
BOND: MUNICIPAL 
BOND: JUNK 
*///:~ 

The Security interface is necessary to collect the contained enums together as a common 
type. These are then categorized into the enums within SecurityCategory.  

If we take this approach with the Food example, the result is:  

//: enumerated/menu/Meal2.java 
package enumerated.menu; 
import net.mindview.util.*; 
 
public enum Meal2 { 
  APPETIZER(Food.Appetizer.class), 
  MAINCOURSE(Food.MainCourse.class), 
  DESSERT(Food.Dessert.class), 
  COFFEE(Food.Coffee.class); 
  private Food[] values; 
  private Meal2(Class<? extends Food> kind) { 

736 Thinking in Java Bruce Eckel 



 

    values = kind.getEnumConstants(); 
  } 
  public interface Food { 
    enum Appetizer implements Food { 
      SALAD, SOUP, SPRING_ROLLS; 
    } 
    enum MainCourse implements Food { 
      LASAGNE, BURRITO, PAD_THAI, 
      LENTILS, HUMMOUS, VINDALOO; 
    } 
    enum Dessert implements Food { 
      TIRAMISU, GELATO, BLACK_FOREST_CAKE, 
      FRUIT, CREME_CARAMEL; 
    } 
    enum Coffee implements Food { 
      BLACK_COFFEE, DECAF_COFFEE, ESPRESSO, 
      LATTE, CAPPUCCINO, TEA, HERB_TEA; 
    } 
  } 
  public Food randomSelection() { 
    return Enums.random(values); 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) { 
      for(Meal2 meal : Meal2.values()) { 
        Food food = meal.randomSelection(); 
        System.out.println(food); 
      } 
      System.out.println("---"); 
    } 
  } 
} /* Same output as Meal.java *///:~ 

In the end, it’s only a reorganization of the code but it may produce a clearer structure in 
some cases.  

Exercise 3:   (1) Add a new Course to Course.java and demonstrate that it works in 
Meal.java.  

Exercise 4:   (1) Repeat the above exercise for Meal2.java.  

Exercise 5:   (4) Modify control/VowelsAndConsonants.java so that it uses three 
enum types: VOWEL, SOMETIMES_A_VOWEL, and CONSONANT. The enum 
constructor should take the various letters that describe that particular category. Hint: Use 
varargs, and remember that varargs automatically creates an array for you.  

Exercise 6:   (3) Is there any special benefit in nesting Appetizer, MainCourse, 
Dessert, and Coffee inside Food rather than making them standalone enums that just 
happen to implement Food?  

Using EnumSet instead of flags 
A Set is a kind of collection that only allows one of each type of object to be added. Of course, 
an enum requires that all its members be unique, so it would seem to have set behavior, but 
since you can’t add or remove elements it’s not very useful as a set. The EnumSet was added 
to Java SE5 to work in concert with enums to create a replacement for traditional int-based 
"bit flags." Such flags are used to indicate some kind of on-off information, but you end up 
manipulating bits rather than concepts, so it’s easy to write confusing code.  

Enumerated Types 737 



 

The EnumSet is designed for speed, because it must compete effectively with bit flags 
(operations will be typically much faster than a HashSet). Internally, it is represented by (if 
possible) a single long that is treated as a bit-vector, so it’s extremely fast and efficient. The 
benefit is that you now have a much more expressive way to indicate the presence or absence 
of a binary feature, without having to worry about performance.  

The elements of an EnumSet must come from a single enum. A possible example uses an 
enum of positions in a building where alarm sensors are present:  

//: enumerated/AlarmPoints.java 
package enumerated; 
public enum AlarmPoints { 
  STAIR1, STAIR2, LOBBY, OFFICE1, OFFICE2, OFFICE3, 
  OFFICE4, BATHROOM, UTILITY, KITCHEN 
} ///:~ 

The EnumSet can be used to keep track of the alarm status:  

//: enumerated/EnumSets.java 
// Operations on EnumSets 
package enumerated; 
import java.util.*; 
import static enumerated.AlarmPoints.*; 
import static net.mindview.util.Print.*; 
 
public class EnumSets { 
  public static void main(String[] args) { 
    EnumSet<AlarmPoints> points = 
      EnumSet.noneOf(AlarmPoints.class); // Empty set 
    points.add(BATHROOM); 
    print(points); 
    points.addAll(EnumSet.of(STAIR1, STAIR2, KITCHEN)); 
    print(points); 
    points = EnumSet.allOf(AlarmPoints.class); 
    points.removeAll(EnumSet.of(STAIR1, STAIR2, KITCHEN)); 
    print(points); 
    points.removeAll(EnumSet.range(OFFICE1, OFFICE4)); 
    print(points); 
    points = EnumSet.complementOf(points); 
    print(points); 
  } 
} /* Output: 
[BATHROOM] 
[STAIR1, STAIR2, BATHROOM, KITCHEN] 
[LOBBY, OFFICE1, OFFICE2, OFFICE3, OFFICE4, BATHROOM, UTILITY] 
[LOBBY, BATHROOM, UTILITY] 
[STAIR1, STAIR2, OFFICE1, OFFICE2, OFFICE3, OFFICE4, KITCHEN] 
*///:~ 

A static import is used to simplify the use of the enum constants. The method names are 
fairly self-explanatory, and you can find the full details in the JDK documentation. When you 
look at this documentation, you’ll see something interesting—the of( ) method has been 
overloaded both with varargs and with individual methods taking two through five explicit 
arguments. This is an indication of the concern for performance with EnumSet, because a 
single of( ) method using varargs could have solved the problem, but it’s slightly less 
efficient than having explicit arguments. Thus, if you call of( ) with two through five 
arguments you will get the explicit (slightly faster) method calls, but if you call it with one 
argument or more than five, you will get the varargs version of of( ). Notice that if you call it 
with one argument, the compiler will not construct the varargs array and so there is no extra 
overhead for calling that version with a single argument.  

738 Thinking in Java Bruce Eckel 



 

EnumSets are built on top of longs, a long is 64 bits, and each enum instance requires 
one bit to indicate presence or absence. This means you can have an EnumSet for an enum 
of up to 64 elements without going beyond the use of a single long. What happens if you 
have more than 64 elements in your enum?  

//: enumerated/BigEnumSet.java 
import java.util.*; 
 
public class BigEnumSet { 
  enum Big { A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, 
    A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, 
    A22, A23, A24, A25, A26, A27, A28, A29, A30, A31, A32, 
    A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, 
    A44, A45, A46, A47, A48, A49, A50, A51, A52, A53, A54, 
    A55, A56, A57, A58, A59, A60, A61, A62, A63, A64, A65, 
    A66, A67, A68, A69, A70, A71, A72, A73, A74, A75 } 
  public static void main(String[] args) { 
    EnumSet<Big> bigEnumSet = EnumSet.allOf(Big.class); 
    System.out.println(bigEnumSet); 
  } 
} /* Output: 
[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, 
A16, A17, A18, A19, A20, A21, A22, A23, A24, A25, A26, A27, A28, A29, 
A30, A31, A32, A33, A34, A35, A36, A37, A38, A39, A40, A41, A42, A43, 
A44, A45, A46, A47, A48, A49, A50, A51, A52, A53, A54, A55, A56, A57, 
A58, A59, A60, A61, A62, A63, A64, A65, A66, A67, A68, A69, A70, A71, 
A72, A73, A74, A75] 
*///:~ 

The EnumSet clearly has no problem with an enum that has more than 64 elements, so we 
may presume that it adds another long when necessary.  

Exercise 7:   (3) Find the source code for EnumSet and explain how it works.  

Using EnumMap 
An EnumMap is a specialized Map that requires that its keys be from a single enum. 
Because of the constraints on an enum, an EnumMap can be implemented internally as an 
array. Thus they are extremely fast, so you can freely use EnumMaps for enum-based 
lookups.  

You can only call put( ) for keys that are in your enum, but other than that it’s like using an 
ordinary Map.  

Here’s an example that demonstrates the use of the Command design pattern. This pattern starts 
with an interface containing (typically) a single method, and creates multiple implementations 
with different behavior for that method. You install Command objects, and your program calls 
them when necessary:  

//: enumerated/EnumMaps.java 
// Basics of EnumMaps. 
package enumerated; 
import java.util.*; 
import static enumerated.AlarmPoints.*; 
import static net.mindview.util.Print.*; 
 
interface Command { void action(); } 
 
public class EnumMaps { 

Enumerated Types 739 



 

  public static void main(String[] args) { 
    EnumMap<AlarmPoints,Command> em = 
      new EnumMap<AlarmPoints,Command>(AlarmPoints.class); 
    em.put(KITCHEN, new Command() { 
      public void action() { print("Kitchen fire!"); } 
    }); 
    em.put(BATHROOM, new Command() { 
      public void action() { print("Bathroom alert!"); } 
    }); 
    for(Map.Entry<AlarmPoints,Command> e : em.entrySet()) { 
      printnb(e.getKey() + ": "); 
      e.getValue().action(); 
    } 
    try { // If there’s no value for a particular key: 
      em.get(UTILITY).action(); 
    } catch(Exception e) { 
      print(e); 
    } 
  } 
} /* Output: 
BATHROOM: Bathroom alert! 
KITCHEN: Kitchen fire! 
java.lang.NullPointerException 
*///:~ 

Just as with EnumSet, the order of elements in the EnumMap is determined by their order of 
definition in the enum.  

The last part of main( ) shows that there is always a key entry for each of the enums, but 
the value is null unless you have called put( ) for that key.  

One advantage of EnumMap over constant-specific methods (described next) is that an 
EnumMap allows you to change the value objects, whereas you’ll see that constant-specific 
methods are fixed at compile time.  

As you’ll see later in the chapter, EnumMaps can be used to perform multiple dispatching 
for situations where you have multiple types of enums interacting with each other.  

Constant-specific methods 
Java enums have a very interesting feature that allows you to give each enum instance 
different behavior by creating methods for each one. To do this, you define one or more 
abstract methods as part of the enum, then define the methods for each enum instance. 
For example:  

//: enumerated/ConstantSpecificMethod.java 
import java.util.*; 
import java.text.*; 
 
public enum ConstantSpecificMethod { 
  DATE_TIME { 
    String getInfo() { 
      return 
        DateFormat.getDateInstance().format(new Date()); 
    } 
  }, 
  CLASSPATH { 
    String getInfo() { 
      return System.getenv("CLASSPATH"); 

740 Thinking in Java Bruce Eckel 



 

    } 
  }, 
  VERSION { 
    String getInfo() { 
      return System.getProperty("java.version"); 
    } 
  }; 
  abstract String getInfo(); 
  public static void main(String[] args) { 
    for(ConstantSpecificMethod csm : values()) 
      System.out.println(csm.getInfo()); 
  } 
} /* (Execute to see output) *///:~ 

You can look up and call methods via their associated enum instance. This is often called 
table-driven code (and note the similarity to the aforementioned Command pattern).  

In object-oriented programming, different behavior is associated with different classes. 
Because each instance of an enum can have its own behavior via constant-specific methods, 
this suggests that each instance is a distinct type. In the above example, each enum instance 
is being treated as the "base type" ConstantSpecificMethod but you get polymorphic 
behavior with the method call getInfo( ).  

However, you can only take the similarity so far. You cannot treat enum instances as class 
types:  

//: enumerated/NotClasses.java 
// {Exec: javap -c LikeClasses} 
import static net.mindview.util.Print.*; 
 
enum LikeClasses { 
  WINKEN { void behavior() { print("Behavior1"); } }, 
  BLINKEN { void behavior() { print("Behavior2"); } }, 
  NOD { void behavior() { print("Behavior3"); } }; 
  abstract void behavior(); 
} 
 
public class NotClasses { 
  // void f1(LikeClasses.WINKEN instance) {} // Nope 
} /* Output: 
Compiled from "NotClasses.java" 
abstract class LikeClasses extends java.lang.Enum{ 
public static final LikeClasses WINKEN; 
 
public static final LikeClasses BLINKEN; 
 
public static final LikeClasses NOD; 
... 
*///:~ 

In f1( ), you can see that the compiler doesn’t allow you to use an enum instance as a class 
type, which makes sense if you consider the code generated by the compiler—each enum 
element is a static final instance of LikeClasses.  

Also, because they are static, enum instances of inner enums do not behave like ordinary inner 
classes; you cannot access non-static fields or methods in the outer class.  

As a more interesting example, consider a car wash. Each customer is given a menu of choices for 
their wash, and each option performs a different action. A constant-specific method can be 
associated with each option, and an EnumSet can be used to hold the customer’s selections:  

Enumerated Types 741 



 

//: enumerated/CarWash.java 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class CarWash { 
  public enum Cycle { 
    UNDERBODY { 
      void action() { print("Spraying the underbody"); } 
    }, 
    WHEELWASH { 
      void action() { print("Washing the wheels"); } 
    }, 
    PREWASH { 
      void action() { print("Loosening the dirt"); } 
    }, 
    BASIC { 
      void action() { print("The basic wash"); } 
    }, 
    HOTWAX { 
      void action() { print("Applying hot wax"); } 
    }, 
    RINSE { 
      void action() { print("Rinsing"); } 
    }, 
    BLOWDRY { 
      void action() { print("Blowing dry"); } 
    }; 
    abstract void action(); 
  } 
  EnumSet<Cycle> cycles = 
    EnumSet.of(Cycle.BASIC, Cycle.RINSE); 
  public void add(Cycle cycle) { cycles.add(cycle); } 
  public void washCar() { 
    for(Cycle c : cycles) 
      c.action(); 
  } 
  public String toString() { return cycles.toString(); } 
  public static void main(String[] args) { 
    CarWash wash = new CarWash(); 
    print(wash); 
    wash.washCar(); 
    // Order of addition is unimportant: 
    wash.add(Cycle.BLOWDRY); 
    wash.add(Cycle.BLOWDRY); // Duplicates ignored 
    wash.add(Cycle.RINSE); 
    wash.add(Cycle.HOTWAX); 
    print(wash); 
    wash.washCar(); 
  } 
} /* Output: 
[BASIC, RINSE] 
The basic wash 
Rinsing 
[BASIC, HOTWAX, RINSE, BLOWDRY] 
The basic wash 
Applying hot wax 
Rinsing 
Blowing dry 
*///:~ 

The syntax for defining a constant-specific method is effectively that of an anonymous inner 
class, but more succinct.  

742 Thinking in Java Bruce Eckel 



 

This example also shows more characteristics of EnumSets. Since it’s a set, it will only hold 
one of each item, so duplicate calls to add( ) with the same argument are ignored (this 
makes sense, since you can only flip a bit "on" once). Also, the order that you add enum 
instances is unimportant—the output order is determined by the declaration order of the 
enum.  

Is it possible to override constant-specific methods, instead of implementing an abstract 
method? Yes, as you can see here:  

//: enumerated/OverrideConstantSpecific.java 
import static net.mindview.util.Print.*; 
 
public enum OverrideConstantSpecific { 
  NUT, BOLT, 
  WASHER { 
    void f() { print("Overridden method"); } 
  }; 
  void f() { print("default behavior"); } 
  public static void main(String[] args) { 
    for(OverrideConstantSpecific ocs : values()) { 
      printnb(ocs + ": "); 
      ocs.f(); 
    } 
  } 
} /* Output: 
NUT: default behavior 
BOLT: default behavior 
WASHER: Overridden method 
*///:~ 

Although enums do prevent certain types of code, in general you should experiment with 
them as if they were classes.  

Chain of Responsibility with enums 

In the Chain of Responsibility design pattern, you create a number of different ways to solve 
a problem and chain them together. When a request occurs, it is passed along the chain until 
one of the solutions can handle the request.  

You can easily implement a simple Chain of Responsibility with constantspecific methods. 
Consider a model of a post office, which tries to deal with each piece of mail in the most 
general way possible, but has to keep trying until it ends up treating the mail as a dead letter. 
Each attempt can be thought of as a Strategy (another design pattern), and the entire list 
together is a Chain of Responsibility.  

We start by describing a piece of mail. All the different characteristics of interest can be 
expressed using enums. Because the Mail objects will be randomly generated, the easiest 
way to reduce the probability of (for example) a piece of mail being given a YES for 
GeneralDelivery is to create more non-YES instances, so the enum definitions look a 
little funny at first.  

Within Mail, you’ll see randomMail( ), which creates random pieces of test mail. The 
generator( ) method produces an Iterable object that uses randomMail( ) to produce a 
number of mail objects, one each time you call next( ) via the iterator. This construct allows 
the simple creation of a foreach loop by calling Mail.generator( ):  

//: enumerated/PostOffice.java 
// Modeling a post office. 

Enumerated Types 743 



 

import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
class Mail { 
  // The NO’s lower the probability of random selection: 
  enum GeneralDelivery {YES,NO1,NO2,NO3,NO4,NO5} 
  enum Scannability {UNSCANNABLE,YES1,YES2,YES3,YES4} 
  enum Readability {ILLEGIBLE,YES1,YES2,YES3,YES4} 
  enum Address {INCORRECT,OK1,OK2,OK3,OK4,OK5,OK6} 
  enum ReturnAddress {MISSING,OK1,OK2,OK3,OK4,OK5} 
  GeneralDelivery generalDelivery; 
  Scannability scannability; 
  Readability readability; 
  Address address; 
  ReturnAddress returnAddress; 
  static long counter = 0; 
  long id = counter++; 
  public String toString() { return "Mail " + id; } 
  public String details() { 
    return toString() + 
      ", General Delivery: " + generalDelivery + 
      ", Address Scanability: " + scannability + 
      ", Address Readability: " + readability + 
      ", Address Address: " + address + 
      ", Return address: " + returnAddress; 
  } 
  // Generate test Mail: 
  public static Mail randomMail() { 
    Mail m = new Mail(); 
    m.generalDelivery= Enums.random(GeneralDelivery.class); 
    m.scannability = Enums.random(Scannability.class); 
    m.readability = Enums.random(Readability.class); 
    m.address = Enums.random(Address.class); 
    m.returnAddress = Enums.random(ReturnAddress.class); 
    return m; 
  } 
  public static Iterable<Mail> generator(final int count) { 
    return new Iterable<Mail>() { 
      int n = count; 
      public Iterator<Mail> iterator() { 
        return new Iterator<Mail>() { 
          public boolean hasNext() { return n-- > 0; } 
          public Mail next() { return randomMail(); } 
          public void remove() { // Not implemented 
            throw new UnsupportedOperationException(); 
          } 
        }; 
      } 
    }; 
  } 
} 
 
public class PostOffice { 
  enum MailHandler { 
    GENERAL_DELIVERY { 
      boolean handle(Mail m) { 
        switch(m.generalDelivery) { 
          case YES: 
            print("Using general delivery for " + m); 
            return true; 
          default: return false; 
        } 

744 Thinking in Java Bruce Eckel 



 

      } 
    }, 
    MACHINE_SCAN { 
      boolean handle(Mail m) { 
        switch(m.scannability) { 
          case UNSCANNABLE: return false; 
          default: 
            switch(m.address) { 
              case INCORRECT: return false; 
              default: 
                print("Delivering "+ m + " automatically"); 
                return true; 
            } 
        } 
      } 
    }, 
    VISUAL_INSPECTION { 
      boolean handle(Mail m) { 
        switch(m.readability) { 
          case ILLEGIBLE: return false; 
          default: 
            switch(m.address) { 
              case INCORRECT: return false; 
              default: 
                print("Delivering " + m + " normally"); 
                return true; 
            } 
        } 
      } 
    }, 
    RETURN_TO_SENDER { 
      boolean handle(Mail m) { 
        switch(m.returnAddress) { 
          case MISSING: return false; 
          default: 
            print("Returning " + m + " to sender"); 
            return true; 
        } 
      } 
    }; 
    abstract boolean handle(Mail m); 
  } 
  static void handle(Mail m) { 
    for(MailHandler handler : MailHandler.values()) 
      if(handler.handle(m)) 
        return; 
    print(m + " is a dead letter"); 
  } 
  public static void main(String[] args) { 
    for(Mail mail : Mail.generator(10)) { 
      print(mail.details()); 
      handle(mail); 
      print("*****"); 
    } 
  } 
} /* Output: 
Mail 0, General Delivery: NO2, Address Scanability: UNSCANNABLE, Address 
Readability: YES3, Address Address: OK1, Return address: OK1 
Delivering Mail 0 normally 
***** 
Mail 1, General Delivery: NO5, Address Scanability: YES3, Address 
Readability: ILLEGIBLE, Address Address: OK5, Return address: OK1 
Delivering Mail 1 automatically 

Enumerated Types 745 



 

746 Thinking in Java Bruce Eckel 

***** 
Mail 2, General Delivery: YES, Address Scanability: YES3, Address 
Readability: YES1, Address Address: OK1, Return address: OK5 
Using general delivery for Mail 2 
***** 
Mail 3, General Delivery: NO4, Address Scanability: YES3, Address 
Readability: YES1, Address Address: INCORRECT, Return address: OK4 
Returning Mail 3 to sender 
***** 
Mail 4, General Delivery: NO4, Address Scanability: UNSCANNABLE, Address 
Readability: YES1, Address Address: INCORRECT, Return address: OK2 
Returning Mail 4 to sender 
***** 
Mail 5, General Delivery: NO3, Address Scanability: YES1, Address 
Readability: ILLEGIBLE, Address Address: OK4, Return address: OK2 
Delivering Mail 5 automatically 
***** 
Mail 6, General Delivery: YES, Address Scanability: YES4, Address 
Readability: ILLEGIBLE, Address Address: OK4, Return address: OK4 
Using general delivery for Mail 6 
***** 
Mail 7, General Delivery: YES, Address Scanability: YES3, Address 
Readability: YES4, Address Address: OK2, Return address: MISSING 
Using general delivery for Mail 7 
***** 
Mail 8, General Delivery: NO3, Address Scanability: YES1, Address 
Readability: YES3, Address Address: INCORRECT, Return address: MISSING 
Mail 8 is a dead letter 
***** 
Mail 9, General Delivery: NO1, Address Scanability: UNSCANNABLE, Address 
Readability: YES2, Address Address: OK1, Return address: OK4 
Delivering Mail 9 normally 
***** 
*///:~ 

The Chain of Responsibility is expressed in enum MailHandler, and the order of the 
enum definitions determines the order in which the strategies are attempted on each piece 
of mail. Each strategy is tried in turn until one succeeds or they all fail, in which case you 
have a dead letter.  

Exercise 8:   (6) Modify PostOffice.java so it has the ability to forward mail.  

Exercise 9:   (5) Modify class PostOffice so that it uses an EnumMap. Project:2 

Specialized languages like Prolog use backward chaining in order to solve problems like this. 
Using PostOffice.java for inspiration, research such languages and develop a program that 
allows new "rules" to be easily added to the system.  

State machines with enums 

Enumerated types can be ideal for creating state machines. A state machine can be in a finite 
number of specific states. The machine normally moves from one state to the next based on 
an input, but there are also transient states; the machine moves out of these as soon as their 
task is performed.  

                                                            
2 Projects are suggestions to be used (for example) as term projects. Solutions to projects are not included in the solution 
guide. 



 

There are certain allowable inputs for each state, and different inputs change the state of the 
machine to different new states. Because enums restrict the set of possible cases, they are 
quite useful for enumerating the different states and inputs.  

Each state also typically has some kind of associated output.  

A vending machine is a good example of a state machine. First, we define the various inputs 
in an enum:  

//: enumerated/Input.java 
package enumerated; 
import java.util.*; 
 
public enum Input { 
  NICKEL(5), DIME(10), QUARTER(25), DOLLAR(100), 
  TOOTHPASTE(200), CHIPS(75), SODA(100), SOAP(50), 
  ABORT_TRANSACTION { 
    public int amount() { // Disallow 
      throw new RuntimeException("ABORT.amount()"); 
    } 
  }, 
  STOP { // This must be the last instance. 
    public int amount() { // Disallow 
      throw new RuntimeException("SHUT_DOWN.amount()"); 
    } 
  };  
  int value; // In cents 
  Input(int value) { this.value = value; } 
  Input() {} 
  int amount() { return value; }; // In cents 
  static Random rand = new Random(47); 
  public static Input randomSelection() { 
    // Don’t include STOP: 
    return values()[rand.nextInt(values().length - 1)]; 
  } 
} ///:~ 

Note that two of the Inputs have an associated amount, so amount( ) is defined in the 
interface. However, it is inappropriate to call amount( ) for the other two Input types, so 
they throw an exception if you call amount( ). Although this is a bit of an odd setup (define 
a method in an interface, then throw an exception if you call it for certain implementations), 
it is imposed upon us because of the constraints of enums.  

The VendingMachine will react to these inputs by first categorizing them via the 
Category enum, so that it can switch on the categories. This example shows how enums 
make code clearer and easier to manage:  

//: enumerated/VendingMachine.java 
// {Args: VendingMachineInput.txt} 
package enumerated; 
import java.util.*; 
import net.mindview.util.*; 
import static enumerated.Input.*; 
import static net.mindview.util.Print.*; 
 
enum Category { 
  MONEY(NICKEL, DIME, QUARTER, DOLLAR), 
  ITEM_SELECTION(TOOTHPASTE, CHIPS, SODA, SOAP), 
  QUIT_TRANSACTION(ABORT_TRANSACTION), 
  SHUT_DOWN(STOP); 
  private Input[] values; 

Enumerated Types 747 



 

  Category(Input... types) { values = types; }  
  private static EnumMap<Input,Category> categories = 
    new EnumMap<Input,Category>(Input.class); 
  static { 
    for(Category c : Category.class.getEnumConstants()) 
      for(Input type : c.values) 
        categories.put(type, c); 
  } 
  public static Category categorize(Input input) { 
    return categories.get(input); 
  } 
}  
 
public class VendingMachine { 
  private static State state = State.RESTING; 
  private static int amount = 0; 
  private static Input selection = null; 
  enum StateDuration { TRANSIENT } // Tagging enum 
  enum State { 
    RESTING { 
      void next(Input input) { 
        switch(Category.categorize(input)) { 
          case MONEY: 
            amount += input.amount(); 
            state = ADDING_MONEY; 
            break; 
          case SHUT_DOWN: 
            state = TERMINAL; 
          default: 
        } 
      } 
    },  
    ADDING_MONEY { 
      void next(Input input) { 
        switch(Category.categorize(input)) { 
          case MONEY: 
            amount += input.amount(); 
            break; 
          case ITEM_SELECTION: 
            selection = input; 
            if(amount < selection.amount()) 
              print("Insufficient money for " + selection); 
            else state = DISPENSING; 
            break; 
          case QUIT_TRANSACTION: 
            state = GIVING_CHANGE; 
            break; 
          case SHUT_DOWN: 
            state = TERMINAL; 
          default: 
        } 
      } 
    },  
    DISPENSING(StateDuration.TRANSIENT) { 
      void next() { 
        print("here is your " + selection); 
        amount -= selection.amount(); 
        state = GIVING_CHANGE; 
      } 
    }, 
    GIVING_CHANGE(StateDuration.TRANSIENT) { 
      void next() { 
        if(amount > 0) { 

748 Thinking in Java Bruce Eckel 



 

          print("Your change: " + amount); 
          amount = 0; 
        } 
        state = RESTING; 
      } 
    },  
    TERMINAL { void output() { print("Halted"); } }; 
    private boolean isTransient = false; 
    State() {} 
    State(StateDuration trans) { isTransient = true; } 
    void next(Input input) { 
      throw new RuntimeException("Only call " + 
        "next(Input input) for non-transient states"); 
    } 
    void next() { 
      throw new RuntimeException("Only call next() for " + 
        "StateDuration.TRANSIENT states"); 
    } 
    void output() { print(amount); } 
  }  
  static void run(Generator<Input> gen) { 
    while(state != State.TERMINAL) { 
      state.next(gen.next()); 
      while(state.isTransient) 
        state.next(); 
      state.output(); 
    } 
  } 
  public static void main(String[] args) { 
    Generator<Input> gen = new RandomInputGenerator(); 
    if(args.length == 1) 
      gen = new FileInputGenerator(args[0]); 
    run(gen); 
  } 
}  
 
// For a basic sanity check: 
class RandomInputGenerator implements Generator<Input> { 
  public Input next() { return Input.randomSelection(); } 
} 
 
// Create Inputs from a file of ‘;’-separated strings: 
class FileInputGenerator implements Generator<Input> { 
  private Iterator<String> input; 
  public FileInputGenerator(String fileName) { 
    input = new TextFile(fileName, ";").iterator(); 
  } 
  public Input next() { 
    if(!input.hasNext()) 
      return null; 
    return Enum.valueOf(Input.class, input.next().trim()); 
  } 
} /* Output: 
25 
50 
75 
here is your CHIPS 
0 
100 
200 
here is your TOOTHPASTE 
0 
25 

Enumerated Types 749 



 

35 
Your change: 35 
0 
25 
35 
Insufficient money for SODA 
35 
60 
70 
75 
Insufficient money for SODA 
75 
Your change: 75 
0 
Halted 
*///:~ 

Because selecting among enum instances is most often accomplished with a switch 
statement (notice the extra effort that the language goes to in order to make a switch on 
enums easy), one of the most common questions to ask when you are organizing multiple 
enums is "What do I want to switch on?" Here, it’s easiest to work back from the 
VendingMachine by noting that in each State, you need to switch on the basic categories 
of input action: money being inserted, an item being selected, the transaction being aborted, 
and the machine being turned off. However, within those categories, you have different types 
of money that can be inserted and different items that can be selected. The Category enum 
groups the different types of Input so that the categorize( ) method can produce the 
appropriate Category inside a switch. This method uses an EnumMap to efficiently and 
safely perform the lookup.  

If you study class VendingMachine, you can see how each state is different, and responds 
differently to input. Also note the two transient states; in run( ) the machine waits for an 
Input and doesn’t stop moving through states until it is no longer in a transient state.  

The VendingMachine can be tested in two ways, by using two different Generator 
objects. The RandomInputGenerator just keeps producing inputs, everything except 
SHUT_DOWN. By running this for a long time you get a kind of sanity check to help ensure 
that the machine will not wander into a bad state. The FilelnputGenerator takes a file 
describing inputs in text form, turns them into enum instances, and creates Input objects. 
Here’s the text file used to produce the output shown above:  

QUARTER; QUARTER; QUARTER; CHIPS; 
DOLLAR; DOLLAR; TOOTHPASTE; 
QUARTER; DIME; ABORT_TRANSACTION; 
QUARTER; DIME; SODA; 
QUARTER; DIME; NICKEL; SODA; 
ABORT_TRANSACTION; 
STOP; 
///:~ 

One limitation to this design is that the fields in VendingMachine that are accessed by 
enum State instances must be static, which means you can only have a single 
VendingMachine instance. This may not be that big of an issue if you think about an actual 
(embedded Java) implementation, since you are likely to have only one application per 
machine.  

Exercise 10:   (7) Modify class VendingMachine (only) using EnumMap so that one 
program can have multiple instances of VendingMachine.  

750 Thinking in Java Bruce Eckel 



 

Enumerated Types 751 

Exercise 11:   (7) In a real vending machine you will want to easily add and change the 
type of vended items, so the limits imposed by an enum on Input are impractical 
(remember that enums are for a restricted set of types). Modify VendingMachine.java so 
that the vended items are represented by a class instead of being part of Input, and 
initialize an Array List of these objects from a text file (using 
net.mindview.util.TextFile).  

Project3 Design the vending machine using internationalization, so that one machine can 
easily be adapted to all countries.  

Multiple dispatching 
When you are dealing with multiple interacting types, a program can get particularly messy. 
For example, consider a system that parses and executes mathematical expressions. You 
want to say Number.plus(Number), Number.multiply(Number), etc., where 
Number is the base class for a family of numerical objects. But when you say a.plus(b), 
and you don’t know the exact type of either a or b, how can you get them to interact 
properly?  

The answer starts with something you probably don’t think about: Java only performs single 
dispatching. That is, if you are performing an operation on more than one object whose type 
is unknown, Java can invoke the dynamic binding mechanism on only one of those types. 
This doesn’t solve the problem described here, so you end up detecting some types manually 
and effectively producing your own dynamic binding behavior.  

The solution is called multiple dispatching. (In this case, there will be only two dispatches, 
which is referred to as double dispatching.) Polymorphism can only occur via method calls, 
so if you want double dispatching, there must be two method calls: the first to determine the 
first unknown type, and the second to determine the second unknown type. With multiple 
dispatching, you must have a virtual call for each of the types—if you are working with two 
different type hierarchies that are interacting, you’ll need a virtual call in each hierarchy. 
Generally, you’ll set up a configuration such that a single method call produces more than 
one virtual method call and thus services more than one type in the process. To get this 
effect, you need to work with more than one method: You’ll need a method call for each 
dispatch. The methods in the following example (which implements the "paper, scissors, 
rock" game, traditionally called RoShamBo) are called compete( ) and eval( ) and are both 
members of the same type. They produce one of three possible outcomes:4  

//: enumerated/Outcome.java 
package enumerated; 
public enum Outcome { WIN, LOSE, DRAW } ///:~ 
 
//: enumerated/RoShamBo1.java 
// Demonstration of multiple dispatching. 
package enumerated; 
import java.util.*; 
import static enumerated.Outcome.*; 
 
interface Item { 
  Outcome compete(Item it); 
  Outcome eval(Paper p); 
  Outcome eval(Scissors s); 
  Outcome eval(Rock r); 
                                                            
3 Projects are suggestions to be used (for example) as term projects. Solutions to projects are not included in the solution 
guide. 

4 This example existed for a number of years in both C++ and Java (in Thinking in Patterns) on www.MindView.net 
before it appeared, without attribution, in a book by other authors. 



 

} 
 
class Paper implements Item { 
  public Outcome compete(Item it) { return it.eval(this); } 
  public Outcome eval(Paper p) { return DRAW; } 
  public Outcome eval(Scissors s) { return WIN; } 
  public Outcome eval(Rock r) { return LOSE; } 
  public String toString() { return "Paper"; } 
}  
 
class Scissors implements Item { 
  public Outcome compete(Item it) { return it.eval(this); } 
  public Outcome eval(Paper p) { return LOSE; } 
  public Outcome eval(Scissors s) { return DRAW; } 
  public Outcome eval(Rock r) { return WIN; } 
  public String toString() { return "Scissors"; } 
} 
 
class Rock implements Item { 
  public Outcome compete(Item it) { return it.eval(this); } 
  public Outcome eval(Paper p) { return WIN; } 
  public Outcome eval(Scissors s) { return LOSE; } 
  public Outcome eval(Rock r) { return DRAW; } 
  public String toString() { return "Rock"; } 
}  
 
public class RoShamBo1 { 
  static final int SIZE = 20; 
  private static Random rand = new Random(47); 
  public static Item newItem() { 
    switch(rand.nextInt(3)) { 
      default: 
      case 0: return new Scissors(); 
      case 1: return new Paper(); 
      case 2: return new Rock(); 
    } 
  } 
  public static void match(Item a, Item b) { 
    System.out.println( 
      a + " vs. " + b + ": " +  a.compete(b)); 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < SIZE; i++) 
      match(newItem(), newItem()); 
  } 
} /* Output:  
Rock vs. Rock: DRAW 
Paper vs. Rock: WIN 
Paper vs. Rock: WIN 
Paper vs. Rock: WIN 
Scissors vs. Paper: WIN 
Scissors vs. Scissors: DRAW 
Scissors vs. Paper: WIN 
Rock vs. Paper: LOSE 
Paper vs. Paper: DRAW 
Rock vs. Paper: LOSE 
Paper vs. Scissors: LOSE 
Paper vs. Scissors: LOSE 
Rock vs. Scissors: WIN 
Rock vs. Paper: LOSE 
Paper vs. Rock: WIN 
Scissors vs. Paper: WIN 
Paper vs. Scissors: LOSE 

752 Thinking in Java Bruce Eckel 



 

Paper vs. Scissors: LOSE 
Paper vs. Scissors: LOSE 
Paper vs. Scissors: LOSE 
*///:~ 

Item is the interface for the types that will be multiply dispatched. RoShamBo1.match( ) 
takes two Item objects and begins the doubledispatching process by calling the 
Item.compete( ) function. The virtual mechanism determines the type of a, so it wakes up 
inside the compete( ) function of a’s concrete type. The compete( ) function performs the 
second dispatch by calling eval( ) on the remaining type. Passing itself (this) as an 
argument to eval( ) produces a call to the overloaded eval( ) function, thus preserving the 
type information of the first dispatch. When the second dispatch is completed, you know the 
exact types of both Item objects.  

It requires a lot of ceremony to set up multiple dispatching, but keep in mind that the benefit 
is the syntactic elegance achieved when making the callinstead of writing awkward code to 
determine the type of one or more objects during a call, you simply say, "You two! I don’t care 
what types you are, interact properly with each other!" Make sure this kind of elegance is 
important to you before embarking on multiple dispatching, however.  

Dispatching with enums 

Performing a straight translation of RoShamBo1.java into an enum-based solution is 
problematic because enum instances are not types, so the overloaded eval( ) methods won’t 
work—you can’t use enum instances as argument types. However, there are a number of 
different approaches to implementing multiple dispatching which benefit from enums.  

One approach uses a constructor to initialize each e n um instance with a "row" of outcomes; 
taken together this produces a kind of lookup table:  

//: enumerated/RoShamBo2.java 
// Switching one enum on another. 
package enumerated; 
import static enumerated.Outcome.*; 
 
public enum RoShamBo2 implements Competitor<RoShamBo2> { 
  PAPER(DRAW, LOSE, WIN), 
  SCISSORS(WIN, DRAW, LOSE), 
  ROCK(LOSE, WIN, DRAW); 
  private Outcome vPAPER, vSCISSORS, vROCK; 
  RoShamBo2(Outcome paper,Outcome scissors,Outcome rock) { 
    this.vPAPER = paper; 
    this.vSCISSORS = scissors; 
    this.vROCK = rock; 
  }  
  public Outcome compete(RoShamBo2 it) { 
    switch(it) { 
      default: 
      case PAPER: return vPAPER; 
      case SCISSORS: return vSCISSORS; 
      case ROCK: return vROCK; 
    } 
  } 
  public static void main(String[] args) { 
    RoShamBo.play(RoShamBo2.class, 20); 
  } 
} /* Output: 
ROCK vs. ROCK: DRAW 
SCISSORS vs. ROCK: LOSE 
SCISSORS vs. ROCK: LOSE 

Enumerated Types 753 



 

SCISSORS vs. ROCK: LOSE 
PAPER vs. SCISSORS: LOSE 
PAPER vs. PAPER: DRAW 
PAPER vs. SCISSORS: LOSE 
ROCK vs. SCISSORS: WIN 
SCISSORS vs. SCISSORS: DRAW 
ROCK vs. SCISSORS: WIN 
SCISSORS vs. PAPER: WIN 
SCISSORS vs. PAPER: WIN 
ROCK vs. PAPER: LOSE 
ROCK vs. SCISSORS: WIN 
SCISSORS vs. ROCK: LOSE 
PAPER vs. SCISSORS: LOSE 
SCISSORS vs. PAPER: WIN 
SCISSORS vs. PAPER: WIN 
SCISSORS vs. PAPER: WIN 
SCISSORS vs. PAPER: WIN 
*///:~ 

Once both types have been determined in compete( ), the only action is the return of the 
resulting Outcome. However, you could also call another method, even (for example) via a 
Command object that was assigned in the constructor.  

RoShamBo2.java is much smaller and more straightforward than the original example, 
and thus easier to keep track of. Notice that you’re still using two dispatches to determine the 
type of both objects. In RoShamBo1.java, both dispatches were performed using virtual 
method calls, but here, only the first dispatch uses a virtual method call. The second dispatch 
uses a switch, but is safe because the enum limits the choices in the switch statement.  

The code that drives the enum has been separated out so that it can be used in the other 
examples. First, the Competitor interface defines a type that competes with another 
Competitor:  

//: enumerated/Competitor.java 
// Switching one enum on another. 
package enumerated; 
 
public interface Competitor<T extends Competitor<T>> { 
  Outcome compete(T competitor); 
} ///:~ 

Then we define two static methods (static to avoid having to specify the parameter type 
explicitly). First, match( ) calls compete( ) for one Competitor vs. another, and you can 
see that in this case the type parameter only needs to be a Competitor<T>. But in play( ), 
the type parameter must be both an Enum<T> because it is used in Enums.random( ), 
and a Competitor<T> because it is passed to match( ):  

//: enumerated/RoShamBo.java 
// Common tools for RoShamBo examples. 
package enumerated; 
import net.mindview.util.*; 
 
public class RoShamBo { 
  public static <T extends Competitor<T>> 
  void match(T a, T b) { 
    System.out.println( 
      a + " vs. " + b + ": " +  a.compete(b)); 
  } 
  public static <T extends Enum<T> & Competitor<T>> 
  void play(Class<T> rsbClass, int size) { 
    for(int i = 0; i < size; i++) 

754 Thinking in Java Bruce Eckel 



 

      match( 
        Enums.random(rsbClass),Enums.random(rsbClass)); 
  } 
} ///:~ 

The play( ) method does not have a return value that involves the type parameter T, so it 
seems like you might use wildcards inside the Class<T> type instead of using the leading 
parameter description. However, wildcards cannot extend more than one base type, so we 
must use the above expression.  

Using constant-specific methods 

Because constant-specific methods allow you to provide different method implementations 
for each enum instance, they might seem like a perfect solution for setting up multiple 
dispatching. But even though they can be given different behavior in this way, enum 
instances are not types, so you cannot use them as argument types in method signatures. The 
best you can do for this example is to set up a switch statement:  

//: enumerated/RoShamBo3.java 
// Using constant-specific methods. 
package enumerated; 
import static enumerated.Outcome.*; 
 
public enum RoShamBo3 implements Competitor<RoShamBo3> { 
  PAPER { 
    public Outcome compete(RoShamBo3 it) { 
      switch(it) { 
        default: // To placate the compiler 
        case PAPER: return DRAW; 
        case SCISSORS: return LOSE; 
        case ROCK: return WIN; 
      } 
    } 
  }, 
  SCISSORS { 
    public Outcome compete(RoShamBo3 it) { 
      switch(it) { 
        default: 
        case PAPER: return WIN; 
        case SCISSORS: return DRAW; 
        case ROCK: return LOSE; 
      } 
    } 
  }, 
  ROCK { 
    public Outcome compete(RoShamBo3 it) { 
      switch(it) { 
        default: 
        case PAPER: return LOSE; 
        case SCISSORS: return WIN; 
        case ROCK: return DRAW; 
      } 
    } 
  }; 
  public abstract Outcome compete(RoShamBo3 it); 
  public static void main(String[] args) { 
    RoShamBo.play(RoShamBo3.class, 20); 
  } 
} /* Same output as RoShamBo2.java *///:~ 

Enumerated Types 755 



 

Although this is functional and not unreasonable, the solution of RoShamBo2.java seems 
to require less code when adding a new type, and thus seems more straightforward.  

However, RoShamBo3.java can be simplified and compressed:  

//: enumerated/RoShamBo4.java 
package enumerated; 
 
public enum RoShamBo4 implements Competitor<RoShamBo4> { 
  ROCK { 
    public Outcome compete(RoShamBo4 opponent) { 
      return compete(SCISSORS, opponent); 
    } 
  }, 
  SCISSORS { 
    public Outcome compete(RoShamBo4 opponent) { 
      return compete(PAPER, opponent); 
    } 
  }, 
  PAPER { 
    public Outcome compete(RoShamBo4 opponent) { 
      return compete(ROCK, opponent); 
    } 
  }; 
  Outcome compete(RoShamBo4 loser, RoShamBo4 opponent) { 
    return ((opponent == this) ? Outcome.DRAW 
        : ((opponent == loser) ? Outcome.WIN 
                               : Outcome.LOSE)); 
  } 
  public static void main(String[] args) { 
    RoShamBo.play(RoShamBo4.class, 20); 
  } 
} /* Same output as RoShamBo2.java *///:~ 

Here, the second dispatch is performed by the two-argument version of compete( ), which 
performs a sequence of comparisons and is thus similar to the action of a switch. It’s 
smaller, but a bit confusing. For a large system this confusion can become debilitating.  

Dispatching with EnumMaps 

It’s possible to perform a "true" double dispatch using the EnumMap class, which is 
specifically designed to work very efficiently with enums. Since the goal is to switch on two 
unknown types, an EnumMap of EnumMaps can be used to produce the double dispatch:  

//: enumerated/RoShamBo5.java 
// Multiple dispatching using an EnumMap of EnumMaps. 
package enumerated; 
import java.util.*; 
import static enumerated.Outcome.*; 
 
enum RoShamBo5 implements Competitor<RoShamBo5> { 
  PAPER, SCISSORS, ROCK; 
  static EnumMap<RoShamBo5,EnumMap<RoShamBo5,Outcome>> 
    table = new EnumMap<RoShamBo5, 
      EnumMap<RoShamBo5,Outcome>>(RoShamBo5.class); 
  static { 
    for(RoShamBo5 it : RoShamBo5.values()) 
      table.put(it, 
        new EnumMap<RoShamBo5,Outcome>(RoShamBo5.class)); 
    initRow(PAPER, DRAW, LOSE, WIN); 

756 Thinking in Java Bruce Eckel 



 

    initRow(SCISSORS, WIN, DRAW, LOSE); 
    initRow(ROCK, LOSE, WIN, DRAW); 
  }  
  static void initRow(RoShamBo5 it, 
    Outcome vPAPER, Outcome vSCISSORS, Outcome vROCK) { 
    EnumMap<RoShamBo5,Outcome> row = 
      RoShamBo5.table.get(it); 
    row.put(RoShamBo5.PAPER, vPAPER); 
    row.put(RoShamBo5.SCISSORS, vSCISSORS); 
    row.put(RoShamBo5.ROCK, vROCK); 
  } 
  public Outcome compete(RoShamBo5 it) { 
    return table.get(this).get(it); 
  } 
  public static void main(String[] args) { 
    RoShamBo.play(RoShamBo5.class, 20); 
  } 
} /* Same output as RoShamBo2.java *///:~ 

The EnumMap is initialized using a static clause; you can see the table-like structure of the 
calls to initRow( ). Notice the compete( ) method, where you can see both dispatches 
happening in a single statement.  

Using a 2-D array 

We can simplify the solution even more by noting that each enum instance has a fixed value 
(based on its declaration order) and that ordinal( ) produces this value. A two-dimensional 
array mapping the competitors onto the outcomes produces the smallest and most 
straightforward solution (and possibly the fastest, although remember that EnumMap uses 
an internal array):  

//: enumerated/RoShamBo6.java 
// Enums using "tables" instead of multiple dispatch. 
package enumerated; 
import static enumerated.Outcome.*; 
 
enum RoShamBo6 implements Competitor<RoShamBo6> { 
  PAPER, SCISSORS, ROCK; 
  private static Outcome[][] table = { 
    { DRAW, LOSE, WIN }, // PAPER 
    { WIN, DRAW, LOSE }, // SCISSORS 
    { LOSE, WIN, DRAW }, // ROCK 
  }; 
  public Outcome compete(RoShamBo6 other) { 
    return table[this.ordinal()][other.ordinal()]; 
  } 
  public static void main(String[] args) { 
    RoShamBo.play(RoShamBo6.class, 20); 
  } 
} ///:~ 

The table has exactly the same order as the calls to initRow( ) in the previous example.  

The small size of this code holds great appeal over the previous examples, partly because it 
seems much easier to understand and modify but also because it just seems more 
straightforward. However, it’s not quite as "safe" as the previous examples because it uses an 
array. With a larger array, you might get the size wrong, and if your tests do not cover all 
possibilities something could slip through the cracks.  

Enumerated Types 757 



 

All of these solutions are different types of tables, but it’s worth exploring the expression of 
the tables to find the one that fits best. Note that even though the above solution is the most 
compact, it is also fairly rigid because it can only produce a constant output given constant 
inputs. However, there’s nothing that prevents you from having table produce a function 
object. For certain types of problems, the concept of "table-driven code" can be very 
powerful.  

   

758 Thinking in Java Bruce Eckel 



 

Enumerated Types 759 

Summary 
Even though enumerated types are not terribly complex in themselves, this chapter was 
postponed until later in the book because of what you can do with enums in combination 
with features like polymorphism, generics, and reflection.  

Although they are significantly more sophisticated than enums in C or C++, enums are still 
a "small" feature, something the language has survived (a bit awkwardly) without for many 
years. And yet this chapter shows the valuable impact that a "small" feature can have—
sometimes it gives you just the right leverage to solve a problem elegantly and clearly, and as 
I have been saying throughout this book, elegance is important, and clarity may make the 
difference between a successful solution and one that fails because others cannot understand 
it.  

On the subject of clarity, an unfortunate source of confusion comes from the poor choice in 
Java 1.0 of the term "enumeration" instead of the common and well-accepted term "iterator" 
to indicate an object that selects each element of a sequence (as shown in Collections). Some 
languages even refer to enumerated data types as "enumerators!" This mistake has since 
been rectified in Java, but the Enumeration interface could not, of course, simply be 
removed and so is still hanging around in old (and sometimes new!) code, the library, and 
documentation.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

 





 

Annotations 
Annotations (also known as metadata) provide a formalized way to 
add information to your code so that you can easily use that data at 
some later point.1  

Annotations are partly motivated by a general trend toward combining metadata with 
source-code files, instead of keeping it in external documents. They are also a response to 
feature pressure from other languages like C#.  

Annotations are one of the fundamental language changes introduced in Java SE5. They 
provide information that you need to fully describe your program, but that cannot be 
expressed in Java. Thus, annotations allow you to store extra information about your 
program in a format that is tested and verified by the compiler. Annotations can be used to 
generate descriptor files or even new class definitions and help ease the burden of writing 
"boilerplate" code. Using annotations, you can keep this metadata in the Java source code, 
and have the advantage of cleaner looking code, compile-time type checking and the 
annotation API to help build processing tools for your annotations. Although a few types of 
metadata come predefined in Java SE5, in general the kind of annotations you add and what 
you do with them are entirely up to you.  

The syntax of annotations is reasonably simple and consists mainly of the addition of the @ 
symbol to the language. Java SE5 contains three generalpurpose built-in annotations, 
defined in java.lang: 

• @Override, to indicate that a method definition is intended to override a method in 
the base class. This generates a compiler error if you accidentally misspell the method 
name or give an improper signature.2

  
 

• @Deprecated, to produce a compiler warning if this element is used. 
 

• @SuppressWarnings, to turn off inappropriate compiler warnings. This annotation 
is allowed but not supported in earlier releases of Java SE5 (it was ignored).  

 
Four additional annotation types support the creation of new annotations; you will learn 
about these in this chapter.  

Anytime you create descriptor classes or interfaces that involve repetitive work, you can 
usually use annotations to automate and simplify the process. Much of the extra work in 
Enterprise JavaBeans (EJBs), for example, is eliminated through the use of annotations in 
EJB3.0.  

Annotations can replace existing systems like XDoclet, which is an independent doclet tool 
(see the supplement at http://MindView.net/Books/BetterJava) that is specifically designed 
for creating annotation-style doclets. In contrast, annotations are true language constructs 
and hence are structured, and are type-checked at compile time. Keeping all the information 
in the actual source code and not in comments makes the code neater and easier to maintain. 
By using and extending the annotation API and tools, or with external bytecode manipulation 
                                                            
1 Jeremy Meyer came to Crested Butte and spent two weeks with me working on this chapter. His help was invaluable. 

2 This was no doubt inspired by a similar feature in C#. The C# feature is a keyword and not an annotation, and is 
enforced by the compiler. That is, when you override a method in C#, you must use the override keyword, whereas in 
Java the (©Override annotation is optional. 

 



 

libraries as you will see in this chapter, you can perform powerful inspection and 
manipulation of your source code as well as the bytecode.  

Basic syntax 
In the example below, the method testExecute( ) is annotated with @Test. This doesn’t do 
anything by itself, but the compiler will ensure that you have a definition for the @Test 
annotation in your build path. As you will see later in the chapter, you can create a tool which 
runs this method for you via reflection.  

//: annotations/Testable.java 
package annotations; 
import net.mindview.atunit.*; 
 
public class Testable { 
  public void execute() { 
    System.out.println("Executing.."); 
  } 
  @Test void testExecute() { execute(); } 
} ///:~ 

Annotated methods are no different from other methods. The @Test annotation in this 
example can be used in combination with any of the modifiers like public or static or void. 
Syntactically, annotations are used in much the same way as modifiers.  

Defining annotations 

Here is the definition of the annotation above. You can see that annotation definitions look a 
lot like interface definitions. In fact, they compile to class files like any other Java interface:  

//: net/mindview/atunit/Test.java 
// The @Test tag. 
package net.mindview.atunit; 
import java.lang.annotation.*; 
 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface Test {} ///:~ 

Apart from the @ symbol, the definition of @Test is much like that of an empty interface. An 
annotation definition also requires the meta-annotations @Target and (@Retention. 
@Target defines where you can apply this annotation (a method or a field, for example). 
@Retention defines whether the annotations are available in the source code (SOURCE), 
in the class files (CLASS), or at run time (RUNTIME).  

Annotations will usually contain elements to specify values in your annotations. A program 
or tool can use these parameters when processing your annotations. Elements look like 
interface methods, except that you can declare default values.  

An annotation without any elements, such as @Test above, is called a marker annotation.  

Here is a simple annotation that tracks use cases in a project. Programmers annotate each 
method or set of methods which fulfill the requirements of a particular use case. A project 
manager can get an idea of project progress by counting the implemented use cases, and 
developers maintaining the project can easily find use cases if they need to update or debug 
business rules within the system.  

762 Thinking in Java Bruce Eckel 



 

//: annotations/UseCase.java 
import java.lang.annotation.*; 
 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface UseCase { 
  public int id(); 
  public String description() default "no description"; 
} ///:~ 

Notice that id and description resemble method declarations. Because id is type-checked 
by the compiler, it is a reliable way of linking a tracking database to the use case document 
and the source code. The element description has a default value which is picked up by 
the annotation processor if no value is specified when a method is annotated.  

Here is a class with three methods annotated as use cases:  

//: annotations/PasswordUtils.java 
import java.util.*; 
 
public class PasswordUtils { 
  @UseCase(id = 47, description = 
  "Passwords must contain at least one numeric") 
  public boolean validatePassword(String password) { 
    return (password.matches("\\w*\\d\\w*")); 
  } 
  @UseCase(id = 48) 
  public String encryptPassword(String password) { 
   return new StringBuilder(password).reverse().toString(); 
  } 
  @UseCase(id = 49, description = 
  "New passwords can’t equal previously used ones") 
  public boolean checkForNewPassword( 
    List<String> prevPasswords, String password) { 
    return !prevPasswords.contains(password); 
  } 
} ///:~ 

The values of the annotation elements are expressed as name-value pairs in parentheses after 
the @UseCase declaration. The annotation for encryptPassword( ) is not passed a value 
for the description element here, so the default value defined in the ©interface UseCase 
will appear when the class is run through an annotation processor.  

You could imagine using a system like this in order to "sketch" out your system, and then 
filling in the functionality as you build it.  

Meta-annotations 

There are currently only three standard annotations (described earlier) and four meta-
annotations defined in the Java language. The meta-annotations are for annotating 
annotations: 

@Target Where this annotation can be applied. The possible 
ElementType arguments are:  

CONSTRUCTOR: Constructor declaration  

FIELD: Field declaration (includes enum constants) 
LOCAL_VARIABLE: Local variable declaration 
METHOD: Method declaration  

Annotations 763 



 

PACKAGE: Package declaration  

PARAMETER: Parameter declaration  

TYPE: Class, interface (including annotation type),  

or enum declaration 

@Retention How long the annotation information is kept. The 
possible RetentionPolicy arguments are:  

SOURCE: Annotations are discarded by the  

compiler.  

CLASS: Annotations are available in the class file by 
the compiler but can be discarded by the VM. 
RUNTIME: Annotations are retained by the VM at 
run time, so they may be read reflectively. 

@Documented Include this annotation in the Javadocs. 

@Inherited Allow subclasses to inherit parent annotations. 

Most of the time, you will be defining your own annotations and writing your own processors 
to deal with them.  

   

764 Thinking in Java Bruce Eckel 



 

Writing annotation processors 
Without tools to read them, annotations are hardly more useful than comments. An 
important part of the process of using annotations is to create and use annotation 
processors. Java SE5 provides extensions to the reflection API to help you create these tools. 
It also provides an external tool called apt to help you parse Java source code with 
annotations.  

Here is a very simple annotation processor that reads the annotated PasswordUtils class 
and uses reflection to look for @UseCase tags. Given a list of id values, it lists the use cases 
it finds and reports any that are missing:  

//: annotations/UseCaseTracker.java 
import java.lang.reflect.*; 
import java.util.*; 
 
public class UseCaseTracker { 
  public static void 
  trackUseCases(List<Integer> useCases, Class<?> cl) { 
    for(Method m : cl.getDeclaredMethods()) { 
      UseCase uc = m.getAnnotation(UseCase.class); 
      if(uc != null) { 
        System.out.println("Found Use Case:" + uc.id() + 
          " " + uc.description()); 
        useCases.remove(new Integer(uc.id())); 
      } 
    } 
    for(int i : useCases) { 
      System.out.println("Warning: Missing use case-" + i); 
    } 
  } 
  public static void main(String[] args) { 
    List<Integer> useCases = new ArrayList<Integer>(); 
    Collections.addAll(useCases, 47, 48, 49, 50); 
    trackUseCases(useCases, PasswordUtils.class); 
  } 
} /* Output: 
Found Use Case:47 Passwords must contain at least one numeric 
Found Use Case:48 no description 
Found Use Case:49 New passwords can’t equal previously used ones 
Warning: Missing use case-50 
*///:~ 

This uses both the reflection method getDeclaredMethods( ) and the method 
getAnnotation( ), which comes from the AnnotatedElement interface (classes like 
Class, Method and Field all implement this interface). This method returns the annotation 
object of the specified type, in this case "UseCase." If there are no annotations of that 
particular type on the annotated method, a null value is returned. The element values are 
extracted by calling id( ) and description( ). Remember that no description was specified 
in the annotation for the encryptPassword( ) method, so the processor above finds the 
default value "no description" when it calls the description( ) method on that particular 
annotation.  

Annotation elements 

The @UseCase tag defined in UseCase.java contains the int element id and String 
element description. Here is a list of the allowed types for annotation elements: 

Annotations 765 



 

• All primitives (int, float, boolean etc.)  
 
• String 

 
• Class 

 
• Enums 

 
• Annotations 

 
• Arrays of any of the above  

 
The compiler will report an error if you try to use any other types. Note that you are not 
allowed to use any of the wrapper classes, but because of autoboxing this isn’t really a 
limitation. You can also have elements that are themselves annotations. As you will see a bit 
later, nested annotations can be very helpful.  

Default value constraints 

The compiler is quite picky about default element values. No element can have an 
unspecified value. This means that elements must either have default values or values 
provided by the class that uses the annotation.  

There is another restriction, which is that none of the non-primitive type elements are 
allowed to take null as a value, either when declared in the source code or when defined as a 
default value in the annotation interface. This makes it hard to write a processor that acts on 
the presence or absence of an element, because every element is effectively present in every 
annotation declaration. You can get around this by checking for specific values, like empty 
strings or negative values:  

//: annotations/SimulatingNull.java 
import java.lang.annotation.*; 
 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface SimulatingNull { 
  public int id() default -1; 
  public String description() default ""; 
} ///:~ 

This is a typical idiom in annotation definitions.  

Generating external files 

Annotations are especially useful when working with frameworks that require some sort of 
additional information to accompany your source code. Technologies like Enterprise 
JavaBeans (prior to EJB3) require numerous interfaces and deployment descriptors which 
are "boilerplate" code, defined in the same way for every bean. Web services, custom tag 
libraries and object/relational mapping tools like Toplink and Hibernate often require XML 
descriptors that are external to the code. After defining a Java class, the programmer must 
undergo the tedium of respecifying information like the name, package and so on—
information that already exists in the original class. Whenever you use an external descriptor 
file, you end up with two separate sources of information about a class, which usually leads to 
code synchronization problems. This also requires that programmers working on the project 
must know about editing the descriptor as well as how to write Java programs.  

766 Thinking in Java Bruce Eckel 



 

Suppose you want to provide basic object/relational mapping functionality to automate the 
creation of a database table in order to store a JavaBean. You could use an XML descriptor 
file to specify the name of the class, each member, and information about its database 
mapping. Using annotations, however, you can keep all of the information in the JavaBean 
source file. To do this, you need annotations to define the name of the database table 
associated with the bean, the columns, and the SQL types to map to the bean’s properties.  

Here is an annotation for a bean that tells the annotation processor that it should create a 
database table:  

//: annotations/database/DBTable.java 
package annotations.database; 
import java.lang.annotation.*; 
 
@Target(ElementType.TYPE) // Applies to classes only 
@Retention(RetentionPolicy.RUNTIME) 
public @interface DBTable { 
  public String name() default ""; 
} ///:~ 

Each ElementType that you specify in the @Target annotation is a restriction that tells the 
compiler that your annotation can only be applied to that particular type. You can specify a 
single value of the enum ElementType, or you can specify a comma-separated list of any 
combination of values. If you want to apply the annotation to any ElementType, you can 
leave out the @Target annotation altogether, although this is uncommon.  

Note that @DBTable has a name( ) element so that the annotation can supply a name for 
the database table that the processor will create.  

Here are the annotations for the JavaBean fields:  

//: annotations/database/Constraints.java 
package annotations.database; 
import java.lang.annotation.*; 
 
@Target(ElementType.FIELD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface Constraints { 
  boolean primaryKey() default false; 
  boolean allowNull() default true; 
  boolean unique() default false; 
} ///:~ 
 
//: annotations/database/SQLString.java 
package annotations.database; 
import java.lang.annotation.*; 
 
@Target(ElementType.FIELD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface SQLString { 
  int value() default 0; 
  String name() default ""; 
  Constraints constraints() default @Constraints; 
} ///:~ 
 
//: annotations/database/SQLInteger.java 
package annotations.database; 
import java.lang.annotation.*; 
 
@Target(ElementType.FIELD) 
@Retention(RetentionPolicy.RUNTIME) 

Annotations 767 



 

public @interface SQLInteger { 
  String name() default ""; 
  Constraints constraints() default @Constraints; 
} ///:~ 

The @Constraints annotation allows the processor to extract the metadata about the 
database table. This represents a small subset of the constraints generally offered by 
databases, but it gives you the general idea. The elements primaryKey( ), allowNull( ) 
and unique( ) are given sensible default values so that in most cases a user of the 
annotation won’t have to type too much.  

The other two (@interfaces define SQL types. Again, for this framework to be more useful, 
you need to define an annotation for each additional SQL type. Here, two types will be 
enough.  

These types each have a name( ) element and a constraints( ) element. The latter makes 
use of the nested annotation feature to embed the information about the column type’s 
database constraints. Note that the default value for the contraints( ) element is 
@Constraints. Since there are no element values specified in parentheses after this 
annotation type, the default value of constraints( ) is actually an @Constraints 
annotation with its own default values set. To make a nested @Constraints annotation with 
uniqueness set to true by default, you can define its element like this:  

//: annotations/database/Uniqueness.java 
// Sample of nested annotations 
package annotations.database; 
 
public @interface Uniqueness { 
  Constraints constraints() 
    default @Constraints(unique=true); 
} ///:~ 

Here is a simple bean that uses these annotations:  

//: annotations/database/Member.java 
package annotations.database; 
 
@DBTable(name = "MEMBER") 
public class Member { 
  @SQLString(30) String firstName; 
  @SQLString(50) String lastName; 
  @SQLInteger Integer age; 
  @SQLString(value = 30, 
  constraints = @Constraints(primaryKey = true)) 
  String handle; 
  static int memberCount; 
  public String getHandle() { return handle; } 
  public String getFirstName() { return firstName; } 
  public String getLastName() { return lastName; } 
  public String toString() { return handle; } 
  public Integer getAge() { return age; } 
} ///:~ 

The @DBTable class annotation is given the value "MEMBER", which will be used as the 
table name. The bean properties, firstName and lastName, are both annotated with 
@SQLStrings and have element values of 30 and 50, respectively. These annotations are 
interesting for two reasons: First, they use the default value on the nested (@Constraints 
annotation, and second, they use a shortcut feature. If you define an element on an 
annotation with the name value, then as long as it is the only element type specified you 
don’t need to use the name-value pair syntax; you can just specify the value in parentheses. 

768 Thinking in Java Bruce Eckel 



 

This can be applied to any of the legal element types. Of course this limits you to naming your 
element "value" but in the case above, it does allow for the semantically meaningful and easy-
to-read annotation specification:  

@SQLString(30)  

The processor will use this value to set the size of the SQL column that it will create.  

As neat as the default-value syntax is, it quickly becomes complex. Look at the annotation on 
the field handle. This has an @SQLString annotation, but it also needs to be a primary key 
on the database, so the element type primaryKey must be set on the nested @Constraint 
annotation. This is where it gets messy. You are now forced to use the rather long-winded 
namevalue pair form for this nested annotation, respecifying the element name and the 
@interface name. But because the specially named element value is no longer the only 
element value being specified, you can’t use the shortcut form. As you can see, the result is 
not pretty.  

Alternative solutions 

There are other ways of creating annotations for this task. You could, for example, have a 
single annotation class called @TableColumn with an enum element which defines values 
like STRING, INTEGER, FLOAT, etc. This eliminates the need for an @interface for each 
SQL type, but makes it impossible to qualify your types with additional elements like size, or 
precision, which is probably more useful.  

You could also use a String element to describe the actual SQL type, e.g., "VARCHAR(30)" 
or "INTEGER". This does allow you to qualify the types, but it ties up the mapping from Java 
type to SQL type in your code, which is not good design. You don’t want to have to recompile 
classes if you change databases; it would be more elegant just to tell your annotation 
processor that you are using a different "flavor" of SQL, and it let it take that into account 
when processing the annotations.  

A third workable solution is to use two annotation types together, @Constraints and the 
relevant SQL type (for example, @SQLInteger), to annotate the desired field. This is 
slightly messy but the compiler allows as many different annotations as you like on an 
annotation target. Note that when using multiple annotations, you cannot use the same 
annotation twice.  

Annotations don’t support inheritance 

You cannot use the extends keyword with @interfaces. This is a pity, because an elegant 
solution would have been to define an annotation @TableColumn, as suggested above, 
with a nested annotation of type @SQLType. That way, you could inherit all your SQL types, 
like @SQLInteger and @SQLString, from @SQLType. This would reduce typing and 
neaten the syntax. There doesn’t seem to be any suggestion of annotations supporting 
inheritance in future releases, so the examples above seem to be the best you can do under the 
circumstances.  

Implementing the processor 

Here is an example of an annotation processor which reads in a class file, checks for its 
database annotations and generates the SQL command for making the database:  

//: annotations/database/TableCreator.java 
// Reflection-based annotation processor. 
// {Args: annotations.database.Member} 

Annotations 769 



 

package annotations.database; 
import java.lang.annotation.*; 
import java.lang.reflect.*; 
import java.util.*; 
 
public class TableCreator { 
  public static void main(String[] args) throws Exception { 
    if(args.length < 1) { 
      System.out.println("arguments: annotated classes"); 
      System.exit(0); 
    } 
    for(String className : args) { 
      Class<?> cl = Class.forName(className); 
      DBTable dbTable = cl.getAnnotation(DBTable.class); 
      if(dbTable == null) { 
        System.out.println( 
          "No DBTable annotations in class " + className); 
        continue; 
      } 
      String tableName = dbTable.name(); 
      // If the name is empty, use the Class name: 
      if(tableName.length() < 1) 
        tableName = cl.getName().toUpperCase(); 
      List<String> columnDefs = new ArrayList<String>(); 
      for(Field field : cl.getDeclaredFields()) { 
        String columnName = null; 
        Annotation[] anns = field.getDeclaredAnnotations(); 
        if(anns.length < 1) 
          continue; // Not a db table column 
        if(anns[0] instanceof SQLInteger) { 
          SQLInteger sInt = (SQLInteger) anns[0]; 
          // Use field name if name not specified 
          if(sInt.name().length() < 1) 
            columnName = field.getName().toUpperCase(); 
          else 
            columnName = sInt.name(); 
          columnDefs.add(columnName + " INT" + 
            getConstraints(sInt.constraints())); 
        } 
        if(anns[0] instanceof SQLString) { 
          SQLString sString = (SQLString) anns[0]; 
          // Use field name if name not specified. 
          if(sString.name().length() < 1) 
            columnName = field.getName().toUpperCase(); 
          else 
            columnName = sString.name(); 
          columnDefs.add(columnName + " VARCHAR(" + 
            sString.value() + ")" + 
            getConstraints(sString.constraints())); 
        } 
        StringBuilder createCommand = new StringBuilder( 
          "CREATE TABLE " + tableName + "("); 
        for(String columnDef : columnDefs) 
          createCommand.append("\n    " + columnDef + ","); 
        // Remove trailing comma 
        String tableCreate = createCommand.substring( 
          0, createCommand.length() - 1) + ");"; 
        System.out.println("Table Creation SQL for " + 
          className + " is :\n" + tableCreate); 
      } 
    } 
  } 
  private static String getConstraints(Constraints con) { 

770 Thinking in Java Bruce Eckel 



 

Annotations 771 

    String constraints = ""; 
    if(!con.allowNull()) 
      constraints += " NOT NULL"; 
    if(con.primaryKey()) 
      constraints += " PRIMARY KEY"; 
    if(con.unique()) 
      constraints += " UNIQUE"; 
    return constraints; 
  } 
} /* Output: 
Table Creation SQL for annotations.database.Member is : 
CREATE TABLE MEMBER( 
    FIRSTNAME VARCHAR(30)); 
Table Creation SQL for annotations.database.Member is : 
CREATE TABLE MEMBER( 
    FIRSTNAME VARCHAR(30), 
    LASTNAME VARCHAR(50)); 
Table Creation SQL for annotations.database.Member is : 
CREATE TABLE MEMBER( 
    FIRSTNAME VARCHAR(30), 
    LASTNAME VARCHAR(50), 
    AGE INT); 
Table Creation SQL for annotations.database.Member is : 
CREATE TABLE MEMBER( 
    FIRSTNAME VARCHAR(30), 
    LASTNAME VARCHAR(50), 
    AGE INT, 
    HANDLE VARCHAR(30) PRIMARY KEY); 
*///:~ 

The main( ) method cycles through each of the class names on the command line. Each class 
is loaded using forName( ) and checked to see if it has the @DBTable annotation on it 
with getAnnotation(DBTable.class). If it does, then the table name is found and stored. 
All of the fields in the class are then loaded and checked using getDeclaredAnnotations( 
). This method returns an array of all of the defined annotations for a particular method. The 
instanceof operator is used to determine if these annotations are of type @SQLInteger 
and @SQLString, and in each case the relevant String fragment is then created with the 
name of the table column. Note that because there is no inheritance of annotation interfaces, 
using getDeclaredAnnotations( ) is the only way you can approximate polymorphic 
behavior.  

The nested @Constraint annotation is passed to the getConstraints( ) which builds up a 
String containing the SQL constraints.  

It is worth mentioning that the technique shown above is a somewhat naive way of defining 
an object/relational mapping. Having an annotation of type @DBTable which takes the 
table name as a parameter forces you to recompile your Java code if you want to change the 
table name. This might not be desirable. There are many available frameworks for mapping 
objects to relational databases, and more and more of them are making use of annotations.  

Exercise 1:   (2) Implement more SQL types in the database example.  

Project3 Modify the database example so that it connects and interacts with a real database 
using JDBC.  

Project: Modify the database example so that it creates conformant XML files rather than 
writing SQL code.  
                                                            
3 Projects are suggestions to be used (for example) as term projects. Solutions to projects are not included in the solution 
guide. 



 

772 Thinking in Java Bruce Eckel 

Using apt to process annotations 
The annotation processing tool apt is Sun’s first version of a tool that aids the processing of 
annotations. Because it is an early incarnation, the tool is still a little primitive, but it has 
features which can make your life easier.  

Like javac, apt is designed to be run on Java source files rather than compiled classes. By 
default, apt compiles the source files when it has finished processing them. This is useful if 
you are automatically creating new source files as part of your build process. In fact, apt 
checks newly created source files for annotations and compiles them all in the same pass.  

When your annotation processor creates a new source file, that file is itself checked for 
annotations in a new round (as it is referred to in the documentation) of processing. The tool 
will continue round after round of processing until no more source files are being created. It 
then compiles all of the source files.  

Each annotation you write will need its own processor, but the apt tool can easily group 
several annotation processors together. It allows you to specify multiple classes to be 
processed, which is a lot easier than having to iterate through File classes yourself. You can 
also add listeners to receive notification of when an annotation processing round is complete.  

At the time of this writing, apt is not available as an Ant task (see the supplement at 
http://MindView.net/Books/BetterJava), but it can obviously be run as an external task 
from Ant in the meantime. In order to compile the annotation processors in this section you 
must have tools.jar in your classpath; this library also contains the the com.sun.mirror.* 
interfaces.  

apt works by using an AnnotationProcessorFactory to create the right kind of 
annotation processor for each annotation it finds. When you run apt, you specify either a 
factory class or a classpath where it can find the factories it needs. If you don’t do this, apt 
will embark on an arcane discovery process, the details of which can be found in the 
Developing an Annotation Processor section of Sun’s documentation.  

When you create an annotation processor for use with apt, you can’t use the reflection 
features in Java because you are working with source code, not compiled classes.4

 The 
mirror API5 solves this problem by allowing you to view methods, fields and types in 
uncompiled source code.  

Here is an annotation that can be used to extract the public methods from a class and turn 
them into an interface:  

//: annotations/ExtractInterface.java 
// APT-based annotation processing. 
package annotations; 
import java.lang.annotation.*; 
 
@Target(ElementType.TYPE) 
@Retention(RetentionPolicy.SOURCE) 
public @interface ExtractInterface { 
  public String value(); 
} ///:~ 

                                                            
4 However, using the non-standard -XclassesAsDecls option, you may work with annotations that are in compiled 
classes. 

5 The Java designers coyly suggest that a mirror is where you find a reflection. 



 

The RetentionPolicy is SOURCE because there is no point in keeping this annotation in 
the class file after we have extracted the interface from the class. The following class provides 
a public method which can become part of a useful interface:  

//: annotations/Multiplier.java 
// APT-based annotation processing. 
package annotations; 
 
@ExtractInterface("IMultiplier") 
public class Multiplier { 
  public int multiply(int x, int y) { 
    int total = 0; 
    for(int i = 0; i < x; i++) 
      total = add(total, y); 
    return total; 
  } 
  private int add(int x, int y) { return x + y; } 
  public static void main(String[] args) { 
    Multiplier m = new Multiplier(); 
    System.out.println("11*16 = " + m.multiply(11, 16)); 
  } 
} /* Output: 
11*16 = 176 
*///:~ 

The Multiplier class (which only works with positive integers) has a multiply( ) method 
which calls the private add( ) method numerous times to perform multiplication. The 
add( ) method is not public, so is not part of the interface. The annotation is given the value 
of IMultiplier, which is the name of the interface to create.  

Now you need a processor to do the extraction:  

//: annotations/InterfaceExtractorProcessor.java 
// APT-based annotation processing. 
// {Exec: apt -factory 
// annotations.InterfaceExtractorProcessorFactory 
// Multiplier.java -s ../annotations} 
package annotations; 
import com.sun.mirror.apt.*; 
import com.sun.mirror.declaration.*; 
import java.io.*; 
import java.util.*; 
 
public class InterfaceExtractorProcessor 
  implements AnnotationProcessor { 
  private final AnnotationProcessorEnvironment env; 
  private ArrayList<MethodDeclaration> interfaceMethods = 
    new ArrayList<MethodDeclaration>(); 
  public InterfaceExtractorProcessor( 
    AnnotationProcessorEnvironment env) { this.env = env; } 
  public void process() { 
    for(TypeDeclaration typeDecl : 
      env.getSpecifiedTypeDeclarations()) { 
      ExtractInterface annot = 
        typeDecl.getAnnotation(ExtractInterface.class); 
      if(annot == null) 
        break; 
      for(MethodDeclaration m : typeDecl.getMethods()) 
        if(m.getModifiers().contains(Modifier.PUBLIC) && 
           !(m.getModifiers().contains(Modifier.STATIC))) 
          interfaceMethods.add(m); 
      if(interfaceMethods.size() > 0) { 

Annotations 773 



 

        try { 
          PrintWriter writer = 
            env.getFiler().createSourceFile(annot.value()); 
          writer.println("package " + 
            typeDecl.getPackage().getQualifiedName() +";"); 
          writer.println("public interface " + 
            annot.value() + " {"); 
          for(MethodDeclaration m : interfaceMethods) { 
            writer.print("  public "); 
            writer.print(m.getReturnType() + " "); 
            writer.print(m.getSimpleName() + " ("); 
            int i = 0; 
            for(ParameterDeclaration parm : 
              m.getParameters()) { 
              writer.print(parm.getType() + " " + 
                parm.getSimpleName()); 
              if(++i < m.getParameters().size()) 
                writer.print(", "); 
            } 
            writer.println(");"); 
          } 
          writer.println("}"); 
          writer.close(); 
        } catch(IOException ioe) { 
          throw new RuntimeException(ioe); 
        } 
      } 
    } 
  } 
} ///:~ 

The process( ) method is where all the work is done. The MethodDeclaration class and 
its getModifiers( ) method are used to identify the public methods (but ignore the static 
ones) of the class being processed. If any are found, they are stored in an ArrayList and 
used to create the methods of a new interface definition in a .java file.  

Notice that an AnnotationProcessorEnvironment object is passed into the constructor. 
You can query this object for all of the types (class definitions) that the apt tool is processing, 
and you can use it to get a Messager object and a Filer object. The Messager enables you 
to report messages to the user, e.g., any errors that might have occurred with the processing 
and where they are in the source code. The Filer is a kind of PrintWriter through which 
you will create new files. The main reason that you use a Filer object, rather than a plain 
PrintWriter, is that it allows apt to keep track of any new files that you create, so it can 
check them for annotations and compile them if it needs to.  

You will also see that the method createSourceFile( ) opens an ordinary output stream 
with the correct name for your Java class or interface. There isn’t any support for creating 
Java language constructs, so you have to generate the Java source code using the somewhat 
primitive print( ) and println( ) methods. This means making sure that your brackets 
match up and that your code is syntactically correct.  

process( ) is called by the apt tool, which needs a factory to provide the right processor:  

//: annotations/InterfaceExtractorProcessorFactory.java 
// APT-based annotation processing. 
package annotations; 
import com.sun.mirror.apt.*; 
import com.sun.mirror.declaration.*; 
import java.util.*; 
 
public class InterfaceExtractorProcessorFactory 

774 Thinking in Java Bruce Eckel 



 

  implements AnnotationProcessorFactory { 
  public AnnotationProcessor getProcessorFor( 
    Set<AnnotationTypeDeclaration> atds, 
    AnnotationProcessorEnvironment env) { 
    return new InterfaceExtractorProcessor(env); 
  } 
  public Collection<String> supportedAnnotationTypes() { 
    return 
     Collections.singleton("annotations.ExtractInterface"); 
  } 
  public Collection<String> supportedOptions() { 
    return Collections.emptySet(); 
  } 
} ///:~ 

There are only three methods on the AnnotationProcessorFactory interface. As you can 
see, the one which provides the processor is getProcessorFor( ), which takes a Set of type 
declarations (the Java classes that the apt tool is being run against), and the 
AnnotationProcessorEnvironment object, which you have already seen being passed 
through to the processor. The other two methods, supportedAnnotationTypes( ) and 
supportedOptions( ), are there so you can check that you have processors for all of the 
annotations found by apt and that you support all options specified at the command prompt. 
The getProcessorFor( ) method is particularly important because if you don’t return the 
full class name of your annotation type in the String collection, apt will warn you that there 
is no relevant processor and exit without doing anything.  

The processor and factory are in the package annotations, so for the directory structure 
above, the command line is embedded in the ‘Exec’ comment tag at the beginning of 
InterfaceExtractorProcessor.java. This tells apt to use the factory class defined above 
and process the file Multiplier.java. The -s option specifies that any new files must be 
created in the directory annotations. The generated IMultiplier.java file, as you might 
guess by looking at the println( ) statements in the processor above, looks like this:  

package annotations; 
public interface IMultiplier { 
  public int multiply (int x, int y); 
} 

This file will also be compiled by apt, so you will see the file IMultiplier.class in the same 
directory.  

Exercise 2:   (3) Add support for division to the interface extractor.  

Using the Visitor pattern with apt 
Processing annotations can become complex. The example above is a relatively simple 
annotation processor and only interprets one annotation, but still requires a fair amount of 
complexity to make it work. To prevent the complexity from scaling up badly when you have 
more annotations and more processors, the mirror API provides classes to support the 
Visitor design pattern. Visitor is one of the classic design patterns from the book Design 
Patterns by Gamma et al., and you can also find a more a detailed explanation in Thinking in 
Patterns.  

A Visitor traverses a data structure or collection of objects, performing an operation on each 
one. The data structure need not be ordered, and the operation that you perform on each 
object will be specific to its type. This decouples the operations from the objects themselves, 
meaning that you can add new operations without adding methods to the class definitions.  

Annotations 775 



 

This makes it useful for processing annotations, because a Java class can be thought of as a 
collection of objects such as TypeDeclarations, FieldDeclarations, 
MethodDeclarations, and so on. When you use the apt tool with the Visitor pattern, you 
provide a Visitor class which has a method for handling each type of declaration that you 
visit. Thus you can implement appropriate behavior for annotations on methods, classes, 
fields and so on.  

Here is the SQL table generator again, this time using a factory and a processor that makes 
use of the Visitor pattern:  

//: annotations/database/TableCreationProcessorFactory.java 
// The database example using Visitor. 
// {Exec: apt -factory 
// annotations.database.TableCreationProcessorFactory 
// database/Member.java -s database} 
package annotations.database; 
import com.sun.mirror.apt.*; 
import com.sun.mirror.declaration.*; 
import com.sun.mirror.util.*; 
import java.util.*; 
import static com.sun.mirror.util.DeclarationVisitors.*; 
 
public class TableCreationProcessorFactory 
  implements AnnotationProcessorFactory { 
  public AnnotationProcessor getProcessorFor( 
    Set<AnnotationTypeDeclaration> atds, 
    AnnotationProcessorEnvironment env) { 
    return new TableCreationProcessor(env); 
  } 
  public Collection<String> supportedAnnotationTypes() { 
    return Arrays.asList( 
      "annotations.database.DBTable", 
      "annotations.database.Constraints", 
      "annotations.database.SQLString", 
      "annotations.database.SQLInteger"); 
  } 
  public Collection<String> supportedOptions() { 
    return Collections.emptySet(); 
  } 
  private static class TableCreationProcessor 
    implements AnnotationProcessor { 
    private final AnnotationProcessorEnvironment env; 
    private String sql = ""; 
    public TableCreationProcessor( 
      AnnotationProcessorEnvironment env) { 
      this.env = env; 
    } 
    public void process() { 
      for(TypeDeclaration typeDecl : 
        env.getSpecifiedTypeDeclarations()) { 
        typeDecl.accept(getDeclarationScanner( 
          new TableCreationVisitor(), NO_OP)); 
        sql = sql.substring(0, sql.length() - 1) + ");"; 
        System.out.println("creation SQL is :\n" + sql); 
        sql = ""; 
      } 
    } 
    private class TableCreationVisitor 
      extends SimpleDeclarationVisitor { 
      public void visitClassDeclaration( 
        ClassDeclaration d) { 
        DBTable dbTable = d.getAnnotation(DBTable.class); 

776 Thinking in Java Bruce Eckel 



 

        if(dbTable != null) { 
          sql += "CREATE TABLE "; 
          sql += (dbTable.name().length() < 1) 
            ? d.getSimpleName().toUpperCase() 
            : dbTable.name(); 
          sql += " ("; 
        } 
      } 
      public void visitFieldDeclaration( 
        FieldDeclaration d) { 
        String columnName = ""; 
        if(d.getAnnotation(SQLInteger.class) != null) { 
          SQLInteger sInt = d.getAnnotation( 
              SQLInteger.class); 
          // Use field name if name not specified 
          if(sInt.name().length() < 1) 
            columnName = d.getSimpleName().toUpperCase(); 
          else 
            columnName = sInt.name(); 
          sql += "\n    " + columnName + " INT" + 
            getConstraints(sInt.constraints()) + ","; 
        } 
        if(d.getAnnotation(SQLString.class) != null) { 
          SQLString sString = d.getAnnotation( 
              SQLString.class); 
          // Use field name if name not specified. 
          if(sString.name().length() < 1) 
            columnName = d.getSimpleName().toUpperCase(); 
          else 
            columnName = sString.name(); 
          sql += "\n    " + columnName + " VARCHAR(" + 
            sString.value() + ")" + 
            getConstraints(sString.constraints()) + ","; 
        } 
      } 
      private String getConstraints(Constraints con) { 
        String constraints = ""; 
        if(!con.allowNull()) 
          constraints += " NOT NULL"; 
        if(con.primaryKey()) 
          constraints += " PRIMARY KEY"; 
        if(con.unique()) 
          constraints += " UNIQUE"; 
        return constraints; 
      } 
    } 
  } 
} ///:~ 

The output is identical to the previous DBTable example.  

The processor and the visitor are inner classes in this example. Note that the process( ) 
method only adds the visitor class and initializes the SQL string.  

Both parameters of getDeclarationScanner( ) are visitors; the first is used before each 
declaration is visited and the second is used afterwards. This processor only needs the pre-
visit visitor, so NO_OP is given as the second parameter. This is a static field in the 
DeclarationVisitor interface, which is a DeclarationVisitor that doesn’t do anything.  

TableCreationVisitor extends SimpleDeclarationVisitor, overriding the two methods 
visitClassDeclaration( ) and visitFieldDeclaration( ). The 

Annotations 777 



 

778 Thinking in Java Bruce Eckel 

SimpleDeclarationVisitor is an adapter that implements all of the methods on the 
Declaration Visitor interface, so you can concentrate on the ones you need. In 
visitClassDeclaration( ), the ClassDeclaration object is checked for the DBTable 
annotation, and if it is there, the first part of the SQL creation String is initialized. In 
visitFieldDeclaration( ), the field declaration is queried for its field annotations and the 
information is extracted in much the same way as it was in the original example, earlier in 
the chapter.  

This may seem like a more complicated way of doing things, but it produces a more scalable 
solution. If the complexity of your annotation processor increases, then writing your own 
standalone processor as in the earlier example would soon become quite complicated.  

Exercise 3:   (2) Add support for more SQL types to 
TableCreationProcessorFactory.java.  

Annotation-based unit testing 
Unit testing is the practice of creating one or more tests for each method in a class, in order 
to regularly test the portions of a class for correct behavior. The most popular tool used for 
unit testing in Java is called JUnit; at the time of this writing, JUnit was in the process of 
being updated to JUnit version 4, in order to incorporate annotations.6

 One of the main 
problems with preannotation versions of JUnit is the amount of "ceremony" necessary in 
order to set up and run JUnit tests. This has been reduced over time, but annotations will 
move testing closer to "the simplest unit testing system that can possibly work."  

With pre-annotation versions of JUnit, you must create a separate class to hold your unit 
tests. With annotations we can include the unit tests inside the class to be tested, and thus 
reduce the time and trouble of unit testing to a minimum. This approach has the additional 
benefit of being able to test private methods as easily as public ones.  

Since this example test framework is annotation-based, it’s called @Unit. The most basic 
form of testing, and one which you will probably use much of the time, only needs the @Test 
annotation to indicate which methods should be tested. One option is for the test methods to 
take no arguments and return a boolean to indicate success or failure. You can use any 
name you like for test methods. Also, @Unit test methods can have any access that you’d 
like, including private.  

To use @Unit, all you need to do is import net.mindview.atunit,7
 mark the appropriate 

methods and fields with @Unit test tags (which you’ll learn about in the following examples) 
and then have your build system run @Unit on the resulting class. Here’s a simple example:  

//: annotations/AtUnitExample1.java 
package annotations; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitExample1 { 
  public String methodOne() { 
    return "This is methodOne"; 
  } 
  public int methodTwo() { 
    System.out.println("This is methodTwo"); 
    return 2; 

                                                            
6 I originally had thoughts of making a "better JUnit" based on the design shown here. However, it appears that JUnit4 
also includes many of the ideas presented here, so it remains easier to go along with that. 

7 This library is part of this book’s code package, available at www.MindView.net. 



 

  } 
  @Test boolean methodOneTest() { 
    return methodOne().equals("This is methodOne"); 
  } 
  @Test boolean m2() { return methodTwo() == 2; } 
  @Test private boolean m3() { return true; } 
  // Shows output for failure: 
  @Test boolean failureTest() { return false; } 
  @Test boolean anotherDisappointment() { return false; } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit AtUnitExample1"); 
  } 
} /* Output: 
annotations.AtUnitExample1 
  . methodOneTest 
  . m2 This is methodTwo 
 
  . m3 
  . failureTest (failed) 
  . anotherDisappointment (failed) 
(5 tests) 
 
>>> 2 FAILURES <<< 
  annotations.AtUnitExample1: failureTest 
  annotations.AtUnitExample1: anotherDisappointment 
*///:~ 

Classes to be @Unit tested must be placed in packages.  

The @Test annotation preceding the methods methodOneTest( ), m2( ), m3( ), 
failureTest( ) and anotherDisappointment( ) tells @Unit to run these methods as unit 
tests. It will also ensure that those methods take no arguments and return a boolean or 
void. Your only responsibility when you write the unit test is to determine whether the test 
succeeds or fails and returns true or false, respectively (for methods that return boolean).  

If you’re familiar with JUnit, you’ll also note @Unit’s more informative output—you can see 
the test that’s currently being run so the output from that test is more useful, and at the end 
it tells you the classes and tests that caused failures.  

You’re not forced to embed test methods inside your classes, if that doesn’t work for you. The 
easiest way to create non-embedded tests is with inheritance:  

//: annotations/AtUnitExternalTest.java 
// Creating non-embedded tests. 
package annotations; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitExternalTest extends AtUnitExample1 { 
  @Test boolean _methodOne() { 
    return methodOne().equals("This is methodOne"); 
  } 
  @Test boolean _methodTwo() { return methodTwo() == 2; } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
     "java net.mindview.atunit.AtUnit AtUnitExternalTest"); 
  } 
} /* Output: 
annotations.AtUnitExternalTest 
  . _methodOne 

Annotations 779 



 

  . _methodTwo This is methodTwo 
 
OK (2 tests) 
*///:~ 

This example also demonstrates the value of flexible naming (in contrast to JUnit’s 
requirement to start all your tests with the word "test"). Here, @Test methods that are 
directly testing another method are given the name of that method starting with an 
underscore (I’m not suggesting that this is an ideal style, just showing a possibility).  

You can also use composition to create non-embedded tests:  

//: annotations/AtUnitComposition.java 
// Creating non-embedded tests. 
package annotations; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitComposition { 
  AtUnitExample1 testObject = new AtUnitExample1(); 
  @Test boolean _methodOne() { 
    return 
      testObject.methodOne().equals("This is methodOne"); 
  } 
  @Test boolean _methodTwo() { 
    return testObject.methodTwo() == 2; 
  } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
     "java net.mindview.atunit.AtUnit AtUnitComposition"); 
  } 
} /* Output: 
annotations.AtUnitComposition 
  . _methodOne 
  . _methodTwo This is methodTwo 
 
OK (2 tests) 
*///:~ 

A new member testObject is created for each test, since an AtUnitComposition object is 
created for each test.  

There are no special "assert" methods as there are in JUnit, but the second form of the 
@Test method allows you to return void (or boolean, if you still want to return true or 
false in this case). To test for success, you can use Java assert statements. Java assertions 
normally have to be enabled with the -ea flag on the java command line, but @Unit 
automatically enables them. To indicate failure, you can even use an exception. One of the 
@Unit design goals is to require as little additional syntax as possible, and Java’s assert and 
exceptions are all that is necessary to report errors. A failed assert or an exception that 
emerges from the test method is treated as a failed test, but @Unit does not halt in this 
case—it continues until all the tests are run. Here’s an example:  

//: annotations/AtUnitExample2.java 
// Assertions and exceptions can be used in @Tests. 
package annotations; 
import java.io.*; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitExample2 { 
  public String methodOne() { 

780 Thinking in Java Bruce Eckel 



 

    return "This is methodOne"; 
  } 
  public int methodTwo() { 
    System.out.println("This is methodTwo"); 
    return 2; 
  } 
  @Test void assertExample() { 
    assert methodOne().equals("This is methodOne"); 
  } 
  @Test void assertFailureExample() { 
    assert 1 == 2: "What a surprise!"; 
  } 
  @Test void exceptionExample() throws IOException { 
    new FileInputStream("nofile.txt"); // Throws 
  } 
  @Test boolean assertAndReturn() { 
    // Assertion with message: 
    assert methodTwo() == 2: "methodTwo must equal 2"; 
    return methodOne().equals("This is methodOne"); 
  } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit AtUnitExample2"); 
  } 
} /* Output: 
annotations.AtUnitExample2 
  . assertExample 
  . assertFailureExample java.lang.AssertionError: What a surprise! 
(failed) 
  . exceptionExample java.io.FileNotFoundException: nofile.txt (The 
system cannot find the file specified) 
(failed) 
  . assertAndReturn This is methodTwo 
 
(4 tests) 
 
>>> 2 FAILURES <<< 
  annotations.AtUnitExample2: assertFailureExample 
  annotations.AtUnitExample2: exceptionExample 
*///:~ 

Here’s an example using non-embedded tests with assertions, performing some simple tests 
of java.util.HashSet:  

//: annotations/HashSetTest.java 
package annotations; 
import java.util.*; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class HashSetTest { 
  HashSet<String> testObject = new HashSet<String>(); 
  @Test void initialization() { 
    assert testObject.isEmpty(); 
  } 
  @Test void _contains() { 
    testObject.add("one"); 
    assert testObject.contains("one"); 
  } 
  @Test void _remove() { 
    testObject.add("one"); 
    testObject.remove("one"); 

Annotations 781 



 

    assert testObject.isEmpty(); 
  } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit HashSetTest"); 
  } 
} /* Output: 
annotations.HashSetTest 
  . initialization 
  . _remove 
  . _contains 
OK (3 tests) 
*///:~ 

The inheritance approach would seem to be simpler, in the absence of other constraints.  

Exercise 4:   (3) Verify that a new testObject is created before each test.  

Exercise 5:   (1) Modify the above example to use the inheritance approach.  

Exercise 6:   (1) Test LinkedList using the approach shown in HashSetTest.j ava.  

Exercise 7:   (1) Modify the previous exercise to use the inheritance approach.  

For each unit test, @Unit creates an object of the class under test using the default 
constructor. The test is called for that object, and then the object is discarded to prevent side 
effects from leaking into other unit tests. This relies on the default constructor to create the 
objects. If you don’t have a default constructor or you need more sophisticated construction 
for objects, you create a static method to build the object and attach the 
@TestObjectCreate annotation, like this:  

//: annotations/AtUnitExample3.java 
package annotations; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitExample3 { 
  private int n; 
  public AtUnitExample3(int n) { this.n = n; } 
  public int getN() { return n; } 
  public String methodOne() { 
    return "This is methodOne"; 
  } 
  public int methodTwo() { 
    System.out.println("This is methodTwo"); 
    return 2; 
  } 
  @TestObjectCreate static AtUnitExample3 create() { 
    return new AtUnitExample3(47); 
  } 
  @Test boolean initialization() { return n == 47; } 
  @Test boolean methodOneTest() { 
    return methodOne().equals("This is methodOne"); 
  } 
  @Test boolean m2() { return methodTwo() == 2; } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit AtUnitExample3"); 
  } 
} /* Output: 

782 Thinking in Java Bruce Eckel 



 

annotations.AtUnitExample3 
  . initialization 
  . methodOneTest 
  . m2 This is methodTwo 
 
OK (3 tests) 
*///:~ 

The @TestObjectCreate method must be static and must return an object of the type that 
you’re testing—the @Unit program will ensure that this is true.  

Sometimes you need additional fields to support your unit testing. The @TestProperty 
annotation can be used to tag fields that are only used for unit testing (so that they can be 
removed before you deliver the product to the client). Here’s an example that reads values 
from a String that is broken up using the String.split( ) method. This input is used to 
produce test objects:  

//: annotations/AtUnitExample4.java 
package annotations; 
import java.util.*; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class AtUnitExample4 { 
  static String theory = "All brontosauruses " + 
    "are thin at one end, much MUCH thicker in the " + 
    "middle, and then thin again at the far end."; 
  private String word; 
  private Random rand = new Random(); // Time-based seed 
  public AtUnitExample4(String word) { this.word = word; } 
  public String getWord() { return word; } 
  public String scrambleWord() { 
    List<Character> chars = new ArrayList<Character>(); 
    for(Character c : word.toCharArray()) 
      chars.add(c); 
    Collections.shuffle(chars, rand); 
    StringBuilder result = new StringBuilder(); 
    for(char ch : chars) 
      result.append(ch); 
    return result.toString(); 
  } 
  @TestProperty static List<String> input = 
    Arrays.asList(theory.split(" ")); 
  @TestProperty 
    static Iterator<String> words = input.iterator(); 
  @TestObjectCreate static AtUnitExample4 create() { 
    if(words.hasNext()) 
      return new AtUnitExample4(words.next()); 
    else 
      return null; 
  } 
  @Test boolean words() { 
    print("‘" + getWord() + "‘"); 
    return getWord().equals("are"); 
  } 
  @Test boolean scramble1() { 
    // Change to a specific seed to get verifiable results: 
    rand = new Random(47); 
    print("‘" + getWord() + "‘"); 
    String scrambled = scrambleWord(); 
    print(scrambled); 

Annotations 783 



 

    return scrambled.equals("lAl"); 
  } 
  @Test boolean scramble2() { 
    rand = new Random(74); 
    print("‘" + getWord() + "‘"); 
    String scrambled = scrambleWord(); 
    print(scrambled); 
    return scrambled.equals("tsaeborornussu"); 
  } 
  public static void main(String[] args) throws Exception { 
    System.out.println("starting"); 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit AtUnitExample4"); 
  } 
} /* Output: 
starting 
annotations.AtUnitExample4 
  . scramble1 ‘All’ 
lAl 
 
  . scramble2 ‘brontosauruses’ 
tsaeborornussu 
 
  . words ‘are’ 
 
OK (3 tests) 
*///:~ 

@TestProperty can also be used to tag methods that may be used during testing, but are 
not tests themselves.  

Note that this program relies on the execution order of the tests, which is in general not a 
good practice.  

If your test object creation performs initialization that requires later cleanup, you can 
optionally add a static @TestObjectCleanup method to perform cleanup when you are 
finished with the test object. In this example, @TestObjectCreate opens a file to create 
each test object, so the file must be closed before the test object is discarded:  

//: annotations/AtUnitExample5.java 
package annotations; 
import java.io.*; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 
public class AtUnitExample5 { 
  private String text; 
  public AtUnitExample5(String text) { this.text = text; } 
  public String toString() { return text; } 
  @TestProperty static PrintWriter output; 
  @TestProperty static int counter; 
  @TestObjectCreate static AtUnitExample5 create() { 
    String id = Integer.toString(counter++); 
    try { 
      output = new PrintWriter("Test" + id + ".txt"); 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
    return new AtUnitExample5(id); 
  } 
  @TestObjectCleanup static void 
  cleanup(AtUnitExample5 tobj) { 

784 Thinking in Java Bruce Eckel 



 

    System.out.println("Running cleanup"); 
    output.close(); 
  } 
  @Test boolean test1() { 
    output.print("test1"); 
    return true; 
  } 
  @Test boolean test2() { 
    output.print("test2"); 
    return true; 
  } 
  @Test boolean test3() { 
    output.print("test3"); 
    return true; 
  } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit AtUnitExample5"); 
  } 
} /* Output: 
annotations.AtUnitExample5 
  . test1 
Running cleanup 
  . test2 
Running cleanup 
  . test3 
Running cleanup 
OK (3 tests) 
*///:~ 

You can see from the output that the cleanup method is automatically run after each test.  

Using @Unit with generics 

Generics pose a special problem, because you can’t "test generically." You must test for a 
specific type parameter or set of parameters. The solution is simple: Inherit a test class from 
a specified version of the generic class.  

Here’s a simple implementation of a stack:  

//: annotations/StackL.java 
// A stack built on a linkedList. 
package annotations; 
import java.util.*; 
 
public class StackL<T> { 
  private LinkedList<T> list = new LinkedList<T>(); 
  public void push(T v) { list.addFirst(v); } 
  public T top() { return list.getFirst(); } 
  public T pop() { return list.removeFirst(); } 
} ///:~ 

To test a String version, inherit a test class from StackL<String>:  

//: annotations/StackLStringTest.java 
// Applying @Unit to generics. 
package annotations; 
import net.mindview.atunit.*; 
import net.mindview.util.*; 
 

Annotations 785 



 

public class StackLStringTest extends StackL<String> { 
  @Test void _push() { 
    push("one"); 
    assert top().equals("one"); 
    push("two"); 
    assert top().equals("two"); 
  } 
  @Test void _pop() { 
    push("one"); 
    push("two"); 
    assert pop().equals("two"); 
    assert pop().equals("one"); 
  } 
  @Test void _top() { 
    push("A"); 
    push("B"); 
    assert top().equals("B"); 
    assert top().equals("B"); 
  } 
  public static void main(String[] args) throws Exception { 
    OSExecute.command( 
      "java net.mindview.atunit.AtUnit StackLStringTest"); 
  } 
} /* Output: 
annotations.StackLStringTest 
  . _push 
  . _pop 
  . _top 
OK (3 tests) 
*///:~ 

The only potential drawback to inheritance is that you lose the ability to access private 
methods in the class under test. If this is a problem, you can either make the method in 
question protected, or add a non-private @TestProperty method that calls the private 
method (the @TestProperty method will then be stripped out of the production code by the 
AtUnitRemover tool that is shown later in this chapter).  

Exercise 8:   (2) Create a class with a private method and add a non-private 
@TestProperty method as described above. Call this method in your test code.  

Exercise 9:   (2) Write basic @Unit tests for HashMap.  

Exercise 10:   (2) Select an example from elsewhere in the book and add @Unit tests.  

No “suites” necessary 

One of the big advantages of @Unit over JUnit is that "suites" are unnecessary. In JUnit, 
you need to somehow tell the unit testing tool what it is that you need to test, and this 
requires the introduction of "suites" to group tests together so that JUnit can find them and 
run the tests.  

@Unit simply searches for class files containing the appropriate annotations, and then 
executes the @Test methods. Much of my goal with the @Unit testing system is to make it 
incredibly transparent, so that people can begin using it by simply adding @Test methods, 
with no other special code or knowledge like that required by JUnit and many other unit 
testing frameworks. It’s hard enough to write tests without adding any new hurdles, so 
@Unit tries to make it trivial. This way, you’re more likely to actually write the tests.  

786 Thinking in Java Bruce Eckel 



 

Implementing @Unit 

First, we need to define all the annotation types. These are simple tags, and have no fields. 
The @Test tag was defined at the beginning of the chapter, and here are the rest of the 
annotations:  

//: net/mindview/atunit/TestObjectCreate.java 
// The @Unit @TestObjectCreate tag. 
package net.mindview.atunit; 
import java.lang.annotation.*; 
 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface TestObjectCreate {} ///:~ 
 
//: net/mindview/atunit/TestObjectCleanup.java 
// The @Unit @TestObjectCleanup tag. 
package net.mindview.atunit; 
import java.lang.annotation.*; 
 
@Target(ElementType.METHOD) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface TestObjectCleanup {} ///:~ 
 
//: net/mindview/atunit/TestProperty.java 
// The @Unit @TestProperty tag. 
package net.mindview.atunit; 
import java.lang.annotation.*; 
 
// Both fields and methods may be tagged as properties: 
@Target({ElementType.FIELD, ElementType.METHOD}) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface TestProperty {} ///:~ 

All the tests have RUNTIME retention because the @Unit system must discover the tests in 
compiled code.  

To implement the system that runs the tests, we use reflection to extract the annotations. The 
program uses this information to decide how to build the test objects and run tests on them. 
Because of annotations this is surprisingly small and straightforward:  

//: net/mindview/atunit/AtUnit.java 
// An annotation-based unit-test framework. 
// {RunByHand} 
package net.mindview.atunit; 
import java.lang.reflect.*; 
import java.io.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class AtUnit implements ProcessFiles.Strategy { 
  static Class<?> testClass; 
  static List<String> failedTests= new ArrayList<String>(); 
  static long testsRun = 0; 
  static long failures = 0; 
  public static void main(String[] args) throws Exception { 
    ClassLoader.getSystemClassLoader() 
      .setDefaultAssertionStatus(true); // Enable asserts 
    new ProcessFiles(new AtUnit(), "class").start(args); 

Annotations 787 



 

    if(failures == 0) 
      print("OK (" + testsRun + " tests)"); 
    else { 
      print("(" + testsRun + " tests)"); 
      print("\n>>> " + failures + " FAILURE" + 
        (failures > 1 ? "S" : "") + " <<<"); 
      for(String failed : failedTests) 
        print("  " + failed); 
    } 
  } 
  public void process(File cFile) { 
    try { 
      String cName = ClassNameFinder.thisClass( 
        BinaryFile.read(cFile)); 
      if(!cName.contains(".")) 
        return; // Ignore unpackaged classes 
      testClass = Class.forName(cName); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
    TestMethods testMethods = new TestMethods(); 
    Method creator = null; 
    Method cleanup = null; 
    for(Method m : testClass.getDeclaredMethods()) { 
      testMethods.addIfTestMethod(m); 
      if(creator == null) 
        creator = checkForCreatorMethod(m); 
      if(cleanup == null) 
        cleanup = checkForCleanupMethod(m); 
    } 
    if(testMethods.size() > 0) { 
      if(creator == null) 
        try { 
          if(!Modifier.isPublic(testClass 
             .getDeclaredConstructor().getModifiers())) { 
            print("Error: " + testClass + 
              " default constructor must be public"); 
            System.exit(1); 
          } 
        } catch(NoSuchMethodException e) { 
          // Synthesized default constructor; OK 
        } 
      print(testClass.getName()); 
    } 
    for(Method m : testMethods) { 
      printnb("  . " + m.getName() + " "); 
      try { 
        Object testObject = createTestObject(creator); 
        boolean success = false; 
        try { 
          if(m.getReturnType().equals(boolean.class)) 
            success = (Boolean)m.invoke(testObject); 
          else { 
            m.invoke(testObject); 
            success = true; // If no assert fails 
          } 
        } catch(InvocationTargetException e) { 
          // Actual exception is inside e: 
          print(e.getCause()); 
        } 
        print(success ? "" : "(failed)"); 
        testsRun++; 
        if(!success) { 

788 Thinking in Java Bruce Eckel 



 

          failures++; 
          failedTests.add(testClass.getName() + 
            ": " + m.getName()); 
        } 
        if(cleanup != null) 
          cleanup.invoke(testObject, testObject); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
    } 
  } 
  static class TestMethods extends ArrayList<Method> { 
    void addIfTestMethod(Method m) { 
      if(m.getAnnotation(Test.class) == null) 
        return; 
      if(!(m.getReturnType().equals(boolean.class) || 
          m.getReturnType().equals(void.class))) 
        throw new RuntimeException("@Test method" + 
          " must return boolean or void"); 
      m.setAccessible(true); // In case it’s private, etc. 
      add(m); 
    } 
  } 
  private static Method checkForCreatorMethod(Method m) { 
    if(m.getAnnotation(TestObjectCreate.class) == null) 
      return null; 
    if(!m.getReturnType().equals(testClass)) 
      throw new RuntimeException("@TestObjectCreate " + 
        "must return instance of Class to be tested"); 
    if((m.getModifiers() & 
         java.lang.reflect.Modifier.STATIC) < 1) 
      throw new RuntimeException("@TestObjectCreate " + 
        "must be static."); 
    m.setAccessible(true); 
    return m; 
  } 
  private static Method checkForCleanupMethod(Method m) { 
    if(m.getAnnotation(TestObjectCleanup.class) == null) 
      return null; 
    if(!m.getReturnType().equals(void.class)) 
      throw new RuntimeException("@TestObjectCleanup " + 
        "must return void"); 
    if((m.getModifiers() & 
        java.lang.reflect.Modifier.STATIC) < 1) 
      throw new RuntimeException("@TestObjectCleanup " + 
        "must be static."); 
    if(m.getParameterTypes().length == 0 || 
       m.getParameterTypes()[0] != testClass) 
      throw new RuntimeException("@TestObjectCleanup " + 
        "must take an argument of the tested type."); 
    m.setAccessible(true); 
    return m; 
  } 
  private static Object createTestObject(Method creator) { 
    if(creator != null) { 
      try { 
        return creator.invoke(testClass); 
      } catch(Exception e) { 
        throw new RuntimeException("Couldn’t run " + 
          "@TestObject (creator) method."); 
      } 
    } else { // Use the default constructor: 
      try { 

Annotations 789 



 

790 Thinking in Java Bruce Eckel 

        return testClass.newInstance(); 
      } catch(Exception e) { 
        throw new RuntimeException("Couldn’t create a " + 
          "test object. Try using a @TestObject method."); 
      } 
    } 
  } 
} ///:~ 

AtUnit.java uses the ProcessFiles tool in net.mindview.util. The AtUnit class 
implements ProcessFiles.Strategy, which comprises the method process( ). This way, an 
instance of AtUnit can be passed to the ProcessFiles constructor. The second constructor 
argument tells ProcessFiles to look for all files that have "class" extensions.  

If you do not provide a command-line argument, the program will traverse the current 
directory tree. You may also provide multiple arguments which can be either class files (with 
or without the .class extension) or directories. Since @Unit will automatically find the 
testable classes and methods, no "suite" mechanism is necessary.8

  

One of the problems that AtUnit.java must solve when it discovers class files is that the 
actual qualified class name (including package) is not evident from the class file name. In 
order to discover this information, the class file must be analyzed, which is not trivial, but not 
impossible, either.9 So the first thing that happens when a .class file is found is that it is opened 
and its binary data is read and handed to ClassNameFinder.thisClass( ). Here, we are moving 
into the realm of "bytecode engineering," because we are actually analyzing the contents of a class 
file:  

//: net/mindview/atunit/ClassNameFinder.java 
package net.mindview.atunit; 
import java.io.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class ClassNameFinder { 
  public static String thisClass(byte[] classBytes) { 
    Map<Integer,Integer> offsetTable = 
      new HashMap<Integer,Integer>(); 
    Map<Integer,String> classNameTable = 
      new HashMap<Integer,String>(); 
    try { 
      DataInputStream data = new DataInputStream( 
        new ByteArrayInputStream(classBytes)); 
      int magic = data.readInt();  // 0xcafebabe 
      int minorVersion = data.readShort(); 
      int majorVersion = data.readShort(); 
      int constant_pool_count = data.readShort(); 
      int[] constant_pool = new int[constant_pool_count]; 
      for(int i = 1; i < constant_pool_count; i++) { 
        int tag = data.read(); 
        int tableSize; 
        switch(tag) { 
          case 1: // UTF 
            int length = data.readShort(); 
            char[] bytes = new char[length]; 
            for(int k = 0; k < bytes.length; k++) 
              bytes[k] = (char)data.read(); 
                                                            
8 It is not clear why the default constructor for the class under test must be public, but if it isn’t, the call to 
newlnstance( ) just hangs (doesn’t throw an exception). 

9 Jeremy Meyer and I spent most of a day figuring this out. 



 

Annotations 791 

            String className = new String(bytes); 
            classNameTable.put(i, className); 
            break; 
          case 5: // LONG 
          case 6: // DOUBLE 
            data.readLong(); // discard 8 bytes 
            i++; // Special skip necessary 
            break; 
          case 7: // CLASS 
            int offset = data.readShort(); 
            offsetTable.put(i, offset); 
            break; 
          case 8: // STRING 
            data.readShort(); // discard 2 bytes 
            break; 
          case 3:  // INTEGER 
          case 4:  // FLOAT 
          case 9:  // FIELD_REF 
          case 10: // METHOD_REF 
          case 11: // INTERFACE_METHOD_REF 
          case 12: // NAME_AND_TYPE 
            data.readInt(); // discard 4 bytes; 
            break; 
          default: 
            throw new RuntimeException("Bad tag " + tag); 
        } 
      } 
      short access_flags = data.readShort(); 
      int this_class = data.readShort(); 
      int super_class = data.readShort(); 
      return classNameTable.get( 
        offsetTable.get(this_class)).replace(‘/’, ‘.’); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
  // Demonstration: 
  public static void main(String[] args) throws Exception { 
    if(args.length > 0) { 
      for(String arg : args) 
        print(thisClass(BinaryFile.read(new File(arg)))); 
    } else 
      // Walk the entire tree: 
      for(File klass : Directory.walk(".", ".*\\.class")) 
        print(thisClass(BinaryFile.read(klass))); 
  } 
} ///:~ 

Although it’s not possible to go into full detail here, each class file follows a particular format 
and I’ve tried to use meaningful field names for the pieces of data that are picked out of the 
ByteArraylnputStream; you can also see the size of each piece by the length of the read 
performed on the input stream. For example, the first 32 bits of any class file is always the 
"magic number" hex 0xcafebabe,10

 and the next two shorts are version information. The 
constant pool contains the constants for the program and so is of variable size; the next 
short tells how big it is, so that an appropriate-sized array can be allocated. Each entry in the 
constant pool may be a fixed-size or variablesized value, so we must examine the tag that 
begins each one to find out what to do with it—that’s the switch statement. Here, we are not 
trying to accurately analyze all the data in the class file, but merely to step through and store 
the pieces of interest, so you’ll notice that a fair amount of data is discarded. Information 

                                                            
10 Various legends surround the meaning of this, but since Java was created by nerds we can make a reasonable guess that 
it had something to do with fantasizing about a woman in a coffee shop. 



 

792 Thinking in Java Bruce Eckel 

about classes is stored in the classNameTable and the offsetTable. After the constant 
pool is read, the this_class information can be found, which is an index into the 
offsetTable, which produces an index into the classNameTable, which produces the class 
name.  

Back in AtUnit.java, process( ) now has the class name and can look to see if it contains a 
‘.’, which means it’s in a package. Unpackaged classes are ignored. If a class is in a package, 
the standard class loader is used to load the class with Class.forName( ). Now the class can 
be analyzed for @Unit annotations.  

We only need to look for three things: @Test methods, which are stored in a TestMethods 
list, and whether there’s an @TestObjectCreate and @TestObjectCleanup method. 
These are discovered through the associated method calls that you see in the code, which 
look for the annotations.  

If any @Test methods have been found, the name of the class is printed so the viewer can 
see what’s happening, and then each test is executed. This means printing the method name, 
then calling createTestObject( ), which will use the @TestObjectCreate method if one 
exists, or will fall back to the default constructor otherwise. Once the test object has been 
created, the test method is invoked upon that object. If the test returns a boolean, the result 
is captured. If not, we assume success if there is no exception (which would happen in the 
case of a failed assert or any other kind of exception). If an exception is thrown, the 
exception information is printed to show the cause. If any failure occurs, the failure count is 
increased and the class name and method are added to failedTests so these can be reported 
at the end of the run.  

Exercise 11:   (5) Add an @TestNote annotation to @Unit, so that the accompanying 
note is simply displayed during testing.  

Removing test code 

Although in many projects it won’t make a difference if you leave the test code in the 
deliverable (especially if you make all the test methods private, which you can do if you 
like), in some cases you will want to strip out the test code either to keep the deliverable 
small or so that it is not exposed to the client.  

This requires more sophisticated bytecode engineering than it is comfortable to do by hand. 
However, the open-source Javassist library11

 brings bytecode engineering into the realm of 
the possible. The following program takes an optional -r flag as its first argument; if you 
provide the flag it will remove the @Test annotations, and if you do not it will simply display 
the @Test annotations. ProcessFiles is also used here to traverse the files and directories 
of your choosing:  

//: net/mindview/atunit/AtUnitRemover.java 
// Displays @Unit annotations in compiled class files. If 
// first argument is "-r", @Unit annotations are removed. 
// {Args: ..} 
// {Requires: javassist.bytecode.ClassFile; 
// You must install the Javassist library from 
// http://sourceforge.net/projects/jboss/ } 
package net.mindview.atunit; 
import javassist.*; 
import javassist.expr.*; 
import javassist.bytecode.*; 
import javassist.bytecode.annotation.*; 

                                                            
11 Thanks to Dr. Shigeru Chiba for creating this library, and for all his help in developing AtUnitRemover.java. 



 

import java.io.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class AtUnitRemover 
implements ProcessFiles.Strategy { 
  private static boolean remove = false; 
  public static void main(String[] args) throws Exception { 
    if(args.length > 0 && args[0].equals("-r")) { 
      remove = true; 
      String[] nargs = new String[args.length - 1]; 
      System.arraycopy(args, 1, nargs, 0, nargs.length); 
      args = nargs; 
    } 
    new ProcessFiles( 
      new AtUnitRemover(), "class").start(args); 
  } 
  public void process(File cFile) { 
    boolean modified = false; 
    try { 
      String cName = ClassNameFinder.thisClass( 
        BinaryFile.read(cFile)); 
      if(!cName.contains(".")) 
        return; // Ignore unpackaged classes 
      ClassPool cPool = ClassPool.getDefault(); 
      CtClass ctClass = cPool.get(cName); 
      for(CtMethod method : ctClass.getDeclaredMethods()) { 
        MethodInfo mi = method.getMethodInfo(); 
        AnnotationsAttribute attr = (AnnotationsAttribute) 
          mi.getAttribute(AnnotationsAttribute.visibleTag); 
        if(attr == null) continue; 
        for(Annotation ann : attr.getAnnotations()) { 
          if(ann.getTypeName() 
             .startsWith("net.mindview.atunit")) { 
            print(ctClass.getName() + " Method: " 
              + mi.getName() + " " + ann); 
            if(remove) { 
              ctClass.removeMethod(method); 
              modified = true; 
            } 
          } 
        } 
      } 
      // Fields are not removed in this version (see text). 
      if(modified) 
        ctClass.toBytecode(new DataOutputStream( 
          new FileOutputStream(cFile))); 
      ctClass.detach(); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
  } 
} ///:~ 

The ClassPool is a kind of picture of all the classes in the system that you are modifying. It 
guarantees the consistency of all the modified classes. You must get each CtClass from the 
ClassPool, similar to the way the class loader and Class.forName( ) load classes into the 
JVM.  

The CtClass contains the bytecodes for a class object and allows you to produce information 
about the class and to manipulate the code in the class. Here, we call 

Annotations 793 



 

794 Thinking in Java Bruce Eckel 

getDeclaredMethods( ) (just like Java’s reflection mechanism) and get a MethodInfo 
object from each CtMethod object. From this, we can look at the annotations. If a method 
has an annotation in the net.mindview.atunit package, that method is removed.  

If the class has been modified, the original class file is overwritten with the new class.  

At the time of this writing, the "remove" functionality in Javassist had recently been added,12
 

and we discovered that removing @TestProperty fields turns out to be more complex than 
removing methods. Because there may be static initialization operations that refer to those 
fields, you cannot simply remove them. So the above version of the code only removes 
@Unit methods. However, you should check the Javassist Web site for updates; field 
removal should eventually be possible. In the meantime, note that the external testing 
method shown in AtUnitExternalTest.java allows all tests to be removed by simply 
deleting the class file created by the test code.  

   

                                                            
12 Dr. Shigeru Chiba very nicely added the CtClass.removeMethod( ) at our request. 



 

Annotations 795 

Summary 
Annotations are a welcome addition to Java. They are a structured and typechecked means of 
adding metadata to your code without rendering it unreadable and messy. They can help 
remove the tedium of writing deployment descriptors and other generated files. The fact that 
the @deprecated Javadoc tag has been superseded by the @Deprecated annotation is just 
one indication of how much better suited annotations are for describing information about 
classes than are comments.  

Only a small handful of annotations come with Java SE5. This means that, if you can’t find a 
library elsewhere, you will be creating annotations and the associated logic to do this. With 
the apt tool, you can compile newly generated files in one step, easing the build process, but 
currently there is little more in the mirror API than some basic functionality to help you 
identify the elements of Java class definitions. As you’ve seen, Javassist can be used for 
bytecode engineering, or you can hand-code your own bytecode manipulation tools.  

This situation will certainly improve, and providers of APIs and frameworks will start 
providing annotations as part of their toolkits. As you can imagine by seeing the @Unit 
system, it is very likely that annotations will cause significant changes in our Java 
programming experience.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

 





 

Concurrency 
Up to this point, you’ve been learning about sequential 
programming. Everything in a program happens one step at a time.  

A large subset of programming problems can be solved using sequential programming. For 
some problems, however, it becomes convenient or even essential to execute several parts of 
a program in parallel, so that those portions either appear to be executing concurrently, or if 
multiple processors are available, actually do execute simultaneously.  

Parallel programming can produce great improvements in program execution speed, provide 
an easier model for designing certain types of programs, or both. However, becoming adept 
at concurrent programming theory and techniques is a step up from everything you’ve 
learned so far in this book, and is an intermediate to advanced topic. This chapter can only 
serve as an introduction, and you should by no means consider yourself a good concurrent 
programmer even if you understand this chapter thoroughly.  

As you shall see, the real problem with concurrency occurs when tasks that are executing in 
parallel begin to interfere with each other. This can happen in such a subtle and occasional 
manner that it’s probably fair to say that concurrency is "arguably deterministic but 
effectively nondeterministic." That is, you can make an argument to conclude that it’s 
possible to write concurrent programs that, through care and code inspection, work correctly. 
In practice, however, it’s much easier to write concurrent programs that only appear to work, 
but given the right conditions, will fail. These conditions may never actually occur, or occur 
so infrequently that you never see them during testing. In fact, you may not be able to write 
test code that will generate failure conditions for your concurrent program. The resulting 
failures will often only occur occasionally, and as a result they appear in the form of customer 
complaints. This is one of the strongest arguments for studying concurrency: If you ignore it, 
you’re likely to get bitten.  

Concurrency thus seems fraught with peril, and if that makes you a bit fearful, this is 
probably a good thing. Although Java SE5 has made significant improvements in 
concurrency, there are still no safety nets like compile-time verification or checked 
exceptions to tell you when you make a mistake. With concurrency, you’re on your own, and 
only by being both suspicious and aggressive can you write multithreaded code in Java that 
will be reliable.  

People sometimes suggest that concurrency is too advanced to include in a book that 
introduces the language. They argue that concurrency is a discrete topic that can be treated 
independently, and the few cases where it appears in daily programming (such as graphical 
user interfaces) can be handled with special idioms. Why introduce such a complex topic if 
you can avoid it?  

Alas, if only it were so. Unfortunately, you don’t get to choose when threads will appear in 
your Java programs. Just because you never start a thread yourself doesn’t mean you’ll be 
able to avoid writing threaded code. For example, Web systems are one of the most common 
Java applications, and the basic Web library class, the servlet, is inherently multithreaded—
this is essential because Web servers often contain multiple processors, and concurrency is 
an ideal way to utilize these processors. As simple as a servlet might seem, you must 
understand concurrency issues in order to use servlets properly. The same goes for graphical 
user interface programming, as you shall see in the Graphical User Interfaces chapter. 
Although the Swing and SWT libraries both have mechanisms for thread safety, it’s hard to 
know how to use these properly without understanding concurrency.  

 



 

Java is a multithreaded language, and concurrency issues are present whether you are aware 
of them or not. As a result, there are many Java programs in use that either just work by 
accident, or work most of the time and mysteriously break every now and again because of 
undiscovered concurrency flaws. Sometimes this breakage is benign, but sometimes it means 
the loss of valuable data, and if you aren’t at least aware of concurrency issues, you may end 
up assuming the problem is somewhere else rather than in your software. These kinds of 
issues can also be exposed or amplified if a program is moved to a multiprocessor system. 
Basically, knowing about concurrency makes you aware that apparently correct programs can 
exhibit incorrect behavior.  

Concurrent programming is like stepping into a new world and learning a new language, or 
at least a new set of language concepts. Understanding concurrent programming is on the 
same order of difficulty as understanding object-oriented programming. If you apply some 
effort, you can fathom the basic mechanism, but it generally takes deep study and 
understanding to develop a true grasp of the subject. The goal of this chapter is to give you a 
solid foundation in the basics of concurrency so that you can understand the concepts and 
write reasonable multithreaded programs. Be aware that you can easily become 
overconfident. If you are writing anything complex, you will need to study dedicated books 
on the topic.  

The many faces of concurrency 
A primary reason why concurrent programming can be confusing is that there is more than 
one problem to solve using concurrency, and more than one approach to implementing 
concurrency, and no clean mapping between the two issues (and often a blurring of the lines 
all around). As a result, you’re forced to understand all issues and special cases in order to 
use concurrency effectively.  

The problems that you solve with concurrency can be roughly classified as "speed" and 
"design manageability."  

Faster execution 

The speed issue sounds simple at first: If you want a program to run faster, break it into 
pieces and run each piece on a separate processor. Concurrency is a fundamental tool for 
multiprocessor programming. Now, with Moore’s Law running out of steam (at least for 
conventional chips), speed improvements are appearing in the form of multicore processors 
rather than faster chips. To make your programs run faster, you’ll have to learn to take 
advantage of those extra processors, and that’s one thing that concurrency gives you.  

If you have a multiprocessor machine, multiple tasks can be distributed across those 
processors, which can dramatically improve throughput. This is often the case with powerful 
multiprocessor Web servers, which can distribute large numbers of user requests across 
CPUs in a program that allocates one thread per request.  

However, concurrency can often improve the performance of programs running on a single 
processor.  

This can sound a bit counterintuitive. If you think about it, a concurrent program running on 
a single processor should actually have more overhead than if all the parts of the program ran 
sequentially, because of the added cost of the so-called context switch (changing from one 
task to another). On the surface, it would appear to be cheaper to run all the parts of the 
program as a single task and save the cost of context switching.  

The issue that can make a difference is blocking. If one task in your program is unable to 
continue because of some condition outside of the control of the program (typically I/O), we 

798 Thinking in Java Bruce Eckel 



 

say that the task or the thread blocks. Without concurrency, the whole program comes to a 
stop until the external condition changes. If the program is written using concurrency, 
however, the other tasks in the program can continue to execute when one task is blocked, so 
the program continues to move forward. In fact, from a performance standpoint, it makes no 
sense to use concurrency on a single-processor machine unless one of the tasks might block.  

A very common example of performance improvements in single-processor systems is event-
driven programming. Indeed, one of the most compelling reasons for using concurrency is 
to produce a responsive user interface. Consider a program that performs some long-running 
operation and thus ends up ignoring user input and being unresponsive. If you have a "quit" 
button, you don’t want to be forced to poll it in every piece of code you write. This produces 
awkward code, without any guarantee that a programmer won’t forget to perform the check. 
Without concurrency, the only way to produce a responsive user interface is for all tasks to 
periodically check for user input. By creating a separate thread of execution to respond to 
user input, even though this thread will be blocked most of the time, the program guarantees 
a certain level of responsiveness.  

The program needs to continue performing its operations, and at the same time it needs to 
return control to the user interface so that the program can respond to the user. But a 
conventional method cannot continue performing its operations and at the same time return 
control to the rest of the program. In fact, this sounds like an impossibility, as if the CPU 
must be in two places at once, but this is precisely the illusion that concurrency provides (in 
the case of multiprocessor systems, this is more than just an illusion).  

One very straightforward way to implement concurrency is at the operating system level, 
using processes. A process is a self-contained program running within its own address space. 
A multitasking operating system can run more than one process (program) at a time by 
periodically switching the CPU from one process to another, while making it look as if each 
process is chugging along on its own. Processes are very attractive because the operating 
system usually isolates one process from another so they cannot interfere with each other, 
which makes programming with processes relatively easy. In contrast, concurrent systems 
like the one used in Java share resources like memory and I/O, so the fundamental difficulty 
in writing multithreaded programs is coordinating the use of these resources between 
different thread-driven tasks, so that they cannot be accessed by more than one task at a 
time.  

Here’s a simple example that utilizes operating system processes. While writing a book, I 
regularly make multiple redundant backup copies of the current state of the book. I make a 
copy into a local directory, one onto a memory stick, one onto a Zip disk, and one onto a 
remote FTP site. To automate this process, I wrote a small program (in Python, but the 
concepts are the same) which zips the book into a file with a version number in the name and 
then performs the copies. Initially, I performed all the copies sequentially, waiting for each 
one to complete before starting the next one. But then I realized that each copy operation 
took a different amount of time depending on the I/O speed of the medium. Since I was using 
a multitasking operating system, I could start each copy operation as a separate process and 
let them run in parallel, which speeds up the execution of the entire program. While one 
process is blocked, another one can be moving forward.  

This is an ideal example of concurrency. Each task executes as a process in its own address 
space, so there’s no possibility of interference between tasks. More importantly, there’s no 
need for the tasks to communicate with each other because they’re all completely 
independent. The operating system minds all the details of ensuring proper file copying. As a 
result, there’s no risk and you get a faster program, effectively for free.  

Concurrency 799 



 

800 Thinking in Java Bruce Eckel 

Some people go so far as to advocate processes as the only reasonable approach to 
concurrency,1

 but unfortunately there are generally quantity and overhead limitations to 
processes that prevent their applicability across the concurrency spectrum.  

Some programming languages are designed to isolate concurrent tasks from each other. 
These are generally called/imcft’onaZ languages, where each function call produces no side 
effects (and so cannot interfere with other functions) and can thus be driven as an 
independent task. Erlang is one such language, and it includes safe mechanisms for one task 
to communicate with another. If you find that a portion of your program must make heavy 
use of concurrency and you are running into excessive problems trying to build that portion, 
you may want to consider creating that part of your program in a dedicated concurrency 
language like Erlang.  

Java took the more traditional approach of adding support for threading on top of a 
sequential language.2

 Instead of forking external processes in a multitasking operating 
system, threading creates tasks within the single process represented by the executing 
program. One advantage that this provided was operating system transparency, which was an 
important design goal for Java. For example, the pre-OSX versions of the Macintosh 
operating system (a reasonably important target for the first versions of Java) did not 
support multitasking. Unless multithreading had been added to Java, any concurrent Java 
programs wouldn’t have been portable to the Macintosh and similar platforms, thus breaking 
the "write once/run everywhere" requirement.3  

Improving code design 

A program that uses multiple tasks on a single-CPU machine is still just doing one thing at a 
time, so it must be theoretically possible to write the same program without using any tasks. 
However, concurrency provides an important organizational benefit: The design of your 
program can be greatly simplified. Some types of problems, such as simulation, are difficult 
to solve without support for concurrency.  

Most people have seen at least one form of simulation, as either a computer game or 
computer-generated animations within movies. Simulations generally involve many 
interacting elements, each with "a mind of its own." Although you may observe that, on a 
single-processor machine, each simulation element is being driven forward by that one 
processor, from a programming standpoint it’s much easier to pretend that each simulation 
element has its own processor and is an independent task.  

A full-fledged simulation may involve a very large number of tasks, corresponding to the fact 
that each element in a simulation can act independently—this includes doors and rocks, not 
just elves and wizards. Multithreaded systems often have a relatively small size limit on the 
number of threads available, sometimes on the order of tens or hundreds. This number may 
vary outside the control of the program—it may depend on the platform, or in the case of 
Java, the version of the JVM. In Java, you can generally assume that you will not have 
enough threads available to provide one for each element in a large simulation.  

A typical approach to solving this problem is the use of cooperative multithreading. Java’s 
threading is preemptive, which means that a scheduling mechanism provides time slices for 
each thread, periodically interrupting a thread and context switching to another thread so 
that each one is given a reasonable amount of time to drive its task. In a cooperative system, 

                                                            
1 Eric Raymond, for example, makes a strong case in The Art of UNIX Programming (Addison-Wesley, 2004). 

2 It could be argued that trying to bolt concurrency onto a sequential language is a doomed approach, but you’ll have to 
draw your own conclusions. 

3 This requirement was never completely fulfilled and is no longer so loudly touted by Sun. Ironically, one reason that 
"write once/run everywhere" didn’t completely work may have resulted from problems in the threading system—which 
might actually be fixed in Java SE5. 



 

Concurrency 801 

each task voluntarily gives up control, which requires the programmer to consciously insert 
some kind of yielding statement into each task. The advantage to a cooperative system is 
twofold: Context switching is typically much cheaper than with a preemptive system, and 
there is theoretically no limit to the number of independent tasks that can be running at 
once. When you are dealing with a large number of simulation elements, this can be the ideal 
solution. Note, however, that some cooperative systems are not designed to distribute tasks 
across processors, which can be very limiting.  

At the other extreme, concurrency is a very useful model—because it’s what is actually 
happening—when you are working with modern messaging systems, which involve many 
independent computers distributed across a network. In this case, all the processes are 
running completely independently of each other, and there’s not even an opportunity to 
share resources. However, you must still synchronize the information transfer between 
processes so that the entire messaging system doesn’t lose information or incorporate 
information at incorrect times. Even if you don’t plan to use concurrency very much in your 
immediate future, it’s helpful to understand it just so you can grasp messaging architectures, 
which are becoming more predominant ways to create distributed systems.  

Concurrency imposes costs, including complexity costs, but these are usually outweighed by 
improvements in program design, resource balancing, and user convenience. In general, 
threads enable you to create a more loosely coupled design; otherwise, parts of your code 
would be forced to pay explicit attention to tasks that would normally be handled by threads.  

Basic threading 

Concurrent programming allows you to partition a program into separate, independently 
running tasks. Using multithreading, each of these independent tasks (also called subtasks) 
is driven by a thread of execution. A thread is a single sequential flow of control within a 
process. A single process can thus have multiple concurrently executing tasks, but you 
program as if each task has the CPU to itself. An underlying mechanism divides up the CPU 
time for you, but in general, you don’t need to think about it.  

The threading model is a programming convenience to simplify juggling several operations at 
the same time within a single program: The CPU will pop around and give each task some of 
its time.4 Each task has the consciousness of constantly having the CPU to itself, but the 
CPU’s time is being sliced among all the tasks (except when the program is actually running 
on multiple CPUs). One of the great things about threading is that you are abstracted away 
from this layer, so your code does not need to know whether it is running on a single CPU or 
many. Thus, using threads is a way to create transparently scalable programs—if a program is 
running too slowly, you can easily speed it up by adding CPUs to your computer. 
Multitasking and multithreading tend to be the most reasonable ways to utilize 
multiprocessor systems.  

Defining tasks 

A thread drives a task, so you need a way to describe that task. This is provided by the 
Runnable interface. To define a task, simply implement Runnable and write a run( ) 
method to make the task do your bidding.  

For example, the following LiftOff task displays the countdown before liftoff:  

//: concurrency/LiftOff.java 

                                                            
4 This is true when the system uses time slicing (Windows, for example). Solaris uses a FIFO concurrency model: Unless a 
higher-priority thread is awakened, the current thread runs until it blocks or terminates. That means that other threads 
with the same priority don’t run until the current one gives up the processor. 



 

// Demonstration of the Runnable interface. 
 
public class LiftOff implements Runnable { 
  protected int countDown = 10; // Default 
  private static int taskCount = 0; 
  private final int id = taskCount++; 
  public LiftOff() {} 
  public LiftOff(int countDown) { 
    this.countDown = countDown; 
  } 
  public String status() { 
    return "#" + id + "(" + 
      (countDown > 0 ? countDown : "Liftoff!") + "), "; 
  } 
  public void run() { 
    while(countDown-- > 0) { 
      System.out.print(status()); 
      Thread.yield(); 
    } 
  } 
} ///:~ 

The identifier id distinguishes between multiple instances of the task. It is final because it is 
not expected to change once it is initialized.  

A task’s run( ) method usually has some kind of loop that continues until the task is no 
longer necessary, so you must establish the condition on which to break out of this loop (one 
option is to simply return from run( )). Often, run( ) is cast in the form of an infinite loop, 
which means that, barring some factor that causes run( ) to terminate, it will continue 
forever (later in the chapter you’ll see how to safely terminate tasks).  

The call to the static method Thread.yield( ) inside run( ) is a suggestion to the thread 
scheduler (the part of the Java threading mechanism that moves the CPU from one thread to 
the next) that says, "I’ve done the important parts of my cycle and this would be a good time 
to switch to another task for a while." It’s completely optional, but it is used here because it 
tends to produce more interesting output in these examples: You’re more likely to see 
evidence of tasks being swapped in and out.  

In the following example, the task’s run( ) is not driven by a separate thread; it is simply 
called directly in main( ) (actually, this is using a thread: the one that is always allocated for 
main( )):  

//: concurrency/MainThread.java 
 
public class MainThread { 
  public static void main(String[] args) { 
    LiftOff launch = new LiftOff(); 
    launch.run(); 
  } 
} /* Output: 
#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1), 
#0(Liftoff!), 
*///:~ 

When a class is derived from Runnable, it must have a run( ) method, but that’s nothing 
special—it doesn’t produce any innate threading abilities. To achieve threading behavior, you 
must explicitly attach a task to a thread.  

The Thread class 

802 Thinking in Java Bruce Eckel 



 

Concurrency 803 

The traditional way to turn a Runnable object into a working task is to hand it to a Thread 
constructor. This example shows how to drive a Liftoff object using a Thread:  

//: concurrency/BasicThreads.java 
// The most basic use of the Thread class. 
 
public class BasicThreads { 
  public static void main(String[] args) { 
    Thread t = new Thread(new LiftOff()); 
    t.start(); 
    System.out.println("Waiting for LiftOff"); 
  } 
} /* Output: (90% match) 
Waiting for LiftOff 
#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1), 
#0(Liftoff!), 
*///:~ 

A Thread constructor only needs a Runnable object. Calling a Thread object’s start( ) 
will perform the necessary initialization for the thread and then call that Runnable’s run( ) 
method to start the task in the new thread. Even though start( ) appears to be making a call 
to a long-running method, you can see from the output—the "Waiting for LiftOff’ message 
appears before the countdown has completed—that start( ) quickly returns. In effect, you 
have made a method call to LiftOff.run( ), and that method has not yet finished, but 
because LiftOff.run( ) is being executed by a different thread, you can still perform other 
operations in the main( ) thread. (This ability is not restricted to the main( ) thread—any 
thread can start another thread.) Thus, the program is running two methods at once—
main( ) and LiftOff.run( ). run( ) is the code that is executed "simultaneously" with the 
other threads in a program.  

You can easily add more threads to drive more tasks. Here, you can see how all the tasks run 
in concert with one another:5  

//: concurrency/MoreBasicThreads.java 
// Adding more threads. 
 
public class MoreBasicThreads { 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) 
      new Thread(new LiftOff()).start(); 
    System.out.println("Waiting for LiftOff"); 
  } 
} /* Output: (Sample) 
Waiting for LiftOff 
#0(9), #1(9), #2(9), #3(9), #4(9), #0(8), #1(8), #2(8), #3(8), #4(8), 
#0(7), #1(7), #2(7), #3(7), #4(7), #0(6), #1(6), #2(6), #3(6), #4(6), 
#0(5), #1(5), #2(5), #3(5), #4(5), #0(4), #1(4), #2(4), #3(4), #4(4), 
#0(3), #1(3), #2(3), #3(3), #4(3), #0(2), #1(2), #2(2), #3(2), #4(2), 
#0(1), #1(1), #2(1), #3(1), #4(1), #0(Liftoff!), #1(Liftoff!), 
#2(Liftoff!), #3(Liftoff!), #4(Liftoff!), 
*///:~ 

The output shows that the execution of the different tasks is mixed together as the threads 
are swapped in and out. This swapping is automatically controlled by the thread scheduler. If 

                                                            
5 In this case, a single thread (main( )), is creating all the LiftOff threads. If you have multiple threads creating LiftOff 
threads, however, it is possible for more than one LiftOff to have the same id. You’ll learn why later in this chapter. 



 

804 Thinking in Java Bruce Eckel 

you have multiple processors on your machine, the thread scheduler will quietly distribute 
the threads among the processors.6

  

The output for one run of this program will be different from that of another, because the 
thread-scheduling mechanism is not deterministic. In fact, you may see dramatic differences 
in the output of this simple program between one version of the JDK and the next. For 
example, an earlier JDK didn’t timeslice very often, so thread l might loop to extinction first, 
then thread 2 would go through all of its loops, etc. This was virtually the same as calling a 
routine that would do all the loops at once, except that starting up all those threads is more 
expensive. Later JDKs seem to produce better time-slicing behavior, so each thread seems to 
get more regular service. Generally, these kinds of JDK behavioral changes have not been 
mentioned by Sun, so you cannot plan on any consistent threading behavior. The best 
approach is to be as conservative as possible while writing threaded code.  

When main( ) creates the Thread objects, it isn’t capturing the references for any of them. 
With an ordinary object, this would make it fair game for garbage collection, but not with a 
Thread. Each Thread "registers" itself so there is actually a reference to it someplace, and 
the garbage collector can’t clean it up until the task exits its run( ) and dies. You can see 
from the output that the tasks are indeed running to conclusion, so a thread creates a 
separate thread of execution that persists after the call to start( ) completes.  

Exercise 1:   (2) Implement a Runnable. Inside run( ), print a message, and then call 
yield( ). Repeat this three times, and then return from run( ). Put a startup message in the 
constructor and a shutdown message when the task terminates. Create a number of these 
tasks and drive them using threads.  

Exercise 2:   (2) Following the form of generics/Fibonacci.java, create a task that 
produces a sequence of n Fibonacci numbers, where n is provided to the constructor of the 
task. Create a number of these tasks and drive them using threads.  

Using Executors 

Java SE5 java.util.concurrent Executors simplify concurrent programming by managing 
Thread objects for you. Executors provide a layer of indirection between a client and the 
execution of a task; instead of a client executing a task directly, an intermediate object 
executes the task. Executors allow you to manage the execution of asynchronous tasks 
without having to explicitly manage the lifecycle of threads. Executors are the preferred 
method for starting tasks in Java SE5/6.  

We can use an Executor instead of explicitly creating Thread objects in 
MoreBasicThreads.java. A LiftOff object knows how to run a specific task; like the 
Command design pattern, it exposes a single method to be executed. An ExecutorService 
(an Executor with a service lifecycle—e.g., shutdown) knows how to build the appropriate 
context to execute Runnable objects. In the following example, the CachedThreadPool 
creates one thread per task. Note that an ExecutorService object is created using a static 
Executors method which determines the kind of Executor it will be:  

//: concurrency/CachedThreadPool.java 
import java.util.concurrent.*; 
 
public class CachedThreadPool { 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new LiftOff()); 

                                                            
6 This was not true for some of the earliest versions of Java. 



 

    exec.shutdown(); 
  } 
} /* Output: (Sample) 
#0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8), #2(8), #3(8), 
#4(8), #0(6), #1(7), #2(7), #3(7), #4(7), #0(5), #1(6), #2(6), #3(6), 
#4(6), #0(4), #1(5), #2(5), #3(5), #4(5), #0(3), #1(4), #2(4), #3(4), 
#4(4), #0(2), #1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2), 
#4(2), #0(Liftoff!), #1(1), #2(1), #3(1), #4(1), #1(Liftoff!), 
#2(Liftoff!), #3(Liftoff!), #4(Liftoff!), 
*///:~ 

Very often, a single Executor can be used to create and manage all the tasks in your system.  

The call to shutdown( ) prevents new tasks from being submitted to that Executor. The 
current thread (in this case, the one driving main( )) will continue to run all tasks submitted 
before shutdown( ) was called. The program will exit as soon as all the tasks in the 
Executor finish.  

You can easily replace the CachedThreadPool in the previous example with a different 
type of Executor. A FixedThreadPool uses a limited set of threads to execute the 
submitted tasks:  

//: concurrency/FixedThreadPool.java 
import java.util.concurrent.*; 
 
public class FixedThreadPool { 
  public static void main(String[] args) { 
    // Constructor argument is number of threads: 
    ExecutorService exec = Executors.newFixedThreadPool(5); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new LiftOff()); 
    exec.shutdown(); 
  } 
} /* Output: (Sample) 
#0(9), #0(8), #1(9), #2(9), #3(9), #4(9), #0(7), #1(8), #2(8), #3(8), 
#4(8), #0(6), #1(7), #2(7), #3(7), #4(7), #0(5), #1(6), #2(6), #3(6), 
#4(6), #0(4), #1(5), #2(5), #3(5), #4(5), #0(3), #1(4), #2(4), #3(4), 
#4(4), #0(2), #1(3), #2(3), #3(3), #4(3), #0(1), #1(2), #2(2), #3(2), 
#4(2), #0(Liftoff!), #1(1), #2(1), #3(1), #4(1), #1(Liftoff!), 
#2(Liftoff!), #3(Liftoff!), #4(Liftoff!), 
*///:~ 

With the FixedThreadPool, you do expensive thread allocation once, up front, and you 
thus limit the number of threads. This saves time because you aren’t constantly paying for 
thread creation overhead for every single task. Also, in an event-driven system, event 
handlers that require threads can be serviced as quickly as you want by simply fetching 
threads from the pool. You don’t overrun the available resources because the 
FixedThreadPool uses a bounded number of Thread objects.  

Note that in any of the thread pools, existing threads are automatically reused when possible.  

Although this book will use CachedThreadPools, consider using FixedThreadPools in 
production code. A CachedThreadPool will generally create as many threads as it needs 
during the execution of a program and then will stop creating new threads as it recycles the 
old ones, so it’s a reasonable first choice as an Executor. Only if this approach causes 
problems do you need to switch to a FixedThreadPool.  

Concurrency 805 



 

806 Thinking in Java Bruce Eckel 

A SingleThreadExecutor is like a FixedThreadPool with a size of one thread.7
 This is 

useful for anything you want to run in another thread continually (a long-lived task), such as 
a task that listens to incoming socket connections. It is also handy for short tasks that you 
want to run in a thread— for example, small tasks that update a local or remote log, or for an 
eventdispatching thread.  

If more than one task is submitted to a SingleThreadExecutor, the tasks will be queued 
and each task will run to completion before the next task is begun, all using the same thread. 
In the following example, you’ll see each task completed, in the order in which it was 
submitted, before the next one is begun. Thus, a SingleThreadExecutor serializes the 
tasks that are submitted to it, and maintains its own (hidden) queue of pending tasks.  

//: concurrency/SingleThreadExecutor.java 
import java.util.concurrent.*; 
 
public class SingleThreadExecutor { 
  public static void main(String[] args) { 
    ExecutorService exec = 
      Executors.newSingleThreadExecutor(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new LiftOff()); 
    exec.shutdown(); 
  } 
} /* Output: 
#0(9), #0(8), #0(7), #0(6), #0(5), #0(4), #0(3), #0(2), #0(1), 
#0(Liftoff!), #1(9), #1(8), #1(7), #1(6), #1(5), #1(4), #1(3), #1(2), 
#1(1), #1(Liftoff!), #2(9), #2(8), #2(7), #2(6), #2(5), #2(4), #2(3), 
#2(2), #2(1), #2(Liftoff!), #3(9), #3(8), #3(7), #3(6), #3(5), #3(4), 
#3(3), #3(2), #3(1), #3(Liftoff!), #4(9), #4(8), #4(7), #4(6), #4(5), 
#4(4), #4(3), #4(2), #4(1), #4(Liftoff!), 
*///:~ 

As another example, suppose you have a number of threads running tasks that use the file 
system. You can run these tasks with a SingleThreadExecutor to ensure that only one task 
at a time is running from any thread. This way, you don’t need to deal with synchronizing on 
the shared resource (and you won’t clobber the file system in the meantime). Sometimes a 
better solution is to synchronize on the resource (which you’ll learn about later in this 
chapter), but a SingleThreadExecutor lets you skip the trouble of getting coordinated 
properly just to prototype something. By serializing tasks, you can eliminate the need to 
serialize the objects.  

Exercise 3:   (1) Repeat Exercise 1 using the different types of executors shown in this 
section.  

Exercise 4:   (1) Repeat Exercise 2 using the different types of executors shown in this 
section.  

Producing return values from tasks 

A Runnable is a separate task that performs work, but it doesn’t return a value. If you want 
the task to produce a value when it’s done, you can implement the Callable interface rather 
than the Runnable interface. Callable, introduced in Java SE5, is a generic with a type 
parameter representing the return value from the method call( ) (instead of run( )), and 
must be invoked using an ExecutorService submit( ) method. Here’s a simple example:  

                                                            
7 It also offers an important concurrency guarantee that the others do not—no two tasks will be called concurrently. This 
changes the locking requirements for the tasks (you’ll learn about locking later in the chapter). 



 

//: concurrency/CallableDemo.java 
import java.util.concurrent.*; 
import java.util.*; 
 
class TaskWithResult implements Callable<String> { 
  private int id; 
  public TaskWithResult(int id) { 
    this.id = id; 
  } 
  public String call() { 
    return "result of TaskWithResult " + id; 
  } 
} 
 
public class CallableDemo { 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    ArrayList<Future<String>> results = 
      new ArrayList<Future<String>>(); 
    for(int i = 0; i < 10; i++) 
      results.add(exec.submit(new TaskWithResult(i))); 
    for(Future<String> fs : results) 
      try { 
        // get() blocks until completion: 
        System.out.println(fs.get()); 
      } catch(InterruptedException e) { 
        System.out.println(e); 
        return; 
      } catch(ExecutionException e) { 
        System.out.println(e); 
      } finally { 
        exec.shutdown(); 
      } 
  } 
} /* Output: 
result of TaskWithResult 0 
result of TaskWithResult 1 
result of TaskWithResult 2 
result of TaskWithResult 3 
result of TaskWithResult 4 
result of TaskWithResult 5 
result of TaskWithResult 6 
result of TaskWithResult 7 
result of TaskWithResult 8 
result of TaskWithResult 9 
*///:~ 

The submit( ) method produces a Future object, parameterized for the particular type of 
result returned by the Callable. You can query the Future with isDone( ) to see if it has 
completed. When the task is completed and has a result, you can call get( ) to fetch the 
result. You can simply call get( ) without checking isDone( ), in which case get( ) will block 
until the result is ready. You can also call get( ) with a timeout, or isDone( ) to see if the 
task has completed, before trying to call get( ) to fetch the result.  

The overloaded Executors.callable( ) method takes a Runnable and produces a 
Callable. ExecutorService has some "invoke" methods that run collections of Callable 
objects.  

Exercise 5:   (2) Modify Exercise 2 so that the task is a Callable that sums the values of 
all the Fibonacci numbers. Create several tasks and display the results.  

Concurrency 807 



 

Sleeping 

A simple way to affect the behavior of your tasks is by calling sleep( ) to cease (block) the 
execution of that task for a given time. In the LiftOff class, if you replace the call to yield( ) 
with a call to sleep( ), you get the following:  

//: concurrency/SleepingTask.java 
// Calling sleep() to pause for a while. 
import java.util.concurrent.*; 
 
public class SleepingTask extends LiftOff { 
  public void run() { 
    try { 
      while(countDown-- > 0) { 
        System.out.print(status()); 
        // Old-style: 
        // Thread.sleep(100); 
        // Java SE5/6-style: 
        TimeUnit.MILLISECONDS.sleep(100); 
      } 
    } catch(InterruptedException e) { 
      System.err.println("Interrupted"); 
    } 
  } 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new SleepingTask()); 
    exec.shutdown(); 
  } 
} /* Output: 
#0(9), #1(9), #2(9), #3(9), #4(9), #0(8), #1(8), #2(8), #3(8), #4(8), 
#0(7), #1(7), #2(7), #3(7), #4(7), #0(6), #1(6), #2(6), #3(6), #4(6), 
#0(5), #1(5), #2(5), #3(5), #4(5), #0(4), #1(4), #2(4), #3(4), #4(4), 
#0(3), #1(3), #2(3), #3(3), #4(3), #0(2), #1(2), #2(2), #3(2), #4(2), 
#0(1), #1(1), #2(1), #3(1), #4(1), #0(Liftoff!), #1(Liftoff!), 
#2(Liftoff!), #3(Liftoff!), #4(Liftoff!), 
*///:~ 

The call to sleep( ) can throw an InterruptedException, and you can see that this is 
caught in run( ). Because exceptions won’t propagate across threads back to main( ), you 
must locally handle any exceptions that arise within a task.  

Java SE5 introduced the more explicit version of sleep( ) as part of the TimeUnit class, as 
shown in the above example. This provides better readability by allowing you to specify the 
units of the sleep( ) delay. TimeUnit can also be used to perform conversions, as you shall 
see later in the chapter.  

Depending on your platform, you may notice that the tasks run in "perfectly distributed" 
order—zero through four, then back to zero again. This makes sense because, after each print 
statement, each task goes to sleep (it blocks), which allows the thread scheduler to switch to 
another thread, driving another task. However, the sequential behavior relies on the 
underlying threading mechanism, which is different from one operating system to another, 
so you cannot rely on it. If you must control the order of execution of tasks, your best bet is to 
use synchronization controls (described later) or, in some cases, not to use threads at all, but 
instead to write your own cooperative routines that hand control to each other in a specified 
order.  

808 Thinking in Java Bruce Eckel 



 

Exercise 6:   (2) Create a task that sleeps for a random amount of time between 1 and 10 
seconds, then displays its sleep time and exits. Create and run a quantity (given on the 
command line) of these tasks.  

Priority 

The priority of a thread conveys the importance of a thread to the scheduler. Although the 
order in which the CPU runs a set of threads is indeterminate, the scheduler will lean toward 
running the waiting thread with the highest priority first. However, this doesn’t mean that 
threads with lower priority aren’t run (so you can’t get deadlocked because of priorities). 
Lower-priority threads just tend to run less often.  

The vast majority of the time, all threads should run at the default priority. Trying to 
manipulate thread priorities is usually a mistake.  

Here’s an example that demonstrates priority levels. You can read the priority of an existing 
thread with getPriority( ) and change it at any time with setPriority( ).  

//: concurrency/SimplePriorities.java 
// Shows the use of thread priorities. 
import java.util.concurrent.*; 
 
public class SimplePriorities implements Runnable { 
  private int countDown = 5; 
  private volatile double d; // No optimization 
  private int priority; 
  public SimplePriorities(int priority) { 
    this.priority = priority; 
  } 
  public String toString() { 
    return Thread.currentThread() + ": " + countDown; 
  } 
  public void run() { 
    Thread.currentThread().setPriority(priority); 
    while(true) { 
      // An expensive, interruptable operation: 
      for(int i = 1; i < 100000; i++) { 
        d += (Math.PI + Math.E) / (double)i; 
        if(i % 1000 == 0) 
          Thread.yield(); 
      } 
      System.out.println(this); 
      if(--countDown == 0) return; 
    } 
  } 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute( 
        new SimplePriorities(Thread.MIN_PRIORITY)); 
    exec.execute( 
        new SimplePriorities(Thread.MAX_PRIORITY)); 
    exec.shutdown(); 
  } 
} /* Output: (70% match) 
Thread[pool-1-thread-6,10,main]: 5 
Thread[pool-1-thread-6,10,main]: 4 
Thread[pool-1-thread-6,10,main]: 3 
Thread[pool-1-thread-6,10,main]: 2 
Thread[pool-1-thread-6,10,main]: 1 

Concurrency 809 



 

Thread[pool-1-thread-3,1,main]: 5 
Thread[pool-1-thread-2,1,main]: 5 
Thread[pool-1-thread-1,1,main]: 5 
Thread[pool-1-thread-5,1,main]: 5 
Thread[pool-1-thread-4,1,main]: 5 
... 
*///:~ 

toString( ) is overridden to use Thread.toString( ), which prints the thread name, the 
priority level, and the "thread group" that the thread belongs to. You can set the thread name 
yourself via the constructor; here it’s automatically generated as pool-1-thread-1, pool-1-
thread-2, etc. The overridden toString( ) also shows the countdown value of the task. 
Notice that you can get a reference to the Thread object that is driving a task, inside that 
task, by calling Thread.currentThread( ).  

You can see that the priority level of the last thread is at the highest level, and all the rest of 
the threads are at the lowest level. Note that the priority is set at the beginning of run( ); 
setting it in the constructor would do no good since the Executor has not begun the task at 
that point.  

Inside run( ), 100,000 repetitions of a rather expensive floating point calculation are 
performed, involving double addition and division. The variable d is volatile to try to 
ensure that no compiler optimizations are performed. Without this calculation, you don’t see 
the effect of setting the priority levels. (Try it: Comment out the for loop containing the 
double calculations.) With the calculation, you see that the thread with MAX_PRIORITY 
is given a higher preference by the thread scheduler. (At least, this was the behavior on a 
Windows XP machine.) Even though printing to the console is also an expensive behavior, 
you won’t see the priority levels that way, because console printing doesn’t get interrupted 
(otherwise, the console display would get garbled during threading), whereas the math 
calculation can be interrupted. The calculation takes long enough that the scheduling 
mechanism jumps in, swaps tasks, and pays attention to the priorities so that high-priority 
threads get preference. However, to ensure that a context switch occurs, yield( ) statements 
are regularly called.  

Although the JDK has 10 priority levels, this doesn’t map well to many operating systems. 
For example, Windows has 7 priority levels that are not fixed, so the mapping is 
indeterminate. Sun’s Solaris has 231 levels. The only portable approach is to stick to 
MAX_PRIORITY, NORM_PRIORITY, and MIN_PRIORITY when you’re adjusting 
priority levels.  

Yielding 

If you know that you’ve accomplished what you need to during one pass through a loop in 
your run( ) method, you can give a hint to the threadscheduling mechanism that you’ve 
done enough and that some other task might as well have the CPU. This hint (and it is a 
hint—there’s no guarantee your implementation will listen to it) takes the form of the 
yield( ) method. When you call yield( ), you are suggesting that other threads of the same 
priority might be run.  

LiftOff.java uses yield( ) to produce well-distributed processing across the various LiftOff 
tasks. Try commenting out the call to Thread.yield( ) in LiftOff.run( ) to see the 
difference. In general, however, you can’t rely on yield( ) for any serious control or tuning of 
your application. Indeed, yield( ) is often used incorrectly.  

Daemon threads 

810 Thinking in Java Bruce Eckel 



 

A "daemon" thread is intended to provide a general service in the background as long as the 
program is running, but is not part of the essence of the program. Thus, when all of the non-
daemon threads complete, the program is terminated, killing all daemon threads in the 
process. Conversely, if there are any non-daemon threads still running, the program doesn’t 
terminate. There is, for instance, a non-daemon thread that runs main( ).  

//: concurrency/SimpleDaemons.java 
// Daemon threads don’t prevent the program from ending. 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
public class SimpleDaemons implements Runnable { 
  public void run() { 
    try { 
      while(true) { 
        TimeUnit.MILLISECONDS.sleep(100); 
        print(Thread.currentThread() + " " + this); 
      } 
    } catch(InterruptedException e) { 
      print("sleep() interrupted"); 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    for(int i = 0; i < 10; i++) { 
      Thread daemon = new Thread(new SimpleDaemons()); 
      daemon.setDaemon(true); // Must call before start() 
      daemon.start(); 
    } 
    print("All daemons started"); 
    TimeUnit.MILLISECONDS.sleep(175); 
  } 
} /* Output: (Sample) 
All daemons started 
Thread[Thread-0,5,main] SimpleDaemons@530daa 
Thread[Thread-1,5,main] SimpleDaemons@a62fc3 
Thread[Thread-2,5,main] SimpleDaemons@89ae9e 
Thread[Thread-3,5,main] SimpleDaemons@1270b73 
Thread[Thread-4,5,main] SimpleDaemons@60aeb0 
Thread[Thread-5,5,main] SimpleDaemons@16caf43 
Thread[Thread-6,5,main] SimpleDaemons@66848c 
Thread[Thread-7,5,main] SimpleDaemons@8813f2 
Thread[Thread-8,5,main] SimpleDaemons@1d58aae 
Thread[Thread-9,5,main] SimpleDaemons@83cc67 
... 
*///:~ 

You must set the thread to be a daemon by calling setDaemon( ) before it is started.  

There’s nothing to keep the program from terminating once main( ) finishes its job, since 
there are nothing but daemon threads running. So that you can see the results of starting all 
the daemon threads, the main( ) thread is briefly put to sleep. Without this, you see only 
some of the results from the creation of the daemon threads. (Try sleep( ) calls of various 
lengths to see this behavior.)  

SimpleDaemons.java creates explicit Thread objects in order to set their daemon flag. It 
is possible to customize the attributes (daemon, priority, name) of threads created by 
Executors by writing a custom ThreadFactory:  

//: net/mindview/util/DaemonThreadFactory.java 
package net.mindview.util; 
import java.util.concurrent.*; 

Concurrency 811 



 

 
public class DaemonThreadFactory implements ThreadFactory { 
  public Thread newThread(Runnable r) { 
    Thread t = new Thread(r); 
    t.setDaemon(true); 
    return t; 
  } 
} ///:~ 

The only difference from an ordinary ThreadFactory is that this one sets the daemon 
status to true. You can now pass a new DaemonThreadFactory as an argument to 
Executors.newCachedThreadPool( ):  

//: concurrency/DaemonFromFactory.java 
// Using a Thread Factory to create daemons. 
import java.util.concurrent.*; 
import net.mindview.util.*; 
import static net.mindview.util.Print.*; 
 
public class DaemonFromFactory implements Runnable { 
  public void run() { 
    try { 
      while(true) { 
        TimeUnit.MILLISECONDS.sleep(100); 
        print(Thread.currentThread() + " " + this); 
      } 
    } catch(InterruptedException e) { 
      print("Interrupted"); 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool( 
      new DaemonThreadFactory()); 
    for(int i = 0; i < 10; i++) 
      exec.execute(new DaemonFromFactory()); 
    print("All daemons started"); 
    TimeUnit.MILLISECONDS.sleep(500); // Run for a while 
  } 
} /* (Execute to see output) *///:~ 

Each of the static ExecutorService creation methods is overloaded to take a 
ThreadFactory object that it will use to create new threads.  

We can take this one step further and create a DaemonThreadPoolExecutor utility:  

//: net/mindview/util/DaemonThreadPoolExecutor.java 
package net.mindview.util; 
import java.util.concurrent.*; 
 
public class DaemonThreadPoolExecutor 
extends ThreadPoolExecutor { 
  public DaemonThreadPoolExecutor() { 
    super(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, 
      new SynchronousQueue<Runnable>(), 
      new DaemonThreadFactory()); 
  } 
} ///:~ 

To get the values for the constructor base-class call, I simply looked at the Executors.java 
source code.  

812 Thinking in Java Bruce Eckel 



 

You can find out if a thread is a daemon by calling isDaemon( ). If a thread is a daemon, 
then any threads it creates will automatically be daemons, as the following example 
demonstrates:  

//: concurrency/Daemons.java 
// Daemon threads spawn other daemon threads. 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
class Daemon implements Runnable { 
  private Thread[] t = new Thread[10]; 
  public void run() { 
    for(int i = 0; i < t.length; i++) { 
      t[i] = new Thread(new DaemonSpawn()); 
      t[i].start(); 
      printnb("DaemonSpawn " + i + " started, "); 
    } 
    for(int i = 0; i < t.length; i++) 
      printnb("t[" + i + "].isDaemon() = " + 
        t[i].isDaemon() + ", "); 
    while(true) 
      Thread.yield(); 
  } 
} 
 
class DaemonSpawn implements Runnable { 
  public void run() { 
    while(true) 
      Thread.yield(); 
  } 
} 
 
public class Daemons { 
  public static void main(String[] args) throws Exception { 
    Thread d = new Thread(new Daemon()); 
    d.setDaemon(true); 
    d.start(); 
    printnb("d.isDaemon() = " + d.isDaemon() + ", "); 
    // Allow the daemon threads to 
    // finish their startup processes: 
    TimeUnit.SECONDS.sleep(1); 
  } 
} /* Output: (Sample) 
d.isDaemon() = true, DaemonSpawn 0 started, DaemonSpawn 1 started, 
DaemonSpawn 2 started, DaemonSpawn 3 started, DaemonSpawn 4 started, 
DaemonSpawn 5 started, DaemonSpawn 6 started, DaemonSpawn 7 started, 
DaemonSpawn 8 started, DaemonSpawn 9 started, t[0].isDaemon() = true, 
t[1].isDaemon() = true, t[2].isDaemon() = true, t[3].isDaemon() = true, 
t[4].isDaemon() = true, t[5].isDaemon() = true, t[6].isDaemon() = true, 
t[7].isDaemon() = true, t[8].isDaemon() = true, t[9].isDaemon() = true, 
*///:~ 

The Daemon thread is set to daemon mode. It then spawns a bunch of other threads—which 
are nor explicitly set to daemon mode—to show that they are daemons anyway. Then 
Daemon goes into an infinite loop that calls yield( ) to give up control to the other 
processes.  

You should be aware that daemon threads will terminate their run( ) methods without 
executing finally clauses:  

//: concurrency/DaemonsDontRunFinally.java 

Concurrency 813 



 

// Daemon threads don’t run the finally clause 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
class ADaemon implements Runnable { 
  public void run() { 
    try { 
      print("Starting ADaemon"); 
      TimeUnit.SECONDS.sleep(1); 
    } catch(InterruptedException e) { 
      print("Exiting via InterruptedException"); 
    } finally { 
      print("This should always run?"); 
    } 
  } 
} 
 
public class DaemonsDontRunFinally { 
  public static void main(String[] args) throws Exception { 
    Thread t = new Thread(new ADaemon()); 
    t.setDaemon(true); 
    t.start(); 
  } 
} /* Output: 
Starting ADaemon 
*///:~ 

When you run this program, you’ll see that the finally clause is not executed, but if you 
comment out the call to setDaemon( ), you’ll see that the finally clause is executed.  

This behavior is correct, even if you don’t expect it based on the previous promises given for 
finally. Daemons are terminated "abruptly" when the last of the non-daemons terminates. 
So as soon as main( ) exits, the JVM shuts down all the daemons immediately, without any 
of the formalities you might have come to expect. Because you cannot shut daemons down in 
a nice fashion, they are rarely a good idea. Non-daemon Executors are generally a better 
approach, since all the tasks controlled by an Executor can be shut down at once. As you 
shall see later in the chapter, shutdown in this case proceeds in an orderly fashion.  

Exercise 7:   (2) Experiment with different sleep times in Daemons.java to see what 
happens.  

Exercise 8:   (1) Modify MoreBasicThreads.java so that all the threads are daemon 
threads, and verify that the program ends as soon as main( ) is able to exit.  

Exercise 9:   (3) Modify SimplePriorities.java so that a custom ThreadFactory sets 
the priorities of the threads.  

Coding variations 

In the examples that you’ve seen so far, the task classes all implement Runnable. In very 
simple cases, you may want to use the alternative approach of inheriting directly from 
Thread, like this:  

//: concurrency/SimpleThread.java 
// Inheriting directly from the Thread class. 
 
public class SimpleThread extends Thread { 
  private int countDown = 5; 
  private static int threadCount = 0; 

814 Thinking in Java Bruce Eckel 



 

  public SimpleThread() { 
    // Store the thread name: 
    super(Integer.toString(++threadCount)); 
    start(); 
  } 
  public String toString() { 
    return "#" + getName() + "(" + countDown + "), "; 
  } 
  public void run() { 
    while(true) { 
      System.out.print(this); 
      if(--countDown == 0) 
        return; 
    } 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) 
      new SimpleThread(); 
  } 
} /* Output: 
#1(5), #1(4), #1(3), #1(2), #1(1), #2(5), #2(4), #2(3), #2(2), #2(1), 
#3(5), #3(4), #3(3), #3(2), #3(1), #4(5), #4(4), #4(3), #4(2), #4(1), 
#5(5), #5(4), #5(3), #5(2), #5(1), 
*///:~ 

You give the Thread objects specific names by calling the appropriate Thread constructor. 
This name is retrieved in toString( ) using getName( ).  

Another idiom that you may see is that of the self-managed Runnable:  

//: concurrency/SelfManaged.java 
// A Runnable containing its own driver Thread. 
 
public class SelfManaged implements Runnable { 
  private int countDown = 5; 
  private Thread t = new Thread(this); 
  public SelfManaged() { t.start(); } 
  public String toString() { 
    return Thread.currentThread().getName() + 
      "(" + countDown + "), "; 
  } 
  public void run() { 
    while(true) { 
      System.out.print(this); 
      if(--countDown == 0) 
        return; 
    } 
  } 
  public static void main(String[] args) { 
    for(int i = 0; i < 5; i++) 
      new SelfManaged(); 
  } 
} /* Output: 
Thread-0(5), Thread-0(4), Thread-0(3), Thread-0(2), Thread-0(1), Thread-
1(5), Thread-1(4), Thread-1(3), Thread-1(2), Thread-1(1), Thread-2(5), 
Thread-2(4), Thread-2(3), Thread-2(2), Thread-2(1), Thread-3(5), Thread-
3(4), Thread-3(3), Thread-3(2), Thread-3(1), Thread-4(5), Thread-4(4), 
Thread-4(3), Thread-4(2), Thread-4(1), 
*///:~ 

Concurrency 815 



 

This is not especially different from inheriting from Thread except that the syntax is slightly 
more awkward. However, implementing an interface does allow you to inherit from a 
different class, whereas inheriting from Thread does not.  

Notice that start( ) is called within the constructor. This example is quite simple and 
therefore probably safe, but you should be aware that starting threads inside a constructor 
can be quite problematic, because another task might start executing before the constructor 
has completed, which means the task may be able to access the object in an unstable state. 
This is yet another reason to prefer the use of Executors to the explicit creation of Thread 
objects.  

Sometimes it makes sense to hide your threading code inside your class by using an inner 
class, as shown here:  

//: concurrency/ThreadVariations.java 
// Creating threads with inner classes. 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
// Using a named inner class: 
class InnerThread1 { 
  private int countDown = 5; 
  private Inner inner; 
  private class Inner extends Thread { 
    Inner(String name) { 
      super(name); 
      start(); 
    } 
    public void run() { 
      try { 
        while(true) { 
          print(this); 
          if(--countDown == 0) return; 
          sleep(10); 
        } 
      } catch(InterruptedException e) { 
        print("interrupted"); 
      } 
    } 
    public String toString() { 
      return getName() + ": " + countDown; 
    } 
  } 
  public InnerThread1(String name) { 
    inner = new Inner(name); 
  } 
} 
 
// Using an anonymous inner class: 
class InnerThread2 { 
  private int countDown = 5; 
  private Thread t; 
  public InnerThread2(String name) { 
    t = new Thread(name) { 
      public void run() { 
        try { 
          while(true) { 
            print(this); 
            if(--countDown == 0) return; 
            sleep(10); 
          } 
        } catch(InterruptedException e) { 

816 Thinking in Java Bruce Eckel 



 

          print("sleep() interrupted"); 
        } 
      } 
      public String toString() { 
        return getName() + ": " + countDown; 
      } 
    }; 
    t.start(); 
  } 
} 
 
// Using a named Runnable implementation: 
class InnerRunnable1 { 
  private int countDown = 5; 
  private Inner inner; 
  private class Inner implements Runnable { 
    Thread t; 
    Inner(String name) { 
      t = new Thread(this, name); 
      t.start(); 
    } 
    public void run() { 
      try { 
        while(true) { 
          print(this); 
          if(--countDown == 0) return; 
          TimeUnit.MILLISECONDS.sleep(10); 
        } 
      } catch(InterruptedException e) { 
        print("sleep() interrupted"); 
      } 
    } 
    public String toString() { 
      return t.getName() + ": " + countDown; 
    } 
  } 
  public InnerRunnable1(String name) { 
    inner = new Inner(name); 
  } 
} 
 
// Using an anonymous Runnable implementation: 
class InnerRunnable2 { 
  private int countDown = 5; 
  private Thread t; 
  public InnerRunnable2(String name) { 
    t = new Thread(new Runnable() { 
      public void run() { 
        try { 
          while(true) { 
            print(this); 
            if(--countDown == 0) return; 
            TimeUnit.MILLISECONDS.sleep(10); 
          } 
        } catch(InterruptedException e) { 
          print("sleep() interrupted"); 
        } 
      } 
      public String toString() { 
        return Thread.currentThread().getName() + 
          ": " + countDown; 
      } 
    }, name); 

Concurrency 817 



 

    t.start(); 
  } 
} 
 
// A separate method to run some code as a task: 
class ThreadMethod { 
  private int countDown = 5; 
  private Thread t; 
  private String name; 
  public ThreadMethod(String name) { this.name = name; } 
  public void runTask() { 
    if(t == null) { 
      t = new Thread(name) { 
        public void run() { 
          try { 
            while(true) { 
              print(this); 
              if(--countDown == 0) return; 
              sleep(10); 
            } 
          } catch(InterruptedException e) { 
            print("sleep() interrupted"); 
          } 
        } 
        public String toString() { 
          return getName() + ": " + countDown; 
        } 
      }; 
      t.start(); 
    } 
  } 
} 
 
public class ThreadVariations { 
  public static void main(String[] args) { 
    new InnerThread1("InnerThread1"); 
    new InnerThread2("InnerThread2"); 
    new InnerRunnable1("InnerRunnable1"); 
    new InnerRunnable2("InnerRunnable2"); 
    new ThreadMethod("ThreadMethod").runTask(); 
  } 
} /* (Execute to see output) *///:~ 

InnerThread1 creates a named inner class that extends Thread, and makes an instance of 
this inner class inside the constructor. This makes sense if the inner class has special 
capabilities (new methods) that you need to access in other methods. However, most of the 
time the reason for creating a thread is only to use the Thread capabilities, so it’s not 
necessary to create a named inner class. InnerThread2 shows the alternative: An 
anonymous inner subclass of Thread is created inside the constructor and is upcast to a 
Thread reference t. If other methods of the class need to access t, they can do so through the 
Thread interface, and they don’t need to know the exact type of the object.  

The third and fourth classes in the example repeat the first two classes, but they use the 
Runnable interface rather than the Thread class.  

The ThreadMethod class shows the creation of a thread inside a method. You call the 
method when you’re ready to run the thread, and the method returns after the thread begins. 
If the thread is only performing an auxiliary operation rather than being fundamental to the 
class, this is probably a more useful and appropriate approach than starting a thread inside 
the constructor of the class.  

818 Thinking in Java Bruce Eckel 



 

Exercise 10:   (4) Modify Exercise 5 following the example of the ThreadMethod class, 
so that runTask( ) takes an argument of the number of Fibonacci numbers to sum, and each 
time you call runTask( ) it returns the Future produced by the call to submit( ).  

Terminology 

As the previous section shows, you have choices in how you implement concurrent programs 
in Java, and these choices can be confusing. Often the problem comes from the terminology 
that’s used in describing concurrent program technology, especially where threads are 
involved.  

You should see by now that there’s a distinction between the task that’s being executed and 
the thread that drives it; this distinction is especially clear in the Java libraries because you 
don’t really have any control over the Thread class (and this separation is even clearer with 
executors, which take care of the creation and management of threads for you). You create 
tasks and somehow attach a thread to your task so that the thread will drive that task.  

In Java, the Thread class by itself does nothing. It drives the task that it’s given. Yet 
threading literature invariably uses language like "the thread performs this or that action." 
The impression that you get is that the thread is the task, and when I first encountered Java 
threads, this impression was so strong that I saw a clear "is-a" relationship, which said to me 
that I should obviously inherit a task from a Thread. Add to this the poor choice of name for 
the Runnable interface, which I think would have been much better named "Task." If the 
interface is clearly nothing more than a generic encapsulation of its methods, then the "it-
does-this-thing-able" naming approach is appropriate, but if it intends to express a higher 
concept, like Task, then the concept name is more helpful.  

The problem is that the levels of abstraction are mixed together. Conceptually, we want to 
create a task that runs independently of other tasks, so we ought to be able to define a task, 
and then say "go," and not worry about details. But physically, threads can be expensive to 
create, so you must conserve and manage them. Thus it makes sense from an 
implementation standpoint to separate tasks from threads. In addition, Java threading is 
based on the low-level pthreads approach which comes from C, where you are immersed in, 
and must thoroughly understand, the nuts and bolts of everything that’s going on. Some of 
this low-level nature has trickled through into the Java implementation, so to stay at a higher 
level of abstraction, you must use discipline when writing code (I will try to demonstrate that 
discipline in this chapter).  

To clarify these discussions, I shall attempt to use the term "task" when I am describing the 
work that is being done, and "thread" only when I am referring to the specific mechanism 
that’s driving the task. Thus, if you are discussing a system at a conceptual level, you could 
just use the term "task" without mentioning the driving mechanism at all.  

Joining a thread 

One thread may call join( ) on another thread to wait for the second thread to complete 
before proceeding. If a thread calls t.join( ) on another thread t, then the calling thread is 
suspended until the target thread t finishes (when t.isAlive( ) is false).  

You may also call join( ) with a timeout argument (in either milliseconds or milliseconds 
and nanoseconds) so that if the target thread doesn’t finish in that period of time, the call to 
join( ) returns anyway.  

The call to join( ) may be aborted by calling interrupt( ) on the calling thread, so a try-
catch clause is required.  

Concurrency 819 



 

All of these operations are shown in the following example:  

//: concurrency/Joining.java 
// Understanding join(). 
import static net.mindview.util.Print.*; 
 
class Sleeper extends Thread { 
  private int duration; 
  public Sleeper(String name, int sleepTime) { 
    super(name); 
    duration = sleepTime; 
    start(); 
  } 
  public void run() { 
    try { 
      sleep(duration); 
    } catch(InterruptedException e) { 
      print(getName() + " was interrupted. " + 
        "isInterrupted(): " + isInterrupted()); 
      return; 
    } 
    print(getName() + " has awakened"); 
  } 
} 
 
class Joiner extends Thread { 
  private Sleeper sleeper; 
  public Joiner(String name, Sleeper sleeper) { 
    super(name); 
    this.sleeper = sleeper; 
    start(); 
  } 
  public void run() { 
   try { 
      sleeper.join(); 
    } catch(InterruptedException e) { 
      print("Interrupted"); 
    } 
    print(getName() + " join completed"); 
  } 
} 
 
public class Joining { 
  public static void main(String[] args) { 
    Sleeper 
      sleepy = new Sleeper("Sleepy", 1500), 
      grumpy = new Sleeper("Grumpy", 1500); 
    Joiner 
      dopey = new Joiner("Dopey", sleepy), 
      doc = new Joiner("Doc", grumpy); 
    grumpy.interrupt(); 
  } 
} /* Output: 
Grumpy was interrupted. isInterrupted(): false 
Doc join completed 
Sleepy has awakened 
Dopey join completed 
*///:~ 

A Sleeper is a thread that goes to sleep for a time specified in its constructor. In run( ), the 
call to sleep( ) may terminate when the time expires, but it may also be interrupted. Inside 
the catch clause, the interruption is reported, along with the value of isInterrupted( ). 

820 Thinking in Java Bruce Eckel 



 

When another thread calls interrupt( ) on this thread, a flag is set to indicate that the 
thread has been interrupted. However, this flag is cleared when the exception is caught, so 
the result will always be false inside the catch clause. The flag is used for other situations 
where a thread may examine its interrupted state apart from the exception.  

A Joiner is a task that waits for a Sleeper to wake up by calling join( ) on the Sleeper 
object. In main( ), each Sleeper has a Joiner, and you can see in the output that if the 
Sleeper either is interrupted or ends normally, the Joiner completes in conjunction with 
the Sleeper.  

Note that the Java SE5 java.util.concurrent libraries contain tools such as CyclicBarrier 
(demonstrated later in this chapter) that may be more appropriate than join( ), which was 
part of the original threading library.  

Creating responsive user interfaces 

As stated earlier, one of the motivations for using threading is to create a responsive user 
interface. Although we won’t get to graphical interfaces until the Graphical User Interfaces 
chapter, the following example is a simple mock-up of a console-based user interface. The 
example has two versions: one that gets stuck in a calculation and thus can never read 
console input, and a second that puts the calculation inside a task and thus can be 
performing the calculation and listening for console input.  

//: concurrency/ResponsiveUI.java 
// User interface responsiveness. 
// {RunByHand} 
 
class UnresponsiveUI { 
  private volatile double d = 1; 
  public UnresponsiveUI() throws Exception { 
    while(d > 0) 
      d = d + (Math.PI + Math.E) / d; 
    System.in.read(); // Never gets here 
  } 
} 
 
public class ResponsiveUI extends Thread { 
  private static volatile double d = 1; 
  public ResponsiveUI() { 
    setDaemon(true); 
    start(); 
  } 
  public void run() { 
    while(true) { 
      d = d + (Math.PI + Math.E) / d; 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    //! new UnresponsiveUI(); // Must kill this process 
    new ResponsiveUI(); 
    System.in.read(); 
    System.out.println(d); // Shows progress 
  } 
} ///:~ 

UnresponsiveUI performs a calculation inside an infinite while loop, so it can obviously 
never reach the console input line (the compiler is fooled into believing that the input line is 
reachable by the while conditional). If you uncomment the line that creates an 
UnresponsiveUI, you’ll have to kill the process to get out.  

Concurrency 821 



 

822 Thinking in Java Bruce Eckel 

To make the program responsive, put the calculation inside a run( ) method to allow it to be 
preempted, and when you press the Enter key, you’ll see that the calculation has indeed been 
running in the background while waiting for your user input.  

Thread groups 

A thread group holds a collection of threads. The value of thread groups can be summed up 
by a quote from Joshua Bloch,8

 the software architect who, while he was at Sun, fixed and 
greatly improved the Java collections library in JDK 1.2 (among other contributions):  

"Thread groups are best viewed as an unsuccessful experiment, and you may simply 
ignore their existence."  

If you’ve spent time and energy trying to figure out the value of thread groups (as I have), you 
may wonder why there was not some more official announcement from Sun on the topic—the 
same question can be asked about any number of other changes that have happened to Java 
over the years. The Nobel laureate economist Joseph Stiglitz has a philosophy of life that 
would seem to apply here.9

 It’s called The Theory of Escalating Commitment:  

"The cost of continuing mistakes is borne by others, while the cost of admitting mistakes 
is borne by yourself."  

Catching exceptions 

Because of the nature of threads, you can’t catch an exception that has escaped from a thread. 
Once an exception gets outside of a task’s run( ) method, it will propagate out to the console 
unless you take special steps to capture such errant exceptions. Before Java SE5, you used 
thread groups to catch these exceptions, but with Java SE5 you can solve the problem with 
Executors, and thus you no longer need to know anything about thread groups (except to 
understand legacy code; see Thinking in Java, 2ndEdition, downloadable from 
www.MindView.net, for details about thread groups).  

Here’s a task that always throws an exception which propagates outside of its run( ) method, 
and a main( ) that shows what happens when you run it:  

//: concurrency/ExceptionThread.java 
// {ThrowsException} 
import java.util.concurrent.*; 
 
public class ExceptionThread implements Runnable { 
  public void run() { 
    throw new RuntimeException(); 
  } 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(new ExceptionThread()); 
  } 
} ///:~ 

The output is (after trimming some qualifiers to fit):  

java.lang.RuntimeException  

                                                            
8 Effective Java™ Programming Language Guide, by Joshua Bloch (Addison-Wesley, 2001), p. 211. 

9 And in a number of other places throughout the experience of Java. Well, why stop there? I’ve consulted on more than a 
few projects where this has applied. 



 

       at ExceptionThread.run(ExceptionThread.java:7) 
       at ThreadPoolExecutor$Worker.runTask(Unknown Source) 
       at ThreadPoolExecutor$Worker.run(Unknown Source) 
       at Java.lang.Thread.run(Unknown Source)  

Encompassing the body of main within a try-catch block is unsuccessful:  

//: concurrency/NaiveExceptionHandling.java 
// {ThrowsException} 
import java.util.concurrent.*; 
 
public class NaiveExceptionHandling { 
  public static void main(String[] args) { 
    try { 
      ExecutorService exec = 
        Executors.newCachedThreadPool(); 
      exec.execute(new ExceptionThread()); 
    } catch(RuntimeException ue) { 
      // This statement will NOT execute! 
      System.out.println("Exception has been handled!"); 
    } 
  } 
} ///:~ 

This produces the same result as the previous example: an uncaught exception.  

To solve the problem, we change the way the Executor produces threads. 
Thread.UncaughtExceptionHandler is a new interface in Java SE5; it allows you to 
attach an exception handler to each Thread object. 
Thread.UncaughtExceptionHandler.uncaughtException( ) is automatically called 
when that thread is about to die from an uncaught exception. To use it, we create a new type 
of ThreadFactory which attaches a new Thread.UncaughtExceptionHandler to each 
new Thread object it creates. We pass that factory to the Executors method that creates a 
new ExecutorService:  

//: concurrency/CaptureUncaughtException.java 
import java.util.concurrent.*; 
 
class ExceptionThread2 implements Runnable { 
  public void run() { 
    Thread t = Thread.currentThread(); 
    System.out.println("run() by " + t); 
    System.out.println( 
      "eh = " + t.getUncaughtExceptionHandler()); 
    throw new RuntimeException(); 
  } 
} 
 
class MyUncaughtExceptionHandler implements 
Thread.UncaughtExceptionHandler { 
  public void uncaughtException(Thread t, Throwable e) { 
    System.out.println("caught " + e); 
  } 
} 
 
class HandlerThreadFactory implements ThreadFactory { 
  public Thread newThread(Runnable r) { 
    System.out.println(this + " creating new Thread"); 
    Thread t = new Thread(r); 
    System.out.println("created " + t); 
    t.setUncaughtExceptionHandler( 

Concurrency 823 



 

      new MyUncaughtExceptionHandler()); 
    System.out.println( 
      "eh = " + t.getUncaughtExceptionHandler()); 
    return t; 
  } 
} 
 
public class CaptureUncaughtException { 
  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool( 
      new HandlerThreadFactory()); 
    exec.execute(new ExceptionThread2()); 
  } 
} /* Output: (90% match) 
HandlerThreadFactory@de6ced creating new Thread 
created Thread[Thread-0,5,main] 
eh = MyUncaughtExceptionHandler@1fb8ee3 
run() by Thread[Thread-0,5,main] 
eh = MyUncaughtExceptionHandler@1fb8ee3 
caught java.lang.RuntimeException 
*///:~ 

Additional tracing has been added to verify that the threads created by the factory are given 
the new UncaughtExceptionHandler. You can see that the uncaught exceptions are now 
being captured by uncaughtException.  

The above example allows you to set the handler on a case-by-case basis. If you know that 
you’re going to use the same exception handler everywhere, an even simpler approach is to 
set the default uncaught exception handler, which sets a static field inside the Thread class:  

//: concurrency/SettingDefaultHandler.java 
import java.util.concurrent.*; 
 
public class SettingDefaultHandler { 
  public static void main(String[] args) { 
    Thread.setDefaultUncaughtExceptionHandler( 
      new MyUncaughtExceptionHandler()); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(new ExceptionThread()); 
  } 
} /* Output: 
caught java.lang.RuntimeException 
*///:~ 

This handler is only called if there is no per-thread uncaught exception handler. The system 
checks for a per-thread version, and if it doesn’t find one it checks to see if the thread group 
specializes its uncaughtException( ) method; if not, it calls the 
defaultUncaughtExceptionHandler.  

Sharing resources 
You can think of a single-threaded program as one lonely entity moving around through your 
problem space and doing one thing at a time. Because there’s only one entity, you never have 
to think about the problem of two entities trying to use the same resource at the same time: 
problems such as two people trying to park in the same space, walk through a door at the 
same time, or even talk at the same time.  

With concurrency, things aren’t lonely anymore, but you now have the possibility of two or 
more tasks interfering with each other. If you don’t prevent such a collision, you’ll have two 

824 Thinking in Java Bruce Eckel 



 

tasks trying to access the same bank account at the same time, print to the same printer, 
adjust the same valve, and so on.  

Improperly accessing resources 

Consider the following example, where one task generates even numbers and other tasks 
consume those numbers. Here, the only job of the consumer tasks is to check the validity of 
the even numbers.  

First we’ll define EvenChecker, the consumer task, since it will be reused in all the 
subsequent examples. To decouple EvenChecker from the various types of generators that 
we will experiment with, we’ll create an abstract class called IntGenerator, which contains 
the minimum necessary methods that EvenChecker must know about: that it has a next( ) 
method and that it can be canceled. This class doesn’t implement the Generator interface, 
because it must produce an int, and generics don’t support primitive parameters.  

//: concurrency/IntGenerator.java 
 
public abstract class IntGenerator { 
  private volatile boolean canceled = false; 
  public abstract int next(); 
  // Allow this to be canceled: 
  public void cancel() { canceled = true; } 
  public boolean isCanceled() { return canceled; } 
} ///:~ 

IntGenerator has a cancel( ) method to change the state of a boolean canceled flag and 
isCanceled( ) to see whether the object has been canceled. Because the canceled flag is a 
boolean, it is atomic, which means that simple operations like assignment and value return 
happen without the possibility of interruption, so you can’t see the field in an intermediate 
state in the midst of those simple operations. The canceled flag is also volatile in order to 
ensure visibility. You’ll learn about atomicity and visibility later in this chapter.  

Any IntGenerator can be tested with the following EvenChecker class:  

//: concurrency/EvenChecker.java 
import java.util.concurrent.*; 
 
public class EvenChecker implements Runnable { 
  private IntGenerator generator; 
  private final int id; 
  public EvenChecker(IntGenerator g, int ident) { 
    generator = g; 
    id = ident; 
  } 
  public void run() { 
    while(!generator.isCanceled()) { 
      int val = generator.next(); 
      if(val % 2 != 0) { 
        System.out.println(val + " not even!"); 
        generator.cancel(); // Cancels all EvenCheckers 
      } 
    } 
  } 
  // Test any type of IntGenerator: 
  public static void test(IntGenerator gp, int count) { 
    System.out.println("Press Control-C to exit"); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < count; i++) 

Concurrency 825 



 

      exec.execute(new EvenChecker(gp, i)); 
    exec.shutdown(); 
  } 
  // Default value for count: 
  public static void test(IntGenerator gp) { 
    test(gp, 10); 
  } 
} ///:~ 

Note that in this example the class that can be canceled is not Runnable. Instead, all the 
EvenChecker tasks that depend on the IntGenerator object test it to see whether it’s been 
canceled, as you can see in run( ). This way, the tasks that share the common resource (the 
IntGenerator) watch that resource for the signal to terminate. This eliminates the so-called 
race condition, where two or more tasks race to respond to a condition and thus collide or 
otherwise produce inconsistent results. You must be careful to think about and protect 
against all the possible ways a concurrent system can fail. For example, a task cannot depend 
on another task, because task shutdown order is not guaranteed. Here, by making tasks 
depend on a nontask object, we eliminate the potential race condition.  

The test( ) method sets up and performs a test of any type of IntGenerator by starting a 
number of EvenCheckers that use the same IntGenerator. If the IntGenerator causes a 
failure, test( ) will report it and return; otherwise, you must press Control-C to terminate it.  

EvenChecker tasks constantly read and test the values from their associated 
IntGenerator. Note that if generator.isCanceled( ) is true, run( ) returns, which tells 
the Executor in EvenChecker.test( ) that the task is complete. Any EvenChecker task 
can call cancel( ) on its associated IntGenerator, which will cause all other 
EvenCheckers using that IntGenerator to gracefully shut down. In later sections, you’ll 
see that Java contains more general mechanisms for termination of threads.  

The first IntGenerator we’ll look at has a next( ) that produces a series of even values:  

//: concurrency/EvenGenerator.java 
// When threads collide. 
 
public class EvenGenerator extends IntGenerator { 
  private int currentEvenValue = 0; 
  public int next() { 
    ++currentEvenValue; // Danger point here! 
    ++currentEvenValue; 
    return currentEvenValue; 
  } 
  public static void main(String[] args) { 
    EvenChecker.test(new EvenGenerator()); 
  } 
} /* Output: (Sample) 
Press Control-C to exit 
89476993 not even! 
89476993 not even! 
*///:~ 

It’s possible for one task to call next( ) after another task has performed the first increment 
of currentEvenValue but not the second (at the place in the code commented "Danger 
point here!"). This puts the value into an "incorrect" state. To prove that this can happen, 
EvenChecker.test( ) creates a group of EvenChecker objects to continually read the 
output of an EvenGenerator and test to see if each one is even. If not, the error is reported 
and the program is shut down.  

This program will eventually fail because the EvenChecker tasks are able to access the 
information in EvenGenerator while it’s in an "incorrect" state. However, it may not detect 

826 Thinking in Java Bruce Eckel 



 

the problem until the EvenGenerator has completed many cycles, depending on the 
particulars of your operating system and other implementation details. If you want to see it 
fail much faster, try putting a call to yield( ) between the first and second increments. This is 
part of the problem with multithreaded programs—they can appear to be correct even when 
there’s a bug, if the probability for failure is very low.  

It’s important to note that the increment operation itself requires multiple steps, and the task 
can be suspended by the threading mechanism in the midst of an increment—that is, 
increment is not an atomic operation in Java. So even a single increment isn’t safe to do 
without protecting the task.  

Resolving shared resource contention 

The previous example shows a fundamental problem when you are using threads: You never 
know when a thread might be run. Imagine sitting at a table with a fork, about to spear the 
last piece of food on a platter, and as your fork reaches for it, the food suddenly vanishes—
because your thread was suspended and another diner came in and ate the food. That’s the 
problem you’re dealing with when writing concurrent programs. For concurrency to work, 
you need some way to prevent two tasks from accessing the same resource, at least during 
critical periods.  

Preventing this kind of collision is simply a matter of putting a lock on a resource when one 
task is using it. The first task that accesses a resource must lock it, and then the other tasks 
cannot access that resource until it is unlocked, at which time another task locks and uses it, 
and so on. If the front seat of the car is the limited resource, the child who shouts "shotgun!" 
acquires the lock (for the duration of that trip).  

To solve the problem of thread collision, virtually all concurrency schemes serialize access to 
shared resources. This means that only one task at a time is allowed to access the shared 
resource. This is ordinarily accomplished by putting a clause around a piece of code that only 
allows one task at a time to pass through that piece of code. Because this clause produces 
mutual exclusion, a common name for such a mechanism is mutex.  

Consider the bathroom in your house; multiple people (tasks driven by threads) may each 
want to have exclusive use of the bathroom (the shared resource). To access the bathroom, a 
person knocks on the door to see if it’s available. If so, they enter and lock the door. Any 
other task that wants to use the bathroom is "blocked" from using it, so those tasks wait at 
the door until the bathroom is available.  

The analogy breaks down a bit when the bathroom is released and it comes time to give 
access to another task. There isn’t actually a line of people, and we don’t know for sure who 
gets the bathroom next, because the thread scheduler isn’t deterministic that way. Instead, 
it’s as if there is a group of blocked tasks milling about in front of the bathroom, and when 
the task that has locked the bathroom unlocks it and emerges, the one that happens to be 
nearest the door at the moment goes in. As noted earlier, suggestions can be made to the 
thread scheduler via yield( ) and setPriority( ), but these suggestions may not have much 
of an effect, depending on your platform and JVM implementation.  

To prevent collisions over resources, Java has built-in support in the form of the 
synchronized keyword. When a task wishes to execute a piece of code guarded by the 
synchronized keyword, it checks to see if the lock is available, then acquires it, executes the 
code, and releases it.  

The shared resource is typically just a piece of memory in the form of an object, but may also 
be a file, an I/O port, or something like a printer. To control access to a shared resource, you 
first put it inside an object. Then any method that uses the resource can be made 
synchronized. If a task is in a call to one of the synchronized methods, all other tasks are 

Concurrency 827 



 

828 Thinking in Java Bruce Eckel 

blocked from entering any of the synchronized methods of that object until the first task 
returns from its call.  

In production code, you’ve already seen that you should make the data elements of a class 
private and access that memory only through methods. You can prevent collisions by 
declaring those methods synchronized, like this:  

synchronized void f() { /* ... */ } 
synchronized void g() { /* ... */ } 

All objects automatically contain a single lock (also referred to as a monitor). When you call 
any synchronized method, that object is locked and no other synchronized method of 
that object can be called until the first one finishes and releases the lock. For the preceding 
methods, if f( ) is called for an object by one task, a different task cannot call f( ) or g( ) for 
the same object until f( ) is completed and releases the lock. Thus, there is a single lock that 
is shared by all the synchronized methods of a particular object, and this lock can be used 
to prevent object memory from being written by more than one task at a time.  

Note that it’s especially important to make fields private when working with concurrency; 
otherwise the synchronized keyword cannot prevent another task from accessing a field 
directly, and thus producing collisions.  

One task may acquire an object’s lock multiple times. This happens if one method calls a 
second method on the same object, which in turn calls another method on the same object, 
etc. The JVM keeps track of the number of times the object has been locked. If the object is 
unlocked, it has a count of zero. As a task acquires the lock for the first time, the count goes 
to one. Each time the same task acquires another lock on the same object, the count is 
incremented. Naturally, multiple lock acquisition is only allowed for the task that acquired 
the lock in the first place. Each time the task leaves a synchronized method, the count is 
decremented, until the count goes to zero, releasing the lock entirely for use by other tasks.  

There’s also a single lock per class (as part of the Class object for the class), so that 
synchronized static methods can lock each other out from simultaneous access of static 
data on a class-wide basis.  

When should you synchronize? Apply Brian’s Rule of Synchronization:10
  

If you are writing a variable that might next be read by another thread, or reading a 
variable that might have last been written by another thread, you must use 
synchronization, and further, both the reader and the writer must synchronize using the 
same monitor lock. 

If you have more than one method in your class that deals with the critical data, you must 
synchronize all relevant methods. If you synchronize only one of the methods, then the 
others are free to ignore the object lock and can be called with impunity. This is an important 
point: Every method that accesses a critical shared resource must be synchronized or it 
won’t work right.  

Synchronizing the EvenGenerator 

By adding synchronized to EvenGenerator.java, we can prevent the undesirable thread 
access:  

//: concurrency/SynchronizedEvenGenerator.java 

                                                            
10 From Brian Goetz, author of Java Concurrency in Practice, by Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, 
David Holmes, and Doug Lea (Addison-Wesley, 2006). 



 

// Simplifying mutexes with the synchronized keyword. 
// {RunByHand} 
 
public class 
SynchronizedEvenGenerator extends IntGenerator { 
  private int currentEvenValue = 0; 
  public synchronized int next() { 
    ++currentEvenValue; 
    Thread.yield(); // Cause failure faster 
    ++currentEvenValue; 
    return currentEvenValue; 
  } 
  public static void main(String[] args) { 
    EvenChecker.test(new SynchronizedEvenGenerator()); 
  } 
} ///:~ 

A call to Thread.yield( ) is inserted between the two increments, to raise the likelihood of a 
context switch while currentEvenValue is in an odd state. Because the mutex prevents 
more than one task at a time in the critical section, this will not produce a failure, but calling 
yield( ) is a helpful way to promote a failure if it’s going to happen.  

The first task that enters next( ) acquires the lock, and any further tasks that try to acquire 
the lock are blocked from doing so until the first task releases the lock. At that point, the 
scheduling mechanism selects another task that is waiting on the lock. This way, only one 
task at a time can pass through the code that is guarded by the mutex.  

Exercise 11:   (3) Create a class containing two data fields, and a method that manipulates 
those fields in a multistep process so that, during the execution of that method, those fields 
are in an "improper state" (according to some definition that you establish). Add methods to 
read the fields, and create multiple threads to call the various methods and show that the 
data is visible in its "improper state." Fix the problem using the synchronized keyword.  

Using explicit Lock objects 

The Java SE5 java.util.concurrent library also contains an explicit mutex mechanism 
defined in java.util.concurrent.locks. The Lock object must be explicitly created, locked 
and unlocked; thus, it produces less elegant code than the built-in form. However, it is more 
flexible for solving certain types of problems. Here is SynchronizedEvenGenerator.java 
rewritten to use explicit Locks:  

//: concurrency/MutexEvenGenerator.java 
// Preventing thread collisions with mutexes. 
// {RunByHand} 
import java.util.concurrent.locks.*; 
 
public class MutexEvenGenerator extends IntGenerator { 
  private int currentEvenValue = 0; 
  private Lock lock = new ReentrantLock(); 
  public int next() { 
    lock.lock(); 
    try { 
      ++currentEvenValue; 
      Thread.yield(); // Cause failure faster 
      ++currentEvenValue; 
      return currentEvenValue; 
    } finally { 
      lock.unlock(); 
    } 
  } 

Concurrency 829 



 

  public static void main(String[] args) { 
    EvenChecker.test(new MutexEvenGenerator()); 
  } 
} ///:~ 

MutexEvenGenerator adds a mutex called lock and uses the lock( ) and unlock( ) 
methods to create a critical section within next( ). When you are using Lock objects, it is 
important to internalize the idiom shown here: Right after the call to lock( ), you must place 
a try-finally statement with unlock( ) in the finally clause—this is the only way to 
guarantee that the lock is always released. Note that the return statement must occur inside 
the try clause to ensure that the unlock( ) doesn’t happen too early and expose the data to a 
second task.  

Although the try-finally requires more code than using the synchronized keyword, it also 
represents one of the advantages of explicit Lock objects. If something fails using the 
synchronized keyword, an exception is thrown, but you don’t get the chance to do any 
cleanup in order to maintain your system in a good state. With explicit Lock objects, you can 
maintain proper state in your system using the finally clause.  

In general, when you are using synchronized, there is less code to write, and the 
opportunity for user error is greatly reduced, so you’ll usually only use the explicit Lock 
objects when you’re solving special problems. For example, with the synchronized 
keyword, you can’t try and fail to acquire a lock, or try to acquire a lock for a certain amount 
of time and then give up—to do this, you must use the concurrent library:  

//: concurrency/AttemptLocking.java 
// Locks in the concurrent library allow you 
// to give up on trying to acquire a lock. 
import java.util.concurrent.*; 
import java.util.concurrent.locks.*; 
 
public class AttemptLocking { 
  private ReentrantLock lock = new ReentrantLock(); 
  public void untimed() { 
    boolean captured = lock.tryLock(); 
    try { 
      System.out.println("tryLock(): " + captured); 
    } finally { 
      if(captured) 
        lock.unlock(); 
    } 
  } 
  public void timed() { 
    boolean captured = false; 
    try { 
      captured = lock.tryLock(2, TimeUnit.SECONDS); 
    } catch(InterruptedException e) { 
      throw new RuntimeException(e); 
    } 
    try { 
      System.out.println("tryLock(2, TimeUnit.SECONDS): " + 
        captured); 
    } finally { 
      if(captured) 
        lock.unlock(); 
    } 
  } 
  public static void main(String[] args) { 
    final AttemptLocking al = new AttemptLocking(); 
    al.untimed(); // True -- lock is available 
    al.timed();   // True -- lock is available 

830 Thinking in Java Bruce Eckel 



 

Concurrency 831 

    // Now create a separate task to grab the lock: 
    new Thread() { 
      { setDaemon(true); } 
      public void run() { 
        al.lock.lock(); 
        System.out.println("acquired"); 
      } 
    }.start(); 
    Thread.yield(); // Give the 2nd task a chance 
    al.untimed(); // False -- lock grabbed by task 
    al.timed();   // False -- lock grabbed by task 
  } 
} /* Output: 
tryLock(): true 
tryLock(2, TimeUnit.SECONDS): true 
acquired 
tryLock(): false 
tryLock(2, TimeUnit.SECONDS): false 
*///:~ 

A ReentrantLock allows you to try and fail to acquire the lock, so that if someone else 
already has the lock, you can decide to go off and do something else rather than waiting until 
it is free, as you can see in the untimed( ) method. In timed( ), an attempt is made to 
acquire the lock which can fail after 2 seconds (note the use of the Java SE5 TimeUnit class 
to specify units). In main( ), a separate Thread is created as an anonymous class, and it 
acquires the lock so that the untimed( ) and timed( ) methods have something to contend 
with.  

The explicit Lock object also gives you finer-grained control over locking and unlocking than 
does the built-in synchronized lock. This is useful for implementing specialized 
synchronization structures, such as hand-overhand locking (also called lock coupling), used 
for traversing the nodes of a linked list—the traversal code must capture the lock of the next 
node before it releases the current node’s lock.  

Atomicity and volatility 

An incorrect piece of lore that is often repeated in Java threading discussions is, "Atomic 
operations do not need to be synchronized." An atomic operation is one that cannot be 
interrupted by the thread scheduler; if the operation begins, then it will run to completion 
before the possibility of a context switch. Relying on atomicity is tricky and dangerous—you 
should only try to use atomicity instead of synchronization if you are a concurrency expert, or 
you have help from such an expert. If you think you’re smart enough to play with this kind of 
fire, take this test:  

The Goetz Test11: If you can write a high-performance JVM for a modern microprocessor, 
then you are qualified to think about whether you can avoid synchronizing.12

  

It’s useful to know about atomicity, and to know that, along with other advanced techniques, 
it was used to implement some of the more clever java.util.concurrent library 
components. But strongly resist the urge to rely on it yourself; see Brian’s Rule of 
Synchronization, presented earlier.  

                                                            
11 After the previously mentioned Brian Goetz, a concurrency expert who helped with this chapter, based on only partially 
tongue-in-cheek comments from him. 

12 A corollary to this test is, "If someone implies that threading is easy and straightforward, make sure that person is not 
making important decisions about your project. If that person already is, then you’ve got trouble." 



 

Atomicity applies to "simple operations" on primitive types except for longs and doubles. 
Reading and writing primitive variables other than long and double is guaranteed to go to 
and from memory as indivisible (atomic) operations. However, the JVM is allowed to 
perform reads and writes of 64- bit quantities (long and double variables) as two separate 
32-bit operations, raising the possibility that a context switch could happen in the middle of a 
read or write, and then different tasks could see incorrect results (this is sometimes called 
word tearing, because you might see the value after only part of it has been changed). 
However, you do get atomicity (for simple assignments and returns) if you use the volatile 
keyword when defining a long or double variable (note that volatile was not working 
properly before Java SE5). Different JVMs are free to provide stronger guarantees, but you 
should not rely on platform-specific features.  

Atomic operations are thus not interruptible by the threading mechanism. Expert 
programmers can take advantage of this to write lock-free code, which does not need to be 
synchronized. But even this is an oversimplification. Sometimes, even when it seems like an 
atomic operation should be safe, it may not be. Readers of this book will typically not be able 
to pass the aforementioned Goetz Test, and will thus not be qualified to try to replace 
synchronization with atomic operations. Trying to remove synchronization is usually a sign 
of premature optimization, and will cause you a lot of trouble, probably without gaining 
much, or anything.  

On multiprocessor systems (which are now appearing in the form of multicore processors—
multiple CPUs on a single chip), visibility rather than atomicity is much more of an issue 
than on single-processor systems. Changes made by one task, even if they’re atomic in the 
sense of not being interruptible, might not be visible to other tasks (the changes might be 
temporarily stored in a local processor cache, for example), so different tasks will have a 
different view of the application’s state. The synchronization mechanism, on the other hand, 
forces changes by one task on a multiprocessor system to be visible across the application. 
Without synchronization, it’s indeterminate when changes become visible.  

The volatile keyword also ensures visibility across the application. If you declare a field to be 
volatile, this means that as soon as a write occurs for that field, all reads will see the change. 
This is true even if local caches are involved—volatile fields are immediately written through 
to main memory, and reads occur from main memory.  

It’s important to understand that atomicity and volatility are distinct concepts. An atomic 
operation on a non-volatile field will not necessarily be flushed to main memory, and so 
another task that reads that field will not necessarily see the new value. If multiple tasks are 
accessing a field, that field should be volatile; otherwise, the field should only be accessed 
via synchronization. Synchronization also causes flushing to main memory, so if a field is 
completely guarded by synchronized methods or blocks, it is not necessary to make it 
volatile.  

Any writes that a task makes will be visible to that task, so you don’t need to make a field 
volatile if it is only seen within a task.  

volatile doesn’t work when the value of a field depends on its previous value (such as 
incrementing a counter), nor does it work on fields whose values are constrained by the 
values of other fields, such as the lower and upper bound of a Range class which must 
obey the constraint lower <= upper.  

It’s typically only safe to use volatile instead of synchronized if the class has only one 
mutable field. Again, your first choice should be to use the synchronized keyword—that’s 
the safest approach, and trying to do anything else is risky.  

What qualifies as an atomic operation? Assignment and returning the value in a field will 
usually be atomic. However, in C++ even the following might be atomic:  

832 Thinking in Java Bruce Eckel 



 

Concurrency 833 

i++;   // Might be atomic in C++  
i +=2; // Might be atomic in C++  

But in C++, this depends on the compiler and processor. You’re unable to write cross-
platform code in C++ that relies on atomicity, because C++ doesn’t have a consistent 
memory model, as Java does (in Java SEs).13

  

In Java, the above operations are definitely not atomic, as you can see from the JVM 
instructions produced by the following methods:  

//: concurrency/Atomicity.java 
// {Exec: javap -c Atomicity} 
 
public class Atomicity { 
  int i; 
  void f1() { i++; } 
  void f2() { i += 3; } 
} /* Output: (Sample) 
... 
void f1(); 
  Code: 
   0:        aload_0 
   1:        dup 
   2:        getfield        #2; //Field i:I 
   5:        iconst_1 
   6:        iadd 
   7:        putfield        #2; //Field i:I 
   10:        return 
 
void f2(); 
  Code: 
   0:        aload_0 
   1:        dup 
   2:        getfield        #2; //Field i:I 
   5:        iconst_3 
   6:        iadd 
   7:        putfield        #2; //Field i:I 
   10:        return 
*///:~ 

Each instruction produces a "get" and a "put," with instructions in between. So in between 
getting and putting, another task could modify the field, and thus the operations are not 
atomic.  

If you blindly apply the idea of atomicity, you see that getValue( ) in the following program 
fits the description:  

//: concurrency/AtomicityTest.java 
import java.util.concurrent.*; 
 
public class AtomicityTest implements Runnable { 
  private int i = 0; 
  public int getValue() { return i; } 
  private synchronized void evenIncrement() { i++; i++; } 
  public void run() { 
    while(true) 
      evenIncrement(); 
  } 

                                                            
13 This is being remedied in the upcoming C++ standard. 



 

834 Thinking in Java Bruce Eckel 

  public static void main(String[] args) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    AtomicityTest at = new AtomicityTest(); 
    exec.execute(at); 
    while(true) { 
      int val = at.getValue(); 
      if(val % 2 != 0) { 
        System.out.println(val); 
        System.exit(0); 
      } 
    } 
  } 
} /* Output: (Sample) 
191583767 
*///:~ 

However, the program will find non-even values and terminate. Although return i is indeed 
an atomic operation, the lack of synchronization allows the value to be read while the object 
is in an unstable intermediate state. On top of this, since i is also not volatile, there will be 
visibility problems. Both getValue( ) and evenIncrement( ) must be synchronized. 
Only concurrency experts are qualified to attempt optimizations in situations like this; again, 
you should apply Brian’s Rule of Synchronization.  

As a second example, consider something even simpler: a class that produces serial 
numbers.14 Each time nextSerialNumber( ) is called, it must return a unique value to the 
caller:  

//: concurrency/SerialNumberGenerator.java 
 
public class SerialNumberGenerator { 
  private static volatile int serialNumber = 0; 
  public static int nextSerialNumber() { 
    return serialNumber++; // Not thread-safe 
  } 
} ///:~ 

SerialNumberGenerator is about as simple a class as you can imagine, and if you’re 
coming from C++ or some other low-level background, you might expect the increment to be 
an atomic operation, because a C++ increment can often be implemented as a 
microprocessor instruction (although not in any reliable, cross-platform fashion). As noted 
before, however, a Java increment is not atomic and involves both a read and a write, so 
there’s room for threading problems even in such a simple operation. As you shall see, 
volatility isn’t actually the issue here; the real problem is that nextSerialNumber( ) 
accesses a shared, mutable value without synchronizing.  

The serialNumber field is volatile because it is possible for each thread to have a local 
stack and maintain copies of some variables there. If you define a variable as volatile, it tells 
the compiler not to do any optimizations that would remove reads and writes that keep the 
field in exact synchronization with the local data in the threads. In effect, reads and writes go 
directly to memory, and are not cached, volatile also restricts compiler reordering of 
accesses during optimization. However, volatile doesn’t affect the fact that an increment 
isn’t an atomic operation.  

Basically, you should make a field volatile if that field could be simultaneously accessed by 
multiple tasks, and at least one of those accesses is a write. For example, a field that is used 
as a flag to stop a task must be declared volatile; otherwise, that flag could be cached in a 

                                                            
14 Inspired by Joshua Bloch’s Effective Java™ Programming Language Guide (Addison- Wesley, 2001), p. 190. 



 

register, and when you make changes to the flag from outside the task, the cached value 
wouldn’t be changed and the task wouldn’t know it should stop.  

To test SerialNumberGenerator, we need a set that doesn’t run out of memory, in case it 
takes a long time to detect a problem. The CircularSet shown here reuses the memory used 
to store ints, with the assumption that by the time you wrap around, the possibility of a 
collision with the overwritten values is minimal. The add( ) and contains( ) methods are 
synchronized to prevent thread collisions:  

//: concurrency/SerialNumberChecker.java 
// Operations that may seem safe are not, 
// when threads are present. 
// {Args: 4} 
import java.util.concurrent.*; 
 
// Reuses storage so we don’t run out of memory: 
class CircularSet { 
  private int[] array; 
  private int len; 
  private int index = 0; 
  public CircularSet(int size) { 
    array = new int[size]; 
    len = size; 
    // Initialize to a value not produced 
    // by the SerialNumberGenerator: 
    for(int i = 0; i < size; i++) 
      array[i] = -1; 
  } 
  public synchronized void add(int i) { 
    array[index] = i; 
    // Wrap index and write over old elements: 
    index = ++index % len; 
  } 
  public synchronized boolean contains(int val) { 
    for(int i = 0; i < len; i++) 
      if(array[i] == val) return true; 
    return false; 
  } 
} 
 
public class SerialNumberChecker { 
  private static final int SIZE = 10; 
  private static CircularSet serials = 
    new CircularSet(1000); 
  private static ExecutorService exec = 
    Executors.newCachedThreadPool(); 
  static class SerialChecker implements Runnable { 
    public void run() { 
      while(true) { 
        int serial = 
          SerialNumberGenerator.nextSerialNumber(); 
        if(serials.contains(serial)) { 
          System.out.println("Duplicate: " + serial); 
          System.exit(0); 
        } 
        serials.add(serial); 
      } 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    for(int i = 0; i < SIZE; i++) 
      exec.execute(new SerialChecker()); 

Concurrency 835 



 

    // Stop after n seconds if there’s an argument: 
    if(args.length > 0) { 
      TimeUnit.SECONDS.sleep(new Integer(args[0])); 
      System.out.println("No duplicates detected"); 
      System.exit(0); 
    } 
  } 
} /* Output: (Sample) 
Duplicate: 8468656 
*///:~ 

SerialNumberChecker contains a static CircularSet that holds all the serial numbers 
that have been produced, and a nested SerialChecker class that ensures the serial numbers 
are unique. By creating multiple tasks to contend over serial numbers, you’ll discover that the 
tasks eventually get a duplicate serial number, if you let it run long enough. To solve the 
problem, add the synchronized keyword to nextSerialNumber( ).  

The atomic operations that are supposed to be safe are the reading and assignment of 
primitives. However, as seen in AtomicityTest.java, it’s still easily possible to use an 
atomic operation that accesses your object while it’s in an unstable intermediate state. 
Making assumptions about this issue is tricky and dangerous. The most sensible thing to do 
is just to follow Brian’s Rule of Synchronization.  

Exercise 12:   (3) Repair AtomicityTest.java using the synchronized keyword. Can 
you demonstrate that it is now correct?  

Exercise 13:   (1) Repair SerialNumberChecker.java using the synchronized 
keyword. Can you demonstrate that it is now correct?  

Atomic classes 

Java SE5 introduces special atomic variable classes such as Atomiclnteger, AtomicLong, 
AtomicReference, etc. that provide an atomic conditional update operation of the form:  

boolean compareAndSet(expectedValue, updateValue);  

These are for fine-tuning to use machine-level atomicity that is available on some modern 
processors, so you generally don’t need to worry about using them. Occasionally they come in 
handy for regular coding, but again when performance tuning is involved. For example, we 
can rewrite AtomicityTest.java to use Atomiclnteger:  

//: concurrency/AtomicIntegerTest.java 
import java.util.concurrent.*; 
import java.util.concurrent.atomic.*; 
import java.util.*; 
 
public class AtomicIntegerTest implements Runnable { 
  private AtomicInteger i = new AtomicInteger(0); 
  public int getValue() { return i.get(); } 
  private void evenIncrement() { i.addAndGet(2); } 
  public void run() { 
    while(true) 
      evenIncrement(); 
  } 
  public static void main(String[] args) { 
    new Timer().schedule(new TimerTask() { 
      public void run() { 
        System.err.println("Aborting"); 

836 Thinking in Java Bruce Eckel 



 

        System.exit(0); 
      } 
    }, 5000); // Terminate after 5 seconds 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    AtomicIntegerTest ait = new AtomicIntegerTest(); 
    exec.execute(ait); 
    while(true) { 
      int val = ait.getValue(); 
      if(val % 2 != 0) { 
        System.out.println(val); 
        System.exit(0); 
      } 
    } 
  } 
} ///:~ 

Here we’ve eliminated the synchronized keyword by using AtomicInteger instead. 
Because the program doesn’t fail, a Timer is added to automatically abort after 5 seconds.  

Here is MutexEvenGenerator.java rewritten to use Atomiclnteger:  

//: concurrency/AtomicEvenGenerator.java 
// Atomic classes are occasionally useful in regular code. 
// {RunByHand} 
import java.util.concurrent.atomic.*; 
 
public class AtomicEvenGenerator extends IntGenerator { 
  private AtomicInteger currentEvenValue = 
    new AtomicInteger(0); 
  public int next() { 
    return currentEvenValue.addAndGet(2); 
  } 
  public static void main(String[] args) { 
    EvenChecker.test(new AtomicEvenGenerator()); 
  } 
} ///:~ 

Again, all other forms of synchronization have been eliminated by using AtomicInteger.  

It should be emphasized that the Atomic classes were designed to build the classes in 
java.util.concurrent, and that you should use them in your own code only under special 
circumstances, and even then only when you can ensure that there are no other possible 
problems. It’s generally safer to rely on locks (either the synchronized keyword or explicit 
Lock objects).  

Exercise 14:   (4) Demonstrate that java.util.Timer scales to large numbers by creating 
a program that generates many Timer objects that perform some simple task when the 
timeout completes.  

Critical sections 

Sometimes, you only want to prevent multiple thread access to part of the code inside a 
method instead of the entire method. The section of code you want to isolate this way is 
called a critical section and is created using the synchronized keyword. Here, 
synchronized is used to specify the object whose lock is being used to synchronize the 
enclosed code: 

synchronized(syncObject) { 
  // This code can be accessed 

Concurrency 837 



 

  // by only one task at a time 
} 

This is also called a synchronized block; before it can be entered, the lock must be acquired 
on syncObject. If some other task already has this lock, then the critical section cannot be 
entered until the lock is released. The following example compares both synchronization 
approaches by showing how the time available for other tasks to access an object is 
significantly increased by using a synchronized block instead of synchronizing an entire 
method. In addition, it shows how an unprotected class can be used in a multithreaded 
situation if it is controlled and protected by another class:  

//: concurrency/CriticalSection.java 
// Synchronizing blocks instead of entire methods. Also 
// demonstrates protection of a non-thread-safe class 
// with a thread-safe one. 
package concurrency; 
import java.util.concurrent.*; 
import java.util.concurrent.atomic.*; 
import java.util.*; 
 
class Pair { // Not thread-safe 
  private int x, y; 
  public Pair(int x, int y) { 
    this.x = x; 
    this.y = y; 
  } 
  public Pair() { this(0, 0); } 
  public int getX() { return x; } 
  public int getY() { return y; } 
  public void incrementX() { x++; } 
  public void incrementY() { y++; } 
  public String toString() { 
    return "x: " + x + ", y: " + y; 
  } 
  public class PairValuesNotEqualException 
  extends RuntimeException { 
    public PairValuesNotEqualException() { 
      super("Pair values not equal: " + Pair.this); 
    } 
  } 
  // Arbitrary invariant -- both variables must be equal: 
  public void checkState() { 
    if(x != y) 
      throw new PairValuesNotEqualException(); 
  } 
} 
 
// Protect a Pair inside a thread-safe class: 
abstract class PairManager { 
  AtomicInteger checkCounter = new AtomicInteger(0); 
  protected Pair p = new Pair(); 
  private List<Pair> storage = 
    Collections.synchronizedList(new ArrayList<Pair>()); 
  public synchronized Pair getPair() { 
    // Make a copy to keep the original safe: 
    return new Pair(p.getX(), p.getY()); 
  } 
  // Assume this is a time consuming operation 
  protected void store(Pair p) { 
    storage.add(p); 
    try { 
      TimeUnit.MILLISECONDS.sleep(50); 

838 Thinking in Java Bruce Eckel 



 

    } catch(InterruptedException ignore) {} 
  } 
  public abstract void increment(); 
} 
 
// Synchronize the entire method: 
class PairManager1 extends PairManager { 
  public synchronized void increment() { 
    p.incrementX(); 
    p.incrementY(); 
    store(getPair()); 
  } 
} 
 
// Use a critical section: 
class PairManager2 extends PairManager { 
  public void increment() { 
    Pair temp; 
    synchronized(this) { 
      p.incrementX(); 
      p.incrementY(); 
      temp = getPair(); 
    } 
    store(temp); 
  } 
} 
 
class PairManipulator implements Runnable { 
  private PairManager pm; 
  public PairManipulator(PairManager pm) { 
    this.pm = pm; 
  } 
  public void run() { 
    while(true) 
      pm.increment(); 
  } 
  public String toString() { 
    return "Pair: " + pm.getPair() + 
      " checkCounter = " + pm.checkCounter.get(); 
  } 
} 
 
class PairChecker implements Runnable { 
  private PairManager pm; 
  public PairChecker(PairManager pm) { 
    this.pm = pm; 
  } 
  public void run() { 
    while(true) { 
      pm.checkCounter.incrementAndGet(); 
      pm.getPair().checkState(); 
    } 
  } 
} 
 
public class CriticalSection { 
  // Test the two different approaches: 
  static void 
  testApproaches(PairManager pman1, PairManager pman2) { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    PairManipulator 
      pm1 = new PairManipulator(pman1), 
      pm2 = new PairManipulator(pman2); 

Concurrency 839 



 

840 Thinking in Java Bruce Eckel 

    PairChecker 
      pcheck1 = new PairChecker(pman1), 
      pcheck2 = new PairChecker(pman2); 
    exec.execute(pm1); 
    exec.execute(pm2); 
    exec.execute(pcheck1); 
    exec.execute(pcheck2); 
    try { 
      TimeUnit.MILLISECONDS.sleep(500); 
    } catch(InterruptedException e) { 
      System.out.println("Sleep interrupted"); 
    } 
    System.out.println("pm1: " + pm1 + "\npm2: " + pm2); 
    System.exit(0); 
  } 
  public static void main(String[] args) { 
    PairManager 
      pman1 = new PairManager1(), 
      pman2 = new PairManager2(); 
    testApproaches(pman1, pman2); 
  } 
} /* Output: (Sample) 
pm1: Pair: x: 15, y: 15 checkCounter = 272565 
pm2: Pair: x: 16, y: 16 checkCounter = 3956974 
*///:~ 

As noted, Pair is not thread-safe because its invariant (admittedly arbitrary) requires that 
both variables maintain the same values. In addition, as seen earlier in this chapter, the 
increment operations are not thread-safe, and because none of the methods are 
synchronized, you can’t trust a Pair object to stay uncorrupted in a threaded program.  

You can imagine that someone hands you the non-thread-safe Pair class, and you need to 
use it in a threaded environment. You do this by creating the PairManager class, which 
holds a Pair object and controls all access to it. Note that the only public methods are 
getPair( ), which is synchronized, and the abstract increment( ). Synchronization for 
increment( ) will be handled when it is implemented.  

The structure of PairManager, where functionality implemented in the base class uses one 
or more abstract methods defined in derived classes, is called a Template Method in Design 
Patterns parlance.15 Design patterns allow you to encapsulate change in your code; here, the 
part that is changing is the method increment( ). In PairManager1 the entire 
increment( ) method is synchronized, but in PairManager2 only part of increment( ) 
is synchronized by using a synchronized block. Note that the synchronized keyword is 
not part of the method signature and thus may be added during overriding.  

The store( ) method adds a Pair object to a synchronized ArrayList, so this operation is 
thread safe. Thus, it doesn’t need to be guarded, and is placed outside of the synchronized 
block in PairManager2.  

PairManipulator is created to test the two different types of PairManagers by calling 
increment( ) in a task while a PairChecker is run from another task. To trace how often it 
is able to run the test, PairChecker increments checkCounter every time it is successful. 
In main( ), two PairManipulator objects are created and allowed to run for a while, after 
which the results of each PairManipulator are shown.  

Although you will probably see a lot of variation in output from one run to the next, in 
general you will see that PairManager1.increment( ) does not allow the PairChecker 

                                                            
15 See Design Patterns, by Gamma et al. (Addison-Wesley, 1995). 



 

nearly as much access as PairManager2.increment( ), which has the synchronized 
block and thus provides more unlocked time. This is typically the reason to use a 
synchronized block instead of synchronizing the whole method: to allow other tasks more 
access (as long as it is safe to do so).  

You can also use explicit Lock objects to create critical sections:  

//: concurrency/ExplicitCriticalSection.java 
// Using explicit Lock objects to create critical sections. 
package concurrency; 
import java.util.concurrent.locks.*; 
 
// Synchronize the entire method: 
class ExplicitPairManager1 extends PairManager { 
  private Lock lock = new ReentrantLock(); 
  public synchronized void increment() { 
    lock.lock(); 
    try { 
      p.incrementX(); 
      p.incrementY(); 
      store(getPair()); 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 
// Use a critical section: 
class ExplicitPairManager2 extends PairManager { 
  private Lock lock = new ReentrantLock(); 
  public void increment() { 
    Pair temp; 
    lock.lock(); 
    try { 
      p.incrementX(); 
      p.incrementY(); 
      temp = getPair(); 
    } finally { 
      lock.unlock(); 
    } 
    store(temp); 
  } 
} 
 
public class ExplicitCriticalSection { 
  public static void main(String[] args) throws Exception { 
    PairManager 
      pman1 = new ExplicitPairManager1(), 
      pman2 = new ExplicitPairManager2(); 
    CriticalSection.testApproaches(pman1, pman2); 
  } 
} /* Output: (Sample) 
pm1: Pair: x: 15, y: 15 checkCounter = 174035 
pm2: Pair: x: 16, y: 16 checkCounter = 2608588 
*///:~  

This reuses most of CriticalSection.java and creates new PairManager types that use 
explicit Lock objects. ExplicitPairManager2 shows the creation of a critical section using 
a Lock object; the call to store( ) is outside of the critical section. 

Synchronizing on other objects 
Concurrency 841 



 

A synchronized block must be given an object to synchronize upon, and usually the most 
sensible object to use is just the current object that the method is being called for: 
synchronized(this), which is the approach taken in PairManager2. That way, when the 
lock is acquired for the synchronized block, other synchronized methods and critical 
sections in the object cannot be called. So the effect of the critical section, when 
synchronizing on this, is simply to reduce the scope of synchronization.  

Sometimes you must synchronize on another object, but if you do this you must ensure that 
all relevant tasks are synchronizing on the same object. The following example demonstrates 
that two tasks can enter an object when the methods in that object synchronize on different locks:  

//: concurrency/SyncObject.java 
// Synchronizing on another object. 
import static net.mindview.util.Print.*; 
 
class DualSynch { 
  private Object syncObject = new Object(); 
  public synchronized void f() { 
    for(int i = 0; i < 5; i++) { 
      print("f()"); 
      Thread.yield(); 
    } 
  } 
  public void g() { 
    synchronized(syncObject) { 
      for(int i = 0; i < 5; i++) { 
        print("g()"); 
        Thread.yield(); 
      } 
    } 
  } 
} 
 
public class SyncObject { 
  public static void main(String[] args) { 
    final DualSynch ds = new DualSynch(); 
    new Thread() { 
      public void run() { 
        ds.f(); 
      } 
    }.start(); 
    ds.g(); 
  } 
} /* Output: (Sample) 
g() 
f() 
g() 
f() 
g() 
f() 
g() 
f() 
g() 
f() 
*///:~ 

DualSync.f( ) synchronizes on this (by synchronizing the entire method), and g( ) has a 
synchronized block that synchronizes on syncObject. Thus, the two synchronizations are 
independent. This is demonstrated in main( ) by creating a Thread that calls f( ). The 
main( ) thread is used to call g( ). You can see from the output that both methods are 
running at the same time, so neither one is blocked by the synchronization of the other.  

842 Thinking in Java Bruce Eckel 



 

Exercise 15:   (1) Create a class with three methods containing critical sections that all 
synchronize on the same object. Create multiple tasks to demonstrate that only one of these 
methods can run at a time. Now modify the methods so that each one synchronizes on a 
different object and show that all three methods can be running at once.  

Exercise 16:   (1) Modify Exercise 15 to use explicit Lock objects.  

Thread local storage 

A second way to prevent tasks from colliding over shared resources is to eliminate the 
sharing of variables. Thread local storage is a mechanism that automatically creates 
different storage for the same variable, for each different thread that uses an object. Thus, if 
you have five threads using an object with a variable x, thread local storage generates five 
different pieces of storage for x. Basically, they allow you to associate state with a thread.  

The creation and management of thread local storage is taken care of by the 
java.lang.ThreadLocal class, as seen here:  

//: concurrency/ThreadLocalVariableHolder.java 
// Automatically giving each thread its own storage. 
import java.util.concurrent.*; 
import java.util.*; 
 
class Accessor implements Runnable { 
  private final int id; 
  public Accessor(int idn) { id = idn; } 
  public void run() { 
    while(!Thread.currentThread().isInterrupted()) { 
      ThreadLocalVariableHolder.increment(); 
      System.out.println(this); 
      Thread.yield(); 
    } 
  } 
  public String toString() { 
    return "#" + id + ": " + 
      ThreadLocalVariableHolder.get(); 
  } 
} 
 
public class ThreadLocalVariableHolder { 
  private static ThreadLocal<Integer> value = 
    new ThreadLocal<Integer>() { 
      private Random rand = new Random(47); 
      protected synchronized Integer initialValue() { 
        return rand.nextInt(10000); 
      } 
    }; 
  public static void increment() { 
    value.set(value.get() + 1); 
  } 
  public static int get() { return value.get(); } 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new Accessor(i)); 
    TimeUnit.SECONDS.sleep(3);  // Run for a while 
    exec.shutdownNow();         // All Accessors will quit 
  } 
} /* Output: (Sample) 
#0: 9259 

Concurrency 843 



 

#1: 556 
#2: 6694 
#3: 1862 
#4: 962 
#0: 9260 
#1: 557 
#2: 6695 
#3: 1863 
#4: 963 
... 
*///:~ 

ThreadLocal objects are usually stored as static fields. When you create a ThreadLocal 
object, you are only able to access the contents of the object using the get( ) and set( ) 
methods. The get( ) method returns a copy of the object that is associated with that thread, 
and set( ) inserts its argument into the object stored for that thread, returning the old object 
that was in storage. The increment( ) and get( ) methods demonstrate this in 
ThreadLocalVariableHolder. Notice that increment( ) and get( ) are not 
synchronized, because ThreadLocal guarantees that no race condition can occur.  

When you run this program, you’ll see evidence that the individual threads are each allocated 
their own storage, since each one keeps its own count even though there’s only one 
ThreadLocalVariableHolder object.  

Terminating tasks 
In some of the previous examples, cancel( ) and isCanceled( ) methods are placed in a 
class that is seen by all tasks. The tasks check isCanceled( ) to determine when to terminate 
themselves. This is a reasonable approach to the problem. However, in some situations the 
task must be terminated more abruptly. In this section, you’ll learn about the issues and 
problems of such termination.  

First, let’s look at an example that not only demonstrates the termination problem but also is 
an additional example of resource sharing.  

The ornamental garden 

In this simulation, the garden committee would like to know how many people enter the 
garden each day through its multiple gates. Each gate has a turnstile or some other kind of 
counter, and after the turnstile count is incremented, a shared count is incremented that 
represents the total number of people in the garden.  

//: concurrency/OrnamentalGarden.java 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Count { 
  private int count = 0; 
  private Random rand = new Random(47); 
  // Remove the synchronized keyword to see counting fail: 
  public synchronized int increment() { 
    int temp = count; 
    if(rand.nextBoolean()) // Yield half the time 
      Thread.yield(); 
    return (count = ++temp); 
  } 

844 Thinking in Java Bruce Eckel 



 

  public synchronized int value() { return count; } 
} 
 
class Entrance implements Runnable { 
  private static Count count = new Count(); 
  private static List<Entrance> entrances = 
    new ArrayList<Entrance>(); 
  private int number = 0; 
  // Doesn’t need synchronization to read: 
  private final int id; 
  private static volatile boolean canceled = false; 
  // Atomic operation on a volatile field: 
  public static void cancel() { canceled = true; } 
  public Entrance(int id) { 
    this.id = id; 
    // Keep this task in a list. Also prevents 
    // garbage collection of dead tasks: 
    entrances.add(this); 
  } 
  public void run() { 
    while(!canceled) { 
      synchronized(this) { 
        ++number; 
      } 
      print(this + " Total: " + count.increment()); 
      try { 
        TimeUnit.MILLISECONDS.sleep(100); 
      } catch(InterruptedException e) { 
        print("sleep interrupted"); 
      } 
    } 
    print("Stopping " + this); 
  } 
  public synchronized int getValue() { return number; } 
  public String toString() { 
    return "Entrance " + id + ": " + getValue(); 
  } 
  public static int getTotalCount() { 
    return count.value(); 
  } 
  public static int sumEntrances() { 
    int sum = 0; 
    for(Entrance entrance : entrances) 
      sum += entrance.getValue(); 
    return sum; 
  } 
} 
 
public class OrnamentalGarden { 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new Entrance(i)); 
    // Run for a while, then stop and collect the data: 
    TimeUnit.SECONDS.sleep(3); 
    Entrance.cancel(); 
    exec.shutdown(); 
    if(!exec.awaitTermination(250, TimeUnit.MILLISECONDS)) 
      print("Some tasks were not terminated!"); 
    print("Total: " + Entrance.getTotalCount()); 
    print("Sum of Entrances: " + Entrance.sumEntrances()); 
  } 
} /* Output: (Sample) 

Concurrency 845 



 

Entrance 0: 1 Total: 1 
Entrance 2: 1 Total: 3 
Entrance 1: 1 Total: 2 
Entrance 4: 1 Total: 5 
Entrance 3: 1 Total: 4 
Entrance 2: 2 Total: 6 
Entrance 4: 2 Total: 7 
Entrance 0: 2 Total: 8 
... 
Entrance 3: 29 Total: 143 
Entrance 0: 29 Total: 144 
Entrance 4: 29 Total: 145 
Entrance 2: 30 Total: 147 
Entrance 1: 30 Total: 146 
Entrance 0: 30 Total: 149 
Entrance 3: 30 Total: 148 
Entrance 4: 30 Total: 150 
Stopping Entrance 2: 30 
Stopping Entrance 1: 30 
Stopping Entrance 0: 30 
Stopping Entrance 3: 30 
Stopping Entrance 4: 30 
Total: 150 
Sum of Entrances: 150 
*///:~ 

A single Count object keeps the master count of garden visitors, and is stored as a static 
field in the Entrance class. Count.increment( ) and Count.value( ) are synchronized 
to control access to the count field. The increment( ) method uses a Random object to 
cause a yield( ) roughly half the time, in between fetching count into temp and 
incrementing and storing temp back into count. If you comment out the synchronized 
keyword on increment( ), the program breaks because multiple tasks will be accessing and 
modifying count simultaneously (the yield( ) causes the problem to happen more quickly).  

Each Entrance task keeps a local value number containing the number of visitors that 
have passed through that particular entrance. This provides a double check against the 
count object to make sure that the proper number of visitors is being recorded. 
Entrance.run( ) simply increments number and the count object and sleeps for 100 
milliseconds.  

Because Entrance.canceled is a volatile boolean flag which is only read and assigned 
(and is never read in combination with other fields), it’s possible to get away without 
synchronizing access to it. If you have any doubts about something like this, it’s always better 
to use synchronized.  

This program goes to quite a bit of extra trouble to shut everything down in a stable fashion. 
Part of the reason for this is to show just how careful you must be when terminating a 
multithreaded program, and part of the reason is to demonstrate the value of interrupt( ), 
which you will learn about shortly.  

After 3 seconds, main( ) sends the static cancel( ) message to Entrance, then calls 
shutdown( ) for the exec object, and then calls awaitTermination( ) on exec. 
ExecutorService.awaitTermination( ) waits for each task to complete, and if they all 
complete before the timeout value, it returns true, otherwise it returns false to indicate that 
not all tasks have completed. Although this causes each task to exit its run( ) method and 
therefore terminate as a task, the Entrance objects are still valid because, in the constructor, 
each Entrance object is stored in a static List<Entrance> called entrances. Thus, 
sumEntrances( ) is still working with valid Entrance objects.  

846 Thinking in Java Bruce Eckel 



 

As this program runs, you will see the total count and the count at each entrance displayed as 
people walk through a turnstile. If you remove the synchronized declaration on 
Count.increment( ), you’ll notice that the total number of people is not what you expect it 
to be. The number of people counted by each turnstile will be different from the value in 
count. As long as the mutex is there to synchronize access to the Count, things work 
correctly. Keep in mind that Count.increment( ) exaggerates the potential for failure by 
using temp and yield( ). In real threading problems, the possibility for failure may be 
statistically small, so you can easily fall into the trap of believing that things are working 
correctly. Just as in the example above, there are likely to be hidden problems that haven’t 
occurred to you, so be exceptionally diligent when reviewing concurrent code.  

Exercise 17:   (2) Create a radiation counter that can have any number of remote sensors.  

Terminating when blocked 

Entrance.run( ) in the previous example includes a call to sleep( ) in its loop. We know 
that sleep( ) will eventually wake up and the task will reach the top of the loop, where it has 
an opportunity to break out of that loop by checking the cancelled flag. However, sleep( ) 
is just one situation where a task is blocked from executing, and sometimes you must 
terminate a task that’s blocked.  

Thread states 

A thread can be in any one of four states:  

1. New: A thread remains in this state only momentarily, as it is being created. It allocates 
any necessary system resources and performs initialization. At this point it becomes 
eligible to receive CPU time. The scheduler will then transition this thread to the 
runnable or blocked state.  
 

2. Runnable: This means that a thread can be run when the time-slicing mechanism has 
CPU cycles available for the thread. Thus, the thread might or might not be running at 
any moment, but there’s nothing to prevent it from being run if the scheduler can arrange 
it. That is, it’s not dead or blocked. 

 
3. Blocked: The thread can be run, but something prevents it. While a thread is in the 

blocked state, the scheduler will simply skip it and not give it any CPU time. Until a 
thread reenters the runnable state, it won’t perform any operations.  

 
4. Dead: A thread in the dead or terminated state is no longer schedulable and will not 

receive any CPU time. Its task is completed, and it is no longer runnable. One way for a 
task to die is by returning from its run( ) method, but a task’s thread can also be 
interrupted, as you’ll see shortly.  

Becoming blocked  

A task can become blocked for the following reasons: 

• You’ve put the task to sleep by calling sleep(milliseconds), in which case it will not 
be run for the specified time. 
 

• You’ve suspended the execution of the thread with wait( ). It will not become 
runnable again until the thread gets the notify( ) or notifyAll( ) message (or the 
equivalent signal( ) or signalAll( ) for the Java SE5 java.util.concurrent library 
tools). We’ll examine these in a later section. 
 

Concurrency 847 



 

848 Thinking in Java Bruce Eckel 

• The task is waiting for some I/O to complete. 
 

• The task is trying to call a synchronized method on another object, and that object’s 
lock is not available because it has already been acquired by another task.  

 
In old code, you may also see suspend( ) and resume( ) used to block and unblock 
threads, but these are deprecated in modern Java (because they are deadlock-prone), and so 
will not be examined in this book. The stop( ) method is also deprecated, because it doesn’t 
release the locks that the thread has acquired, and if the objects are in an inconsistent state 
("damaged"), other tasks can view and modify them in that state. The resulting problems can 
be subtle and difficult to detect.  

The problem we need to look at now is this: Sometimes you want to terminate a task that is in 
a blocked state. If you can’t wait for it to get to a point in the code where it can check a state 
value and decide to terminate on its own, you have to force the task out of its blocked state.  

Interruption 

As you might imagine, it’s much messier to break out of the middle of a Runnable.run( ) 
method than it is to wait for that method to get to a test of a "cancel" flag, or to some other 
place where the programmer is ready to leave the method. When you break out of a blocked 
task, you might need to clean up resources. Because of this, breaking out of the middle of a 
task’s run( ) is more like throwing an exception than anything else, so in Java threads, 
exceptions are used for this kind of abort.16

 (This walks the fine edge of being an 
inappropriate use of exceptions, because it means you are often using them for control flow.) 
To return to a known good state when terminating a task this way, you must carefully 
consider the execution paths of your code and write your catch clause to properly clean 
everything up.  

So that you can terminate a blocked task, the Thread class contains the interrupt( ) 
method. This sets the interrupted status for that thread. A thread with its interrupted status 
set will throw an InterruptedException if it is already blocked or if it attempts a blocking 
operation. The interrupted status will be reset when the exception is thrown or if the task 
calls Thread.interrupted( ). As you’ll see, Thread.interrupted( ) provides a second way 
to leave your run( ) loop, without throwing an exception.  

To call interrupt( ), you must hold a Thread object. You may have noticed that the new 
concurrent library seems to avoid the direct manipulation of Thread objects and instead 
tries to do everything through Executors. If you call shutdownNow( ) on an Executor, it 
will send an interrupt( ) call to each of the threads it has started. This makes sense because 
you’ll usually want to shut down all the tasks for a particular Executor at once, when you’ve 
finished part of a project or a whole program. However, there are times when you may want 
to only interrupt a single task. If you’re using Executors, you can hold on to the context of a 
task when you start it by calling submit( ) instead of execute( ). submit( ) returns a 
generic Future<?>, with an unspecified parameter because you won’t ever call get( ) on it—
the point of holding this kind of Future is that you can call cancel( ) on it and thus use it to 
interrupt a particular task. If you pass true to cancel( ), it has permission to call 
interrupt( ) on that thread in order to stop it; thus cancel( ) is a way to interrupt 
individual threads started with an Executor. 

Here’s an example that shows the basics of interrupt( ) using Executors:  

//: concurrency/Interrupting.java 

                                                            
16 However, exceptions are never delivered asynchronously. Thus, there is no danger of something aborting mid-
instruction/method call. And as long as you use the try-finally idiom when using object mutexes (vs. the synchronized 
keyword), those mutexes will be automatically released if an exception is thrown. 



 

// Interrupting a blocked thread. 
import java.util.concurrent.*; 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
class SleepBlocked implements Runnable { 
  public void run() { 
    try { 
      TimeUnit.SECONDS.sleep(100); 
    } catch(InterruptedException e) { 
      print("InterruptedException"); 
    } 
    print("Exiting SleepBlocked.run()"); 
  } 
} 
 
class IOBlocked implements Runnable { 
  private InputStream in; 
  public IOBlocked(InputStream is) { in = is; } 
  public void run() { 
    try { 
      print("Waiting for read():"); 
      in.read(); 
    } catch(IOException e) { 
      if(Thread.currentThread().isInterrupted()) { 
        print("Interrupted from blocked I/O"); 
      } else { 
        throw new RuntimeException(e); 
      } 
    } 
    print("Exiting IOBlocked.run()"); 
  } 
} 
 
class SynchronizedBlocked implements Runnable { 
  public synchronized void f() { 
    while(true) // Never releases lock 
      Thread.yield(); 
  } 
  public SynchronizedBlocked() { 
    new Thread() { 
      public void run() { 
        f(); // Lock acquired by this thread 
      } 
    }.start(); 
  } 
  public void run() { 
    print("Trying to call f()"); 
    f(); 
    print("Exiting SynchronizedBlocked.run()"); 
  } 
} 
 
public class Interrupting { 
  private static ExecutorService exec = 
    Executors.newCachedThreadPool(); 
  static void test(Runnable r) throws InterruptedException{ 
    Future<?> f = exec.submit(r); 
    TimeUnit.MILLISECONDS.sleep(100); 
    print("Interrupting " + r.getClass().getName()); 
    f.cancel(true); // Interrupts if running 
    print("Interrupt sent to " + r.getClass().getName()); 
  } 

Concurrency 849 



 

850 Thinking in Java Bruce Eckel 

  public static void main(String[] args) throws Exception { 
    test(new SleepBlocked()); 
    test(new IOBlocked(System.in)); 
    test(new SynchronizedBlocked()); 
    TimeUnit.SECONDS.sleep(3); 
    print("Aborting with System.exit(0)"); 
    System.exit(0); // ... since last 2 interrupts failed 
  } 
} /* Output: (95% match) 
Interrupting SleepBlocked 
InterruptedException 
Exiting SleepBlocked.run() 
Interrupt sent to SleepBlocked 
Waiting for read(): 
Interrupting IOBlocked 
Interrupt sent to IOBlocked 
Trying to call f() 
Interrupting SynchronizedBlocked 
Interrupt sent to SynchronizedBlocked 
Aborting with System.exit(0) 
*///:~ 

Each task represents a different kind of blocking. SleepBlock is an example of interruptible 
blocking, whereas IOBlocked and SynchronizedBlocked are uninterruptible blocking.17 
The program proves that I/O and waiting on a synchronized lock are not interruptible, but 
you can also anticipate this by looking at the code—no InterruptedException handler is 
required for either I/O or attempting to call a synchronized method.  

The first two classes are straightforward: The run( ) method calls sleep( ) in the first class 
and read( ) in the second. To demonstrate SynchronizedBlocked, however, we must first 
acquire the lock. This is accomplished in the constructor by creating an instance of an 
anonymous Thread class that acquires the object lock by calling f( ) (the thread must be 
different from the one driving run( ) for SynchronizedBlock because one thread can 
acquire an object lock multiple times). Since f( ) never returns, that lock is never released. 
SynchronizedBlock.run( ) attempts to call f( ) and is blocked waiting for the lock to be 
released.  

You’ll see from the output that you can interrupt a call to sleep( ) (or any call that requires 
you to catch InterruptedException). However, you cannot interrupt a task that is trying to 
acquire a synchronized lock or one that is trying to perform I/O. This is a little 
disconcerting, especially if you’re creating a task that performs I/O, because it means that 
I/O has the potential of locking your multithreaded program. Especially for Web-based 
programs, this is a concern.  

A heavy-handed but sometimes effective solution to this problem is to close the underlying 
resource on which the task is blocked:  

//: concurrency/CloseResource.java 
// Interrupting a blocked task by 
// closing the underlying resource. 
// {RunByHand} 
import java.net.*; 
import java.util.concurrent.*; 
import java.io.*; 
import static net.mindview.util.Print.*; 
 

                                                            
17 Some releases of the JDK also provided support for InterruptedIOException. However, this was only partially 
implemented, and only on some platforms. If this exception is thrown, it causes 10 objects to be unusable. Future releases 
are unlikely to continue support for this exception. 



 

public class CloseResource { 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    ServerSocket server = new ServerSocket(8080); 
    InputStream socketInput = 
      new Socket("localhost", 8080).getInputStream(); 
    exec.execute(new IOBlocked(socketInput)); 
    exec.execute(new IOBlocked(System.in)); 
    TimeUnit.MILLISECONDS.sleep(100); 
    print("Shutting down all threads"); 
    exec.shutdownNow(); 
    TimeUnit.SECONDS.sleep(1); 
    print("Closing " + socketInput.getClass().getName()); 
    socketInput.close(); // Releases blocked thread 
    TimeUnit.SECONDS.sleep(1); 
    print("Closing " + System.in.getClass().getName()); 
    System.in.close(); // Releases blocked thread 
  } 
} /* Output: (85% match) 
Waiting for read(): 
Waiting for read(): 
Shutting down all threads 
Closing java.net.SocketInputStream 
Interrupted from blocked I/O 
Exiting IOBlocked.run() 
Closing java.io.BufferedInputStream 
Exiting IOBlocked.run() 
*///:~ 

After shutdownNow( ) is called, the delays before calling close( ) on the two input 
streams emphasize that the tasks unblock once the underlying resource is closed. It’s 
interesting to note that the interrupt( ) appears when you are closing the Socket but not 
when closing System.in.  

Fortunately, the nio classes introduced in the I/O chapter provide for more civilized 
interruption of I/O. Blocked nio channels automatically respond to interrupts:  

//: concurrency/NIOInterruption.java 
// Interrupting a blocked NIO channel. 
import java.net.*; 
import java.nio.*; 
import java.nio.channels.*; 
import java.util.concurrent.*; 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
class NIOBlocked implements Runnable { 
  private final SocketChannel sc; 
  public NIOBlocked(SocketChannel sc) { this.sc = sc; } 
  public void run() { 
    try { 
      print("Waiting for read() in " + this); 
      sc.read(ByteBuffer.allocate(1)); 
    } catch(ClosedByInterruptException e) { 
      print("ClosedByInterruptException"); 
    } catch(AsynchronousCloseException e) { 
      print("AsynchronousCloseException"); 
    } catch(IOException e) { 
      throw new RuntimeException(e); 
    } 
    print("Exiting NIOBlocked.run() " + this); 
  } 

Concurrency 851 



 

852 Thinking in Java Bruce Eckel 

} 
 
public class NIOInterruption { 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    ServerSocket server = new ServerSocket(8080); 
    InetSocketAddress isa = 
      new InetSocketAddress("localhost", 8080); 
    SocketChannel sc1 = SocketChannel.open(isa); 
    SocketChannel sc2 = SocketChannel.open(isa); 
    Future<?> f = exec.submit(new NIOBlocked(sc1)); 
    exec.execute(new NIOBlocked(sc2)); 
    exec.shutdown(); 
    TimeUnit.SECONDS.sleep(1); 
    // Produce an interrupt via cancel: 
    f.cancel(true); 
    TimeUnit.SECONDS.sleep(1); 
    // Release the block by closing the channel: 
    sc2.close(); 
  } 
} /* Output: (Sample) 
Waiting for read() in NIOBlocked@7a84e4 
Waiting for read() in NIOBlocked@15c7850 
ClosedByInterruptException 
Exiting NIOBlocked.run() NIOBlocked@15c7850 
AsynchronousCloseException 
Exiting NIOBlocked.run() NIOBlocked@7a84e4 
*///:~ 

As shown, you can also close the underlying channel to release the block, although this 
should rarely be necessary. Note that using execute( ) to start both tasks and calling 
e.shutdownNow( ) will easily terminate everything; capturing the Future in the example 
above was only necessary to send the interrupt to one thread and not the other.18

  

Exercise 18:   (2) Create a non-task class with a method that calls sleep( ) for a long 
interval. Create a task that calls the method in the non-task class. In main( ), start the task, 
then call interrupt( ) to terminate it. Make sure that the task shuts down safely.  

Exercise 19:   (4) Modify OrnamentalGarden.java so that it uses interrupt( ).  

Exercise 20:   (1) Modify CachedThreadPool.java so that all tasks receive an 
interrupt( ) before they are completed.  

Blocked by a mutex  

As you saw in Interrupting.java, if you try to call a synchronized method on an object 
whose lock has already been acquired, the calling task will be suspended (blocked) until the 
lock becomes available. The following example shows how the same mutex can be multiply 
acquired by the same task:  

//: concurrency/MultiLock.java 
// One thread can reacquire the same lock. 
import static net.mindview.util.Print.*; 
 
public class MultiLock { 
  public synchronized void f1(int count) { 
    if(count-- > 0) { 

                                                            
18 Ervin Varga helped research this section. 



 

      print("f1() calling f2() with count " + count); 
      f2(count); 
    } 
  } 
  public synchronized void f2(int count) { 
    if(count-- > 0) { 
      print("f2() calling f1() with count " + count); 
      f1(count); 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    final MultiLock multiLock = new MultiLock(); 
    new Thread() { 
      public void run() { 
        multiLock.f1(10); 
      } 
    }.start(); 
  } 
} /* Output: 
f1() calling f2() with count 9 
f2() calling f1() with count 8 
f1() calling f2() with count 7 
f2() calling f1() with count 6 
f1() calling f2() with count 5 
f2() calling f1() with count 4 
f1() calling f2() with count 3 
f2() calling f1() with count 2 
f1() calling f2() with count 1 
f2() calling f1() with count 0 
*///:~ 

In main( ), a Thread is created to call f1( ), then f1( ) and f2( ) call each other until the 
count becomes zero. Since the task has already acquired the multiLock object lock inside 
the first call to f1( ), that same task is reacquiring it in the call to f2( ), and so on. This makes 
sense because one task should be able to call other synchronized methods within the same 
object; that task already holds the lock.  

As observed previously with uninterruptible I/O, anytime that a task can be blocked in such a 
way that it cannot be interrupted, you have the potential to lock up a program. One of the 
features added in the Java SE5 concurrency libraries is the ability for tasks blocked on 
ReentrantLocks to be interrupted, unlike tasks blocked on synchronized methods or 
critical sections:  

//: concurrency/Interrupting2.java 
// Interrupting a task blocked with a ReentrantLock. 
import java.util.concurrent.*; 
import java.util.concurrent.locks.*; 
import static net.mindview.util.Print.*; 
 
class BlockedMutex { 
  private Lock lock = new ReentrantLock(); 
  public BlockedMutex() { 
    // Acquire it right away, to demonstrate interruption 
    // of a task blocked on a ReentrantLock: 
    lock.lock(); 
  } 
  public void f() { 
    try { 
      // This will never be available to a second task 
      lock.lockInterruptibly(); // Special call 
      print("lock acquired in f()"); 
    } catch(InterruptedException e) { 

Concurrency 853 



 

854 Thinking in Java Bruce Eckel 

      print("Interrupted from lock acquisition in f()"); 
    } 
  } 
} 
 
class Blocked2 implements Runnable { 
  BlockedMutex blocked = new BlockedMutex(); 
  public void run() { 
    print("Waiting for f() in BlockedMutex"); 
    blocked.f(); 
    print("Broken out of blocked call"); 
  } 
} 
 
public class Interrupting2 { 
  public static void main(String[] args) throws Exception { 
    Thread t = new Thread(new Blocked2()); 
    t.start(); 
    TimeUnit.SECONDS.sleep(1); 
    System.out.println("Issuing t.interrupt()"); 
    t.interrupt(); 
  } 
} /* Output: 
Waiting for f() in BlockedMutex 
Issuing t.interrupt() 
Interrupted from lock acquisition in f() 
Broken out of blocked call 
*///:~ 

The class BlockedMutex has a constructor that acquires the object’s own Lock and never 
releases it. For that reason, if you try to call f( ) from a second task (different from the one 
that created the BlockedMutex), you will always be blocked because the Mutex cannot be 
acquired. In Blocked2, the run( ) method will be stopped at the call to blocked.f( ). When 
you run the program, you’ll see that, unlike an I/O call, interrupt( ) can break out of a call 
that’s blocked by a mutex.19  

Checking for an interrupt 

Note that when you call interrupt( ) on a thread, the only time that the interrupt occurs is 
when the task enters, or is already inside, a blocking operation (except, as you’ve seen, in the 
case of uninterruptible I/O or blocked synchronized methods, in which case there’s 
nothing you can do). But what if you’ve written code that may or may not make such a 
blocking call, depending on the conditions in which it is run? If you can only exit by throwing 
an exception on a blocking call, you won’t always be able to leave the run( ) loop. Thus, if 
you call interrupt( ) to stop a task, your task needs a second way to exit in the event that 
your run( ) loop doesn’t happen to be making any blocking calls.  

This opportunity is presented by the interrupted status, which is set by the call to 
interrupt( ). You check for the interrupted status by calling interrupted( ). This not only 
tells you whether interrupt( ) has been called, it also clears the interrupted status. Clearing 
the interrupted status ensures that the framework will not notify you twice about a task being 
interrupted. You will be notified via either a single InterruptedException or a single 
successful Thread.interrupted( ) test. If you want to check again to see whether you were 
interrupted, you can store the result when you call Thread.interrupted( ).  

The following example shows the typical idiom that you should use in your run( ) method to 
handle both blocked and non-blocked possibilities when the interrupted status is set:  

                                                            
19 Note that, although it’s unlikely, the call to t.interrupt( ) could actually happen before the call to blocked.f( ). 



 

//: concurrency/InterruptingIdiom.java 
// General idiom for interrupting a task. 
// {Args: 1100} 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
class NeedsCleanup { 
  private final int id; 
  public NeedsCleanup(int ident) { 
    id = ident; 
    print("NeedsCleanup " + id); 
  } 
  public void cleanup() { 
    print("Cleaning up " + id); 
  } 
} 
 
class Blocked3 implements Runnable { 
  private volatile double d = 0.0; 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // point1 
        NeedsCleanup n1 = new NeedsCleanup(1); 
        // Start try-finally immediately after definition 
        // of n1, to guarantee proper cleanup of n1: 
        try { 
          print("Sleeping"); 
          TimeUnit.SECONDS.sleep(1); 
          // point2 
          NeedsCleanup n2 = new NeedsCleanup(2); 
          // Guarantee proper cleanup of n2: 
          try { 
            print("Calculating"); 
            // A time-consuming, non-blocking operation: 
            for(int i = 1; i < 2500000; i++) 
              d = d + (Math.PI + Math.E) / d; 
            print("Finished time-consuming operation"); 
          } finally { 
            n2.cleanup(); 
          } 
        } finally { 
          n1.cleanup(); 
        } 
      } 
      print("Exiting via while() test"); 
    } catch(InterruptedException e) { 
      print("Exiting via InterruptedException"); 
    } 
  } 
} 
 
public class InterruptingIdiom { 
  public static void main(String[] args) throws Exception { 
    if(args.length != 1) { 
      print("usage: java InterruptingIdiom delay-in-mS"); 
      System.exit(1); 
    } 
    Thread t = new Thread(new Blocked3()); 
    t.start(); 
    TimeUnit.MILLISECONDS.sleep(new Integer(args[0])); 
    t.interrupt(); 
  } 

Concurrency 855 



 

} /* Output: (Sample) 
NeedsCleanup 1 
Sleeping 
NeedsCleanup 2 
Calculating 
Finished time-consuming operation 
Cleaning up 2 
Cleaning up 1 
NeedsCleanup 1 
Sleeping 
Cleaning up 1 
Exiting via InterruptedException 
*///:~ 

The NeedsCleanup class emphasizes the necessity of proper resource cleanup if you leave 
the loop via an exception. Note that all NeedsCleanup resources created in 
Blocked3.run( ) must be immediately followed by try-finally clauses to guarantee that 
the cleanup( ) method is always called.  

You must give the program a command-line argument which is the delay time in 
milliseconds before it calls interrupt( ). By using different delays, you can exit 
Blocked3.run( ) at different points in the loop: in the blocking sleep( ) call, and in the 
non-blocking mathematical calculation. You’ll see that if interrupt( ) is called after the 
comment "point2" (during the non-blocking operation), first the loop is completed, then all 
the local objects are destroyed, and finally the loop is exited at the top via the while 
statement. However, if interrupt( ) is called between "pointi" and "point2" (after the while 
statement but before or during the blocking operation sleep( )), the task exits via the 
InterruptedException, the first time a blocking operation is attempted. In that case, only 
the NeedsCleanup objects that have been created up to the point where the exception is 
thrown are cleaned up, and you have the opportunity to perform any other cleanup in the 
catch clause.  

A class designed to respond to an interrupt( ) must establish a policy to ensure that it will 
remain in a consistent state. This generally means that the creation of all objects that require 
cleanup must be followed by try-finally clauses so that cleanup will occur regardless of how 
the run( ) loop exits. Code like this can work well, but alas, due to the lack of automatic 
destructor calls in Java, it relies on the client programmer to write the proper try-finally 
clauses.  

Cooperation between tasks 
As you’ve seen, when you use threads to run more than one task at a time, you can keep one 
task from interfering with another task’s resources by using a lock (mutex) to synchronize the 
behavior of the two tasks. That is, if two tasks are stepping on each other over a shared 
resource (usually memory), you use a mutex to allow only one task at a time to access that 
resource.  

With that problem solved, the next step is to learn how to make tasks cooperate with each 
other, so that multiple tasks can work together to solve a problem. Now the issue is not about 
interfering with one another, but rather about working in unison, since portions of such 
problems must be solved before other portions can be solved. It’s much like project planning: 
The footings for the house must be dug first, but the steel can be laid and the concrete forms 
can be built in parallel, and both of those tasks must be finished before the concrete 
foundation can be poured. The plumbing must be in place before the concrete slab can be 
poured, the concrete slab must be in place before you start framing, and so on. Some of these 
tasks can be done in parallel, but certain steps require all tasks to be completed before you 
can move ahead.  

856 Thinking in Java Bruce Eckel 



 

The key issue when tasks are cooperating is handshaking between those tasks. To accomplish 
this handshaking, we use the same foundation: the mutex, which in this case guarantees that 
only one task can respond to a signal. This eliminates any possible race conditions. On top of 
the mutex, we add a way for a task to suspend itself until some external state changes (e.g., 
"The plumbing is now in place"), indicating that it’s time for that task to move forward. In 
this section, we’ll look at the issues of handshaking between tasks, which is safely 
implemented using the Object methods wait( ) and notifyAll( ). The Java SE5 
concurrency library also provides Condition objects with await( ) and signal( ) methods. 
We’ll see the problems that can arise, and their solutions.  

wait() and notifyAll() 

wait( ) allows you to wait for a change in some condition that is outside the control of the 
forces in the current method. Often, this condition will be changed by another task. You don’t 
want to idly loop while testing the condition inside your task; this is called busy waiting, and 
it’s usually a bad use of CPU cycles. So wait( ) suspends the task while waiting for the world 
to change, and only when a notify( ) or notifyAll( ) occurs—suggesting that something of 
interest may have happened—does the task wake up and check for changes. Thus, wait( ) 
provides a way to synchronize activities between tasks.  

It’s important to understand that sleep( ) does not release the object lock when it is called, 
and neither does yield( ). On the other hand, when a task enters a call to wait( ) inside a 
method, that thread’s execution is suspended, and the lock on that object is released. Because 
wait( ) releases the lock, it means that the lock can be acquired by another task, so other 
synchronized methods in the (now unlocked) object can be called during a wait( ). This is 
essential, because those other methods are typically what cause the change that makes it 
interesting for the suspended task to reawaken. Thus, when you call wait( ), you’re saying, 
"I’ve done all I can right now, so I’m going to wait right here, but I want to allow other 
synchronized operations to take place if they can."  

There are two forms of wait( ). One version takes an argument in milliseconds that has the 
same meaning as in sleep( ): "Pause for this period of time." But unlike with sleep( ), with 
wait(pause):  

1. The object lock is released during the wait( ).  
2. You can also come out of the wait( ) due to a notify( ) or notifyAll( ), in addition to 

letting the clock run out.  

The second, more commonly used form of wait( ) takes no arguments. This wait( ) 
continues indefinitely until the thread receives a notify( ) or notifyAll( ).  

One fairly unique aspect of wait( ), notify( ), and notifyAll( ) is that these methods are 
part of the base class Object and not part of Thread. Although this seems a bit strange at 
first—to have something that’s exclusively for threading as part of the universal base class—
it’s essential because these methods manipulate the lock that’s also part of every object. As a 
result, you can put a wait( ) inside any synchronized method, regardless of whether that 
class extends Thread or implements Runnable. In fact, the only place you can call wait( ), 
notify( ), or notifyAll( ) is within a synchronized method or block (sleep( ) can be 
called within non-synchronized methods since it doesn’t manipulate the lock). If you call 
any of these within a method that’s not synchronized, the program will compile, but when 
you run it, you’ll get an IllegalMonitorStateException with the somewhat nonintuitive 
message "current thread not owner." This message means that the task calling wait( ), 
notify( ), or notifyAll( ) must "own" (acquire) the lock for the object before it can call any 
of those methods.  

Concurrency 857 



 

You can ask another object to perform an operation that manipulates its own lock. To do this, 
you must first capture that object’s lock. For example, if you want to send notifyAll( ) to an 
object x, you must do so inside a synchronized block that acquires the lock for x:  

synchronized(x) { 
  x.notifyAll(); 
} 

Let’s look at a simple example. WaxOMatic.java has two processes: one to apply wax to a 
Car and one to polish it. The polishing task cannot do its job until the application task is 
finished, and the application task must wait until the polishing task is finished before it can 
put on another coat of wax. Both WaxOn and WaxOff use the Car object, which uses 
wait( ) and notifyAll( ) to suspend and restart tasks while they’re waiting for a condition to 
change:  

//: concurrency/waxomatic/WaxOMatic.java 
// Basic task cooperation. 
package concurrency.waxomatic; 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
class Car { 
  private boolean waxOn = false; 
  public synchronized void waxed() { 
    waxOn = true; // Ready to buff 
    notifyAll(); 
  } 
  public synchronized void buffed() { 
    waxOn = false; // Ready for another coat of wax 
    notifyAll(); 
  } 
  public synchronized void waitForWaxing() 
  throws InterruptedException { 
    while(waxOn == false) 
      wait(); 
  } 
  public synchronized void waitForBuffing() 
  throws InterruptedException { 
    while(waxOn == true) 
      wait(); 
  } 
} 
 
class WaxOn implements Runnable { 
  private Car car; 
  public WaxOn(Car c) { car = c; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        printnb("Wax On! "); 
        TimeUnit.MILLISECONDS.sleep(200); 
        car.waxed(); 
        car.waitForBuffing(); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting via interrupt"); 
    } 
    print("Ending Wax On task"); 
  } 
} 
 
class WaxOff implements Runnable { 

858 Thinking in Java Bruce Eckel 



 

Concurrency 859 

  private Car car; 
  public WaxOff(Car c) { car = c; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        car.waitForWaxing(); 
        printnb("Wax Off! "); 
        TimeUnit.MILLISECONDS.sleep(200); 
        car.buffed(); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting via interrupt"); 
    } 
    print("Ending Wax Off task"); 
  } 
} 
 
public class WaxOMatic { 
  public static void main(String[] args) throws Exception { 
    Car car = new Car(); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(new WaxOff(car)); 
    exec.execute(new WaxOn(car)); 
    TimeUnit.SECONDS.sleep(5); // Run for a while... 
    exec.shutdownNow(); // Interrupt all tasks 
  } 
} /* Output: (95% match) 
Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax 
On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! 
Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! 
Exiting via interrupt 
Ending Wax On task 
Exiting via interrupt 
Ending Wax Off task 
*///:~ 

Here, Car has a single boolean waxOn, which indicates the state of the waxing-polishing 
process.  

In waitForWaxing( ), the waxOn flag is checked, and if it is false, the calling task is 
suspended by calling wait( ). It’s important that this occur in a synchronized method, 
where the task has acquired the lock. When you call wait( ), the thread is suspended and the 
lock is released. It is essential that the lock be released because, to safely change the state of 
the object (for example, to change waxOn to true, which must happen if the suspended task 
is to ever continue), that lock must be available to be acquired by some other task. In this 
example, when another task calls waxed( ) to indicate that it’s time to do something, the 
lock must be acquired in order to change waxOn to true. Afterward, waxed( ) calls 
notifyAll( ), which wakes up the task that was suspended in the call to wait( ). In order for 
the task to wake up from a wait( ), it must first reacquire the lock that it released when it 
entered the wait( ). The task will not wake up until that lock becomes available.20

  

WaxOn.run( ) represents the first step in the process of waxing the car, so it performs its 
operation: a call to sleep( ) to simulate the time necessary for waxing. It then tells the car 
that waxing is complete, and calls waitForBuffing( ), which suspends this task with a 

                                                            
20 On some platforms there’s a third way to come out of a wait( ): the so-called spurious wake-up. A spurious wake-up 
essentially means that a thread may prematurely stop blocking (while waiting on a condition variable or semaphore) 
without being prompted by a notify( ) or notifyAll( ) (or their equivalents for the new Condition objects). The thread 
just wakes up, seemingly by itself. Spurious wake-ups exist because implementing POSIX threads, or the equivalent, isn’t 
always as straightforward as it should be on some platforms. Allowing spurious wake-ups makes the job of building a 
library like pthreads easier for those platforms. 



 

wait( ) until the WaxOff task calls buffed( ) for the car, changing the state and calling 
notifyAll( ). WaxOff.run( ), on the other hand, immediately moves into 
waitForWaxing( ) and is thus suspended until the wax has been applied by WaxOn and 
waxed( ) is called. When you run this program, you can watch this two-step process repeat 
itself as control is handed back and forth between the two tasks. After five seconds, 
interrupt( ) halts both threads; when you call shutdownNow( ) for an 
ExecutorService, it calls interrupt( ) for all the tasks it is controlling.  

The previous example emphasizes that you must surround a wait( ) with a while loop that 
checks the condition(s) of interest. This is important because: 

• You may have multiple tasks waiting on the same lock for the same reason, and the 
first task that wakes up might change the situation (even if you don’t do this someone 
might inherit from your class and do it). If that is the case, this task should be 
suspended again until its condition of interest changes.  
 

• By the time this task awakens from its wait( ), it’s possible that some other task will 
have changed things such that this task is unable to perform or is uninterested in 
performing its operation at this time. Again, it should be resuspended by calling 
wait( ) again. 

 
• It’s also possible that tasks could be waiting on your object’s lock for different reasons 

(in which case you must use notifyAll( )). In this case, you need to check whether 
you’ve been woken up for the right reason, and if not, call wait( ) again.  

 
Thus, it’s essential that you check for your particular condition of interest, and go back into 
wait( ) if that condition is not met. This is idiomatically written using a while.  

Exercise 21:   (2) Create two Runnables, one with a run( ) that starts and calls wait( ). 
The second class should capture the reference of the first Runnable object. Its run( ) 
should call notifyAll( ) for the first task after some number of seconds have passed so that 
the first task can display a message. Test your classes using an Executor.  

Exercise 22:   (4) Create an example of a busy wait. One task sleeps for a while and then 
sets a flag to true. The second task watches that flag inside a while loop (this is the busy 
wait) and when the flag becomes true, sets it back to false and reports the change to the 
console. Note how much wasted time the program spends inside the busy wait, and create a 
second version of the program that uses wait( ) instead of the busy wait.  

Missed Signals 

When two threads are coordinated using notify( )/wait( ) or notifyAll( )/wait( ), it’s 
possible to miss a signal. Suppose T1 is a thread that notifies T2, and that the two threads are 
implemented using the following (flawed) approach:  

T1: 
synchronized(sharedMonitor) { 
  <setup condition for T2> 
sharedMonitor.notify(); 
} 
 
T2: 
while(someCondition) { 
  // Point 1 
  synchronized(sharedMonitor) { 
    sharedMonitor.wait(); 
  } 
} 

860 Thinking in Java Bruce Eckel 



 

The <setup condition for T2> is an action to prevent T2 from calling wait( ), if it hasn’t 
already.  

Assume that T2 evaluates someCondition and finds it true. At Point 1, the thread 
scheduler might switch to T1. T1 executes its setup, and then calls notify( ). When T2 
continues executing, it is too late for T2 to realize that the condition has been changed in the 
meantime, and it will blindly enter wait( ). The notify( ) will be missed and T2 will wait 
indefinitely for the signal that was already sent, producing deadlock.  

The solution is to prevent the race condition over the someCondition variable. Here is the 
correct approach for T2:  

synchronized(sharedMonitor) { 
  while(someCondition) 
    sharedMonitor.wait(); 
} 

Now, if T1 executes first, when control returns back to T2 it will figure out that the condition 
has changed, and will not enter wait( ). Conversely, if T2 executes first, it will enter wait( ) 
and later be awakened by T1. Thus, the signal cannot be missed.  

notify() vs. notifyAll() 

Because more than one task could technically be in a wait( ) on a single Car object, it is 
safer to call notifyAll( ) rather than just notify( ). However, the structure of the above 
program is such that only one task will actually be in a wait( ), so you could use notify( ) 
instead of notifyAll( ).  

Using notify( ) instead of notifyAll( ) is an optimization. Only one task of the possible 
many that are waiting on a lock will be awoken with notify( ), so you must be certain that 
the right task will wake up if you try to use notify( ). In addition, all tasks must be waiting 
on the same condition in order for you to use notify( ), because if you have tasks that are 
waiting on different conditions, you don’t know if the right one will wake up. If you use 
notify( ), only one task must benefit when the condition changes. Finally, these constraints 
must always be true for all possible subclasses. If any of these rules cannot be met, you must 
use notifyAll( ) rather than notify( ).  

One of the confusing statements often made in discussions of Java threading is that 
notifyAll( ) wakes up "all waiting tasks." Does this mean that any task that is in a wait( ), 
anywhere in the program, is awoken by any call to notifyAll( )? In the following example, 
the code associated with Task2 shows that this is not true—in fact, only the tasks that are 
waiting on a particular lock are awoken when notifyAll( ) is called/or that lock:  

//: concurrency/NotifyVsNotifyAll.java 
import java.util.concurrent.*; 
import java.util.*; 
 
class Blocker { 
  synchronized void waitingCall() { 
    try { 
      while(!Thread.interrupted()) { 
        wait(); 
        System.out.print(Thread.currentThread() + " "); 
      } 
    } catch(InterruptedException e) { 
      // OK to exit this way 
    } 
  } 

Concurrency 861 



 

  synchronized void prod() { notify(); } 
  synchronized void prodAll() { notifyAll(); } 
} 
 
class Task implements Runnable { 
  static Blocker blocker = new Blocker(); 
  public void run() { blocker.waitingCall(); } 
} 
 
class Task2 implements Runnable { 
  // A separate Blocker object: 
  static Blocker blocker = new Blocker(); 
  public void run() { blocker.waitingCall(); } 
} 
 
public class NotifyVsNotifyAll { 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < 5; i++) 
      exec.execute(new Task()); 
    exec.execute(new Task2()); 
    Timer timer = new Timer(); 
    timer.scheduleAtFixedRate(new TimerTask() { 
      boolean prod = true; 
      public void run() { 
        if(prod) { 
          System.out.print("\nnotify() "); 
          Task.blocker.prod(); 
          prod = false; 
        } else { 
          System.out.print("\nnotifyAll() "); 
          Task.blocker.prodAll(); 
          prod = true; 
        } 
      } 
    }, 400, 400); // Run every .4 second 
    TimeUnit.SECONDS.sleep(5); // Run for a while... 
    timer.cancel(); 
    System.out.println("\nTimer canceled"); 
    TimeUnit.MILLISECONDS.sleep(500); 
    System.out.print("Task2.blocker.prodAll() "); 
    Task2.blocker.prodAll(); 
    TimeUnit.MILLISECONDS.sleep(500); 
    System.out.println("\nShutting down"); 
    exec.shutdownNow(); // Interrupt all tasks 
  } 
} /* Output: (Sample) 
notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-1-thread-3,5,main] 
Thread[pool-1-thread-2,5,main] 
notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-1-thread-4,5,main] 
Thread[pool-1-thread-5,5,main] 
notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-1-thread-3,5,main] 
Thread[pool-1-thread-2,5,main] 
notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-1-thread-4,5,main] 
Thread[pool-1-thread-5,5,main] 

862 Thinking in Java Bruce Eckel 



 

notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
5,5,main] Thread[pool-1-thread-4,5,main] Thread[pool-1-thread-3,5,main] 
Thread[pool-1-thread-2,5,main] 
notify() Thread[pool-1-thread-1,5,main] 
notifyAll() Thread[pool-1-thread-1,5,main] Thread[pool-1-thread-
2,5,main] Thread[pool-1-thread-3,5,main] Thread[pool-1-thread-4,5,main] 
Thread[pool-1-thread-5,5,main] 
Timer canceled 
Task2.blocker.prodAll() Thread[pool-1-thread-6,5,main] 
Shutting down 
*///:~ 

Task and Task2 each have their own Blocker object, so each Task object blocks on 
Task.blocker, and each Task2 object blocks on Task2.blocker. In main( ), a 
java.util.Timer object is set up to execute its run( ) method every 4/10 of a second, and 
that run( ) alternates between calling notify( ) and notifyAll( ) on Task.blocker via the 
"prod" methods.  

From the output, you can see that even though a Task2 object exists and is blocked on 
Task2.blocker, none of the notify( ) or notifyAll( ) calls on Task.blocker causes the 
Task2 object to wake up. Similarly, at the end of main( ), cancel( ) is called for the timer, 
and even though the timer is canceled, the first five tasks are still running and still blocked in 
their calls to Task.blocker.waitingCall( ). The output from the call to 
Task2.blocker.prodAll( ) does nor include any of the tasks waiting on the lock in 
Task.blocker.  

This also makes sense if you look at prod( ) and prodAll( ) in Blocker. These methods are 
synchronized, which means that they acquire their own lock, so when they call notify( ) or 
notifyAll( ), it’s logical that they are only calling it for that lock—and thus only wake up 
tasks that are waiting on that particular lock.  

Blocker.waitingCall( ) is simple enough that you could just say for(;;) instead of 
while(!Thread.interrupted( )), and achieve the same effect in this case, because in this 
example there’s no difference between leaving the loop with an exception and leaving it by 
checking the interrupted( ) flag— the same code is executed in both cases. As a matter of 
form, however, this example checks interrupted( ), because there are two different ways of 
leaving the loop. If, sometime later, you decide to add more code to the loop, you risk 
introducing an error if you don’t cover both paths of exit from the loop.  

Exercise 23:   (7) Demonstrate that WaxOMatic.java works successfully when you use 
notify( ) instead of notifyAll( ).  

Producers and consumers 

Consider a restaurant that has one chef and one waitperson. The waitperson must wait for 
the chef to prepare a meal. When the chef has a meal ready, the chef notifies the waitperson, 
who then gets and delivers the meal and goes back to waiting. This is an example of task 
cooperation: The chef represents the producer, and the waitperson represents the consumer. 
Both tasks must handshake with each other as meals are produced and consumed, and the 
system must shut down in an orderly fashion. Here is the story modeled in code:  

//: concurrency/Restaurant.java 
// The producer-consumer approach to task cooperation. 
import java.util.concurrent.*; 
import static net.mindview.util.Print.*; 
 
class Meal { 

Concurrency 863 



 

  private final int orderNum; 
  public Meal(int orderNum) { this.orderNum = orderNum; } 
  public String toString() { return "Meal " + orderNum; } 
} 
 
class WaitPerson implements Runnable { 
  private Restaurant restaurant; 
  public WaitPerson(Restaurant r) { restaurant = r; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        synchronized(this) { 
          while(restaurant.meal == null) 
            wait(); // ... for the chef to produce a meal 
        } 
        print("Waitperson got " + restaurant.meal); 
        synchronized(restaurant.chef) { 
          restaurant.meal = null; 
          restaurant.chef.notifyAll(); // Ready for another 
        } 
      } 
    } catch(InterruptedException e) { 
      print("WaitPerson interrupted"); 
    } 
  } 
} 
 
class Chef implements Runnable { 
  private Restaurant restaurant; 
  private int count = 0; 
  public Chef(Restaurant r) { restaurant = r; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        synchronized(this) { 
          while(restaurant.meal != null) 
            wait(); // ... for the meal to be taken 
        } 
        if(++count == 10) { 
          print("Out of food, closing"); 
          restaurant.exec.shutdownNow(); 
        } 
        printnb("Order up! "); 
        synchronized(restaurant.waitPerson) { 
          restaurant.meal = new Meal(count); 
          restaurant.waitPerson.notifyAll(); 
        } 
        TimeUnit.MILLISECONDS.sleep(100); 
      } 
    } catch(InterruptedException e) { 
      print("Chef interrupted"); 
    } 
  } 
} 
 
public class Restaurant { 
  Meal meal; 
  ExecutorService exec = Executors.newCachedThreadPool(); 
  WaitPerson waitPerson = new WaitPerson(this); 
  Chef chef = new Chef(this); 
  public Restaurant() { 
    exec.execute(chef); 
    exec.execute(waitPerson); 

864 Thinking in Java Bruce Eckel 



 

  } 
  public static void main(String[] args) { 
    new Restaurant(); 
  } 
} /* Output: 
Order up! Waitperson got Meal 1 
Order up! Waitperson got Meal 2 
Order up! Waitperson got Meal 3 
Order up! Waitperson got Meal 4 
Order up! Waitperson got Meal 5 
Order up! Waitperson got Meal 6 
Order up! Waitperson got Meal 7 
Order up! Waitperson got Meal 8 
Order up! Waitperson got Meal 9 
Out of food, closing 
WaitPerson interrupted 
Order up! Chef interrupted 
*///:~ 

The Restaurant is the focal point for both the WaitPerson and the Chef. Both must know 
what Restaurant they are working for because they must place or fetch the meal from the 
restaurant’s "meal window," restaurant.meal. In run( ), the WaitPerson goes into 
wait( ) mode, stopping that task until it is woken up with a notifyAll( ) from the Chef. 
Since this is a very simple program, we know that only one task will be waiting on the 
WaitPerson’s lock: the WaitPerson task itself. For this reason, it’s theoretically possible 
to call notify( ) instead of notifyAll( ). However, in more complex situations, multiple 
tasks may be waiting on a particular object lock, so you don’t know which task should be 
awakened. Thus, it’s safer to call notifyAll( ), which wakes up all the tasks waiting on that 
lock. Each task must then decide whether the notification is relevant.  

Once the Chef delivers a Meal and notifies the WaitPerson, the Chef waits until the 
WaitPerson collects the meal and notifies the Chef, who can then produce the next Meal.  

Notice that the wait( ) is wrapped in a while( ) statement that is testing for the same thing 
that is being waited for. This seems a bit strange at first—if you’re waiting for an order, once 
you wake up, the order must be available, right? As noted earlier, the problem is that in a 
concurrent application, some other task might swoop in and grab the order while the 
WaitPerson is waking up. The only safe approach is to always use the following idiom for a 
wait( ) (within proper synchronization, of course, and programming against the possibility 
of missed signals):  

while(conditionlsNotMet) 
  wait(); 

This guarantees that the condition will be met before you get out of the wait loop, and if you 
have been notified of something that doesn’t concern the condition (as can happen with 
notifyAll( )), or the condition changes before you get fully out of the wait loop, you are 
guaranteed to go back into waiting.  

Observe that the call to notifyAll( ) must first capture the lock on waitPerson. The call to 
wait( ) in WaitPerson.run( ) automatically releases the lock, so this is possible. Because 
the lock must be owned in order for notifyAll( ) to be called, it’s guaranteed that two tasks 
trying to call notifyAll( ) on one object won’t step on each other’s toes.  

Both run( ) methods are designed for orderly shutdown by enclosing the entire run( ) with 
a try block. The catch clause closes right before the closing brace of the run( ) method, so if 
the task receives an InterruptedException, it ends immediately after catching the 
exception.  

Concurrency 865 



 

In Chef, note that after calling shutdownNow( ) you could simply return from run( ), 
and normally that’s what you should do. However, it’s a little more interesting to do it this 
way. Remember that shutdownNow( ) sends an interrupt( ) to all the tasks that the 
ExecutorService started. But in the case of the Chef, the task doesn’t shut down 
immediately upon getting the interrupt( ), because the interrupt only throws 
InterruptedException as the task attempts to enter an (interruptible) blocking operation. 
Thus, you’ll see "Order up!" displayed first, and then the InterruptedException is thrown 
when the Chef attempts to call sleep( ). If you remove the call to sleep( ), the task will get 
to the top of the run( ) loop and exit because of the Thread.interrupted( ) test, without 
throwing an exception.  

The preceding example has only a single spot for one task to store an object so that another 
task can later use that object. However, in a typical producerconsumer implementation, you 
use a first-in, first-out queue in order to store the objects being produced and consumed. 
You’ll learn more about such queues later in this chapter.  

Exercise 24:   (1) Solve a single-producer, single-consumer problem using wait( ) and 
notifyAll( ). The producer must not overflow the receiver’s buffer, which can happen if the 
producer is faster than the consumer. If the consumer is faster than the producer, then it 
must not read the same data more than once. Do not assume anything about the relative 
speeds of the producer or consumer.  

Exercise 25:   (1) In the Chef class in Restaurant.java, return from run( ) after 
calling shutdownNow( ) and observe the difference in behavior.  

Exercise 26:   (8) Add a BusBoy class to Restaurant.java. After the meal is delivered, 
the WaitPerson should notify the BusBoy to clean up.  

Using explicit Lock and Condition objects  

There are additional, explicit tools in the Java SE5 java.util.concurrent library that can be 
used to rewrite WaxOMatic.java. The basic class that uses a mutex and allows task 
suspension is the Condition, and you can suspend a task by calling await( ) on a 
Condition. When external state changes take place that might mean that a task should 
continue processing, you notify the task by calling signal( ), to wake up one task, or 
signalAll( ), to wake up all tasks that have suspended themselves on that Condition object 
(as with notifyAll( ), signalAll( ) is the safer approach).  

Here’s WaxOMatic.java rewritten to contain a Condition that it uses to suspend a task 
inside waitForWaxing( ) or waitForBuffing( ):  

//: concurrency/waxomatic2/WaxOMatic2.java 
// Using Lock and Condition objects. 
package concurrency.waxomatic2; 
import java.util.concurrent.*; 
import java.util.concurrent.locks.*; 
import static net.mindview.util.Print.*; 
 
class Car { 
  private Lock lock = new ReentrantLock(); 
  private Condition condition = lock.newCondition(); 
  private boolean waxOn = false; 
  public void waxed() { 
    lock.lock(); 
    try { 
      waxOn = true; // Ready to buff 
      condition.signalAll(); 
    } finally { 

866 Thinking in Java Bruce Eckel 



 

      lock.unlock(); 
    } 
  } 
  public void buffed() { 
    lock.lock(); 
    try { 
      waxOn = false; // Ready for another coat of wax 
      condition.signalAll(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public void waitForWaxing() throws InterruptedException { 
    lock.lock(); 
    try { 
      while(waxOn == false) 
        condition.await(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public void waitForBuffing() throws InterruptedException{ 
    lock.lock(); 
    try { 
      while(waxOn == true) 
        condition.await(); 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 
class WaxOn implements Runnable { 
  private Car car; 
  public WaxOn(Car c) { car = c; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        printnb("Wax On! "); 
        TimeUnit.MILLISECONDS.sleep(200); 
        car.waxed(); 
        car.waitForBuffing(); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting via interrupt"); 
    } 
    print("Ending Wax On task"); 
  } 
} 
 
class WaxOff implements Runnable { 
  private Car car; 
  public WaxOff(Car c) { car = c; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        car.waitForWaxing(); 
        printnb("Wax Off! "); 
        TimeUnit.MILLISECONDS.sleep(200); 
        car.buffed(); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting via interrupt"); 

Concurrency 867 



 

    } 
    print("Ending Wax Off task"); 
  } 
} 
 
public class WaxOMatic2 { 
  public static void main(String[] args) throws Exception { 
    Car car = new Car(); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(new WaxOff(car)); 
    exec.execute(new WaxOn(car)); 
    TimeUnit.SECONDS.sleep(5); 
    exec.shutdownNow(); 
  } 
} /* Output: (90% match) 
Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax 
On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! 
Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! Wax Off! Wax On! 
Exiting via interrupt 
Ending Wax Off task 
Exiting via interrupt 
Ending Wax On task 
*///:~ 

In Car’s constructor, a single Lock produces a Condition object which is used to manage 
inter-task communication. However, the Condition object contains no information about 
the state of the process, so you need to manage additional information to indicate process 
state, which is the boolean waxOn.  

Each call to lock( ) must immediately be followed by a try-finally clause to guarantee that 
unlocking happens in all cases. As with the built-in versions, a task must own the lock before 
it can call await( ), signal( ) or signalAll( ).  

Notice that this solution is more complex than the previous one, and the complexity doesn’t 
gain you anything in this case. The Lock and Condition objects are only necessary for more 
difficult threading problems.  

Exercise 27:   (2) Modify Restaurant.java to use explicit Lock and Condition objects.  

Producer-consumers and queues 

The wait( ) and notifyAll( ) methods solve the problem of task cooperation in a rather low-
level fashion, handshaking every interaction. In many cases, you can move up a level of 
abstraction and solve task cooperation problems using a synchronized queue, which only 
allows one task at a time to insert or remove an element. This is provided for you in the 
java.util.concurrent.BlockingQueue interface, which has a number of standard 
implementations. You’ll usually use the LinkedBlockingQueue, which is an unbounded 
queue; the ArrayBlockingQueue has a fixed size, so you can only put so many elements in 
it before it blocks.  

These queues also suspend a consumer task if that task tries to get an object from the queue 
and the queue is empty, and resume when more elements become available. Blocking queues 
can solve a remarkable number of problems in a much simpler and more reliable fashion 
than wait( ) and notifyAll( ).  

Here’s a simple test that serializes the execution of LiftOff objects. The consumer is 
LiftOffRunner, which pulls each LiftOff object off the BlockingQueue and runs it 

868 Thinking in Java Bruce Eckel 



 

directly. (That is, it uses its own thread by calling run( ) explicitly rather than starting up a 
new thread for each task.)  

//: concurrency/TestBlockingQueues.java 
// {RunByHand} 
import java.util.concurrent.*; 
import java.io.*; 
import static net.mindview.util.Print.*; 
 
class LiftOffRunner implements Runnable { 
  private BlockingQueue<LiftOff> rockets; 
  public LiftOffRunner(BlockingQueue<LiftOff> queue) { 
    rockets = queue; 
  } 
  public void add(LiftOff lo) { 
    try { 
      rockets.put(lo); 
    } catch(InterruptedException e) { 
      print("Interrupted during put()"); 
    } 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        LiftOff rocket = rockets.take(); 
        rocket.run(); // Use this thread 
      } 
    } catch(InterruptedException e) { 
      print("Waking from take()"); 
    } 
    print("Exiting LiftOffRunner"); 
  } 
} 
 
public class TestBlockingQueues { 
  static void getkey() { 
    try { 
      // Compensate for Windows/Linux difference in the 
      // length of the result produced by the Enter key: 
      new BufferedReader( 
        new InputStreamReader(System.in)).readLine(); 
    } catch(java.io.IOException e) { 
      throw new RuntimeException(e); 
    } 
  } 
  static void getkey(String message) { 
    print(message); 
    getkey(); 
  } 
  static void 
  test(String msg, BlockingQueue<LiftOff> queue) { 
    print(msg); 
    LiftOffRunner runner = new LiftOffRunner(queue); 
    Thread t = new Thread(runner); 
    t.start(); 
    for(int i = 0; i < 5; i++) 
      runner.add(new LiftOff(5)); 
    getkey("Press ‘Enter’ (" + msg + ")"); 
    t.interrupt(); 
    print("Finished " + msg + " test"); 
  } 
  public static void main(String[] args) { 
    test("LinkedBlockingQueue", // Unlimited size 

Concurrency 869 



 

      new LinkedBlockingQueue<LiftOff>()); 
    test("ArrayBlockingQueue", // Fixed size 
      new ArrayBlockingQueue<LiftOff>(3)); 
    test("SynchronousQueue", // Size of 1 
      new SynchronousQueue<LiftOff>()); 
  } 
} ///:~ 

The tasks are placed on the BlockingQueue by main( ) and are taken off the 
BlockingQueue by the LiftOffRunner. Notice that LiftOffRunner can ignore 
synchronization issues because they are solved by the BlockingQueue.  

Exercise 28:   (3) Modify TestBlockingQueues.java by adding a new task that places 
LiftOff on the BlockingQueue, instead of doing it in main( ).  

BlockingQueues of toast 

As an example of the use of BlockingQueues, consider a machine that has three tasks: one 
to make toast, one to butter the toast, and one to put jam on the buttered toast. We can run 
the toast through BlockingQueues between processes:  

//: concurrency/ToastOMatic.java 
// A toaster that uses queues. 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Toast { 
  public enum Status { DRY, BUTTERED, JAMMED } 
  private Status status = Status.DRY; 
  private final int id; 
  public Toast(int idn) { id = idn; } 
  public void butter() { status = Status.BUTTERED; } 
  public void jam() { status = Status.JAMMED; } 
  public Status getStatus() { return status; } 
  public int getId() { return id; } 
  public String toString() { 
    return "Toast " + id + ": " + status; 
  } 
} 
 
class ToastQueue extends LinkedBlockingQueue<Toast> {} 
 
class Toaster implements Runnable { 
  private ToastQueue toastQueue; 
  private int count = 0; 
  private Random rand = new Random(47); 
  public Toaster(ToastQueue tq) { toastQueue = tq; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        TimeUnit.MILLISECONDS.sleep( 
          100 + rand.nextInt(500)); 
        // Make toast 
        Toast t = new Toast(count++); 
        print(t); 
        // Insert into queue 
        toastQueue.put(t); 
      } 
    } catch(InterruptedException e) { 
      print("Toaster interrupted"); 

870 Thinking in Java Bruce Eckel 



 

    } 
    print("Toaster off"); 
  } 
} 
 
// Apply butter to toast: 
class Butterer implements Runnable { 
  private ToastQueue dryQueue, butteredQueue; 
  public Butterer(ToastQueue dry, ToastQueue buttered) { 
    dryQueue = dry; 
    butteredQueue = buttered; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // Blocks until next piece of toast is available: 
        Toast t = dryQueue.take(); 
        t.butter(); 
        print(t); 
        butteredQueue.put(t); 
      } 
    } catch(InterruptedException e) { 
      print("Butterer interrupted"); 
    } 
    print("Butterer off"); 
  } 
} 
 
// Apply jam to buttered toast: 
class Jammer implements Runnable { 
  private ToastQueue butteredQueue, finishedQueue; 
  public Jammer(ToastQueue buttered, ToastQueue finished) { 
    butteredQueue = buttered; 
    finishedQueue = finished; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // Blocks until next piece of toast is available: 
        Toast t = butteredQueue.take(); 
        t.jam(); 
        print(t); 
        finishedQueue.put(t); 
      } 
    } catch(InterruptedException e) { 
      print("Jammer interrupted"); 
    } 
    print("Jammer off"); 
  } 
} 
 
// Consume the toast: 
class Eater implements Runnable { 
  private ToastQueue finishedQueue; 
  private int counter = 0; 
  public Eater(ToastQueue finished) { 
    finishedQueue = finished; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // Blocks until next piece of toast is available: 
        Toast t = finishedQueue.take(); 

Concurrency 871 



 

        // Verify that the toast is coming in order, 
        // and that all pieces are getting jammed: 
        if(t.getId() != counter++ || 
           t.getStatus() != Toast.Status.JAMMED) { 
          print(">>>> Error: " + t); 
          System.exit(1); 
        } else 
          print("Chomp! " + t); 
      } 
    } catch(InterruptedException e) { 
      print("Eater interrupted"); 
    } 
    print("Eater off"); 
  } 
} 
 
public class ToastOMatic { 
  public static void main(String[] args) throws Exception { 
    ToastQueue dryQueue = new ToastQueue(), 
               butteredQueue = new ToastQueue(), 
               finishedQueue = new ToastQueue(); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(new Toaster(dryQueue)); 
    exec.execute(new Butterer(dryQueue, butteredQueue)); 
    exec.execute(new Jammer(butteredQueue, finishedQueue)); 
    exec.execute(new Eater(finishedQueue)); 
    TimeUnit.SECONDS.sleep(5); 
    exec.shutdownNow(); 
  } 
} /* (Execute to see output) *///:~ 

Toast is an excellent example of the value of enums. Note that there is no explicit 
synchronization (using Lock objects or the synchronized keyword) because the 
synchronization is implicitly managed by the queues (which synchronize internally) and by 
the design of the system—each piece of Toast is only operated on by one task at a time. 
Because the queues block, processes suspend and resume automatically. You can see that the 
simplification produced by BlockingQueues can be quite dramatic. The coupling between 
the classes that would exist with explicit wait( ) and notifyAll( ) statements is eliminated 
because each class communicates only with its BlockingQueues.  

Exercise 29:   (8) Modify ToastOMatic.java to create peanut butter and jelly on toast 
sandwiches using two separate assembly lines (one for peanut butter, the second for jelly, 
then merging the two lines).  

Using pipes for I/O between tasks 

It’s often useful for tasks to communicate with each other using I/O. Threading libraries may 
provide support for inter-task I/O in the form of pipes. These exist in the Java I/O library as 
the classes PipedWriter (which allows a task to write into a pipe) and PipedReader 
(which allows a different task to read from the same pipe). This can be thought of as a 
variation of the producer-consumer problem, where the pipe is the canned solution. The pipe 
is basically a blocking queue, which existed in versions of Java before BlockingQueue was 
introduced.  

Here’s a simple example in which two tasks use a pipe to communicate:  

//: concurrency/PipedIO.java 
// Using pipes for inter-task I/O 
import java.util.concurrent.*; 

872 Thinking in Java Bruce Eckel 



 

import java.io.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Sender implements Runnable { 
  private Random rand = new Random(47); 
  private PipedWriter out = new PipedWriter(); 
  public PipedWriter getPipedWriter() { return out; } 
  public void run() { 
    try { 
      while(true) 
        for(char c = ‘A’; c <= ‘z’; c++) { 
          out.write(c); 
          TimeUnit.MILLISECONDS.sleep(rand.nextInt(500)); 
        } 
    } catch(IOException e) { 
      print(e + " Sender write exception"); 
    } catch(InterruptedException e) { 
      print(e + " Sender sleep interrupted"); 
    } 
  } 
} 
 
class Receiver implements Runnable { 
  private PipedReader in; 
  public Receiver(Sender sender) throws IOException { 
    in = new PipedReader(sender.getPipedWriter()); 
  } 
  public void run() { 
    try { 
      while(true) { 
        // Blocks until characters are there: 
        printnb("Read: " + (char)in.read() + ", "); 
      } 
    } catch(IOException e) { 
      print(e + " Receiver read exception"); 
    } 
  } 
} 
 
public class PipedIO { 
  public static void main(String[] args) throws Exception { 
    Sender sender = new Sender(); 
    Receiver receiver = new Receiver(sender); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    exec.execute(sender); 
    exec.execute(receiver); 
    TimeUnit.SECONDS.sleep(4); 
    exec.shutdownNow(); 
  } 
} /* Output: (65% match) 
Read: A, Read: B, Read: C, Read: D, Read: E, Read: F, Read: G, Read: H, 
Read: I, Read: J, Read: K, Read: L, Read: M, 
java.lang.InterruptedException: sleep interrupted Sender sleep 
interrupted 
java.io.InterruptedIOException Receiver read exception 
*///:~ 

Sender and Receiver represent tasks that need to communicate with each other. Sender 
creates a PipedWriter, which is a standalone object, but inside Receiver the creation of 
PipedReader must be associated with a PipedWriter in the constructor. The Sender 
puts data into the Writer and sleeps for a random amount of time. However, Receiver has 

Concurrency 873 



 

874 Thinking in Java Bruce Eckel 

no sleep( ) or wait( ). But when it does a read( ), the pipe automatically blocks when there 
is no more data.  

Notice that the sender and receiver are started in main( ), after the objects are 
completely constructed. If you don’t start completely constructed objects, the pipe can 
produce inconsistent behavior on different platforms. (Note that BlockingQueues are more 
robust and easier to use.)  

An important difference between a PipedReader and normal I/O is seen when 
shutdownNow( ) is called—the PipedReader is interruptible, whereas if you changed, for 
example, the in.read( ) call to System.in.read( ), the interrupt( ) would fail to break out 
of the read( ) call.  

Exercise 30:   (1) Modify PipedIO.java to use a BlockingQueue instead of a pipe.  

Deadlock 
Now you understand an object can have synchronized methods or other forms of locking 
that prevent tasks from accessing that object until the mutex is released. You’ve also learned 
that tasks can become blocked. Thus it’s possible for one task to get stuck waiting for another 
task, which in turn waits for another task, and so on, until the chain leads back to a task 
waiting on the first one. You get a continuous loop of tasks waiting on each other, and no one 
can move. This is called deadlock.21

  

If you try running a program and it deadlocks right away, you can immediately track down 
the bug. The real problem is when your program seems to be working fine but has the hidden 
potential to deadlock. In this case, you may get no indication that deadlocking is a possibility, 
so the flaw will be latent in your program until it unexpectedly happens to a customer (in a 
way that will almost certainly be difficult to reproduce). Thus, preventing deadlock through 
careful program design is a critical part of developing concurrent systems.  

The dining philosophers problem, invented by Edsger Dijkstra, is the classic demonstration 
of deadlock. The basic description specifies five philosophers (but the example shown here 
will allow any number). These philosophers spend part of their time thinking and part of 
their time eating. While they are thinking, they don’t need any shared resources, but they eat 
using a limited number of utensils. In the original problem description, the utensils are forks, 
and two forks are required to get spaghetti from a bowl in the middle of the table, but it 
seems to make more sense to say that the utensils are chopsticks. Clearly, each philosopher 
will require two chopsticks in order to eat.  

A difficulty is introduced into the problem: As philosophers, they have very little money, so 
they can only afford five chopsticks (more generally, the same number of chopsticks as 
philosophers). These are spaced around the table between them. When a philosopher wants 
to eat, that philosopher must pick up the chopstick to the left and the one to the right. If the 
philosopher on either side is using a desired chopstick, our philosopher must wait until the 
necessary chopsticks become available.  

//: concurrency/Chopstick.java 
// Chopsticks for dining philosophers. 
 
public class Chopstick { 
  private boolean taken = false; 
  public synchronized 
  void take() throws InterruptedException { 
                                                            
21 You can also have livelock when two tasks are able to change their state (they don’t block) but they never make any 
useful progress. 



 

    while(taken) 
      wait(); 
    taken = true; 
  } 
  public synchronized void drop() { 
    taken = false; 
    notifyAll(); 
  } 
} ///:~ 

No two Philosophers can successfully take( ) the same Chopstick at the same time. In 
addition, if the Chopstick has already been taken by one Philosopher, another can 
wait( ) until the Chopstick becomes available when the current holder calls drop( ).  

When a Philosopher task calls take( ), that Philosopher waits until the taken flag is 
false (until the Philosopher currently holding the Chopstick releases it). Then the task 
sets the taken flag to true to indicate that the new Philosopher now holds the Chopstick. 
When this Philosopher is finished with the Chopstick, it calls drop( ) to change the flag and 
notifyAll( ) any other Philosophers that may be wait( )ing for the Chopstick.  

//: concurrency/Philosopher.java 
// A dining philosopher 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class Philosopher implements Runnable { 
  private Chopstick left; 
  private Chopstick right; 
  private final int id; 
  private final int ponderFactor; 
  private Random rand = new Random(47); 
  private void pause() throws InterruptedException { 
    if(ponderFactor == 0) return; 
    TimeUnit.MILLISECONDS.sleep( 
      rand.nextInt(ponderFactor * 250)); 
  } 
  public Philosopher(Chopstick left, Chopstick right, 
    int ident, int ponder) { 
    this.left = left; 
    this.right = right; 
    id = ident; 
    ponderFactor = ponder; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        print(this + " " + "thinking"); 
        pause(); 
        // Philosopher becomes hungry 
        print(this + " " + "grabbing right"); 
        right.take(); 
        print(this + " " + "grabbing left"); 
        left.take(); 
        print(this + " " + "eating"); 
        pause(); 
        right.drop(); 
        left.drop(); 
      } 
    } catch(InterruptedException e) { 
      print(this + " " + "exiting via interrupt"); 
    } 

Concurrency 875 



 

  } 
  public String toString() { return "Philosopher " + id; } 
} ///:~ 

In Philosopher.run( ), each Philosopher just thinks and eats continuously. The 
pause( ) method sleeps( ) for a random period if the ponderFactor is nonzero. Using 
this, you see the Philosopher thinking for a randomized amount of time, then trying to 
take( ) the right and left Chopsticks, eating for a randomized amount of time, and then 
doing it again.  

Now we can set up a version of the program that will deadlock:  

//: concurrency/DeadlockingDiningPhilosophers.java 
// Demonstrates how deadlock can be hidden in a program. 
// {Args: 0 5 timeout} 
import java.util.concurrent.*; 
 
public class DeadlockingDiningPhilosophers { 
  public static void main(String[] args) throws Exception { 
    int ponder = 5; 
    if(args.length > 0) 
      ponder = Integer.parseInt(args[0]); 
    int size = 5; 
    if(args.length > 1) 
      size = Integer.parseInt(args[1]); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    Chopstick[] sticks = new Chopstick[size]; 
    for(int i = 0; i < size; i++) 
      sticks[i] = new Chopstick(); 
    for(int i = 0; i < size; i++) 
      exec.execute(new Philosopher( 
        sticks[i], sticks[(i+1) % size], i, ponder)); 
    if(args.length == 3 && args[2].equals("timeout")) 
      TimeUnit.SECONDS.sleep(5); 
    else { 
      System.out.println("Press ‘Enter’ to quit"); 
      System.in.read(); 
    } 
    exec.shutdownNow(); 
  } 
} /* (Execute to see output) *///:~ 

You will observe that if the Philosophers spend very little time thinking, they will all be 
competing for the Chopsticks while they try to eat, and deadlock will happen much more 
quickly.  

The first command-line argument adjusts the ponder factor, to affect the amount of time 
each Philosopher spends thinking. If you have lots of Philosophers or they spend a lot of 
time thinking, you may never see deadlock even though it remains a possibility. A command-
line argument of zero tends to make the program deadlock fairly quickly.  

Note that the Chopstick objects do not need internal identifiers; they are identified by their 
position in the array sticks. Each Philosopher constructor is given a reference to a left and 
right Chopstick object. Every Philosopher except the last one is initialized by situating 
that Philosopher between the next pair of Chopstick objects. The last Philosopher is 
given the zeroth Chopstick for its right Chopstick, so the round table is completed. That’s 
because the last Philosopher is sitting right next to the first one, and they both share that 
zeroth Chopstick. Now it’s possible for all the Philosophers to be trying to eat, waiting on 
the Philosopher next to them to put down its Chopstick. This will make the program 
deadlock.  

876 Thinking in Java Bruce Eckel 



 

If your Philosophers are spending more time thinking than eating, then they have a much 
lower probability of requiring the shared resources (Chopsticks), and thus you can convince 
yourself that the program is deadlock free (using a nonzero ponder value, or a large number 
of Philosophers), even though it isn’t. This example is interesting precisely because it 
demonstrates that a program can appear to run correctly but actually be able to deadlock.  

To repair the problem, you must understand that deadlock can occur if four conditions are 
simultaneously met:  

1. Mutual exclusion. At least one resource used by the tasks must not be shareable. In this 
case, a Chopstick can be used by only one Philosopher at a time.  
 

2. At least one task must be holding a resource and waiting to acquire a resource currently 
held by another task. That is, for deadlock to occur, a Philosopher must be holding one 
Chopstick and waiting for another one.  

 
3. A resource cannot be preemptively taken away from a task. Tasks only release resources 

as a normal event. Our Philosophers are polite and they don’t grab Chopsticks from 
other Philosophers.  

 
4. A circular wait can happen, whereby a task waits on a resource held by another task, 

which in turn is waiting on a resource held by another task, and so on, until one of the 
tasks is waiting on a resource held by the first task, thus gridlocking everything. In 
DeadlockingDiningPhilosophers.java, the circular wait happens because each 
Philosopher tries to get the right Chopstick first and then the left.  

 
Because all these conditions must be met to cause deadlock, you only need to prevent one of 
them from occurring to prohibit deadlock. In this program, the easiest way to prevent 
deadlock is to break the fourth condition. This condition happens because each 
Philosopher is trying to pick up its Chopsticks in a particular sequence: first right, then 
left. Because of that, it’s possible to get into a situation where each of them is holding its right 
Chopstick and waiting to get the left, causing the circular wait condition. However, if the 
last Philosopher is initialized to try to get the left chopstick first and then the right, that 
Philosopher will never prevent the Philosopher on the immediate right from picking up 
their its chopstick. In this case, the circular wait is prevented. This is only one solution to the 
problem, but you could also solve it by preventing one of the other conditions (see advanced 
threading books for more details):  

//: concurrency/FixedDiningPhilosophers.java 
// Dining philosophers without deadlock. 
// {Args: 5 5 timeout} 
import java.util.concurrent.*; 
 
public class FixedDiningPhilosophers { 
  public static void main(String[] args) throws Exception { 
    int ponder = 5; 
    if(args.length > 0) 
      ponder = Integer.parseInt(args[0]); 
    int size = 5; 
    if(args.length > 1) 
      size = Integer.parseInt(args[1]); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    Chopstick[] sticks = new Chopstick[size]; 
    for(int i = 0; i < size; i++) 
      sticks[i] = new Chopstick(); 
    for(int i = 0; i < size; i++) 
      if(i < (size-1)) 
        exec.execute(new Philosopher( 
          sticks[i], sticks[i+1], i, ponder)); 
      else 

Concurrency 877 



 

        exec.execute(new Philosopher( 
          sticks[0], sticks[i], i, ponder)); 
    if(args.length == 3 && args[2].equals("timeout")) 
      TimeUnit.SECONDS.sleep(5); 
    else { 
      System.out.println("Press ‘Enter’ to quit"); 
      System.in.read(); 
    } 
    exec.shutdownNow(); 
  } 
} /* (Execute to see output) *///:~ 

By ensuring that the last Philosopher picks up and puts down the left Chopstick before 
the right, we remove the deadlock, and the program will run smoothly.  

There is no language support to help prevent deadlock; it’s up to you to avoid it by careful 
design. These are not comforting words to the person who’s trying to debug a deadlocking 
program.  

Exercise 31:   (8) Change DeadlockingDiningPhilosophers.java so that when a 
philosopher is done with its chopsticks, it drops them into a bin. When a philosopher wants 
to eat, it takes the next two available chopsticks from the bin. Does this eliminate the 
possibility of deadlock? Can you reintroduce deadlock by simply reducing the number of 
available chopsticks?  

   

878 Thinking in Java Bruce Eckel 



 

New library components 
The java.util.concurrent library in Java SE5 introduces a significant number of new 
classes designed to solve concurrency problems. Learning to use these can help you produce 
simpler and more robust concurrent programs.  

This section includes a representative set of examples of various components, but a few of the 
components—ones that you may be less likely to use and encounter—are not discussed here.  

Because these components solve various problems, there is no clear way to organize them, so 
I shall attempt to start with simpler examples and proceed through examples of increasing 
complexity. 

CountDownLatch 

This is used to synchronize one or more tasks by forcing them to wait for the completion of a 
set of operations being performed by other tasks.  

You give an initial count to a CountDownLatch object, and any task that calls await( ) on 
that object will block until the count reaches zero. Other tasks may call countDown( ) on 
the object to reduce the count, presumably when a task finishes its job. A 
CountDownLatch is designed to be used in a one-shot fashion; the count cannot be reset. 
If you need a version that resets the count, you can use a CyclicBarrier instead.  

The tasks that call countDown( ) are not blocked when they make that call. Only the call to 
await( ) is blocked until the count reaches zero.  

A typical use is to divide a problem into n independently solvable tasks and create a 
CountDownLatch with a value of n. When each task is finished it calls countDown( ) on 
the latch. Tasks waiting for the problem to be solved call await( ) on the latch to hold 
themselves back until it is completed. Here’s a skeleton example that demonstrates this 
technique:  

//: concurrency/CountDownLatchDemo.java 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
// Performs some portion of a task: 
class TaskPortion implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private static Random rand = new Random(47); 
  private final CountDownLatch latch; 
  TaskPortion(CountDownLatch latch) { 
    this.latch = latch; 
  } 
  public void run() { 
    try { 
      doWork(); 
      latch.countDown(); 
    } catch(InterruptedException ex) { 
      // Acceptable way to exit 
    } 
  } 
  public void doWork() throws InterruptedException { 
    TimeUnit.MILLISECONDS.sleep(rand.nextInt(2000)); 

Concurrency 879 



 

    print(this + "completed"); 
  } 
  public String toString() { 
    return String.format("%1$-3d ", id); 
  } 
} 
 
// Waits on the CountDownLatch: 
class WaitingTask implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final CountDownLatch latch; 
  WaitingTask(CountDownLatch latch) { 
    this.latch = latch; 
  } 
  public void run() { 
    try { 
      latch.await(); 
      print("Latch barrier passed for " + this); 
    } catch(InterruptedException ex) { 
      print(this + " interrupted"); 
    } 
  } 
  public String toString() { 
    return String.format("WaitingTask %1$-3d ", id); 
  } 
} 
 
public class CountDownLatchDemo { 
  static final int SIZE = 100; 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    // All must share a single CountDownLatch object: 
    CountDownLatch latch = new CountDownLatch(SIZE); 
    for(int i = 0; i < 10; i++) 
      exec.execute(new WaitingTask(latch)); 
    for(int i = 0; i < SIZE; i++) 
      exec.execute(new TaskPortion(latch)); 
    print("Launched all tasks"); 
    exec.shutdown(); // Quit when all tasks complete 
  } 
} /* (Execute to see output) *///:~ 

TaskPortion sleeps for a random period to simulate the completion of part of the task, and 
WaitingTask indicates a part of the system that must wait until the initial portion of the 
problem is complete. All tasks work with the same single CountDownLatch, which is 
defined in main( ).  

Exercise 32:   (7) Use a CountDownLatch to solve the problem of correlating the 
results from the Entrances in OrnamentalGarden.java. Remove the unnecessary code 
from the new version of the example.  

Library thread safety  

Notice that TaskPortion contains a static Random object, which means that multiple 
tasks may be calling Random.nextInt( ) at the same time. Is this safe?  

If there is a problem, it can be solved in this case by giving TaskPortion its own Random 
object—that is, by removing the static specifier. But the question remains for Java standard 
library methods in general: Which ones are thread-safe and which ones aren’t?  

880 Thinking in Java Bruce Eckel 



 

Concurrency 881 

Unfortunately, the JDK documentation is not forthcoming on this point. It happens that 
Random.nextInt( ) is thread-safe, but alas, you shall have to discover this on a case-by-
case basis, using either a Web search or by inspecting the Java library code. This is not a 
particularly good situation for a programming language that was, at least in theory, designed 
to support concurrency.  

CyclicBarrier 

A CyclicBarrier is used in situations where you want to create a group of tasks to perform 
work in parallel, and then wait until they are all finished before moving on to the next step 
(something like join( ), it would seem). It brings all the parallel tasks into alignment at the 
barrier so you can move forward in unison. This is very similar to the CountDownLatch, 
except that a CountDownLatch is a one-shot event, whereas a CyclicBarrier can be 
reused over and over.  

I’ve been fascinated with simulations from the beginning of my experience with computers, 
and concurrency is a key factor of making simulations possible. The very first program that I 
can remember writing22

 was a simulation: a horse-racing game written in BASIC called 
(because of the file name limitations) HOSRAC.BAS. Here is the object-oriented, threaded 
version of that program, utilizing a CyclicBarrier:  

//: concurrency/HorseRace.java 
// Using CyclicBarriers. 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Horse implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private int strides = 0; 
  private static Random rand = new Random(47); 
  private static CyclicBarrier barrier; 
  public Horse(CyclicBarrier b) { barrier = b; } 
  public synchronized int getStrides() { return strides; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        synchronized(this) { 
          strides += rand.nextInt(3); // Produces 0, 1 or 2 
        } 
        barrier.await(); 
      } 
    } catch(InterruptedException e) { 
      // A legitimate way to exit 
    } catch(BrokenBarrierException e) { 
      // This one we want to know about 
      throw new RuntimeException(e); 
    } 
  } 
  public String toString() { return "Horse " + id + " "; } 
  public String tracks() { 
    StringBuilder s = new StringBuilder(); 
    for(int i = 0; i < getStrides(); i++) 
      s.append("*"); 
    s.append(id); 
    return s.toString(); 

                                                            
22 As a freshman in high school; the classroom had an ASR-33 teletype with a 110-baud acoustic-coupler modem accessing 
an HP-1000. 



 

  } 
} 
 
public class HorseRace { 
  static final int FINISH_LINE = 75; 
  private List<Horse> horses = new ArrayList<Horse>(); 
  private ExecutorService exec = 
    Executors.newCachedThreadPool(); 
  private CyclicBarrier barrier; 
  public HorseRace(int nHorses, final int pause) { 
    barrier = new CyclicBarrier(nHorses, new Runnable() { 
      public void run() { 
        StringBuilder s = new StringBuilder(); 
        for(int i = 0; i < FINISH_LINE; i++) 
          s.append("="); // The fence on the racetrack 
        print(s); 
        for(Horse horse : horses) 
          print(horse.tracks()); 
        for(Horse horse : horses) 
          if(horse.getStrides() >= FINISH_LINE) { 
            print(horse + "won!"); 
            exec.shutdownNow(); 
            return; 
          } 
        try { 
          TimeUnit.MILLISECONDS.sleep(pause); 
        } catch(InterruptedException e) { 
          print("barrier-action sleep interrupted"); 
        } 
      } 
    }); 
    for(int i = 0; i < nHorses; i++) { 
      Horse horse = new Horse(barrier); 
      horses.add(horse); 
      exec.execute(horse); 
    } 
  } 
  public static void main(String[] args) { 
    int nHorses = 7; 
    int pause = 200; 
    if(args.length > 0) { // Optional argument 
      int n = new Integer(args[0]); 
      nHorses = n > 0 ? n : nHorses; 
    } 
    if(args.length > 1) { // Optional argument 
      int p = new Integer(args[1]); 
      pause = p > -1 ? p : pause; 
    } 
    new HorseRace(nHorses, pause); 
  } 
} /* (Execute to see output) *///:~ 

A CyclicBarrier can be given a "barrier action," which is a Runnable that is automatically 
executed when the count reaches zero—this is another distinction between CyclicBarrier 
and CountdownLatch. Here, the barrier action is created as an anonymous class that is 
handed to the constructor of CyclicBarrier.  

I tried having each horse print itself, but then the order of display was dependent on the task 
manager. The CyclicBarrier allows each horse to do whatever it needs to do in order to 
move forward, and then it has to wait at the barrier until all the other horses have moved 
forward. When all horses have moved, the CyclicBarrier automatically calls its Runnable 
barrieraction task to display the horses in order, along with the fence.  

882 Thinking in Java Bruce Eckel 



 

Once all the tasks have passed the barrier, it is automatically ready for the next round.  

To give it the effect of very simple animation, make the size of your console window small 
enough so that only the horses show.  

DelayQueue 

This is an unbounded BlockingQueue of objects that implement the Delayed interface. An 
object can only be taken from the queue when its delay has expired. The queue is sorted so 
that the object at the head has a delay that has expired for the longest time. If no delay has 
expired, then there is no head element and poll( ) will return null (because of this, you 
cannot place null elements in the queue).  

Here’s an example where the Delayed objects are themselves tasks, and the 
DelayedTaskConsumer takes the most "urgent" task (the one that has been expired for 
the longest time) off the queue and runs it. Note that DelayQueue is thus a variation of a 
priority queue.  

//: concurrency/DelayQueueDemo.java 
import java.util.concurrent.*; 
import java.util.*; 
import static java.util.concurrent.TimeUnit.*; 
import static net.mindview.util.Print.*; 
 
class DelayedTask implements Runnable, Delayed { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final int delta; 
  private final long trigger; 
  protected static List<DelayedTask> sequence = 
    new ArrayList<DelayedTask>(); 
  public DelayedTask(int delayInMilliseconds) { 
    delta = delayInMilliseconds; 
    trigger = System.nanoTime() + 
      NANOSECONDS.convert(delta, MILLISECONDS); 
    sequence.add(this); 
  } 
  public long getDelay(TimeUnit unit) { 
    return unit.convert( 
      trigger - System.nanoTime(), NANOSECONDS); 
  } 
  public int compareTo(Delayed arg) { 
    DelayedTask that = (DelayedTask)arg; 
    if(trigger < that.trigger) return -1; 
    if(trigger > that.trigger) return 1; 
    return 0; 
  } 
  public void run() { printnb(this + " "); } 
  public String toString() { 
    return String.format("[%1$-4d]", delta) + 
      " Task " + id; 
  } 
  public String summary() { 
    return "(" + id + ":" + delta + ")"; 
  } 
  public static class EndSentinel extends DelayedTask { 
    private ExecutorService exec; 
    public EndSentinel(int delay, ExecutorService e) { 
      super(delay); 
      exec = e; 

Concurrency 883 



 

    } 
    public void run() { 
      for(DelayedTask pt : sequence) { 
        printnb(pt.summary() + " "); 
      } 
      print(); 
      print(this + " Calling shutdownNow()"); 
      exec.shutdownNow(); 
    } 
  } 
} 
 
class DelayedTaskConsumer implements Runnable { 
  private DelayQueue<DelayedTask> q; 
  public DelayedTaskConsumer(DelayQueue<DelayedTask> q) { 
    this.q = q; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) 
        q.take().run(); // Run task with the current thread 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } 
    print("Finished DelayedTaskConsumer"); 
  } 
} 
 
public class DelayQueueDemo { 
  public static void main(String[] args) { 
    Random rand = new Random(47); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    DelayQueue<DelayedTask> queue = 
      new DelayQueue<DelayedTask>(); 
    // Fill with tasks that have random delays: 
    for(int i = 0; i < 20; i++) 
      queue.put(new DelayedTask(rand.nextInt(5000))); 
    // Set the stopping point 
    queue.add(new DelayedTask.EndSentinel(5000, exec)); 
    exec.execute(new DelayedTaskConsumer(queue)); 
  } 
} /* Output: 
[128 ] Task 11 [200 ] Task 7 [429 ] Task 5 [520 ] Task 18 [555 ] Task 1 
[961 ] Task 4 [998 ] Task 16 [1207] Task 9 [1693] Task 2 [1809] Task 14 
[1861] Task 3 [2278] Task 15 [3288] Task 10 [3551] Task 12 [4258] Task 0 
[4258] Task 19 [4522] Task 8 [4589] Task 13 [4861] Task 17 [4868] Task 6 
(0:4258) (1:555) (2:1693) (3:1861) (4:961) (5:429) (6:4868) (7:200) 
(8:4522) (9:1207) (10:3288) (11:128) (12:3551) (13:4589) (14:1809) 
(15:2278) (16:998) (17:4861) (18:520) (19:4258) (20:5000) 
[5000] Task 20 Calling shutdownNow() 
Finished DelayedTaskConsumer 
*///:~ 

DelayedTask contains a List<DelayedTask> called sequence that preserves the order 
in which the tasks were created, so that we can see that sorting does in fact take place.  

The Delayed interface has one method, getDelay( ), which tells how long it is until the 
delay time expires or how long ago the delay time has expired. This method forces us to use 
the TimeUnit class because that’s the argument type. This turns out to be a very convenient 
class because you can easily convert units without doing any calculations. For example, the 
value of delta is stored in milliseconds, but the Java SE5 method System.nanoTime( ) 

884 Thinking in Java Bruce Eckel 



 

produces time in nanoseconds. You can convert the value of delta by saying what units it is 
in and what units you want it to be in, like this:  

        NANOSECONDS.convert(delta, MILLISECONDS); 

In getDelay( ), the desired units are passed in as the unit argument, and you use this to 
convert the time difference from the trigger time to the units requested by the caller, without 
even knowing what those units are (this is a simple example of the Strategy design pattern, 
where part of the algorithm is passed in as an argument).  

For sorting, the Delayed interface also inherits the Comparable interface, so 
compareTo( ) must be implemented so that it produces a reasonable comparison. 
toString( ) and summary( ) provide output formatting, and the nested EndSentinel 
class provides a way to shut everything down by placing it as the last element in the queue.  

Note that because DelayedTaskConsumer is itself a task, it has its own Thread which it 
can use to run each task that comes out of the queue. Since the tasks are being performed in 
queue priority order, there’s no need in this example to start separate threads to run the 
DelayedTasks.  

You can see from the output that the order in which the tasks are created has no effect on 
execution order—instead, the tasks are executed in delay order as expected.  

PriorityBlockingQueue 

This is basically a priority queue that has blocking retrieval operations. Here’s an example 
where the objects in the priority queue are tasks that emerge from the queue in priority 
order. A PrioritizedTask is given a priority number to provide this order:  

//: concurrency/PriorityBlockingQueueDemo.java 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class PrioritizedTask implements 
Runnable, Comparable<PrioritizedTask>  { 
  private Random rand = new Random(47); 
  private static int counter = 0; 
  private final int id = counter++; 
  private final int priority; 
  protected static List<PrioritizedTask> sequence = 
    new ArrayList<PrioritizedTask>(); 
  public PrioritizedTask(int priority) { 
    this.priority = priority; 
    sequence.add(this); 
  } 
  public int compareTo(PrioritizedTask arg) { 
    return priority < arg.priority ? 1 : 
      (priority > arg.priority ? -1 : 0); 
  } 
  public void run() { 
    try { 
      TimeUnit.MILLISECONDS.sleep(rand.nextInt(250)); 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } 
    print(this); 
  } 
  public String toString() { 

Concurrency 885 



 

    return String.format("[%1$-3d]", priority) + 
      " Task " + id; 
  } 
  public String summary() { 
    return "(" + id + ":" + priority + ")"; 
  } 
  public static class EndSentinel extends PrioritizedTask { 
    private ExecutorService exec; 
    public EndSentinel(ExecutorService e) { 
      super(-1); // Lowest priority in this program 
      exec = e; 
    } 
    public void run() { 
      int count = 0; 
      for(PrioritizedTask pt : sequence) { 
        printnb(pt.summary()); 
        if(++count % 5 == 0) 
          print(); 
      } 
      print(); 
      print(this + " Calling shutdownNow()"); 
      exec.shutdownNow(); 
    } 
  } 
} 
 
class PrioritizedTaskProducer implements Runnable { 
  private Random rand = new Random(47); 
  private Queue<Runnable> queue; 
  private ExecutorService exec; 
  public PrioritizedTaskProducer( 
    Queue<Runnable> q, ExecutorService e) { 
    queue = q; 
    exec = e; // Used for EndSentinel 
  } 
  public void run() { 
    // Unbounded queue; never blocks. 
    // Fill it up fast with random priorities: 
    for(int i = 0; i < 20; i++) { 
      queue.add(new PrioritizedTask(rand.nextInt(10))); 
      Thread.yield(); 
    } 
    // Trickle in highest-priority jobs: 
    try { 
      for(int i = 0; i < 10; i++) { 
        TimeUnit.MILLISECONDS.sleep(250); 
        queue.add(new PrioritizedTask(10)); 
      } 
      // Add jobs, lowest priority first: 
      for(int i = 0; i < 10; i++) 
        queue.add(new PrioritizedTask(i)); 
      // A sentinel to stop all the tasks: 
      queue.add(new PrioritizedTask.EndSentinel(exec)); 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } 
    print("Finished PrioritizedTaskProducer"); 
  } 
} 
 
class PrioritizedTaskConsumer implements Runnable { 
  private PriorityBlockingQueue<Runnable> q; 
  public PrioritizedTaskConsumer( 

886 Thinking in Java Bruce Eckel 



 

    PriorityBlockingQueue<Runnable> q) { 
    this.q = q; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) 
        // Use current thread to run the task: 
        q.take().run(); 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } 
    print("Finished PrioritizedTaskConsumer"); 
  } 
} 
 
public class PriorityBlockingQueueDemo { 
  public static void main(String[] args) throws Exception { 
    Random rand = new Random(47); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    PriorityBlockingQueue<Runnable> queue = 
      new PriorityBlockingQueue<Runnable>(); 
    exec.execute(new PrioritizedTaskProducer(queue, exec)); 
    exec.execute(new PrioritizedTaskConsumer(queue)); 
  } 
} /* (Execute to see output) *///:~ 

As with the previous example, the creation sequence of the PrioritizedTask objects is 
remembered in the sequence List, for comparison with the actual order of execution. The 
run( ) method sleeps for a short random time and prints the object information, and the 
EndSentinel provides the same functionality as before while guaranteeing that it is the last 
object in the queue.  

The PrioritizedTaskProducer and PrioritizedTaskConsumer connect to each other 
through a PriorityBlockingQueue. Because the blocking nature of the queue provides all 
the necessary synchronization, notice that no explicit synchronization is necessary—you 
don’t have to think about whether the queue has any elements in it when you’re reading from 
it, because the queue will simply block the reader when it is out of elements.  

The greenhouse controller with 
ScheduledExecutor 

The Inner Classes chapter introduced the example of a control system applied to a 
hypothetical greenhouse, turning various facilities on or off or otherwise adjusting them. This 
can be seen as a kind of concurrency problem, with each desired greenhouse event as a task 
that is run at a predefined time. The ScheduledThreadPoolExecutor provides just the 
service necessary to solve the problem. Using either schedule( ) (to run a task once) or 
scheduleAtFixedRate( ) (to repeat a task at a regular interval), you set up Runnable 
objects to be executed at some time in the future. Compare the following with the approach 
used in the Inner Classes chapter to notice how much simpler it is when you can use a 
predefined tool like ScheduledThreadPoolExecutor:  

//: concurrency/GreenhouseScheduler.java 
// Rewriting innerclasses/GreenhouseController.java 
// to use a ScheduledThreadPoolExecutor. 
// {Args: 5000} 
import java.util.concurrent.*; 
import java.util.*; 
 
public class GreenhouseScheduler { 

Concurrency 887 



 

  private volatile boolean light = false; 
  private volatile boolean water = false; 
  private String thermostat = "Day"; 
  public synchronized String getThermostat() { 
    return thermostat; 
  } 
  public synchronized void setThermostat(String value) { 
    thermostat = value; 
  } 
  ScheduledThreadPoolExecutor scheduler = 
    new ScheduledThreadPoolExecutor(10); 
  public void schedule(Runnable event, long delay) { 
    scheduler.schedule(event,delay,TimeUnit.MILLISECONDS); 
  } 
  public void 
  repeat(Runnable event, long initialDelay, long period) { 
    scheduler.scheduleAtFixedRate( 
      event, initialDelay, period, TimeUnit.MILLISECONDS); 
  } 
  class LightOn implements Runnable { 
    public void run() { 
      // Put hardware control code here to 
      // physically turn on the light. 
      System.out.println("Turning on lights"); 
      light = true; 
    } 
  } 
  class LightOff implements Runnable { 
    public void run() { 
      // Put hardware control code here to 
      // physically turn off the light. 
      System.out.println("Turning off lights"); 
      light = false; 
    } 
  } 
  class WaterOn implements Runnable { 
    public void run() { 
      // Put hardware control code here. 
      System.out.println("Turning greenhouse water on"); 
      water = true; 
    } 
  } 
  class WaterOff implements Runnable { 
    public void run() { 
      // Put hardware control code here. 
      System.out.println("Turning greenhouse water off"); 
      water = false; 
    } 
  } 
  class ThermostatNight implements Runnable { 
    public void run() { 
      // Put hardware control code here. 
      System.out.println("Thermostat to night setting"); 
      setThermostat("Night"); 
    } 
  } 
  class ThermostatDay implements Runnable { 
    public void run() { 
      // Put hardware control code here. 
      System.out.println("Thermostat to day setting"); 
      setThermostat("Day"); 
    } 
  } 

888 Thinking in Java Bruce Eckel 



 

  class Bell implements Runnable { 
    public void run() { System.out.println("Bing!"); } 
  } 
  class Terminate implements Runnable { 
    public void run() { 
      System.out.println("Terminating"); 
      scheduler.shutdownNow(); 
      // Must start a separate task to do this job, 
      // since the scheduler has been shut down: 
      new Thread() { 
        public void run() { 
          for(DataPoint d : data) 
            System.out.println(d); 
        } 
      }.start(); 
    } 
  } 
  // New feature: data collection 
  static class DataPoint { 
    final Calendar time; 
    final float temperature; 
    final float humidity; 
    public DataPoint(Calendar d, float temp, float hum) { 
      time = d; 
      temperature = temp; 
      humidity = hum; 
    } 
    public String toString() { 
      return time.getTime() + 
        String.format( 
          " temperature: %1$.1f humidity: %2$.2f", 
          temperature, humidity); 
    } 
  } 
  private Calendar lastTime = Calendar.getInstance(); 
  { // Adjust date to the half hour 
    lastTime.set(Calendar.MINUTE, 30); 
    lastTime.set(Calendar.SECOND, 00); 
  } 
  private float lastTemp = 65.0f; 
  private int tempDirection = +1; 
  private float lastHumidity = 50.0f; 
  private int humidityDirection = +1; 
  private Random rand = new Random(47); 
  List<DataPoint> data = Collections.synchronizedList( 
    new ArrayList<DataPoint>()); 
  class CollectData implements Runnable { 
    public void run() { 
      System.out.println("Collecting data"); 
      synchronized(GreenhouseScheduler.this) { 
        // Pretend the interval is longer than it is: 
        lastTime.set(Calendar.MINUTE, 
          lastTime.get(Calendar.MINUTE) + 30); 
        // One in 5 chances of reversing the direction: 
        if(rand.nextInt(5) == 4) 
          tempDirection = -tempDirection; 
        // Store previous value: 
        lastTemp = lastTemp + 
          tempDirection * (1.0f + rand.nextFloat()); 
        if(rand.nextInt(5) == 4) 
          humidityDirection = -humidityDirection; 
        lastHumidity = lastHumidity + 
          humidityDirection * rand.nextFloat(); 

Concurrency 889 



 

        // Calendar must be cloned, otherwise all 
        // DataPoints hold references to the same lastTime. 
        // For a basic object like Calendar, clone() is OK. 
        data.add(new DataPoint((Calendar)lastTime.clone(), 
          lastTemp, lastHumidity)); 
      } 
    } 
  } 
  public static void main(String[] args) { 
    GreenhouseScheduler gh = new GreenhouseScheduler(); 
    gh.schedule(gh.new Terminate(), 5000); 
    // Former "Restart" class not necessary: 
    gh.repeat(gh.new Bell(), 0, 1000); 
    gh.repeat(gh.new ThermostatNight(), 0, 2000); 
    gh.repeat(gh.new LightOn(), 0, 200); 
    gh.repeat(gh.new LightOff(), 0, 400); 
    gh.repeat(gh.new WaterOn(), 0, 600); 
    gh.repeat(gh.new WaterOff(), 0, 800); 
    gh.repeat(gh.new ThermostatDay(), 0, 1400); 
    gh.repeat(gh.new CollectData(), 500, 500); 
  } 
} /* (Execute to see output) *///:~ 

This version reorganizes the code and adds a new feature: collecting temperature and 
humidity readings in the greenhouse. A DataPoint holds and displays a single piece of data, 
while CollectData is the scheduled task that generates simulated data and adds it to the 
List<DataPoint> in Greenhouse each time it is run.  

Notice the use of both volatile and synchronized in appropriate places to prevent tasks 
from interfering with each other. All the methods in the List that holds DataPoints are 
synchronized using the java.util.Collections utility synchronizedList( ) when the 
List is created.  

Exercise 33:   (7) Modify GreenhouseScheduler.java so that it uses a DelayQueue 
instead of a ScheduledExecutor.  

Semaphore 

A normal lock (from concurrent.locks or the built-in synchronized lock) only allows one 
task at a time to access a resource. A counting semaphore allows n tasks to access the 
resource at the same time. You can also think of a semaphore as handing out "permits" to use 
a resource, although no actual permit objects are used.  

As an example, consider the concept of the object pool, which manages a limited number of 
objects by allowing them to be checked out for use, and then checked back in again when the 
user is finished. This functionality can be encapsulated in a generic class:  

//: concurrency/Pool.java 
// Using a Semaphore inside a Pool, to restrict 
// the number of tasks that can use a resource. 
import java.util.concurrent.*; 
import java.util.*; 
 
public class Pool<T> { 
  private int size; 
  private List<T> items = new ArrayList<T>(); 
  private volatile boolean[] checkedOut; 
  private Semaphore available; 
  public Pool(Class<T> classObject, int size) { 

890 Thinking in Java Bruce Eckel 



 

    this.size = size; 
    checkedOut = new boolean[size]; 
    available = new Semaphore(size, true); 
    // Load pool with objects that can be checked out: 
    for(int i = 0; i < size; ++i) 
      try { 
        // Assumes a default constructor: 
        items.add(classObject.newInstance()); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
  } 
  public T checkOut() throws InterruptedException { 
    available.acquire(); 
    return getItem(); 
  } 
  public void checkIn(T x) { 
    if(releaseItem(x)) 
      available.release(); 
  } 
  private synchronized T getItem() { 
    for(int i = 0; i < size; ++i) 
      if(!checkedOut[i]) { 
        checkedOut[i] = true; 
        return items.get(i); 
      } 
    return null; // Semaphore prevents reaching here 
  } 
  private synchronized boolean releaseItem(T item) { 
    int index = items.indexOf(item); 
    if(index == -1) return false; // Not in the list 
    if(checkedOut[index]) { 
      checkedOut[index] = false; 
      return true; 
    } 
    return false; // Wasn’t checked out 
  } 
} ///:~ 

In this simplified form, the constructor uses newInstance( ) to load the pool with objects. 
If you need a new object, you call checkOut( ), and when you’re finished with an object, you 
hand it to checkIn( ).  

The boolean checkedOut array keeps track of the objects that are checked out, and is 
managed by the getItem( ) and releaseItem( ) methods. These, in turn, are guarded by 
the Semaphore available, so that, in checkOut( ), available blocks the progress of the 
call if there are no more semaphore permits available (which means there are no more 
objects in the pool). In checkIn( ), if the object being checked in is valid, a permit is 
returned to the semaphore.  

To create an example, we can use Fat, a type of object that is expensive to create because its 
constructor takes time to run:  

//: concurrency/Fat.java 
// Objects that are expensive to create. 
 
public class Fat { 
  private volatile double d; // Prevent optimization 
  private static int counter = 0; 
  private final int id = counter++; 
  public Fat() { 

Concurrency 891 



 

    // Expensive, interruptible operation: 
    for(int i = 1; i < 10000; i++) { 
      d += (Math.PI + Math.E) / (double)i; 
    } 
  } 
  public void operation() { System.out.println(this); } 
  public String toString() { return "Fat id: " + id; } 
} ///:~ 

We’ll pool these objects to limit the impact of this constructor. We can test the Pool class by 
creating a task that will check out Fat objects, hold them for a while, and then check them 
back in:  

//: concurrency/SemaphoreDemo.java 
// Testing the Pool class 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
// A task to check a resource out of a pool: 
class CheckoutTask<T> implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private Pool<T> pool; 
  public CheckoutTask(Pool<T> pool) { 
    this.pool = pool; 
  } 
  public void run() { 
    try { 
      T item = pool.checkOut(); 
      print(this + "checked out " + item); 
      TimeUnit.SECONDS.sleep(1); 
      print(this +"checking in " + item); 
      pool.checkIn(item); 
    } catch(InterruptedException e) { 
      // Acceptable way to terminate 
    } 
  } 
  public String toString() { 
    return "CheckoutTask " + id + " "; 
  } 
} 
 
public class SemaphoreDemo { 
  final static int SIZE = 25; 
  public static void main(String[] args) throws Exception { 
    final Pool<Fat> pool = 
      new Pool<Fat>(Fat.class, SIZE); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < SIZE; i++) 
      exec.execute(new CheckoutTask<Fat>(pool)); 
    print("All CheckoutTasks created"); 
    List<Fat> list = new ArrayList<Fat>(); 
    for(int i = 0; i < SIZE; i++) { 
      Fat f = pool.checkOut(); 
      printnb(i + ": main() thread checked out "); 
      f.operation(); 
      list.add(f); 
    } 
    Future<?> blocked = exec.submit(new Runnable() { 
      public void run() { 
        try { 

892 Thinking in Java Bruce Eckel 



 

          // Semaphore prevents additional checkout, 
          // so call is blocked: 
          pool.checkOut(); 
        } catch(InterruptedException e) { 
          print("checkOut() Interrupted"); 
        } 
      } 
    }); 
    TimeUnit.SECONDS.sleep(2); 
    blocked.cancel(true); // Break out of blocked call 
    print("Checking in objects in " + list); 
    for(Fat f : list) 
      pool.checkIn(f); 
    for(Fat f : list) 
      pool.checkIn(f); // Second checkIn ignored 
    exec.shutdown(); 
  } 
} /* (Execute to see output) *///:~ 

In main( ), a Pool is created to hold Fat objects, and a set of CheckoutTasks begins 
exercising the Pool. Then the main( ) thread begins checking out Fat objects, and not 
checking them back in. Once it has checked out all the objects in the pool, no more checkouts 
will be allowed by the Semaphore. The run( ) method of blocked is thus blocked, and 
after two seconds the cancel( ) method is called to break out of the Future. Note that 
redundant checkins are ignored by the Pool.  

This example relies on the client of the Pool to be rigorous and to voluntarily check items 
back in, which is the simplest solution when it works. If you cannot always rely on this, 
Thinking in Patterns (at www.MindView.net) contains further explorations of ways to 
manage the objects that have been checked out of object pools.  

Exchanger 

An Exchanger is a barrier that swaps objects between two tasks. When the tasks enter the 
barrier, they have one object, and when they leave, they have the object that was formerly 
held by the other task. Exchangers are typically used when one task is creating objects that 
are expensive to produce and another task is consuming those objects; this way, more objects 
can be created at the same time as they are being consumed.  

To exercise the Exchanger class, we’ll create producer and consumer tasks which, via 
generics and Generators, will work with any kind of object, and then we’ll apply these to the 
Fat class. The ExchangerProducer and ExehangerConsumer use a List<T> as the 
object to be exchanged; each one contains an Exchanger for this List<T>. When you call 
the Exchanger.exchange( ) method, it blocks until the partner task calls its exchange( ) 
method, and when both exchange( ) methods have completed, the List<T> has been 
swapped:  

//: concurrency/ExchangerDemo.java 
import java.util.concurrent.*; 
import java.util.*; 
import net.mindview.util.*; 
 
class ExchangerProducer<T> implements Runnable { 
  private Generator<T> generator; 
  private Exchanger<List<T>> exchanger; 
  private List<T> holder; 
  ExchangerProducer(Exchanger<List<T>> exchg, 
  Generator<T> gen, List<T> holder) { 
    exchanger = exchg; 

Concurrency 893 



 

    generator = gen; 
    this.holder = holder; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        for(int i = 0; i < ExchangerDemo.size; i++) 
          holder.add(generator.next()); 
        // Exchange full for empty: 
        holder = exchanger.exchange(holder); 
      } 
    } catch(InterruptedException e) { 
      // OK to terminate this way. 
    } 
  } 
} 
 
class ExchangerConsumer<T> implements Runnable { 
  private Exchanger<List<T>> exchanger; 
  private List<T> holder; 
  private volatile T value; 
  ExchangerConsumer(Exchanger<List<T>> ex, List<T> holder){ 
    exchanger = ex; 
    this.holder = holder; 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        holder = exchanger.exchange(holder); 
        for(T x : holder) { 
          value = x; // Fetch out value 
          holder.remove(x); // OK for CopyOnWriteArrayList 
        } 
      } 
    } catch(InterruptedException e) { 
      // OK to terminate this way. 
    } 
    System.out.println("Final value: " + value); 
  } 
} 
 
public class ExchangerDemo { 
  static int size = 10; 
  static int delay = 5; // Seconds 
  public static void main(String[] args) throws Exception { 
    if(args.length > 0) 
      size = new Integer(args[0]); 
    if(args.length > 1) 
      delay = new Integer(args[1]); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    Exchanger<List<Fat>> xc = new Exchanger<List<Fat>>(); 
    List<Fat> 
      producerList = new CopyOnWriteArrayList<Fat>(), 
      consumerList = new CopyOnWriteArrayList<Fat>(); 
    exec.execute(new ExchangerProducer<Fat>(xc, 
      BasicGenerator.create(Fat.class), producerList)); 
    exec.execute( 
      new ExchangerConsumer<Fat>(xc,consumerList)); 
    TimeUnit.SECONDS.sleep(delay); 
    exec.shutdownNow(); 
  } 
} /* Output: (Sample) 
Final value: Fat id: 29999 

894 Thinking in Java Bruce Eckel 



 

*///:~ 

In main( ), a single Exchanger is created for both tasks to use, and two 
CopyOnWriteArrayLists are created for swapping. This particular variant of List can 
tolerate the remove( ) method being called while the list is being traversed, without 
throwing a ConcurrentModificationException. The ExchangerProducer fills a List, 
then swaps the full list for the empty one that the ExchangerConsumer hands it. Because 
of the Exchanger, the filling of one list and consuming of the other list can happen 
simultaneously.  

Exercise 34:   (1) Modify ExchangerDemo.java to use your own class instead of Fat.  

   

Concurrency 895 



 

Simulation 
One of the most interesting and exciting uses of concurrency is to create simulations. Using 
concurrency, each component of a simulation can be its own task, and this makes a 
simulation much easier to program. Many video games and CGI animations in movies are 
simulations, and HorseRace.java and GreenhouseScheduler.java, shown earlier, could 
also be considered simulations.  

Bank teller simulation 

This classic simulation can represent any situation where objects appear randomly and 
require a random amount of time to be served by a limited number of servers. It’s possible to 
build the simulation to determine the ideal number of servers.  

In this example, each bank customer requires a certain amount of service time, which is the 
number of time units that a teller must spend on the customer to serve that customer’s needs. 
The amount of service time will be different for each customer and will be determined 
randomly. In addition, you won’t know how many customers will be arriving in each interval, 
so this will also be determined randomly.  

//: concurrency/BankTellerSimulation.java 
// Using queues and multithreading. 
// {Args: 5} 
import java.util.concurrent.*; 
import java.util.*; 
 
// Read-only objects don’t require synchronization: 
class Customer { 
  private final int serviceTime; 
  public Customer(int tm) { serviceTime = tm; } 
  public int getServiceTime() { return serviceTime; } 
  public String toString() { 
    return "[" + serviceTime + "]"; 
  } 
} 
 
// Teach the customer line to display itself: 
class CustomerLine extends ArrayBlockingQueue<Customer> { 
  public CustomerLine(int maxLineSize) { 
    super(maxLineSize); 
  } 
  public String toString() { 
    if(this.size() == 0) 
      return "[Empty]"; 
    StringBuilder result = new StringBuilder(); 
    for(Customer customer : this) 
      result.append(customer); 
    return result.toString(); 
  } 
} 
 
// Randomly add customers to a queue: 
class CustomerGenerator implements Runnable { 
  private CustomerLine customers; 
  private static Random rand = new Random(47); 
  public CustomerGenerator(CustomerLine cq) { 
    customers = cq; 
  } 
  public void run() { 

896 Thinking in Java Bruce Eckel 



 

    try { 
      while(!Thread.interrupted()) { 
        TimeUnit.MILLISECONDS.sleep(rand.nextInt(300)); 
        customers.put(new Customer(rand.nextInt(1000))); 
      } 
    } catch(InterruptedException e) { 
      System.out.println("CustomerGenerator interrupted"); 
    } 
    System.out.println("CustomerGenerator terminating"); 
  } 
} 
 
class Teller implements Runnable, Comparable<Teller> { 
  private static int counter = 0; 
  private final int id = counter++; 
  // Customers served during this shift: 
  private int customersServed = 0; 
  private CustomerLine customers; 
  private boolean servingCustomerLine = true; 
  public Teller(CustomerLine cq) { customers = cq; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        Customer customer = customers.take(); 
        TimeUnit.MILLISECONDS.sleep( 
          customer.getServiceTime()); 
        synchronized(this) { 
          customersServed++; 
          while(!servingCustomerLine) 
            wait(); 
        } 
      } 
    } catch(InterruptedException e) { 
      System.out.println(this + "interrupted"); 
    } 
    System.out.println(this + "terminating"); 
  } 
  public synchronized void doSomethingElse() { 
    customersServed = 0; 
    servingCustomerLine = false; 
  } 
  public synchronized void serveCustomerLine() { 
    assert !servingCustomerLine:"already serving: " + this; 
    servingCustomerLine = true; 
    notifyAll(); 
  } 
  public String toString() { return "Teller " + id + " "; } 
  public String shortString() { return "T" + id; } 
  // Used by priority queue: 
  public synchronized int compareTo(Teller other) { 
    return customersServed < other.customersServed ? -1 : 
      (customersServed == other.customersServed ? 0 : 1); 
  } 
} 
 
class TellerManager implements Runnable { 
  private ExecutorService exec; 
  private CustomerLine customers; 
  private PriorityQueue<Teller> workingTellers = 
    new PriorityQueue<Teller>(); 
  private Queue<Teller> tellersDoingOtherThings = 
    new LinkedList<Teller>(); 
  private int adjustmentPeriod; 

Concurrency 897 



 

  private static Random rand = new Random(47); 
  public TellerManager(ExecutorService e, 
    CustomerLine customers, int adjustmentPeriod) { 
    exec = e; 
    this.customers = customers; 
    this.adjustmentPeriod = adjustmentPeriod; 
    // Start with a single teller: 
    Teller teller = new Teller(customers); 
    exec.execute(teller); 
    workingTellers.add(teller); 
  } 
  public void adjustTellerNumber() { 
    // This is actually a control system. By adjusting 
    // the numbers, you can reveal stability issues in 
    // the control mechanism. 
    // If line is too long, add another teller: 
    if(customers.size() / workingTellers.size() > 2) { 
        // If tellers are on break or doing 
        // another job, bring one back: 
        if(tellersDoingOtherThings.size() > 0) { 
          Teller teller = tellersDoingOtherThings.remove(); 
          teller.serveCustomerLine(); 
          workingTellers.offer(teller); 
          return; 
        } 
      // Else create (hire) a new teller 
      Teller teller = new Teller(customers); 
      exec.execute(teller); 
      workingTellers.add(teller); 
      return; 
    } 
    // If line is short enough, remove a teller: 
    if(workingTellers.size() > 1 && 
      customers.size() / workingTellers.size() < 2) 
        reassignOneTeller(); 
    // If there is no line, we only need one teller: 
    if(customers.size() == 0) 
      while(workingTellers.size() > 1) 
        reassignOneTeller(); 
  } 
  // Give a teller a different job or a break: 
  private void reassignOneTeller() { 
    Teller teller = workingTellers.poll(); 
    teller.doSomethingElse(); 
    tellersDoingOtherThings.offer(teller); 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        TimeUnit.MILLISECONDS.sleep(adjustmentPeriod); 
        adjustTellerNumber(); 
        System.out.print(customers + " { "); 
        for(Teller teller : workingTellers) 
          System.out.print(teller.shortString() + " "); 
        System.out.println("}"); 
      } 
    } catch(InterruptedException e) { 
      System.out.println(this + "interrupted"); 
    } 
    System.out.println(this + "terminating"); 
  } 
  public String toString() { return "TellerManager "; } 
} 

898 Thinking in Java Bruce Eckel 



 

 
public class BankTellerSimulation { 
  static final int MAX_LINE_SIZE = 50; 
  static final int ADJUSTMENT_PERIOD = 1000; 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    // If line is too long, customers will leave: 
    CustomerLine customers = 
      new CustomerLine(MAX_LINE_SIZE); 
    exec.execute(new CustomerGenerator(customers)); 
    // Manager will add and remove tellers as necessary: 
    exec.execute(new TellerManager( 
      exec, customers, ADJUSTMENT_PERIOD)); 
    if(args.length > 0) // Optional argument 
      TimeUnit.SECONDS.sleep(new Integer(args[0])); 
    else { 
      System.out.println("Press ‘Enter’ to quit"); 
      System.in.read(); 
    } 
    exec.shutdownNow(); 
  } 
} /* Output: (Sample) 
[429][200][207] { T0 T1 } 
[861][258][140][322] { T0 T1 } 
[575][342][804][826][896][984] { T0 T1 T2 } 
[984][810][141][12][689][992][976][368][395][354] { T0 T1 T2 T3 } 
Teller 2 interrupted 
Teller 2 terminating 
Teller 1 interrupted 
Teller 1 terminating 
TellerManager interrupted 
TellerManager terminating 
Teller 3 interrupted 
Teller 3 terminating 
Teller 0 interrupted 
Teller 0 terminating 
CustomerGenerator interrupted 
CustomerGenerator terminating 
*///:~ 

The Customer objects are very simple, containing only a final int field. Because these 
objects never change, they are read-only objects and they do not require synchronization or 
the use of volatile. On top of that, each Teller task only removes one Customer at a time 
from the input queue, and works on that Customer until it is complete, so a Customer will 
only be accessed by one task at a time, anyway.  

CustomerLine represents a single line that the customers wait in before being served by a 
Teller. This is just an ArrayBlockingQueue that has a toString( ) that prints the results 
in the desired fashion.  

A CustomerGenerator is attached to a CustomerLine and puts Customers onto the 
queue at randomized intervals.  

A Teller takes Customers off of the CustomerLine and processes them one at a time, 
keeping track of the number of Customers it has served during that particular shift. It can 
be told to doSomethingElse( ) when there aren’t enough customers, and to 
serveCustomerLine( ) when lots of customers show up. To choose the next teller to put 
back on the line, the compareTo( ) method looks at the number of customers served so that 
a PriorityQueue can automatically put the least-worked teller at the forefront.  

Concurrency 899 



 

The TellerManager is the hub of activity. It keeps track of all the tellers and what’s going 
on with the customers. One of the interesting things about this simulation is that it attempts 
to discover the optimum number of tellers for a given customer flow. You can see this in the 
adjustTellerNumber( ), which is a control system to add and remove tellers in a stable 
fashion. All control systems have stability issues; if they react too quickly to a change, they 
are unstable, and if they react too slowly, the system moves to one of its extremes.  

Exercise 35:   (8) Modify BankTellerSimulation.java so that it represents Web clients 
making requests of a fixed number of servers. The goal is to determine the load that the 
group of servers can handle.  

The restaurant simulation 

This simulation fleshes out the simple Restaurant.java example shown earlier in this 
chapter by adding more simulation components, such as Orders and Plates, and it reuses 
the menu classes from the Enumerated Types chapter.  

It also introduces the Java SE5 SynchronousQueue, which is a blocking queue that has no 
internal capacity, so each put( ) must wait for a take( ), and vice versa. It’s as if you were 
handing an object to someone—there’s no table to put it on, so it only works if that person is 
holding a hand out, ready to receive the object. In this example, the SynchronousQueue 
represents the place setting in front of a diner, to enforce the idea that only one course can be 
served at a time.  

The rest of the classes and functionality of this example either follow from the structure of 
Restaurant.java or are intended to be a fairly direct mapping from the operations of an 
actual restaurant:  

//: concurrency/restaurant2/RestaurantWithQueues.java 
// {Args: 5} 
package concurrency.restaurant2; 
import enumerated.menu.*; 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
// This is given to the waiter, who gives it to the chef: 
class Order { // (A data-transfer object) 
  private static int counter = 0; 
  private final int id = counter++; 
  private final Customer customer; 
  private final WaitPerson waitPerson; 
  private final Food food; 
  public Order(Customer cust, WaitPerson wp, Food f) { 
    customer = cust; 
    waitPerson = wp; 
    food = f; 
  } 
  public Food item() { return food; } 
  public Customer getCustomer() { return customer; } 
  public WaitPerson getWaitPerson() { return waitPerson; } 
  public String toString() { 
    return "Order: " + id + " item: " + food + 
      " for: " + customer + 
      " served by: " + waitPerson; 
  } 
} 
 
// This is what comes back from the chef: 

900 Thinking in Java Bruce Eckel 



 

class Plate { 
  private final Order order; 
  private final Food food; 
  public Plate(Order ord, Food f) { 
    order = ord; 
    food = f; 
  } 
  public Order getOrder() { return order; } 
  public Food getFood() { return food; } 
  public String toString() { return food.toString(); } 
} 
 
class Customer implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final WaitPerson waitPerson; 
  // Only one course at a time can be received: 
  private SynchronousQueue<Plate> placeSetting = 
    new SynchronousQueue<Plate>(); 
  public Customer(WaitPerson w) { waitPerson = w; } 
  public void 
  deliver(Plate p) throws InterruptedException { 
    // Only blocks if customer is still 
    // eating the previous course: 
    placeSetting.put(p); 
  } 
  public void run() { 
    for(Course course : Course.values()) { 
      Food food = course.randomSelection(); 
      try { 
        waitPerson.placeOrder(this, food); 
        // Blocks until course has been delivered: 
        print(this + "eating " + placeSetting.take()); 
      } catch(InterruptedException e) { 
        print(this + "waiting for " + 
          course + " interrupted"); 
        break; 
      } 
    } 
    print(this + "finished meal, leaving"); 
  } 
  public String toString() { 
    return "Customer " + id + " "; 
  } 
} 
 
class WaitPerson implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final Restaurant restaurant; 
  BlockingQueue<Plate> filledOrders = 
    new LinkedBlockingQueue<Plate>(); 
  public WaitPerson(Restaurant rest) { restaurant = rest; } 
  public void placeOrder(Customer cust, Food food) { 
    try { 
      // Shouldn’t actually block because this is 
      // a LinkedBlockingQueue with no size limit: 
      restaurant.orders.put(new Order(cust, this, food)); 
    } catch(InterruptedException e) { 
      print(this + " placeOrder interrupted"); 
    } 
  } 
  public void run() { 

Concurrency 901 



 

    try { 
      while(!Thread.interrupted()) { 
        // Blocks until a course is ready 
        Plate plate = filledOrders.take(); 
        print(this + "received " + plate + 
          " delivering to " + 
          plate.getOrder().getCustomer()); 
        plate.getOrder().getCustomer().deliver(plate); 
      } 
    } catch(InterruptedException e) { 
      print(this + " interrupted"); 
    } 
    print(this + " off duty"); 
  } 
  public String toString() { 
    return "WaitPerson " + id + " "; 
  } 
} 
 
class Chef implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final Restaurant restaurant; 
  private static Random rand = new Random(47); 
  public Chef(Restaurant rest) { restaurant = rest; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // Blocks until an order appears: 
        Order order = restaurant.orders.take(); 
        Food requestedItem = order.item(); 
        // Time to prepare order: 
        TimeUnit.MILLISECONDS.sleep(rand.nextInt(500)); 
        Plate plate = new Plate(order, requestedItem); 
        order.getWaitPerson().filledOrders.put(plate); 
      } 
    } catch(InterruptedException e) { 
      print(this + " interrupted"); 
    } 
    print(this + " off duty"); 
  } 
  public String toString() { return "Chef " + id + " "; } 
} 
 
class Restaurant implements Runnable { 
  private List<WaitPerson> waitPersons = 
    new ArrayList<WaitPerson>(); 
  private List<Chef> chefs = new ArrayList<Chef>(); 
  private ExecutorService exec; 
  private static Random rand = new Random(47); 
  BlockingQueue<Order> 
    orders = new LinkedBlockingQueue<Order>(); 
  public Restaurant(ExecutorService e, int nWaitPersons, 
    int nChefs) { 
    exec = e; 
    for(int i = 0; i < nWaitPersons; i++) { 
      WaitPerson waitPerson = new WaitPerson(this); 
      waitPersons.add(waitPerson); 
      exec.execute(waitPerson); 
    } 
    for(int i = 0; i < nChefs; i++) { 
      Chef chef = new Chef(this); 
      chefs.add(chef); 

902 Thinking in Java Bruce Eckel 



 

      exec.execute(chef); 
    } 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // A new customer arrives; assign a WaitPerson: 
        WaitPerson wp = waitPersons.get( 
          rand.nextInt(waitPersons.size())); 
        Customer c = new Customer(wp); 
        exec.execute(c); 
        TimeUnit.MILLISECONDS.sleep(100); 
      } 
    } catch(InterruptedException e) { 
      print("Restaurant interrupted"); 
    } 
    print("Restaurant closing"); 
  } 
} 
 
public class RestaurantWithQueues { 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    Restaurant restaurant = new Restaurant(exec, 5, 2); 
    exec.execute(restaurant); 
    if(args.length > 0) // Optional argument 
      TimeUnit.SECONDS.sleep(new Integer(args[0])); 
    else { 
      print("Press ‘Enter’ to quit"); 
      System.in.read(); 
    } 
    exec.shutdownNow(); 
  } 
} /* Output: (Sample) 
WaitPerson 0 received SPRING_ROLLS delivering to Customer 1 
Customer 1 eating SPRING_ROLLS 
WaitPerson 3 received SPRING_ROLLS delivering to Customer 0 
Customer 0 eating SPRING_ROLLS 
WaitPerson 0 received BURRITO delivering to Customer 1 
Customer 1 eating BURRITO 
WaitPerson 3 received SPRING_ROLLS delivering to Customer 2 
Customer 2 eating SPRING_ROLLS 
WaitPerson 1 received SOUP delivering to Customer 3 
Customer 3 eating SOUP 
WaitPerson 3 received VINDALOO delivering to Customer 0 
Customer 0 eating VINDALOO 
WaitPerson 0 received FRUIT delivering to Customer 1 
... 
*///:~ 

One very important thing to observe about this example is the management of complexity 
using queues to communicate between tasks. This single technique greatly simplifies the 
process of concurrent programming by inverting the control: The tasks do not directly 
interfere with each other. Instead, the tasks send objects to each other via queues. The 
receiving task handles the object, treating it as a message rather than having the message 
inflicted upon it. If you follow this technique whenever you can, you stand a much better 
chance of building robust concurrent systems.  

Exercise 36:   (10) Modify RestaurantWithQueues.java so there’s one OrderTicket 
object per table. Change order to orderTicket, and add a Table class, with multiple 
Customers per table.  

Concurrency 903 



 

Distributing work 

Here’s a simulation example that brings together many of the concepts in this chapter. 
Consider a hypothetical robotic assembly line for automobiles. Each Car will be built in 
several stages, starting with chassis creation, followed by the attachment of the engine, drive 
train, and wheels.  

//: concurrency/CarBuilder.java 
// A complex example of tasks working together. 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
class Car { 
  private final int id; 
  private boolean 
    engine = false, driveTrain = false, wheels = false; 
  public Car(int idn)  { id = idn; } 
  // Empty Car object: 
  public Car()  { id = -1; } 
  public synchronized int getId() { return id; } 
  public synchronized void addEngine() { engine = true; } 
  public synchronized void addDriveTrain() { 
    driveTrain = true; 
  } 
  public synchronized void addWheels() { wheels = true; } 
  public synchronized String toString() { 
    return "Car " + id + " [" + " engine: " + engine 
      + " driveTrain: " + driveTrain 
      + " wheels: " + wheels + " ]"; 
  } 
} 
 
class CarQueue extends LinkedBlockingQueue<Car> {} 
 
class ChassisBuilder implements Runnable { 
  private CarQueue carQueue; 
  private int counter = 0; 
  public ChassisBuilder(CarQueue cq) { carQueue = cq; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        TimeUnit.MILLISECONDS.sleep(500); 
        // Make chassis: 
        Car c = new Car(counter++); 
        print("ChassisBuilder created " + c); 
        // Insert into queue 
        carQueue.put(c); 
      } 
    } catch(InterruptedException e) { 
      print("Interrupted: ChassisBuilder"); 
    } 
    print("ChassisBuilder off"); 
  } 
} 
 
class Assembler implements Runnable { 
  private CarQueue chassisQueue, finishingQueue; 
  private Car car; 
  private CyclicBarrier barrier = new CyclicBarrier(4); 
  private RobotPool robotPool; 

904 Thinking in Java Bruce Eckel 



 

  public Assembler(CarQueue cq, CarQueue fq, RobotPool rp){ 
    chassisQueue = cq; 
    finishingQueue = fq; 
    robotPool = rp; 
  } 
  public Car car() { return car; } 
  public CyclicBarrier barrier() { return barrier; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        // Blocks until chassis is available: 
        car = chassisQueue.take(); 
        // Hire robots to perform work: 
        robotPool.hire(EngineRobot.class, this); 
        robotPool.hire(DriveTrainRobot.class, this); 
        robotPool.hire(WheelRobot.class, this); 
        barrier.await(); // Until the robots finish 
        // Put car into finishingQueue for further work 
        finishingQueue.put(car); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting Assembler via interrupt"); 
    } catch(BrokenBarrierException e) { 
      // This one we want to know about 
      throw new RuntimeException(e); 
    } 
    print("Assembler off"); 
  } 
} 
 
class Reporter implements Runnable { 
  private CarQueue carQueue; 
  public Reporter(CarQueue cq) { carQueue = cq; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        print(carQueue.take()); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting Reporter via interrupt"); 
    } 
    print("Reporter off"); 
  } 
} 
 
abstract class Robot implements Runnable { 
  private RobotPool pool; 
  public Robot(RobotPool p) { pool = p; } 
  protected Assembler assembler; 
  public Robot assignAssembler(Assembler assembler) { 
    this.assembler = assembler; 
    return this; 
  } 
  private boolean engage = false; 
  public synchronized void engage() { 
    engage = true; 
    notifyAll(); 
  } 
  // The part of run() that’s different for each robot: 
  abstract protected void performService(); 
  public void run() { 
    try { 
      powerDown(); // Wait until needed 

Concurrency 905 



 

      while(!Thread.interrupted()) { 
        performService(); 
        assembler.barrier().await(); // Synchronize 
        // We’re done with that job... 
        powerDown(); 
      } 
    } catch(InterruptedException e) { 
      print("Exiting " + this + " via interrupt"); 
    } catch(BrokenBarrierException e) { 
      // This one we want to know about 
      throw new RuntimeException(e); 
    } 
    print(this + " off"); 
  } 
  private synchronized void 
  powerDown() throws InterruptedException { 
    engage = false; 
    assembler = null; // Disconnect from the Assembler 
    // Put ourselves back in the available pool: 
    pool.release(this); 
    while(engage == false)  // Power down 
      wait(); 
  } 
  public String toString() { return getClass().getName(); } 
} 
 
class EngineRobot extends Robot { 
  public EngineRobot(RobotPool pool) { super(pool); } 
  protected void performService() { 
    print(this + " installing engine"); 
    assembler.car().addEngine(); 
  } 
} 
 
class DriveTrainRobot extends Robot { 
  public DriveTrainRobot(RobotPool pool) { super(pool); } 
  protected void performService() { 
    print(this + " installing DriveTrain"); 
    assembler.car().addDriveTrain(); 
  } 
} 
 
class WheelRobot extends Robot { 
  public WheelRobot(RobotPool pool) { super(pool); } 
  protected void performService() { 
    print(this + " installing Wheels"); 
    assembler.car().addWheels(); 
  } 
} 
 
class RobotPool { 
  // Quietly prevents identical entries: 
  private Set<Robot> pool = new HashSet<Robot>(); 
  public synchronized void add(Robot r) { 
    pool.add(r); 
    notifyAll(); 
  } 
  public synchronized void 
  hire(Class<? extends Robot> robotType, Assembler d) 
  throws InterruptedException { 
    for(Robot r : pool) 
      if(r.getClass().equals(robotType)) { 
        pool.remove(r); 

906 Thinking in Java Bruce Eckel 



 

        r.assignAssembler(d); 
        r.engage(); // Power it up to do the task 
        return; 
      } 
    wait(); // None available 
    hire(robotType, d); // Try again, recursively 
  } 
  public synchronized void release(Robot r) { add(r); } 
} 
 
public class CarBuilder { 
  public static void main(String[] args) throws Exception { 
    CarQueue chassisQueue = new CarQueue(), 
             finishingQueue = new CarQueue(); 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    RobotPool robotPool = new RobotPool(); 
    exec.execute(new EngineRobot(robotPool)); 
    exec.execute(new DriveTrainRobot(robotPool)); 
    exec.execute(new WheelRobot(robotPool)); 
    exec.execute(new Assembler( 
      chassisQueue, finishingQueue, robotPool)); 
    exec.execute(new Reporter(finishingQueue)); 
    // Start everything running by producing chassis: 
    exec.execute(new ChassisBuilder(chassisQueue)); 
    TimeUnit.SECONDS.sleep(7); 
    exec.shutdownNow(); 
  } 
} /* (Execute to see output) *///:~ 

The Cars are transported from one place to another via a CarQueue, which is a type of 
LinkedBlockingQueue. A ChassisBuilder creates an unadorned Car and places it on a 
CarQueue. The Assembler takes the Car off a CarQueue and hires Robots to work on 
it. A CyclicBarrier allows the Assembler to wait until all the Robots are finished, at which 
time it puts the Car onto the outgoing CarQueue to be transported to the next operation. 
The consumer of the final CarQueue is a Reporter object, which just prints the Car to 
show that the tasks have been properly completed.  

The Robots are managed in a pool, and when work needs to be done, the appropriate Robot 
is hired from the pool. After the work is completed, the Robot returns to the pool.  

In main( ), all the necessary objects are created and the tasks are initialized, with the 
ChassisBuilder begun last to start the process. (However, because of the behavior of the 
LinkedBlockingQueue, it wouldn’t matter if it were started first.) Note that this program 
follows all the guidelines regarding object and task lifetime presented in this chapter, and so 
the shutdown process is safe.  

You’ll notice that Car has all of its methods synchronized. As it turns out, in this example 
this is redundant, because within the factory the Cars move through the queues and only one 
task can work on a car at a time. Basically, the queues force serialized access to the Cars. But 
this is exactly the kind of trap you can fall into—you can say "Let’s try to optimize by not 
synchronizing the Car class because it doesn’t look like it needs it here." But later, when this 
system is connected to another which does need the Car to be synchronized, it breaks.  

Brian Goetz comments:  

It’s much easier to say, "Car might be used from multiple threads, so let’s make it 
thread-safe in the obvious way." The way I characterize this approach is: At public 
parks, you will find guard rails where there is a steep drop, and you may find signs that 
say, "Don’t lean on the guard rail." Of course, the real purpose of this rule is not to 

Concurrency 907 



 

prevent you from leaning on the rail—it is to prevent you from falling off the cliff. But 
"Don’t lean on the rail" is a much easier rule to follow than "Don’t fall off the cliff"  

Exercise 37:   (2) Modify CarBuilder.java to add another stage to the car-building 
process, whereby you add the exhaust system, body, and fenders. As with the second stage, 
assume these processes can be performed simultaneously by robots.  

Exercise 38:   (3) Using the approach in CarBuilder.java, model the house-building 
story that was given in this chapter.  

   

908 Thinking in Java Bruce Eckel 



 

Performance tuning 
A significant number of classes in Java SEs’s java.util.concurrent library exist to provide 
performance improvements. When you peruse the concurrent library, it can be difficult to 
discern which classes are intended for regular use (such as BlockingQueues) and which 
ones are only for improving performance. In this section we will look at some of the issues 
and classes surrounding performance tuning.  

Comparing mutex technologies  

Now that Java includes the old synchronized keyword along with the new Java SE5 Lock 
and Atomic classes, it is interesting to compare the different approaches so that we can 
understand more about the value of each and where to use them.  

The naive approach is to try a simple test on each approach, like this:  

//: concurrency/SimpleMicroBenchmark.java 
// The dangers of microbenchmarking. 
import java.util.concurrent.locks.*; 
 
abstract class Incrementable { 
  protected long counter = 0; 
  public abstract void increment(); 
} 
 
class SynchronizingTest extends Incrementable { 
  public synchronized void increment() { ++counter; } 
} 
 
class LockingTest extends Incrementable { 
  private Lock lock = new ReentrantLock(); 
  public void increment() { 
    lock.lock(); 
    try { 
      ++counter; 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 
public class SimpleMicroBenchmark { 
  static long test(Incrementable incr) { 
    long start = System.nanoTime(); 
    for(long i = 0; i < 10000000L; i++) 
      incr.increment(); 
    return System.nanoTime() - start; 
  } 
  public static void main(String[] args) { 
    long synchTime = test(new SynchronizingTest()); 
    long lockTime = test(new LockingTest()); 
    System.out.printf("synchronized: %1$10d\n", synchTime); 
    System.out.printf("Lock:         %1$10d\n", lockTime); 
    System.out.printf("Lock/synchronized = %1$.3f", 
      (double)lockTime/(double)synchTime); 
  } 
} /* Output: (75% match) 
synchronized:  244919117 
Lock:          939098964 

Concurrency 909 



 

910 Thinking in Java Bruce Eckel 

Lock/synchronized = 3.834 
*///:~ 

You can see from the output that calls to the synchronized method appear to be faster than 
using a ReentrantLock. What’s happened here?  

This example demonstrates the dangers of so-called "microbenchmarking."23 This term 
generally refers to performance testing a feature in isolation, out of context. Of course, you 
must still write tests to verify assertions like "Lock is much faster than synchronized." But 
you need an awareness of what’s really happening during compilation and run time when you 
write these kinds of tests.  

There are a number of problems with the above example. First and foremost, we will only see 
the true performance difference if the mutexes are under contention, so there must be 
multiple tasks trying to access the mutexed code sections. In the above example, each mutex 
is tested by the single main( ) thread, in isolation.  

Secondly, it’s possible that the compiler can perform special optimizations when it sees the 
synchronized keyword, and perhaps even notice that this program is single-threaded. The 
compiler might even identify that the counter is simply being incremented a fixed number 
of times, and just precalculate the result. Different compilers and runtime systems vary, so 
it’s hard to know exactly what will happen, but we need to prevent the possibility that the 
compiler can predict the outcome.  

To create a valid test, we must make the program more complex. First we need multiple 
tasks, and not just tasks that change internal values, but also tasks that read those values 
(otherwise the optimizer may recognize that the values are never being used). In addition, the 
calculation must be complex and unpredictable enough that the compiler will have no chance 
to perform aggressive optimizations. This will be accomplished by pre-loading a large array 
of random ints (pre-loading to reduce the impact of calls to Random.nextInt( ) on the 
main loops) and using those values in a summation:  

//: concurrency/SynchronizationComparisons.java 
// Comparing the performance of explicit Locks 
// and Atomics versus the synchronized keyword. 
import java.util.concurrent.*; 
import java.util.concurrent.atomic.*; 
import java.util.concurrent.locks.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
abstract class Accumulator { 
  public static long cycles = 50000L; 
  // Number of Modifiers and Readers during each test: 
  private static final int N = 4; 
  public static ExecutorService exec = 
    Executors.newFixedThreadPool(N*2); 
  private static CyclicBarrier barrier = 
    new CyclicBarrier(N*2 + 1); 
  protected volatile int index = 0; 
  protected volatile long value = 0; 
  protected long duration = 0; 
  protected String id = "error"; 
  protected final static int SIZE = 100000; 
  protected static int[] preLoaded = new int[SIZE]; 
  static { 
    // Load the array of random numbers: 
                                                            
23 Brian Goetz was very helpful in explaining these issues to me. See his article at www-
128.ibm.com/developerworks/library/j-jtp12214 for more about performance measurement. 



 

    Random rand = new Random(47); 
    for(int i = 0; i < SIZE; i++) 
      preLoaded[i] = rand.nextInt(); 
  } 
  public abstract void accumulate(); 
  public abstract long read(); 
  private class Modifier implements Runnable { 
    public void run() { 
      for(long i = 0; i < cycles; i++) 
        accumulate(); 
      try { 
        barrier.await(); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
    } 
  } 
  private class Reader implements Runnable { 
    private volatile long value; 
    public void run() { 
      for(long i = 0; i < cycles; i++) 
        value = read(); 
      try { 
        barrier.await(); 
      } catch(Exception e) { 
        throw new RuntimeException(e); 
      } 
    } 
  } 
  public void timedTest() { 
    long start = System.nanoTime(); 
    for(int i = 0; i < N; i++) { 
      exec.execute(new Modifier()); 
      exec.execute(new Reader()); 
    } 
    try { 
      barrier.await(); 
    } catch(Exception e) { 
      throw new RuntimeException(e); 
    } 
    duration = System.nanoTime() - start; 
    printf("%-13s: %13d\n", id, duration); 
  } 
  public static void 
  report(Accumulator acc1, Accumulator acc2) { 
    printf("%-22s: %.2f\n", acc1.id + "/" + acc2.id, 
      (double)acc1.duration/(double)acc2.duration); 
  } 
} 
 
class BaseLine extends Accumulator { 
  { id = "BaseLine"; } 
  public void accumulate() { 
    value += preLoaded[index++]; 
    if(index >= SIZE) index = 0; 
  } 
  public long read() { return value; } 
} 
 
class SynchronizedTest extends Accumulator { 
  { id = "synchronized"; } 
  public synchronized void accumulate() { 
    value += preLoaded[index++]; 

Concurrency 911 



 

    if(index >= SIZE) index = 0; 
  } 
  public synchronized long read() { 
    return value; 
  } 
} 
 
class LockTest extends Accumulator { 
  { id = "Lock"; } 
  private Lock lock = new ReentrantLock(); 
  public void accumulate() { 
    lock.lock(); 
    try { 
      value += preLoaded[index++]; 
      if(index >= SIZE) index = 0; 
    } finally { 
      lock.unlock(); 
    } 
  } 
  public long read() { 
    lock.lock(); 
    try { 
      return value; 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
 
class AtomicTest extends Accumulator { 
  { id = "Atomic"; } 
  private AtomicInteger index = new AtomicInteger(0); 
  private AtomicLong value = new AtomicLong(0); 
  public void accumulate() { 
    // Oops! Relying on more than one Atomic at 
    // a time doesn’t work. But it still gives us 
    // a performance indicator: 
    int i = index.getAndIncrement(); 
    value.getAndAdd(preLoaded[i]); 
    if(++i >= SIZE) 
      index.set(0); 
  } 
  public long read() { return value.get(); } 
} 
 
public class SynchronizationComparisons { 
  static BaseLine baseLine = new BaseLine(); 
  static SynchronizedTest synch = new SynchronizedTest(); 
  static LockTest lock = new LockTest(); 
  static AtomicTest atomic = new AtomicTest(); 
  static void test() { 
    print("============================"); 
    printf("%-12s : %13d\n", "Cycles", Accumulator.cycles); 
    baseLine.timedTest(); 
    synch.timedTest(); 
    lock.timedTest(); 
    atomic.timedTest(); 
    Accumulator.report(synch, baseLine); 
    Accumulator.report(lock, baseLine); 
    Accumulator.report(atomic, baseLine); 
    Accumulator.report(synch, lock); 
    Accumulator.report(synch, atomic); 
    Accumulator.report(lock, atomic); 

912 Thinking in Java Bruce Eckel 



 

  } 
  public static void main(String[] args) { 
    int iterations = 5; // Default 
    if(args.length > 0) // Optionally change iterations 
      iterations = new Integer(args[0]); 
    // The first time fills the thread pool: 
    print("Warmup"); 
    baseLine.timedTest(); 
    // Now the initial test doesn’t include the cost 
    // of starting the threads for the first time. 
    // Produce multiple data points: 
    for(int i = 0; i < iterations; i++) { 
      test(); 
      Accumulator.cycles *= 2; 
    } 
    Accumulator.exec.shutdown(); 
  } 
} /* Output: (Sample) 
Warmup 
BaseLine     :      34237033 
============================ 
Cycles       :         50000 
BaseLine     :      20966632 
synchronized :      24326555 
Lock         :      53669950 
Atomic       :      30552487 
synchronized/BaseLine : 1.16 
Lock/BaseLine         : 2.56 
Atomic/BaseLine       : 1.46 
synchronized/Lock     : 0.45 
synchronized/Atomic   : 0.79 
Lock/Atomic           : 1.76 
============================ 
Cycles       :        100000 
BaseLine     :      41512818 
synchronized :      43843003 
Lock         :      87430386 
Atomic       :      51892350 
synchronized/BaseLine : 1.06 
Lock/BaseLine         : 2.11 
Atomic/BaseLine       : 1.25 
synchronized/Lock     : 0.50 
synchronized/Atomic   : 0.84 
Lock/Atomic           : 1.68 
============================ 
Cycles       :        200000 
BaseLine     :      80176670 
synchronized :    5455046661 
Lock         :     177686829 
Atomic       :     101789194 
synchronized/BaseLine : 68.04 
Lock/BaseLine         : 2.22 
Atomic/BaseLine       : 1.27 
synchronized/Lock     : 30.70 
synchronized/Atomic   : 53.59 
Lock/Atomic           : 1.75 
============================ 
Cycles       :        400000 
BaseLine     :     160383513 
synchronized :     780052493 
Lock         :     362187652 
Atomic       :     202030984 
synchronized/BaseLine : 4.86 

Concurrency 913 



 

914 Thinking in Java Bruce Eckel 

Lock/BaseLine         : 2.26 
Atomic/BaseLine       : 1.26 
synchronized/Lock     : 2.15 
synchronized/Atomic   : 3.86 
Lock/Atomic           : 1.79 
============================ 
Cycles       :        800000 
BaseLine     :     322064955 
synchronized :     336155014 
Lock         :     704615531 
Atomic       :     393231542 
synchronized/BaseLine : 1.04 
Lock/BaseLine         : 2.19 
Atomic/BaseLine       : 1.22 
synchronized/Lock     : 0.47 
synchronized/Atomic   : 0.85 
Lock/Atomic           : 1.79 
============================ 
Cycles       :       1600000 
BaseLine     :     650004120 
synchronized :   52235762925 
Lock         :    1419602771 
Atomic       :     796950171 
synchronized/BaseLine : 80.36 
Lock/BaseLine         : 2.18 
Atomic/BaseLine       : 1.23 
synchronized/Lock     : 36.80 
synchronized/Atomic   : 65.54 
Lock/Atomic           : 1.78 
============================ 
Cycles       :       3200000 
BaseLine     :    1285664519 
synchronized :   96336767661 
Lock         :    2846988654 
Atomic       :    1590545726 
synchronized/BaseLine : 74.93 
Lock/BaseLine         : 2.21 
Atomic/BaseLine       : 1.24 
synchronized/Lock     : 33.84 
synchronized/Atomic   : 60.57 
Lock/Atomic           : 1.79 
*///:~ 

This program uses the Template Method design pattern24 to put all the common code in the 
base class and isolate all the varying code in the derivedclass implementations of 
accumulate( ) and read( ). In each of the derived classes SynchronizedTest, LockTest, 
and AtomicTest, you can see how accumulate( ) and read( ) express different ways of 
implementing mutual exclusion.  

In this program, tasks are executed via a FixedThreadPool in an attempt to keep all the 
thread creation at the beginning, and prevent any extra cost during the tests. Just to make 
sure, the initial test is duplicated and the first result is discarded because it includes the 
initial thread creation.  

A CyclicBarrier is necessary because we want to make sure all the tasks have completed 
before declaring each test complete.  

A static clause is used to pre-load the array of random numbers, before any tests begin. This 
way, if there is any overhead to generating random numbers, we won’t see it during the test.  
                                                            
24 See Thinking in Patterns at www.MindView.net. 



 

Each time accumulate( ) is called, it moves to the next place in the array preLoaded 
(wrapping to the beginning of the array) and adds another randomly generated number to 
value. The multiple Modifier and Reader tasks provide contention on the Accumulator 
object.  

Notice that in AtomicTest, I observe that the situation is too complex to try to use Atomic 
objects—basically, if more than one Atomic object is involved, you will probably be forced to 
give up and use more conventional mutexes (the JDK documentation specifically states that 
using Atomic objects only works when the critical updates for an object are confined to a 
single variable). However, the test is left in place so that you can still get a feel for the 
performance benefit of Atomic objects.  

In main( ), the test is run repeatedly and you can decide to ask for more than five repetitions 
(the default). For each repetition, the number of test cycles is doubled, so you can see how 
the different mutexes behave when running for longer and longer times. As you can see from 
the output, the results are rather surprising. For the first four iterations, the synchronized 
keyword seems to be more efficient than using a Lock or an Atomic. But suddenly, a 
threshold is crossed and synchronized seems to become quite inefficient, while Lock and 
Atomic seem to roughly maintain their proportion to the BaseLine test, and therefore 
become much more efficient than synchronized.  

Keep in mind that this program only gives an indication of the differences between the 
various mutex approaches, and the output above only indicates these differences on my 
particular machine under my particular circumstances. As you can see if you experiment with 
it, there can be significant shifts in behavior when different numbers of threads are used and 
when the program is run for longer periods of time. Some hotspot runtime optimizations are 
not invoked until a program has been running for several minutes, and in the case of server 
programs, several hours.  

That said, it is fairly clear that using Lock is usually significantly more efficient than using 
synchronized, and it also appears that the overhead of synchronized varies widely, while 
Locks are relatively consistent.  

Does this mean you should never use the synchronized keyword? There are two factors to 
consider: First, in SynchronizationComparisons.java, the bodies of the mutexed 
methods are extremely small. In general, this is a good practice—only mutex the sections that 
you absolutely must. However, in practice the mutexed sections may be larger than those in 
the above example, and so the percentage of time in the body will probably be significantly 
bigger than the overhead of entering and exiting the mutex, and could overwhelm any benefit 
of speeding up the mutex. Of course, the only way to know is— when you’re tuning for 
performance, no sooner—to try the different approaches and see what impact they have.  

Second, it’s clear from reading the code in this chapter that the synchronized keyword 
produces much more readable code than the lock try/finally-unlock idiom that Locks 
require, and that’s why this chapter primarily uses the synchronized keyword. As I’ve 
stated elsewhere in this book, code is read much more than it is written—when 
programming, it is more important to communicate with other humans than it is to 
communicate with the computer—and so readability of code is critical. As a result, it makes 
sense to start with the synchronized keyword and only change to Lock objects when you 
are tuning for performance.  

Finally, it’s nice when you can use the Atomic classes in your concurrent program, but be 
aware that, as we saw in SynchronizationComparisons.java, Atomic objects are only 
useful in very simple cases, generally when you only have one Atomic object that’s being 
modified and when that object is independent from all other objects. It’s safer to start with 
more traditional mutexing approaches and only attempt to change to Atomic later, if 
performance requirements dictate.  

Concurrency 915 



 

Lock-free containers  

As emphasized in the Holding Your Objects chapter, containers are a fundamental tool in all 
programming, and this includes concurrent programming. For this reason, early containers 
like Vector and Hashtable had many synchronized methods, which caused unacceptable 
overhead when they were not being used in multithreaded applications. In Java 1.2, the new 
containers library was unsynchronized, and the Collections class was given various static 
"synchronized" decoration methods to synchronize the different types of containers. 
Although this was an improvement because it gave you a choice about whether you use 
synchronization with your container, the overhead is still based on synchronized locking. 
Java SE5 has added new containers specifically to increase thread-safe performance, using 
clever techniques to eliminate locking.  

The general strategy behind these lock-free containers is this: Modifications to the containers 
can happen at the same time that reads are occurring, as long as the readers can only see the 
results of completed modifications. A modification is performed on a separate copy of a 
portion of the data structure (or sometimes a copy of the whole thing), and this copy is 
invisible during the modification process. Only when the modification is complete is the 
modified structure atomically swapped with the "main" data structure, and after that readers 
will see the modification.  

In CopyOnWriteArrayList, a write will cause a copy of the entire underlying array to be 
created. The original array is left in place so that reads can safely occur while the copied array 
is being modified. When the modification is complete, an atomic operation swaps the new 
array in so that new reads will see the new information. One of the benefits of 
CopyOnWriteArrayList is that it does not throw ConcurrentModificationException 
when multiple iterators are traversing and modifying the list, so you don’t have to write 
special code to protect against such exceptions, as you’ve had to do in the past.  

CopyOnWriteArraySet uses CopyOnWriteArrayList to achieve its lock-free behavior.  

ConcurrentHashMap and ConcurrentLinkedQueue use similar techniques to allow 
concurrent reads and writes, but only portions of the container are copied and modified 
rather than the entire container. However, readers will still not see any modifications before 
they are complete. ConcurrentHashMap doesn’t throw 
ConcurrentModificationExceptions.  

Performance issues  

As long as you are primarily reading from a lock-free container, it will be much faster than its 
synchronized counterpart because the overhead of acquiring and releasing locks is 
eliminated. This is still true for a small number of writes to a lock-free container, but it would 
be interesting to get an idea of what "small" means. This section will produce a rough idea of 
the performance differences of these containers under different conditions.  

I’ll start with a generic framework for performing tests on any type of container, including 
Maps. The generic parameter C represents the container type:  

//: concurrency/Tester.java 
// Framework to test performance of concurrency containers. 
import java.util.concurrent.*; 
import net.mindview.util.*; 
 
public abstract class Tester<C> { 
  static int testReps = 10; 
  static int testCycles = 1000; 
  static int containerSize = 1000; 

916 Thinking in Java Bruce Eckel 



 

  abstract C containerInitializer(); 
  abstract void startReadersAndWriters(); 
  C testContainer; 
  String testId; 
  int nReaders; 
  int nWriters; 
  volatile long readResult = 0; 
  volatile long readTime = 0; 
  volatile long writeTime = 0; 
  CountDownLatch endLatch; 
  static ExecutorService exec = 
    Executors.newCachedThreadPool(); 
  Integer[] writeData; 
  Tester(String testId, int nReaders, int nWriters) { 
    this.testId = testId + " " + 
      nReaders + "r " + nWriters + "w"; 
    this.nReaders = nReaders; 
    this.nWriters = nWriters; 
    writeData = Generated.array(Integer.class, 
      new RandomGenerator.Integer(), containerSize); 
    for(int i = 0; i < testReps; i++) { 
      runTest(); 
      readTime = 0; 
      writeTime = 0; 
    } 
  } 
  void runTest() { 
    endLatch = new CountDownLatch(nReaders + nWriters); 
    testContainer = containerInitializer(); 
    startReadersAndWriters(); 
    try { 
      endLatch.await(); 
    } catch(InterruptedException ex) { 
      System.out.println("endLatch interrupted"); 
    } 
    System.out.printf("%-27s %14d %14d\n", 
      testId, readTime, writeTime); 
    if(readTime != 0 && writeTime != 0) 
      System.out.printf("%-27s %14d\n", 
        "readTime + writeTime =", readTime + writeTime); 
  } 
  abstract class TestTask implements Runnable { 
    abstract void test(); 
    abstract void putResults(); 
    long duration; 
    public void run() { 
      long startTime = System.nanoTime(); 
      test(); 
      duration = System.nanoTime() - startTime; 
      synchronized(Tester.this) { 
        putResults(); 
      } 
      endLatch.countDown(); 
    } 
  } 
  public static void initMain(String[] args) { 
    if(args.length > 0) 
      testReps = new Integer(args[0]); 
    if(args.length > 1) 
      testCycles = new Integer(args[1]); 
    if(args.length > 2) 
      containerSize = new Integer(args[2]); 
    System.out.printf("%-27s %14s %14s\n", 

Concurrency 917 



 

      "Type", "Read time", "Write time"); 
  } 
} ///:~ 

The abstract method containerInitializer( ) returns the initialized container to be tested, 
which is stored in the field testContainer. The other abstract method, 
startReadersAndWriters( ), starts the reader and writer tasks that will read and modify 
the container under test. Different tests are run with varying number of readers and writers 
to see the effects of lock contention (for the synchronized containers) and writes (for the 
lock-free containers).  

The constructor is given various information about the test (the argument identifiers should 
be self-explanatory), then it calls the runTest( ) method repetitions times. runTest( ) 
creates a CountDownLatch (so the test can know when all the tasks are complete), 
initializes the container, then calls startReadersAndWriters( ) and waits until they all 
complete.  

Each "Reader" or "Writer" class is based on TestTask, which measures the duration of its 
abstract test( ) method, then calls putResults( ) inside a synchronized block to store 
the results.  

To use this framework (in which you’ll recognize the Template Method design pattern), we 
must inherit from Tester for the particular container type we wish to test, and provide 
appropriate Reader and Writer classes:  

//: concurrency/ListComparisons.java 
// {Args: 1 10 10} (Fast verification check during build) 
// Rough comparison of thread-safe List performance. 
import java.util.concurrent.*; 
import java.util.*; 
import net.mindview.util.*; 
 
abstract class ListTest extends Tester<List<Integer>> { 
  ListTest(String testId, int nReaders, int nWriters) { 
    super(testId, nReaders, nWriters); 
  } 
  class Reader extends TestTask { 
    long result = 0; 
    void test() { 
      for(long i = 0; i < testCycles; i++) 
        for(int index = 0; index < containerSize; index++) 
          result += testContainer.get(index); 
    } 
    void putResults() { 
      readResult += result; 
      readTime += duration; 
    } 
  } 
  class Writer extends TestTask { 
    void test() { 
      for(long i = 0; i < testCycles; i++) 
        for(int index = 0; index < containerSize; index++) 
          testContainer.set(index, writeData[index]); 
    } 
    void putResults() { 
      writeTime += duration; 
    } 
  } 
  void startReadersAndWriters() { 
    for(int i = 0; i < nReaders; i++) 
      exec.execute(new Reader()); 

918 Thinking in Java Bruce Eckel 



 

    for(int i = 0; i < nWriters; i++) 
      exec.execute(new Writer()); 
  } 
} 
 
class SynchronizedArrayListTest extends ListTest { 
  List<Integer> containerInitializer() { 
    return Collections.synchronizedList( 
      new ArrayList<Integer>( 
        new CountingIntegerList(containerSize))); 
  } 
  SynchronizedArrayListTest(int nReaders, int nWriters) { 
    super("Synched ArrayList", nReaders, nWriters); 
  } 
} 
 
class CopyOnWriteArrayListTest extends ListTest { 
  List<Integer> containerInitializer() { 
    return new CopyOnWriteArrayList<Integer>( 
      new CountingIntegerList(containerSize)); 
  } 
  CopyOnWriteArrayListTest(int nReaders, int nWriters) { 
    super("CopyOnWriteArrayList", nReaders, nWriters); 
  } 
} 
 
public class ListComparisons { 
  public static void main(String[] args) { 
    Tester.initMain(args); 
    new SynchronizedArrayListTest(10, 0); 
    new SynchronizedArrayListTest(9, 1); 
    new SynchronizedArrayListTest(5, 5); 
    new CopyOnWriteArrayListTest(10, 0); 
    new CopyOnWriteArrayListTest(9, 1); 
    new CopyOnWriteArrayListTest(5, 5); 
    Tester.exec.shutdown(); 
  } 
} /* Output: (Sample) 
Type                             Read time     Write time 
Synched ArrayList 10r 0w      232158294700              0 
Synched ArrayList 9r 1w       198947618203    24918613399 
readTime + writeTime =        223866231602 
Synched ArrayList 5r 5w       117367305062   132176613508 
readTime + writeTime =        249543918570 
CopyOnWriteArrayList 10r 0w      758386889              0 
CopyOnWriteArrayList 9r 1w       741305671      136145237 
readTime + writeTime =           877450908 
CopyOnWriteArrayList 5r 5w       212763075    67967464300 
readTime + writeTime =         68180227375 
*///:~ 

In ListTest, the Reader and Writer classes perform the specific actions for a 
List<Integer>. In Reader.putResults( ), the duration is stored but so is the result, to 
prevent the calculations from being optimized away. startReadersAndWriters( ) is then 
defined to create and execute the specific Readers and Writers.  

Once ListTest is created, it must be further inherited to override containerInitializer( ) 
to create and initialize the specific test containers.  

In main( ), you can see variations on the tests with different numbers of readers and writers. 
You can change the test variables using command-line arguments because of the call to 
Tester.initMain(args).  

Concurrency 919 



 

920 Thinking in Java Bruce Eckel 

The default behavior is to run each test 10 times; this helps stabilize the output, which can 
change because of JVM activities like hotspot optimization and garbage collection.25 The 
sample output that you see has been edited to show only the last iteration from each test. 
From the output, you can see that a synchronized ArrayList has roughly the same 
performance regardless of the number of readers and writers—readers contend with other 
readers for locks in the same way that writers do. The CopyOnWriteArrayList, however, 
is dramatically faster when there are no writers, and is still significantly faster when there are 
five writers. It would appear that you can be fairly liberal with the use of 
CopyOnWriteArrayList; the impact of writing to the list does not appear to overtake the 
impact of synchronizing the entire list for a while. Of course, you must try the two different 
approaches in your specific application to know for sure which one is best.  

Again, note that this isn’t close to being a good benchmark for absolute numbers, and your 
numbers will almost certainly be different. The goal is just to give you an idea of the relative 
behaviors of the two types of container.  

Since CopyOnWriteArraySet uses CopyOnWriteArrayList, its behavior will be similar 
and it doesn’t need a separate test here.  

Comparing Map implementations  

We can use the same framework to get a rough idea of the performance of a synchronized 
HashMap compared to a ConcurrentHashMap:  

//: concurrency/MapComparisons.java 
// {Args: 1 10 10} (Fast verification check during build) 
// Rough comparison of thread-safe Map performance. 
import java.util.concurrent.*; 
import java.util.*; 
import net.mindview.util.*; 
 
abstract class MapTest 
extends Tester<Map<Integer,Integer>> { 
  MapTest(String testId, int nReaders, int nWriters) { 
    super(testId, nReaders, nWriters); 
  } 
  class Reader extends TestTask { 
    long result = 0; 
    void test() { 
      for(long i = 0; i < testCycles; i++) 
        for(int index = 0; index < containerSize; index++) 
          result += testContainer.get(index); 
    } 
    void putResults() { 
      readResult += result; 
      readTime += duration; 
    } 
  } 
  class Writer extends TestTask { 
    void test() { 
      for(long i = 0; i < testCycles; i++) 
        for(int index = 0; index < containerSize; index++) 
          testContainer.put(index, writeData[index]); 
    } 
    void putResults() { 
      writeTime += duration; 
    } 

                                                            
25 For an introduction to benchmarking under the influence of Java’s dynamic compilation, see www-
128.ibm.com/developerworks/library/j-jtp12214. 



 

  } 
  void startReadersAndWriters() { 
    for(int i = 0; i < nReaders; i++) 
      exec.execute(new Reader()); 
    for(int i = 0; i < nWriters; i++) 
      exec.execute(new Writer()); 
  } 
} 
 
class SynchronizedHashMapTest extends MapTest { 
  Map<Integer,Integer> containerInitializer() { 
    return Collections.synchronizedMap( 
      new HashMap<Integer,Integer>( 
        MapData.map( 
          new CountingGenerator.Integer(), 
          new CountingGenerator.Integer(), 
          containerSize))); 
  } 
  SynchronizedHashMapTest(int nReaders, int nWriters) { 
    super("Synched HashMap", nReaders, nWriters); 
  } 
} 
 
class ConcurrentHashMapTest extends MapTest { 
  Map<Integer,Integer> containerInitializer() { 
    return new ConcurrentHashMap<Integer,Integer>( 
      MapData.map( 
        new CountingGenerator.Integer(), 
        new CountingGenerator.Integer(), containerSize)); 
  } 
  ConcurrentHashMapTest(int nReaders, int nWriters) { 
    super("ConcurrentHashMap", nReaders, nWriters); 
  } 
} 
 
public class MapComparisons { 
  public static void main(String[] args) { 
    Tester.initMain(args); 
    new SynchronizedHashMapTest(10, 0); 
    new SynchronizedHashMapTest(9, 1); 
    new SynchronizedHashMapTest(5, 5); 
    new ConcurrentHashMapTest(10, 0); 
    new ConcurrentHashMapTest(9, 1); 
    new ConcurrentHashMapTest(5, 5); 
    Tester.exec.shutdown(); 
  } 
} /* Output: (Sample) 
Type                             Read time     Write time 
Synched HashMap 10r 0w        306052025049              0 
Synched HashMap 9r 1w         428319156207    47697347568 
readTime + writeTime =        476016503775 
Synched HashMap 5r 5w         243956877760   244012003202 
readTime + writeTime =        487968880962 
ConcurrentHashMap 10r 0w       23352654318              0 
ConcurrentHashMap 9r 1w        18833089400     1541853224 
readTime + writeTime =         20374942624 
ConcurrentHashMap 5r 5w        12037625732    11850489099 
readTime + writeTime =         23888114831 
*///:~ 

The impact of adding writers to a ConcurrentHashMap is even less evident than for a 
CopyOnWriteArrayList, but the ConcurrentHashMap uses a different technique that 
clearly minimizes the impact of writes.  

Concurrency 921 



 

Optimistic locking 

Although Atomic objects perform atomic operations like decrementAndGet( ), some 
Atomic classes also allow you to perform what is called "optimistic locking." This means that 
you do not actually use a mutex when you are performing a calculation, but after the 
calculation is finished and you’re ready to update the Atomic object, you use a method 
called compareAndSet( ). You hand it the old value and the new value, and if the old value 
doesn’t agree with the value it finds in the Atomic object, the operation fails—this means 
that some other task has modified the object in the meantime. Remember that we would 
ordinarily use a mutex (synchronized or Lock) to prevent more than one task modifying 
an object at the same time, but here we are "optimistic" by leaving the data unlocked and 
hoping that no other task comes along and modifies it. Again, all this is done in the name of 
performance—by using an Atomic instead of synchronized or Lock, you might gain 
performance benefits.  

What happens if the compareAndSet( ) operation fails? This is where it gets tricky, and 
where you are limited in applying this technique only to problems that can be molded to the 
requirements. If compareAndSet( ) fails, you must decide what to do; this is very 
important because if you can’t do something to recover, then you cannot use this technique 
and must use conventional mutexes instead. Perhaps you can retry the operation and it will 
be OK if you get it the second time. Or perhaps it’s OK just to ignore the failure—in some 
simulations, if a data point is lost, it will eventually be made up in the grand scheme of things 
(of course, you must understand your model well enough to know whether this is true).  

Consider a fictitious simulation that consists of 100,000 "genes" of length 30; perhaps this is 
the beginning of some kind of genetic algorithm. Suppose that for each "evolution" of the 
genetic algorithm, some very expensive calculations take place, so you decide to use a 
multiprocessor machine to distribute the tasks and improve performance. In addition, you 
use Atomic objects instead of Lock objects to prevent mutex overhead. (Naturally, you only 
produced this solution after first writing the code in the simplest way that could possibly 
work, using the synchronized keyword. Once you had the program running, only then did 
you discover that it was too slow, and begin applying performance techniques!) Because of 
the nature of your model, if there’s a collision during a calculation, the task that discovers the 
collision can just ignore it and not update its value. Here’s what it looks like:  

//: concurrency/FastSimulation.java 
import java.util.concurrent.*; 
import java.util.concurrent.atomic.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class FastSimulation { 
  static final int N_ELEMENTS = 100000; 
  static final int N_GENES = 30; 
  static final int N_EVOLVERS = 50; 
  static final AtomicInteger[][] GRID = 
    new AtomicInteger[N_ELEMENTS][N_GENES]; 
  static Random rand = new Random(47); 
  static class Evolver implements Runnable { 
    public void run() { 
      while(!Thread.interrupted()) { 
        // Randomly select an element to work on: 
        int element = rand.nextInt(N_ELEMENTS); 
        for(int i = 0; i < N_GENES; i++) { 
          int previous = element - 1; 
          if(previous < 0) previous = N_ELEMENTS - 1; 
          int next = element + 1; 
          if(next >= N_ELEMENTS) next = 0; 
          int oldvalue = GRID[element][i].get(); 

922 Thinking in Java Bruce Eckel 



 

          // Perform some kind of modeling calculation: 
          int newvalue = oldvalue + 
            GRID[previous][i].get() + GRID[next][i].get(); 
          newvalue /= 3; // Average the three values 
          if(!GRID[element][i] 
            .compareAndSet(oldvalue, newvalue)) { 
            // Policy here to deal with failure. Here, we 
            // just report it and ignore it; our model 
            // will eventually deal with it. 
            print("Old value changed from " + oldvalue); 
          } 
        } 
      } 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    ExecutorService exec = Executors.newCachedThreadPool(); 
    for(int i = 0; i < N_ELEMENTS; i++) 
      for(int j = 0; j < N_GENES; j++) 
        GRID[i][j] = new AtomicInteger(rand.nextInt(1000)); 
    for(int i = 0; i < N_EVOLVERS; i++) 
      exec.execute(new Evolver()); 
    TimeUnit.SECONDS.sleep(5); 
    exec.shutdownNow(); 
  } 
} /* (Execute to see output) *///:~ 

The elements are all placed inside an array with the assumption that this will help 
performance (this assumption will be tested in an exercise). Each Evolver object averages its 
value with the one before and after it, and if there’s a failure when it goes to update, it simply 
prints the value and goes on. Note that no mutexes appear in the program.  

Exercise 39:   (6) Does FastSimulation.java make reasonable assumptions? Try 
changing the array to ordinary ints instead of AtomicInteger and using Lock mutexes. 
Compare the performance between the two versions of the program.  

ReadWriteLocks 

ReadWriteLocks optimize the situation where you write to a data structure relatively 
infrequently, but multiple tasks read from it often. The ReadWriteLock allows you to have 
many readers at one time as long as no one is attempting to write. If the write lock is held, 
then no readers are allowed until the write lock is released.  

It’s completely uncertain whether a ReadWriteLock will improve the performance of your 
program, and it depends on issues like how often data is being read compared to how often it 
is being modified, the time of the read and write operations (the lock is more complex, so 
short operations will not see the benefits), how much thread contention there is, and whether 
you are running on a multiprocessor machine. Ultimately, the only way to know whether a 
ReadWriteLock will benefit your program is to try it out.  

Here’s an example showing only the most basic use of ReadWriteLocks:  

//: concurrency/ReaderWriterList.java 
import java.util.concurrent.*; 
import java.util.concurrent.locks.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ReaderWriterList<T> { 

Concurrency 923 



 

  private ArrayList<T> lockedList; 
  // Make the ordering fair: 
  private ReentrantReadWriteLock lock = 
    new ReentrantReadWriteLock(true); 
  public ReaderWriterList(int size, T initialValue) { 
    lockedList = new ArrayList<T>( 
      Collections.nCopies(size, initialValue)); 
  } 
  public T set(int index, T element) { 
    Lock wlock = lock.writeLock(); 
    wlock.lock(); 
    try { 
      return lockedList.set(index, element); 
    } finally { 
      wlock.unlock(); 
    } 
  } 
  public T get(int index) { 
    Lock rlock = lock.readLock(); 
    rlock.lock(); 
    try { 
      // Show that multiple readers 
      // may acquire the read lock: 
      if(lock.getReadLockCount() > 1) 
        print(lock.getReadLockCount()); 
      return lockedList.get(index); 
    } finally { 
      rlock.unlock(); 
    } 
  } 
  public static void main(String[] args) throws Exception { 
    new ReaderWriterListTest(30, 1); 
  } 
} 
 
class ReaderWriterListTest { 
  ExecutorService exec = Executors.newCachedThreadPool(); 
  private final static int SIZE = 100; 
  private static Random rand = new Random(47); 
  private ReaderWriterList<Integer> list = 
    new ReaderWriterList<Integer>(SIZE, 0); 
  private class Writer implements Runnable { 
    public void run() { 
      try { 
        for(int i = 0; i < 20; i++) { // 2 second test 
          list.set(i, rand.nextInt()); 
          TimeUnit.MILLISECONDS.sleep(100); 
        } 
      } catch(InterruptedException e) { 
        // Acceptable way to exit 
      } 
      print("Writer finished, shutting down"); 
      exec.shutdownNow(); 
    } 
  } 
  private class Reader implements Runnable { 
    public void run() { 
      try { 
        while(!Thread.interrupted()) { 
          for(int i = 0; i < SIZE; i++) { 
            list.get(i); 
            TimeUnit.MILLISECONDS.sleep(1); 
          } 

924 Thinking in Java Bruce Eckel 



 

Concurrency 925 

        } 
      } catch(InterruptedException e) { 
        // Acceptable way to exit 
      } 
    } 
  } 
  public ReaderWriterListTest(int readers, int writers) { 
    for(int i = 0; i < readers; i++) 
      exec.execute(new Reader()); 
    for(int i = 0; i < writers; i++) 
      exec.execute(new Writer()); 
  } 
} /* (Execute to see output) *///:~ 

A ReaderWriterList can hold a fixed number of any type. You must give the constructor 
the desired size of the list and an initial object to populate the list with. The set( ) method 
acquires the write lock in order to call the underlying ArrayList. set( ), and the get( ) 
method acquires the read lock in order to call ArrayList.get( ). In addition, get( ) checks to 
see if more than one reader has acquired the read lock and, if so, displays that number to 
demonstrate that multiple readers may acquire the read lock.  

To test the ReaderWriterList, ReaderWriterListTest creates both reader and writer 
tasks for a ReaderWriterList<Integer>. Notice that there are far fewer writes than reads.  

If you look at the JDK documentation for ReentrantReadWriteLock, you’ll see that there 
are a number of other methods available, as well as issues of "fairness" and "policy 
decisions." This is a rather sophisticated tool, and one to use only when you are casting about 
for ways to improve performance. Your first draft of your program should use 
straightforward synchronization, and only if necessary should you introduce 
ReadWriteLock.  

Exercise 40:   (6) Following the example of ReaderWriterList.java, create a 
ReaderWriterMap using a HashMap. Investigate its performance by modifying 
MapComparisons.java. How does it compare to a synchronized HashMap and a 
ConcurrentHashMap?  

Active objects 
After working your way through this chapter, you may observe that threading in Java seems 
very complex and difficult to use correctly. In addition, it can seem a bit counterproductive—
although tasks work in parallel, you must invest great effort to implement techniques that 
prevent those tasks from interfering with each other.  

If you’ve ever written assembly language, writing threaded programs has a similar feel: Every 
detail matters, you’re responsible for everything, and there’s no safety net in the form of 
compiler checking.  

Could there be a problem with the threading model itself? After all, it comes relatively 
unchanged from the world of procedural programming. Perhaps there is a different model for 
concurrency that is a better fit for objectoriented programming.  

One alternative approach is called active objects or actors.26
 The reason the objects are called 

"active" is that each object maintains its own worker thread and message queue, and all 
requests to that object are enqueued, to be run one at a time. So with active objects, we 

                                                            
26 Thanks to Allen Holub for taking the time to explain this to me. 



 

serialize messages rather than methods, which means we no longer need to guard against 
problems that happen when a task is interrupted midway through its loop.  

When you send a message to an active object, that message is transformed into a task that 
goes on the object’s queue to be run at some later point. The Java SE5 Future comes in 
handy for implementing this scheme. Here’s a simple example that has two methods which 
enqueue method calls:  

//: concurrency/ActiveObjectDemo.java 
// Can only pass constants, immutables, "disconnected 
// objects," or other active objects as arguments 
// to asynch methods. 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.Print.*; 
 
public class ActiveObjectDemo { 
  private ExecutorService ex = 
    Executors.newSingleThreadExecutor(); 
  private Random rand = new Random(47); 
  // Insert a random delay to produce the effect 
  // of a calculation time: 
  private void pause(int factor) { 
    try { 
      TimeUnit.MILLISECONDS.sleep( 
        100 + rand.nextInt(factor)); 
    } catch(InterruptedException e) { 
      print("sleep() interrupted"); 
    } 
  } 
  public Future<Integer> 
  calculateInt(final int x, final int y) { 
    return ex.submit(new Callable<Integer>() { 
      public Integer call() { 
        print("starting " + x + " + " + y); 
        pause(500); 
        return x + y; 
      } 
    }); 
  } 
  public Future<Float> 
  calculateFloat(final float x, final float y) { 
    return ex.submit(new Callable<Float>() { 
      public Float call() { 
        print("starting " + x + " + " + y); 
        pause(2000); 
        return x + y; 
      } 
    }); 
  } 
  public void shutdown() { ex.shutdown(); } 
  public static void main(String[] args) { 
    ActiveObjectDemo d1 = new ActiveObjectDemo(); 
    // Prevents ConcurrentModificationException: 
    List<Future<?>> results = 
      new CopyOnWriteArrayList<Future<?>>(); 
    for(float f = 0.0f; f < 1.0f; f += 0.2f) 
      results.add(d1.calculateFloat(f, f)); 
    for(int i = 0; i < 5; i++) 
      results.add(d1.calculateInt(i, i)); 
    print("All asynch calls made"); 
    while(results.size() > 0) { 

926 Thinking in Java Bruce Eckel 



 

      for(Future<?> f : results) 
        if(f.isDone()) { 
          try { 
            print(f.get()); 
          } catch(Exception e) { 
            throw new RuntimeException(e); 
          } 
          results.remove(f); 
        } 
    } 
    d1.shutdown(); 
  } 
} /* Output: (85% match) 
All asynch calls made 
starting 0.0 + 0.0 
starting 0.2 + 0.2 
0.0 
starting 0.4 + 0.4 
0.4 
starting 0.6 + 0.6 
0.8 
starting 0.8 + 0.8 
1.2 
starting 0 + 0 
1.6 
starting 1 + 1 
0 
starting 2 + 2 
2 
starting 3 + 3 
4 
starting 4 + 4 
6 
8 
*///:~ 

The "single thread executor" produced by the call to 
Executors.newSingleThreadExecutor( ) maintains its own unbounded blocking queue, 
and has only one thread taking tasks off the queue and running them to completion. All we 
need to do in calculateInt( ) and calculateFloat( ) is to submit( ) a new Callable object 
in response to a method call, thus converting method calls into messages. The method body 
is contained within the call( ) method in the anonymous inner class. Notice that the return 
value of each active object method is a Future with a generic parameter that is the actual 
return type of the method. This way, the method call returns almost immediately, and the 
caller uses the Future to discover when the task completes and to collect the actual return 
value. This handles the most complex case, but if the call has no return value, then the 
process is simplified.  

In main( ), a List<Future<?>> is created to capture the Future objects returned by the 
calculateFloat( ) and calculateInt( ) messages sent to the active object. This list is polled 
using isDone( ) for each Future, which is removed from the List when it completes and its 
results are processed. Notice that the use of CopyOnWriteArrayList removes the need to 
copy the List in order to prevent ConcurrentModificationExceptions.  

In order to inadvertently prevent coupling between threads, any arguments to pass to an 
active-object method call must be either read-only, other active objects, or disconnected 
objects (my term), which are objects that have no connection to any other task (this is hard to 
enforce because there’s no language support for it).  

With active objects:  

Concurrency 927 



 

928 Thinking in Java Bruce Eckel 

1. Each object has its own worker thread.  
 

2. Each object maintains total control of its own fields (which is somewhat more 
rigorous than normal classes, which only have the option of guarding their fields).  

 
3. All communication between active objects happens in the form of messages between 

those objects.  
 

4. All messages between active objects are enqueued.  
 

The results are quite compelling. Since a message from one active object to another can only 
be blocked by the delay in enqueuing it, and because that delay is always very short and is not 
dependent on any other objects, the sending of a message is effectively unblockable (the 
worst that will happen is a short delay). Since an active-object system only communicates via 
messages, two objects cannot be blocked while contending to call a method on another 
object, and this means that deadlock cannot occur, which is a big step forward. Because the 
worker thread within an active object only executes one message at a time, there is no 
resource contention and you don’t have to worry about synchronizing methods. 
Synchronization still happens, but it happens on the message level, by enqueuing the method 
calls so that only one can happen at a time.  

Unfortunately, without direct compiler support, the coding approach shown above is too 
cumbersome. However, progress is occurring in the field of active objects and actors, and 
more interestingly, in the field called agent-based programming. Agents are effectively active 
objects, but agent systems also support transparency across networks and machines. It would 
not surprise me if agent-based programming becomes the eventual successor to 
objectoriented programming, because it combines objects with a relatively easy concurrency 
solution.  

You can find more information about active objects, actors and agents by searching the Web. 
In particular, some of the ideas behind active objects come from C.A.R. Hoare’s theory of 
Communicating Sequential Processes (CSP).  

Exercise 41:   (6) Add a message handler to ActiveObjectDemo.java that has no return 
value, and call this within main( ).  

Exercise 42:   (7) Modify WaxOMatic.java so that it implements active objects.  

Project:27 Use annotations and Javassist to create a class annotation @Active that 
transforms the target class into an active object.  

   

                                                            
27 Projects are suggestions to be used (for example) as term projects. Solutions to projects are not included in the solution 
guide. 



 

Summary 
The goal of this chapter was to give you the foundations of concurrent programming with 
Java threads, so that you understand that:  

1. You can run multiple independent tasks.  
 

2. You must consider all the possible problems when these tasks shut down.  
 

3. Tasks can interfere with each other over shared resources. The mutex (lock) is the basic 
tool used to prevent these collisions.  

 
4. Tasks can deadlock if they are not carefully designed.  

 
It is vital to learn when to use concurrency and when to avoid it. The main reasons to use it 
are: 

• To manage a number of tasks whose intermingling will use the computer more efficiently 
(including the ability to transparently distribute the tasks across multiple CPUs). 
 

• To allow better code organization. 
 

• To be more convenient for the user.  
 

The classic example of resource balancing is to use the CPU during I/O waits. Better code 
organization is typically seen in simulations. The classic example of user convenience is to 
monitor a "stop" button during long downloads.  

An additional advantage to threads is that they provide "light" execution context switches (on 
the order of 100 instructions) rather than "heavy" process context switches (thousands of 
instructions). Since all threads in a given process share the same memory space, a light 
context switch changes only program execution and local variables. A process change—the 
heavy context switch—must exchange the full memory space.  

The main drawbacks to multithreading are:  

1. Slowdown occurs while threads are waiting for shared resources.  
 

2. Additional CPU overhead is required to manage threads. 
 

3. Unrewarded complexity arises from poor design decisions. 
 

4. Opportunities are created for pathologies such as starving, racing, deadlock, and livelock 
(multiple threads working individual tasks that the ensemble can’t finish). 

 
5. Inconsistencies occur across platforms. For instance, while developing some of the 

examples for this book, I discovered race conditions that quickly appeared on some 
computers but that wouldn’t appear on others. If you develop a program on the latter, 
you might get badly surprised when you distribute it.  

 
One of the biggest difficulties with threads occurs because more than one task might be 
sharing a resource—such as the memory in an object—and you must make sure that multiple 
tasks don’t try to read and change that resource at the same time. This requires judicious use 
of the available locking mechanisms (for example, the synchronized keyword). These are 
essential tools, but they must be understood thoroughly because they can quietly introduce 
deadlock situations.  

Concurrency 929 



 

In addition, there’s an art to the application of threads. Java is designed to allow you to 
create as many objects as you need to solve your problem—at least in theory. (Creating 
millions of objects for an engineering finite-element analysis, for example, might not be 
practical in Java without the use of the Flyweight design pattern.) However, it seems that 
there is an upper bound to the number of threads you’ll want to create, because at some 
number, threads seem to become balky. This critical point can be hard to detect and will 
often depend on the OS and JVM; it can be less than a hundred or in the thousands. As you 
will often create only a handful of threads to solve a problem, this is typically not much of a 
limit, but in a more general design it becomes a constraint that might force you to add a 
cooperative concurrency scheme.  

Regardless of how simple threading can seem using a particular language or library, consider 
it a black art. There’s always something that can bite you when you least expect it. The reason 
that the dining philosophers problem is interesting is that it can be adjusted so that deadlock 
rarely happens, giving you the impression that everything is copacetic.  

In general, use threading carefully and sparingly. If your threading issues get large and 
complex, consider using a language like Erlang. This is one of several functional languages 
that are specialized for threading. It may be possible to use such a language for the portions 
of your program that demand threading, if you are doing lots of it, and if it’s complicated 
enough to justify this approach.  

   

930 Thinking in Java Bruce Eckel 



 

Concurrency 931 

Further reading 

Unfortunately, there is a lot of misleading information about concurrency— this emphasizes 
how confusing it can be, and how easy it is to think that you understand the issues (I know, 
because I’ve been under the impression that I’ve understood threading numerous times in 
the past, and I have no doubt that there will be more epiphanies for me in the future). There’s 
always a bit of sleuthing required when you pick up a new document about concurrency, to 
try to understand how much the writer does and doesn’t understand. Here are some books 
that I think I can safely say are reliable:  

Java Concurrency in Practice, by Brian Goetz, Tim Peierls, Joshua Bloch, Joseph 
Bowbeer, David Holmes, and Doug Lea (Addison-Wesley, 2006). Basically, the "who’s who" 
in the Java threading world.  

Concurrent Programming in Java, Second Edition, by Doug Lea (Addison-Wesley, 
2000). Although this book significantly predates Java SE5, much of Doug’s work became the 
new java.util.concurrent libraries, so this book is essential for a complete understanding 
of concurrency issues. It goes beyond Java concurrency and discusses current thinking across 
languages and technologies. Although it can be obtuse in places, it merits rereading several 
times (preferably with months in between in order to internalize the information). Doug is 
one of the few people in the world who actually understand concurrency, so this is a 
worthwhile endeavor.  

The Java Language Specification, Third Edition (Chapter 17), by Gosling, Joy, 
Steele, and Bracha (Addison-Wesley, 2005). The technical specification, conveniently 
available as an electronic document: http://java.sun.com/docs/books/jls.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  

 





 

Graphical User 
    Interfaces 

A fundamental design guideline is "Make simple things easy, and 
difficult things possible."1  

The original design goal of the graphical user interface (GUI) library in Java l.o was to allow 
the programmer to build a GUI that looks good on all platforms. That goal was not achieved. 
Instead, the Java l.o Abstract Windowing Toolkit (AWT) produced a GUI that looked equally 
mediocre on all systems. In addition, it was restrictive; you could use only four fonts and you 
couldn’t access any of the more sophisticated GUI elements that exist in your operating 
system. The Java 1.0 AWT programming model was also awkward and non-object-oriented. 
A student in one of my seminars (who had been at Sun during the creation of Java) explained 
why: The original AWT had been conceived, designed, and implemented in a month. 
Certainly a marvel of productivity, and also an object lesson in why design is important.  

The situation improved with the Java 1.1 AWT event model, which takes a much clearer, 
object-oriented approach, along with the addition of JavaBeans, a component programming 
model that is oriented toward the easy creation of visual programming environments. Java 2 
(JDK 1.2) finished the transformation away from the old Java 1.0 AWT by essentially 
replacing everything with the Java Foundation Classes (JFC), the GUI portion of which is 
called "Swing." These are a rich set of easy-to-use, easy-to-understand JavaBeans that can be 
dragged and dropped (as well as hand programmed) to create a reasonable GUI. The 
"revision 3" rule of the software industry (a product isn’t good until revision 3) seems to hold 
true with programming languages as well.  

This chapter introduces the modern Java Swing library and makes the reasonable 
assumption that Swing is Sun’s final destination GUI library for Java.2

 If for some reason you 
need to use the original "old" AWT (because you’re supporting old code or you have browser 
limitations), you can find that introduction in the 1st edition of this book, downloadable at 
www.MindView.net. Note that some AWT components remain in Java, and in some 
situations you must use them.  

Please be aware that this is not a comprehensive glossary of either all the Swing components 
or all the methods for the described classes. What you see here is intended to be a simple 
introduction. The Swing library is vast, and the goal of this chapter is only to get you started 
with the essentials and comfortable with the concepts. If you need to do more than what you 
see here, then Swing can probably give you what you want if you’re willing to do the research.  

I assume here that you have downloaded and installed the JDK documentation from 
http://java.sun.com and will browse the javax.swing classes in that documentation to see 
the full details and methods of the Swing library. You can also search the Web, but the best 
place to start is Sun’s own Swing Tutorial at 
http://java.sun.com/docs/books/tutorial/uiswing.  

                                                            
1 A variation on this is called "the principle of least astonishment," which essentially says, "Don’t surprise the user." 

2 Note that IBM created a new open-source GUI library for their Eclipse editor (www.Eclipse.org), which you may want to 
consider as an alternative to Swing. This will be introduced later in the chapter. 

 



 

934 Thinking in Java Bruce Eckel 

There are numerous (rather thick) books dedicated solely to Swing, and you’ll want to go to 
those if you need more depth, or if you want to modify the default Swing behavior.  

As you learn about Swing, you’ll discover:  

1. Swing is a much improved programming model compared to many other languages 
and development environments (not to suggest that it’s perfect, but a step forward on 
the path). JavaBeans (introduced toward the end of this chapter) is the framework for 
that library.  
 

2. "GUI builders" (visual programming environments) are a de rigueur aspect of a 
complete Java development environment. JavaBeans and Swing allow the GUI builder 
to write code for you as you place components onto forms using graphical tools. This 
rapidly speeds development during GUI building, and also allows for greater 
experimentation and thus the ability to try out more designs and presumably come up 
with better ones.  

 
3. Because Swing is reasonably straightforward, even if you do use a GUI builder rather 

than coding by hand, the resulting code should still be comprehensible. This solves a 
big problem with GUI builders from the past, which could easily generate unreadable 
code.  

 
Swing contains all the components that you expect to see in a modern UI: everything from 
buttons that contain pictures to trees and tables. It’s a big library, but it’s designed to have 
appropriate complexity for the task at hand; if something is simple, you don’t have to write 
much code, but as you try to do more complex things, your code becomes proportionally 
more complex.  

Much of what you’ll like about Swing might be called "orthogonality of use." That is, once you 
pick up the general ideas about the library, you can usually apply them everywhere. Primarily 
because of the standard naming conventions, while I was writing these examples I could 
usually guess successfully at the method names. This is certainly a hallmark of good library 
design. In addition, you can generally plug components into other components and things 
will work correctly.  

Keyboard navigation is automatic; you can run a Swing application without using the mouse, 
and this doesn’t require any extra programming. Scrolling support is effortless; you simply 
wrap your component in a JScrollPane as you add it to your form. Features such as tool 
tips typically require a single line of code to use.  

For portability, Swing is written entirely in Java.  

Swing also supports a rather radical feature called "pluggable look and feel," which means 
that the appearance of the UI can be dynamically changed to suit the expectations of users 
working under different platforms and operating systems. It’s even possible (albeit difficult) 
to invent your own look and feel. You can find some of these on the Web.3  

Despite all of its positive aspects, Swing is not for everyone nor has it solved all the user 
interface problems that its designers intended. At the end of the chapter, we’ll look at two 
alternative solutions to Swing: the IBM-sponsored SWT, developed for the Eclipse editor but 
freely available as an open-source, standalone GUI library, and Macromedia’s Flex tool for 
developing Flash client-side front ends for Web applications.  

                                                            
3 My favorite example of this is Ken Arnold’s "Napkin" look and feel, which makes the windows look like they were 
scribbled on a napkin. See http://napkinlaf.sourceforge.net. 



 

Applets  
When Java first appeared, much of the brouhaha around the language came from the applet, 
a program that can be delivered across the Internet to run (inside a so-called sandbox, for 
security) in a Web browser. People foresaw the Java applet as the next stage in the evolution 
of the Internet, and many of the original books on Java assumed that the reason you were 
interested in the language was that you wanted to write applets.  

For various reasons, this revolution never happened. A large part of the problem was that 
most machines don’t include the necessary Java software to run applets, and downloading 
and installing a 10 MB package in order to run something you’ve casually encountered on the 
Web is not something most users are willing to do. Many users are even frightened by the 
idea. Java applets as a client-side application delivery system never achieved critical mass, 
and although you will still occasionally see an applet, they have generally been relegated to 
the backwaters of computing.  

This doesn’t mean that applets are not an interesting and valuable technology. If you are in a 
situation where you can ensure that users have a JRE installed (such as inside a corporate 
environment), then applets (or JNLP/Java Web Start, described later in this chapter) might 
be the perfect way to distribute client programs and automatically update everyone’s 
machine without the usual cost and effort of distributing and installing new software.  

You’ll find an introduction to the technology of applets in the online supplements to this 
book at www.MindView.net.  

Swing basics  
Most Swing applications will be built inside a basic JFrame, which creates the window in 
whatever operating system you’re using. The title of the window can be set using the 
JFrame constructor, like this:  

//: gui/HelloSwing.java 
import javax.swing.*; 
 
public class HelloSwing { 
  public static void main(String[] args) { 
    JFrame frame = new JFrame("Hello Swing"); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    frame.setSize(300, 100); 
    frame.setVisible(true); 
  } 
} ///:~ 

setDefaultCloseOperation( ) tells the JFrame what to do when the user executes a 
shutdown maneuver. The EXIT_ON_CLOSE constant tells it to exit the program. Without 
this call, the default behavior is to do nothing, so the application wouldn’t close.  

setSize( ) sets the size of the window in pixels.  

Notice the last line:  

frame.setVisible(true); 

Without this, you won’t see anything on the screen.  

Graphical User Interfaces 935 



 

936 Thinking in Java Bruce Eckel 

We can make things a little more interesting by adding a JLabel to the JFrame:  

//: gui/HelloLabel.java 
import javax.swing.*; 
import java.util.concurrent.*; 
 
public class HelloLabel { 
  public static void main(String[] args) throws Exception { 
    JFrame frame = new JFrame("Hello Swing"); 
    JLabel label = new JLabel("A Label"); 
    frame.add(label); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    frame.setSize(300, 100); 
    frame.setVisible(true); 
    TimeUnit.SECONDS.sleep(1); 
    label.setText("Hey! This is Different!"); 
  } 
} ///:~ 

After one second, the text of the JLabel changes. While this is entertaining and safe for such 
a trivial program, it’s really not a good idea for the main( ) thread to write directly to the 
GUI components. Swing has its own thread dedicated to receiving UI events and updating 
the screen. If you start manipulating the screen with other threads, you can have the 
collisions and deadlock described in the Concurrency chapter.  

Instead, other threads—like main( ), here—should submit tasks to be executed by the Swing 
event dispatch thread.4

 You do this by handing a task to SwingUtilities.invokeLater( ), 
which puts it on the event queue to be (eventually) executed by the event dispatch thread. If 
we do this with the previous example, it looks like this:  

//: gui/SubmitLabelManipulationTask.java 
import javax.swing.*; 
import java.util.concurrent.*; 
 
public class SubmitLabelManipulationTask { 
  public static void main(String[] args) throws Exception { 
    JFrame frame = new JFrame("Hello Swing"); 
    final JLabel label = new JLabel("A Label"); 
    frame.add(label); 
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    frame.setSize(300, 100); 
    frame.setVisible(true); 
    TimeUnit.SECONDS.sleep(1); 
    SwingUtilities.invokeLater(new Runnable() { 
      public void run() { 
        label.setText("Hey! This is Different!"); 
      } 
    }); 
  } 
} ///:~ 

Now you are no longer manipulating the JLabel directly. Instead, you submit a Runnable, 
and the event dispatch thread will do the actual manipulation, when it gets to that task in the 
event queue. And when it’s executing this Runnable, it’s not doing anything else, so there 
won’t be any collisions—if all the code in your program follows this approach of submitting 
manipulations through SwingUtilities.invokeLater( ). This includes starting the program 
itself—main( ) should not call the Swing methods as it does in the above program, but 

                                                            
4 Technically, the event dispatch thread comes from the AWT library. 



 

Graphical User Interfaces 937 

instead should submit a task to the event queue.5
 So the properly written program will look 

something like this:  

//: gui/SubmitSwingProgram.java 
import javax.swing.*; 
import java.util.concurrent.*; 
 
public class SubmitSwingProgram extends JFrame { 
  JLabel label; 
  public SubmitSwingProgram() { 
    super("Hello Swing"); 
    label = new JLabel("A Label"); 
    add(label); 
    setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    setSize(300, 100); 
    setVisible(true); 
  } 
  static SubmitSwingProgram ssp; 
  public static void main(String[] args) throws Exception { 
    SwingUtilities.invokeLater(new Runnable() { 
      public void run() { ssp = new SubmitSwingProgram(); } 
    }); 
    TimeUnit.SECONDS.sleep(1); 
    SwingUtilities.invokeLater(new Runnable() { 
      public void run() { 
        ssp.label.setText("Hey! This is Different!"); 
      } 
    }); 
  } 
} ///:~ 

Notice that the call to sleep( ) is not inside the constructor. If you put it there, the original 
JLabel text never appears, for one thing, because the constructor doesn’t complete until 
after the sleep( ) finishes and the new label is inserted. But if sleep( ) is inside the 
constructor, or inside any UI operation, it means that you’re halting the event dispatch 
thread during the sleep( ), which is generally a bad idea.  

Exercise 1:   (1) Modify HelloSwing.java to prove to yourself that the application will 
not close without the call to setDefaultCloseOperation( ).  

Exercise 2:   (2) Modify HelloLabel.java to show that label addition is dynamic, by 
adding a random number of labels.  

A display framework 

We can combine the ideas above and reduce redundant code by creating a display framework 
for use in the Swing examples in the rest of this chapter:  

//: net/mindview/util/SwingConsole.java 
// Tool for running Swing demos from the 
// console, both applets and JFrames. 
package net.mindview.util; 
import javax.swing.*; 
 
public class SwingConsole { 
  public static void 

                                                            
5 This practice was added in Java SE5, so you will see lots of older programs that don’t do it. That doesn’t mean the 
authors were ignorant. The suggested practices seem to be constantly evolving. 



 

  run(final JFrame f, final int width, final int height) { 
    SwingUtilities.invokeLater(new Runnable() { 
      public void run() { 
        f.setTitle(f.getClass().getSimpleName()); 
        f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
        f.setSize(width, height); 
        f.setVisible(true); 
      } 
    }); 
  } 
} ///:~ 

This is a tool you may want to use yourself, so it’s placed in the library net.mindview.util. 
To use it, your application must be in a JFrame (which all the examples in this book are). 
The static run( ) method sets the title of the window to the simple class name of the 
JFrame.  

Exercise 3:   (3) Modify SubmitSwingProgram.java so that it uses SwingConsole.  

Making a button 
Making a button is quite simple: You just call the JButton constructor with the label you 
want on the button. You’ll see later that you can do fancier things, like putting graphic images 
on buttons.  

Usually, you’ll want to create a field for the button inside your class so that you can refer to it 
later.  

The JButton is a component—its own little window—that will automatically get repainted as 
part of an update. This means that you don’t explicitly paint a button or any other kind of 
control; you simply place them on the form and let them automatically take care of painting 
themselves. You’ll usually place a button on a form inside the constructor:  

//: gui/Button1.java 
// Putting buttons on a Swing application. 
import javax.swing.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Button1 extends JFrame { 
  private JButton 
    b1 = new JButton("Button 1"), 
    b2 = new JButton("Button 2"); 
  public Button1() { 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
  } 
  public static void main(String[] args) { 
    run(new Button1(), 200, 100); 
  } 
} ///:~ 

Something new has been added here: Before any elements are placed on the JFrame, it is 
given a "layout manager," of type FlowLayout. The layout manager is the way that the pane 
implicitly decides where to place controls on a form. The normal behavior of a JFrame is to 
use the BorderLayout, but that won’t work here because (as you will learn later in this 
chapter) it defaults to covering each control entirely with every new one that is added. 

938 Thinking in Java Bruce Eckel 



 

However, FlowLayout causes the controls to flow evenly onto the form, left to right and top 
to bottom.  

Exercise 4:   (1) Verify that without the setLayout( ) call in Buttoni.java, only one 
button will appear in the resulting program.  

Capturing an event 
If you compile and run the preceding program, nothing happens when you press the buttons. 
This is where you must step in and write some code to determine what will happen. The basis 
of event-driven programming, which comprises a lot of what a GUI is about, is connecting 
events to the code that responds to those events.  

The way this is accomplished in Swing is by cleanly separating the interface (the graphical 
components) from the implementation (the code that you want to run when an event 
happens to a component). Each Swing component can report all the events that might 
happen to it, and it can report each kind of event individually. So if you’re not interested in, 
for example, whether the mouse is being moved over your button, you don’t register your 
interest in that event. It’s a very straightforward and elegant way to handle event-driven 
programming, and once you understand the basic concepts, you can easily use Swing 
components that you haven’t seen before—in fact, this model extends to anything that can be 
classified as a JavaBean (discussed later in the chapter).  

At first, we will just focus on the main event of interest for the components being used. In the 
case of a JButton, this "event of interest" is that the button is pressed. To register your 
interest in a button press, you call the JButton’s addActionListener( ) method. This 
method expects an argument that is an object that implements the ActionListener 
interface. That interface contains a single method called actionPerformed( ). So to attach 
code to a JButton, implement the ActionListener interface in a class, and register an 
object of that class with the JButton via addActionListener( ). The 
actionPerformed( ) method will then be called when the button is pressed (this is 
normally referred to as a callback).  

But what should the result of pressing that button be? We’d like to see something change on 
the screen, so a new Swing component will be introduced: the JTextField. This is a place 
where text can be typed by the end user or, in this case, inserted by the program. Although 
there are a number of ways to create a JTextField, the simplest is just to tell the constructor 
how wide you want that field to be. Once the JTextField is placed on the form, you can 
modify its contents by using the setText( ) method (there are many other methods in 
JTextField, but you must look these up in the JDK documentation from 
http://java.sun.com). Here is what it looks like:  

//: gui/Button2.java 
// Responding to button presses. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Button2 extends JFrame { 
  private JButton 
    b1 = new JButton("Button 1"), 
    b2 = new JButton("Button 2"); 
  private JTextField txt = new JTextField(10); 
  class ButtonListener implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      String name = ((JButton)e.getSource()).getText(); 
      txt.setText(name); 

Graphical User Interfaces 939 



 

    } 
  } 
  private ButtonListener bl = new ButtonListener(); 
  public Button2() { 
    b1.addActionListener(bl); 
    b2.addActionListener(bl); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
    add(txt); 
  } 
  public static void main(String[] args) { 
    run(new Button2(), 200, 150); 
  } 
} ///:~ 

Creating a JTextField and placing it on the canvas takes the same steps as for JButtons or 
for any Swing component. The difference in the preceding program is in the creation of the 
aforementioned ActionListener class ButtonListener. The argument to 
actionPerformed( ) is of type ActionEvent, which contains all the information about the 
event and where it came from. In this case, I wanted to describe the button that was pressed; 
getSource( ) produces the object where the event originated, and I assumed (using a cast) 
that the object is a JButton. getText( ) returns the text that’s on the button, and this is 
placed in the JTextField to prove that the code was actually called when the button was 
pressed.  

In the constructor, addActionListener( ) is used to register the ButtonListener object 
with both the buttons.  

It is often more convenient to code the ActionListener as an anonymous inner class, 
especially since you tend to use only a single instance of each listener class. Button2.java 
can be modified to use an anonymous inner class as follows:  

//: gui/Button2b.java 
// Using anonymous inner classes. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Button2b extends JFrame { 
  private JButton 
    b1 = new JButton("Button 1"), 
    b2 = new JButton("Button 2"); 
  private JTextField txt = new JTextField(10); 
  private ActionListener bl = new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      String name = ((JButton)e.getSource()).getText(); 
      txt.setText(name); 
    } 
  }; 
  public Button2b() { 
    b1.addActionListener(bl); 
    b2.addActionListener(bl); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
    add(txt); 
  } 
  public static void main(String[] args) { 
    run(new Button2b(), 200, 150); 

940 Thinking in Java Bruce Eckel 



 

  } 
} ///:~ 

The approach of using an anonymous inner class will be preferred (when possible) for the 
examples in this book.  

Exercise 5:   (4) Create an application using the SwingConsole class. Include one text 
field and three buttons. When you press each button, make different text appear in the text 
field.  

Text areas 
A JTextArea is like a JTextField except that it can have multiple lines and has more 
functionality. A particularly useful method is append( ); with this you can easily pour 
output into the JTextArea. Because you can scroll backwards, this is an improvement over 
command-line programs that print to standard output. As an example, the following program 
fills a JTextArea with the output from the Countries generator in the Containers in Depth 
chapter:  

//: gui/TextArea.java 
// Using the JTextArea control. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
import net.mindview.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TextArea extends JFrame { 
  private JButton 
    b = new JButton("Add Data"), 
    c = new JButton("Clear Data"); 
  private JTextArea t = new JTextArea(20, 40); 
  private Map<String,String> m = 
    new HashMap<String,String>(); 
  public TextArea() { 
    // Use up all the data: 
    m.putAll(Countries.capitals()); 
    b.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        for(Map.Entry me : m.entrySet()) 
          t.append(me.getKey() + ": "+ me.getValue()+"\n"); 
      } 
    }); 
    c.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        t.setText(""); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(new JScrollPane(t)); 
    add(b); 
    add(c); 
  } 
  public static void main(String[] args) { 
    run(new TextArea(), 475, 425); 
  } 
} ///:~ 

Graphical User Interfaces 941 



 

In the constructor, the Map is filled with all the countries and their capitals. Note that for 
both buttons, the ActionListener is created and added without defining an intermediate 
variable, since you never need to refer to that listener again during the program. The "Add 
Data" button formats and appends all the data, and the "Clear Data" button uses setText( ) 
to remove all the text from the JTextArea.  

As the JTextArea is added to the JFrame, it is wrapped in a JScrollPane to control 
scrolling when too much text is placed on the screen. That’s all you must do in order to 
produce full scrolling capabilities. Having tried to figure out how to do the equivalent in some 
other GUI programming environments, I am very impressed with the simplicity and good 
design of components like JScrollPane.  

Exercise 6:   (7) Turn strings/TestRegularExpression.java into an interactive Swing 
program that allows you to put an input string in one JTextArea and a regular expression in 
a JTextField. The results should be displayed in a second JTextArea.  

Exercise 7:   (5) Create an application using SwingConsole, and add all the Swing 
components that have an addActionListener( ) method. (Look these up in the JDK 
documentation from http://java.sun.com. Hint: Search for addActionListener( ) using 
the index.) Capture their events and display an appropriate message for each inside a text 
field.  

Exercise 8:   (6) Almost every Swing component is derived from Component, which has 
a setCursor( ) method. Look this up in the JDK documentation. Create an application and 
change the cursor to one of the stock cursors in the Cursor class.  

Controlling layout 
The way that you place components on a form in Java is probably different from any other 
GUI system you’ve used. First, it’s all code; there are no "resources" that control placement of 
components. Second, the way components are placed on a form is controlled not by absolute 
positioning but by a "layout manager" that decides how the components lie based on the 
order that you add( ) them. The size, shape, and placement of components will be 
remarkably different from one layout manager to another. In addition, the layout managers 
adapt to the dimensions of your applet or application window, so if the window dimension is 
changed, the size, shape, and placement of the components can change in response.  

JApplet, JFrame, JWindow, JDialog, JPanel, etc., can all contain and display 
Components. In Container, there’s a method called setLayout( ) that allows you to 
choose a different layout manager. In this section we’ll explore the various layout managers 
by placing buttons in them (since that’s the simplest thing to do). These examples won’t 
capture the button events because they are only intended to show how the buttons are laid 
out.  

BorderLayout 

Unless you tell it otherwise, a JFrame will use BorderLayout as its default layout scheme. 
Without any other instruction, this takes whatever you add( ) to it and places it in the 
center, stretching the object all the way out to the edges.  

BorderLayout has the concept of four border regions and a center area. When you add 
something to a panel that’s using a BorderLayout, you can use the overloaded add( ) 
method that takes a constant value as its first argument. This value can be any of the 
following:  

942 Thinking in Java Bruce Eckel 



 

BorderLayout.NORTH Top 

BorderLayout.SOUTH Bottom 

BorderLayout.EAST Right 

BorderLayout.WEST Left 

BorderLayout.CENTER Fill the middle, up to the other 
components or to the edges 

If you don’t specify an area to place the object, it defaults to CENTER.  

In this example, the default layout is used, since JFrame defaults to BorderLayout:  

//: gui/BorderLayout1.java 
// Demonstrates BorderLayout. 
import javax.swing.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class BorderLayout1 extends JFrame { 
  public BorderLayout1() { 
    add(BorderLayout.NORTH, new JButton("North")); 
    add(BorderLayout.SOUTH, new JButton("South")); 
    add(BorderLayout.EAST, new JButton("East")); 
    add(BorderLayout.WEST, new JButton("West")); 
    add(BorderLayout.CENTER, new JButton("Center")); 
  } 
  public static void main(String[] args) { 
    run(new BorderLayout1(), 300, 250); 
  } 
} ///:~ 

For every placement but CENTER, the element that you add is compressed to fit in the 
smallest amount of space along one dimension while it is stretched to the maximum along 
the other dimension. CENTER, however, spreads out in both dimensions to occupy the 
middle.  

FlowLayout 

This simply "flows" the components onto the form, from left to right until the top space is 
full, then moves down a row and continues flowing.  

Here’s an example that sets the layout manager to FlowLayout and then places buttons on 
the form. You’ll notice that with FlowLayout, the components take on their "natural" size. A 
JButton, for example, will be the size of its string.  

//: gui/FlowLayout1.java 
// Demonstrates FlowLayout. 
import javax.swing.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class FlowLayout1 extends JFrame { 
  public FlowLayout1() { 
    setLayout(new FlowLayout()); 
    for(int i = 0; i < 20; i++) 
      add(new JButton("Button " + i)); 
  } 

Graphical User Interfaces 943 



 

  public static void main(String[] args) { 
    run(new FlowLayout1(), 300, 300); 
  } 
} ///:~ 

All components will be compacted to their smallest size in a FlowLayout, so you might get a 
little bit of surprising behavior. For example, because a JLabel will be the size of its string, 
attempting to right-justify its text yields an unchanged display when using FlowLayout.  

Notice that if you resize the window, the layout manager will reflow the components 
accordingly.  

GridLayout 

A GridLayout allows you to build a table of components, and as you add them, they are 
placed left to right and top to bottom in the grid. In the constructor, you specify the number 
of rows and columns that you need, and these are laid out in equal proportions.  

//: gui/GridLayout1.java 
// Demonstrates GridLayout. 
import javax.swing.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class GridLayout1 extends JFrame { 
  public GridLayout1() { 
    setLayout(new GridLayout(7,3)); 
    for(int i = 0; i < 20; i++) 
      add(new JButton("Button " + i)); 
  } 
  public static void main(String[] args) { 
    run(new GridLayout1(), 300, 300); 
  } 
} ///:~ 

In this case there are 21 slots but only 20 buttons. The last slot is left empty because no 
"balancing" goes on with a GridLayout.  

GridBagLayout 

The GridBagLayout provides you with tremendous control in deciding exactly how the 
regions of your window will lay themselves out and reformat themselves when the window is 
resized. However, it’s also the most complicated layout manager, and is quite difficult to 
understand. It is intended primarily for automatic code generation by a GUI builder (GUI 
builders might use GridBagLayout instead of absolute placement). If your design is so 
complicated that you feel you need to use GridBagLayout, then you should be using a GUI 
builder tool to generate that design. If you feel you must know the intricate details, I’ll refer 
you to one of the dedicated Swing books as a starting point.  

As an alternative, you may want to consider TableLayout, which is not part of the Swing 
library but which can be downloaded from http://java.sun.com. This component is layered 
on top of GridBagLayout and hides most of its complexity, so it can greatly simplify this 
approach.  

 

944 Thinking in Java Bruce Eckel 



 

Absolute positioning 

It is also possible to set the absolute position of the graphical components:  

1. Set a null layout manager for your Container: setLayout(null).  
 

2. Call setBounds( ) or reshape( ) (depending on the language version) for each 
component, passing a bounding rectangle in pixel coordinates. You can do this in the 
constructor or in paint( ), depending on what you want to achieve.  

 
Some GUI builders use this approach extensively, but this is usually not the best way to 
generate code.  

BoxLayout 

Because people had so much trouble understanding and working with GridBagLayout, 
Swing also includes BoxLayout, which gives you many of the benefits of GridBagLayout 
without the complexity. You can often use it when you need to do hand-coded layouts (again, 
if your design becomes too complex, use a GUI builder that generates layouts for you). 
BoxLayout allows you to control the placement of components either vertically or 
horizontally, and to control the space between the components using something called 
"struts and glue." You can find some basic examples of BoxLayout in the online 
supplements for this book at www.MindView.net.  

The best approach? 

Swing is powerful; it can get a lot done with a few lines of code. The examples shown in this 
book are quite simple, and for learning purposes it makes sense to write them by hand. You 
can actually accomplish quite a bit by combining simple layouts. At some point, however, it 
stops making sense to hand-code GUI forms; it becomes too complicated and is not a good 
use of your programming time. The Java and Swing designers oriented the language and 
libraries to support GUI-building tools, which have been created for the express purpose of 
making your programming experience easier. As long as you understand what’s going on 
with layouts and how to deal with events (described next), it’s not particularly important that 
you actually know the details of how to lay out components by hand; let the appropriate tool 
do that for you (Java is, after all, designed to increase programmer productivity).  

The Swing event model 
In the Swing event model, a component can initiate ("fire") an event. Each type of event is 
represented by a distinct class. When an event is fired, it is received by one or more 
"listeners," which act on that event. Thus, the source of an event and the place where the 
event is handled can be separate. Since you typically use Swing components as they are, but 
need to write custom code that is called when the components receive an event, this is an 
excellent example of the separation of interface from implementation.  

Each event listener is an object of a class that implements a particular type of listener 
interface. So as a programmer, all you do is create a listener object and register it with the 
component that’s firing the event. This registration is performed by calling an 
addXXXListener( ) method in the event-firing component, in which "XXX" represents 
the type of event listened for. You can easily know what types of events can be handled by 
noticing the names of the "addListener" methods, and if you try to listen for the wrong 
events, you’ll discover your mistake at compile time. You’ll see later in the chapter that 

Graphical User Interfaces 945 



 

JavaBeans also use the names of the "addListener" methods to determine what events a Bean 
can handle.  

All of your event logic, then, will go inside a listener class. When you create a listener class, 
the sole restriction is that it must implement the appropriate interface. You can create a 
global listener class, but this is a situation in which inner classes tend to be quite useful, not 
only because they provide a logical grouping of your listener classes inside the UI or business 
logic classes they are serving, but also because an inner-class object keeps a reference to its 
parent object, which provides a nice way to call across class and subsystem boundaries.  

All the examples so far in this chapter have been using the Swing event model, but the 
remainder of this section will fill out the details of that model.  

Event and listener types 

All Swing components include addXXXListener( ) and removeXXXListener( ) 
methods so that the appropriate types of listeners can be added and removed from each 
component. You’ll notice that the "XXX" in each case also represents the argument for the 
method, for example, addMyListener(MyListener m). The following table includes the 
basic associated events, listeners, and methods, along with the basic components that 
support those particular events by providing the addXXXListener( ) and 
removeXXXListener( ) methods. You should keep in mind that the event model is 
designed to be extensible, so you may encounter other events and listener types that are not 
covered in this table. 

Event, listener interface, and 
add- and remove-methods 

Components supporting this 
event 

ActionEvent  
ActionListener  
addActionListener( )  
removeActionListener( ) 

JButton, JList, JTextField, 
JMenuItem and its derivatives 
including JCheckBoxMenuItem, 
JMenu, and 
JRadioButtonMenuItem 

AdjustmentEvent 
AdjustmentListener 
addAdjustmentListener( ) 
removeAdjustmentListener( ) 

JScrollbar  
and anything you create that 
implements the Adjustable 
interface 

ComponentEvent 
ComponentListener 
addComponentListener( ) 
removeComponentListener( ) 

*Component and its derivatives, 
including JButton, JCheckBox, 
JComboBox, Container, JPanel, 
JApplet, JScrollPane, Window, 
JDialog, JFileDialog, JFrame, 
JLabel, JList, JScrollbar, 
JTextArea, and JTextField 

ContainerEvent 
addContainerListener( ) 
removeContainerListener( ) 

Container and its derivatives, 
JScrollPane, Window, JDialog, 
JFileDialog, and JFrame 

FocusEvent  
FocusListener  
addFocusListener( ) 
removeFocusListener( ) 

Component and derivatives*  

KeyEvent  
KeyListener  
addKeyListener( ) 
removeKeyListener( ) 

Component and derivatives* 

946 Thinking in Java Bruce Eckel 



 

Graphical User Interfaces 947 

Event, listener interface, and 
add- and remove-methods 

Components supporting this 
event 

MouseEvent (for both clicks and 
motion)  
MouseListener  
addMouseListener( ) 
removeMouseListener( ) 

Component and derivatives* 

MouseEvent6 (for both clicks and 
motion)  
MouseMotionListener 
addMouseMotionListener( ) 
removeMouseMotionListener( ) 

Component and derivatives* 

WindowEvent  
WindowListener 
addWindowListener( )  
removeWindowListener( ) 

Window and its derivatives, 
including JDialog, JFileDialog,  
and JFrame 

ItemEvent  
ItemListener  
addItemListener( ) 
removeItemListener( ) 

JCheckBox,  
JCheckBoxMenuItem,  
JComboBox, JList, and anything  
that implements the  
ItemSelectable interface 

TextEvent  
TextListener  
addTextListener( ) 
removeTextListener( ) 

Anything derived from 
JTextComponent, including 
JTextArea and JTextField 

You can see that each type of component supports only certain types of events. It turns out to 
be rather tedious to look up all the events supported by each component. A simpler approach 
is to modify the ShowMethods.java program from the Type Information chapter so that it 
displays all the event listeners supported by any Swing component that you enter.  

The Type Information chapter introduced reflection and used that feature to look up 
methods for a particular class—either the entire list of methods or a subset of those whose 
names match a keyword that you provide. The magic of reflection is that it can automatically 
show you all the methods for a class without forcing you to walk up the inheritance 
hierarchy, examining the base classes at each level. Thus, it provides a valuable timesaving 
tool for programming; because the names of most Java methods are made nicely verbose and 
descriptive, you can search for the method names that contain a particular word of interest. 
When you find what you think you’re looking for, check the JDK documentation.  

Here is the more useful GUI version of ShowMethods.java, specialized to look for the 
"addListener" methods in Swing components:  

//: gui/ShowAddListeners.java 
// Display the "addXXXListener" methods of any Swing class. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.lang.reflect.*; 
import java.util.regex.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class ShowAddListeners extends JFrame { 

                                                            
6 There is no MouseMotionEvent even though it seems like there ought to be. Clicking and motion is combined into 
MouseEvent, so this second appearance of MouseEvent in the table is not an error. 



 

  private JTextField name = new JTextField(25); 
  private JTextArea results = new JTextArea(40, 65); 
  private static Pattern addListener = 
    Pattern.compile("(add\\w+?Listener\\(.*?\\))"); 
  private static Pattern qualifier = 
    Pattern.compile("\\w+\\."); 
  class NameL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      String nm = name.getText().trim(); 
      if(nm.length() == 0) { 
        results.setText("No match"); 
        return; 
      } 
      Class<?> kind; 
      try { 
        kind = Class.forName("javax.swing." + nm); 
      } catch(ClassNotFoundException ex) { 
        results.setText("No match"); 
        return; 
      } 
      Method[] methods = kind.getMethods(); 
      results.setText(""); 
      for(Method m : methods) { 
        Matcher matcher = 
          addListener.matcher(m.toString()); 
        if(matcher.find()) 
          results.append(qualifier.matcher( 
            matcher.group(1)).replaceAll("") + "\n"); 
      } 
    } 
  } 
  public ShowAddListeners() { 
    NameL nameListener = new NameL(); 
    name.addActionListener(nameListener); 
    JPanel top = new JPanel(); 
    top.add(new JLabel("Swing class name (press Enter):")); 
    top.add(name); 
    add(BorderLayout.NORTH, top); 
    add(new JScrollPane(results)); 
    // Initial data and test: 
    name.setText("JTextArea"); 
    nameListener.actionPerformed( 
      new ActionEvent("", 0 ,"")); 
  } 
  public static void main(String[] args) { 
    run(new ShowAddListeners(), 500, 400); 
  } 
} ///:~ 

You enter the Swing class name that you want to look up in the name JTextField. The 
results are extracted using regular expressions, and displayed in a JTextArea.  

You’ll notice that there are no buttons or other components to indicate that you want the 
search to begin. That’s because the JTextField is monitored by an ActionListener. 
Whenever you make a change and press Enter, the list is immediately updated. If the text 
field isn’t empty, it is used inside Class.forName( ) to try to look up the class. If the name 
is incorrect, Class.forName( ) will fail, which means that it throws an exception. This is 
trapped, and the JTextArea is set to "No match." But if you type in a correct name 
(capitalization counts), Class.forName( ) is successful, and getMethods( ) will return an 
array of Method objects.  

948 Thinking in Java Bruce Eckel 



 

Two regular expressions are used here. The first, addListener, looks for "add" followed by 
any word characters, followed by "Listener" and the argument list in parentheses. Notice that 
this whole regular expression is surrounded by non-escaped parentheses, which means it will 
be accessible as a regular expression "group" when it matches. Inside 
NameL.ActionPerformed( ), a Matcher is created by passing each Method object to 
the Pattern.matcher( ) method. When find( ) is called for this Matcher object, it returns 
true only if a match occurs, and in that case you can select the first matching parenthesized 
group by calling group(1). This string still contains qualifiers, so to strip them off, the 
qualifier Pattern object is used just as it was in ShowMethods.java.  

At the end of the constructor, an initial value is placed in name and the action event is run to 
provide a test with initial data.  

This program is a convenient way to investigate the capabilities of a Swing component. Once 
you know which events a particular component supports, you don’t need to look anything up 
to react to that event. You simply:  

1. Take the name of the event class and remove the word "Event." Add the word 
"Listener" to what remains. This is the listener interface you must implement in your 
inner class.  
 

2. Implement the interface above and write out the methods for the events you want to 
capture. For example, you might be looking for mouse movements, so you write code 
for the mouseMoved( ) method of the MouseMotionListener interface. (You 
must implement the other methods, of course, but there’s often a shortcut for this, 
which you’ll see soon.)  
 

3. Create an object of the listener class in Step 2. Register it with your component with 
the method produced by prefixing "add" to your listener name. For example, 
addMouseMotionListener( ).  
 

Here are some of the listener interfaces:  

Listener interface 
w/ adapter 

Methods in interface 

ActionListener actionPerformed(ActionEvent) 

AdjustmentListener adjustmentValueChanged( 
AdjustmentEvent) 

ComponentListener 
ComponentAdapter 

componentHidden(ComponentEvent) 
componentShown(ComponentEvent) 
componentMoved(ComponentEvent) 
componentResized(ComponentEvent) 

ContainerListener 
ContainerAdapter 

componentAdded(ContainerEvent) 
componentRemoved(ContainerEvent) 

FocusListener 
FocusAdapter 

focusGained(FocusEvent) 
focusLost(FocusEvent) 

KeyListener 
KeyAdapter 

keyPressed(KeyEvent) 
keyReleased(KeyEvent) 
keyTyped(KeyEvent) 

MouseListener 
MouseAdapter 

mouseClicked(MouseEvent) 
mouseEntered(MouseEvent) 
mouseExited(MouseEvent) 
mousePressed(MouseEvent) 
mouseReleased(MouseEvent) 

Graphical User Interfaces 949 



 

950 Thinking in Java Bruce Eckel 

Listener interface 
w/ adapter 

Methods in interface 

MouseMotionListener 
MouseMotionAdapter 

mouseDragged(MouseEvent) 
mouseMoved(MouseEvent) 

WindowListener 
WindowAdapter 

windowOpened(WindowEvent) 
windowClosing(WindowEvent) 
windowClosed(WindowEvent) 
windowActivated(WindowEvent) 
windowDeactivated(WindowEvent) 
windowIconified(WindowEvent) 
windowDeiconified(WindowEvent) 

ItemListener itemStateChanged(ItemEvent) 

This is not an exhaustive listing, partly because the event model allows you to create your 
own event types and associated listeners. Thus, you’ll regularly come across libraries that 
have invented their own events, and the knowledge gained in this chapter will allow you to 
figure out how to use these events.  

Using listener adapters for simplicity 

In the table above, you can see that some listener interfaces have only one method. These are 
trivial to implement. However, the listener interfaces that have multiple methods can be less 
pleasant to use. For example, if you want to capture a mouse click (that isn’t already captured 
for you, for example, by a button), then you need to write a method for mouseClicked( ). 
But since MouseListener is an interface, you must implement all of the other methods 
even if they don’t do anything. This can be annoying.  

To solve the problem, some (but not all) of the listener interfaces that have more than one 
method are provided with adapters, the names of which you can see in the table above. Each 
adapter provides default empty methods for each of the interface methods. When you inherit 
from the adapter, you override only the methods you need to change. For example, the 
typical MouseListener you’ll use looks like this:  

class MyMouseListener extends MouseAdapter { 
  public void mouseClicked(MouseEvent e) { 
    // Respond to mouse click... 
  } 
} 

The whole point of the adapters is to make the creation of listener classes easy.  

There is a downside to adapters, however, in the form of a pitfall. Suppose you write a 
MouseAdapter like the previous one:  

class MyMouseListener extends MouseAdapter { 
  public void MouseClicked(MouseEvent e) { 
    // Respond to mouse click... 
  } 
} 

This doesn’t work, but it will drive you crazy trying to figure out why, since everything will 
compile and run fine—except that your method won’t be called for a mouse click. Can you see 
the problem? It’s in the name of the method: MouseClicked( ) instead of mouseClicked( 
). A simple slip in capitalization results in the addition of a completely new method. 
However, this is not the method that’s called when the mouse is clicked, so you don’t get the 



 

Graphical User Interfaces 951 

desired results. Despite the inconvenience, an interface will guarantee that the methods are 
properly implemented.  

An improved alternative way to guarantee that you are in fact overriding a method is to use 
the built-in @Override annotation in the code above.  

Exercise 9:   (5) Starting with ShowAddListeners.java, create a program with the full 
functionality of typeinfo.ShowMethods.java.  

Tracking multiple events 

To prove to yourself that these events are in fact being fired, it’s worth creating a program 
that tracks behavior in a JButton beyond whether it has been pressed. This example also 
shows you how to inherit your own button object from JButton.7

  

In the code below, the MyButton class is an inner class of TrackEvent, so MyButton can 
reach into the parent window and manipulate its text fields, which is necessary in order to 
write the status information into the fields of the parent. Of course, this is a limited solution, 
since MyButton can be used only in conjunction with TrackEvent. This kind of code is 
sometimes called "highly coupled":  

//: gui/TrackEvent.java 
// Show events as they happen. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TrackEvent extends JFrame { 
  private HashMap<String,JTextField> h = 
    new HashMap<String,JTextField>(); 
  private String[] event = { 
    "focusGained", "focusLost", "keyPressed", 
    "keyReleased", "keyTyped", "mouseClicked", 
    "mouseEntered", "mouseExited", "mousePressed", 
    "mouseReleased", "mouseDragged", "mouseMoved" 
  }; 
  private MyButton 
    b1 = new MyButton(Color.BLUE, "test1"), 
    b2 = new MyButton(Color.RED, "test2"); 
  class MyButton extends JButton { 
    void report(String field, String msg) { 
      h.get(field).setText(msg); 
    } 
    FocusListener fl = new FocusListener() { 
      public void focusGained(FocusEvent e) { 
        report("focusGained", e.paramString()); 
      } 
      public void focusLost(FocusEvent e) { 
        report("focusLost", e.paramString()); 
      } 
    }; 
    KeyListener kl = new KeyListener() { 
      public void keyPressed(KeyEvent e) { 
        report("keyPressed", e.paramString()); 

                                                            
7 In Java 1.0/1.1 you could not usefully inherit from the button object. This was only one of numerous fundamental design 
flaws. 



 

      } 
      public void keyReleased(KeyEvent e) { 
        report("keyReleased", e.paramString()); 
      } 
      public void keyTyped(KeyEvent e) { 
        report("keyTyped", e.paramString()); 
      } 
    }; 
    MouseListener ml = new MouseListener() { 
      public void mouseClicked(MouseEvent e) { 
        report("mouseClicked", e.paramString()); 
      } 
      public void mouseEntered(MouseEvent e) { 
        report("mouseEntered", e.paramString()); 
      } 
      public void mouseExited(MouseEvent e) { 
        report("mouseExited", e.paramString()); 
      } 
      public void mousePressed(MouseEvent e) { 
        report("mousePressed", e.paramString()); 
      } 
      public void mouseReleased(MouseEvent e) { 
        report("mouseReleased", e.paramString()); 
      } 
    }; 
    MouseMotionListener mml = new MouseMotionListener() { 
      public void mouseDragged(MouseEvent e) { 
        report("mouseDragged", e.paramString()); 
      } 
      public void mouseMoved(MouseEvent e) { 
        report("mouseMoved", e.paramString()); 
      } 
    }; 
    public MyButton(Color color, String label) { 
      super(label); 
      setBackground(color); 
      addFocusListener(fl); 
      addKeyListener(kl); 
      addMouseListener(ml); 
      addMouseMotionListener(mml); 
    } 
  } 
  public TrackEvent() { 
    setLayout(new GridLayout(event.length + 1, 2)); 
    for(String evt : event) { 
      JTextField t = new JTextField(); 
      t.setEditable(false); 
      add(new JLabel(evt, JLabel.RIGHT)); 
      add(t); 
      h.put(evt, t); 
    } 
    add(b1); 
    add(b2); 
  } 
  public static void main(String[] args) { 
    run(new TrackEvent(), 700, 500); 
  } 
} ///:~ 

In the MyButton constructor, the button’s color is set with a call to SetBackground( ). 
The listeners are all installed with simple method calls.  

952 Thinking in Java Bruce Eckel 



 

The TrackEvent class contains a HashMap to hold the strings representing the type of 
event and JTextFields where information about that event is held. Of course, these could 
have been created statically rather than putting them in a HashMap, but I think you’ll agree 
that it’s a lot easier to use and change. In particular, if you need to add or remove a new type 
of event in TrackEvent, you simply add or remove a string in the event array— everything 
else happens automatically.  

When report( ) is called, it is given the name of the event and the parameter string from the 
event. It uses the HashMap h in the outer class to look up the actual JTextField associated 
with that event name and then places the parameter string into that field.  

This example is fun to play with because you can really see what’s going on with the events in 
your program.  

Exercise 10:   (6) Create an application using SwingConsole, with a JButton and a 
JTextField. Write and attach the appropriate listener so that if the button has the focus, 
characters typed into it will appear in the JTextField.  

Exercise 11:   (4) Inherit a new type of button from JButton. Each time you press this 
button, it should change its color to a randomly selected value. See ColorBoxes.java (later 
in this chapter) for an example of how to generate a random color value.  

Exercise 12:   (4) Monitor a new type of event in TrackEvent.java by adding the new 
event-handling code. You’ll need to discover on your own the type of event that you want to 
monitor.  

A selection of Swing components 
Now that you understand layout managers and the event model, you’re ready to see how 
Swing components can be used. This section is a non-exhaustive tour of the Swing 
components and features that you’ll probably use most of the time. Each example is intended 
to be reasonably small so that you can easily lift the code and use it in your own programs.  

Keep in mind:  

1. You can easily see what each of these examples looks like during execution by 
compiling and running the downloadable source code for this chapter 
(www.MindView.net).  
 

2. The JDK documentation from http://java.sun.com contains all of the Swing classes 
and methods (only a few are shown here).  

 
3. Because of the naming convention used for Swing events, it’s fairly easy to guess how 

to write and install a handler for a particular type of event. Use the lookup program 
ShowAddListeners.java from earlier in this chapter to aid in your investigation of 
a particular component.  

 
4. When things start to get complicated you should graduate to a GUI builder.  

Buttons 

Swing includes a number of different types of buttons. All buttons, check boxes, radio 
buttons, and even menu items are inherited from AbstractButton (which, since menu 
items are included, would probably have been better named "AbstractSelector" or something 

Graphical User Interfaces 953 



 

equally general). You’ll see the use of menu items shortly, but the following example shows 
the various types of buttons available:  

//: gui/Buttons.java 
// Various Swing buttons. 
import javax.swing.*; 
import javax.swing.border.*; 
import javax.swing.plaf.basic.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Buttons extends JFrame { 
  private JButton jb = new JButton("JButton"); 
  private BasicArrowButton 
    up = new BasicArrowButton(BasicArrowButton.NORTH), 
    down = new BasicArrowButton(BasicArrowButton.SOUTH), 
    right = new BasicArrowButton(BasicArrowButton.EAST), 
    left = new BasicArrowButton(BasicArrowButton.WEST); 
  public Buttons() { 
    setLayout(new FlowLayout()); 
    add(jb); 
    add(new JToggleButton("JToggleButton")); 
    add(new JCheckBox("JCheckBox")); 
    add(new JRadioButton("JRadioButton")); 
    JPanel jp = new JPanel(); 
    jp.setBorder(new TitledBorder("Directions")); 
    jp.add(up); 
    jp.add(down); 
    jp.add(left); 
    jp.add(right); 
    add(jp); 
  } 
  public static void main(String[] args) { 
    run(new Buttons(), 350, 200); 
  } 
} ///:~ 

This begins with the BasicArrowButton from javax.swing.plaf.basic, then continues 
with the various specific types of buttons. When you run the example, you’ll see that the 
toggle button holds its last position, in or out. But the check boxes and radio buttons behave 
identically to each other, just clicking on or off (they are inherited from JToggleButton).  

Button groups 

If you want radio buttons to behave in an "exclusive or" fashion, you must add them to a 
"button group." But, as the following example demonstrates, any AbstractButton can be 
added to a ButtonGroup.  

To avoid repeating a lot of code, this example uses reflection to generate the groups of 
different types of buttons. This is seen in makeBPanel( ), which creates a button group in a 
JPanel. The second argument to makeBPanel( ) is an array of String. For each String, a 
button of the class represented by the first argument is added to the JPanel:  

//: gui/ButtonGroups.java 
// Uses reflection to create groups 
// of different types of AbstractButton. 
import javax.swing.*; 
import javax.swing.border.*; 
import java.awt.*; 
import java.lang.reflect.*; 

954 Thinking in Java Bruce Eckel 



 

import static net.mindview.util.SwingConsole.*; 
 
public class ButtonGroups extends JFrame { 
  private static String[] ids = { 
    "June", "Ward", "Beaver", "Wally", "Eddie", "Lumpy" 
  }; 
  static JPanel makeBPanel( 
    Class<? extends AbstractButton> kind, String[] ids) { 
    ButtonGroup bg = new ButtonGroup(); 
    JPanel jp = new JPanel(); 
    String title = kind.getName(); 
    title = title.substring(title.lastIndexOf(‘.’) + 1); 
    jp.setBorder(new TitledBorder(title)); 
    for(String id : ids) { 
      AbstractButton ab = new JButton("failed"); 
      try { 
        // Get the dynamic constructor method 
        // that takes a String argument: 
        Constructor ctor = 
          kind.getConstructor(String.class); 
        // Create a new object: 
        ab = (AbstractButton)ctor.newInstance(id); 
      } catch(Exception ex) { 
        System.err.println("can’t create " + kind); 
      } 
      bg.add(ab); 
      jp.add(ab); 
    } 
    return jp; 
  } 
  public ButtonGroups() { 
    setLayout(new FlowLayout()); 
    add(makeBPanel(JButton.class, ids)); 
    add(makeBPanel(JToggleButton.class, ids)); 
    add(makeBPanel(JCheckBox.class, ids)); 
    add(makeBPanel(JRadioButton.class, ids)); 
  } 
  public static void main(String[] args) { 
    run(new ButtonGroups(), 500, 350); 
  } 
} ///:~ 

The title for the border is taken from the name of the class, stripping off all the path 
information. The AbstractButton is initialized to a JButton that has the label "failed," so 
if you ignore the exception message, you’ll still see the problem on the screen. The 
getConstructor( ) method produces a Constructor object that takes the array of 
arguments of the types in the list of Classes passed to getConstructor( ). Then all you do is 
call newInstance( ), passing it a list of arguments—in this case, just the String from the 
ids array.  

To get "exclusive or" behavior with buttons, you create a button group and add each button 
for which you want that behavior to the group. When you run the program, you’ll see that all 
the buttons except JButton exhibit this "exclusive or" behavior.  

Icons 

You can use an Icon inside a JLabel or anything that inherits from AbstractButton 
(including JButton, JCheckBox, JRadioButton, and the different kinds of JMenuItem). 
Using Icons with JLabels is quite straightforward (you’ll see an example later). The following 
example explores all the additional ways you can use Icons with buttons and their descendants.  

Graphical User Interfaces 955 



 

You can use any GIF files you want, but the ones used in this example are part of this book’s code 
distribution, available at www.MindView.net. To open a file and bring in the image, simply create 
an ImageIcon and hand it the file name. From then on, you can use the resulting Icon in your 
program.  

//: gui/Faces.java 
// Icon behavior in JButtons. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Faces extends JFrame { 
  private static Icon[] faces; 
  private JButton jb, jb2 = new JButton("Disable"); 
  private boolean mad = false; 
  public Faces() { 
    faces = new Icon[]{ 
      new ImageIcon(getClass().getResource("Face0.gif")), 
      new ImageIcon(getClass().getResource("Face1.gif")), 
      new ImageIcon(getClass().getResource("Face2.gif")), 
      new ImageIcon(getClass().getResource("Face3.gif")), 
      new ImageIcon(getClass().getResource("Face4.gif")), 
    }; 
    jb = new JButton("JButton", faces[3]); 
    setLayout(new FlowLayout()); 
    jb.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        if(mad) { 
          jb.setIcon(faces[3]); 
          mad = false; 
        } else { 
          jb.setIcon(faces[0]); 
          mad = true; 
        } 
        jb.setVerticalAlignment(JButton.TOP); 
        jb.setHorizontalAlignment(JButton.LEFT); 
      } 
    }); 
    jb.setRolloverEnabled(true); 
    jb.setRolloverIcon(faces[1]); 
    jb.setPressedIcon(faces[2]); 
    jb.setDisabledIcon(faces[4]); 
    jb.setToolTipText("Yow!"); 
    add(jb); 
    jb2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        if(jb.isEnabled()) { 
          jb.setEnabled(false); 
          jb2.setText("Enable"); 
        } else { 
          jb.setEnabled(true); 
          jb2.setText("Disable"); 
        } 
      } 
    }); 
    add(jb2); 
  } 
  public static void main(String[] args) { 
    run(new Faces(), 250, 125); 
  } 
} ///:~ 

956 Thinking in Java Bruce Eckel 



 

An Icon can be used as an argument for many different Swing component constructors, but 
you can also use setIcon( ) to add or change an Icon. This example also shows how a 
JButton (or any AbstractButton) can set the various different sorts of icons that appear 
when things happen to that button: when it’s pressed, disabled, or "rolled over" (the mouse 
moves over it without clicking). You’ll see that this gives the button a nice animated feel.  

Tool tips 

The previous example added a "tool tip" to the button. Almost all of the classes that you’ll be 
using to create your user interfaces are derived from JComponent, which contains a 
method called setToolTipText(String). So, for virtually anything you place on your form, 
all you need to do is say (for an object j c of any JComponent-derived class):  

jc.setToolTipText("My tip"); 

When the mouse stays over that JComponent for a predetermined period of time, a tiny 
box containing your text will pop up next to the mouse.  

Text fields 

This example shows what JTextFields can do:  

//: gui/TextFields.java 
// Text fields and Java events. 
import javax.swing.*; 
import javax.swing.event.*; 
import javax.swing.text.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TextFields extends JFrame { 
  private JButton 
    b1 = new JButton("Get Text"), 
    b2 = new JButton("Set Text"); 
  private JTextField 
    t1 = new JTextField(30), 
    t2 = new JTextField(30), 
    t3 = new JTextField(30); 
  private String s = ""; 
  private UpperCaseDocument ucd = new UpperCaseDocument(); 
  public TextFields() { 
    t1.setDocument(ucd); 
    ucd.addDocumentListener(new T1()); 
    b1.addActionListener(new B1()); 
    b2.addActionListener(new B2()); 
    t1.addActionListener(new T1A()); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
    add(t1); 
    add(t2); 
    add(t3); 
  } 
  class T1 implements DocumentListener { 
    public void changedUpdate(DocumentEvent e) {} 
    public void insertUpdate(DocumentEvent e) { 
      t2.setText(t1.getText()); 
      t3.setText("Text: "+ t1.getText()); 

Graphical User Interfaces 957 



 

    } 
    public void removeUpdate(DocumentEvent e) { 
      t2.setText(t1.getText()); 
    } 
  } 
  class T1A implements ActionListener { 
    private int count = 0; 
    public void actionPerformed(ActionEvent e) { 
      t3.setText("t1 Action Event " + count++); 
    } 
  } 
  class B1 implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      if(t1.getSelectedText() == null) 
        s = t1.getText(); 
      else 
        s = t1.getSelectedText(); 
      t1.setEditable(true); 
    } 
  } 
  class B2 implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      ucd.setUpperCase(false); 
      t1.setText("Inserted by Button 2: " + s); 
      ucd.setUpperCase(true); 
      t1.setEditable(false); 
    } 
  } 
  public static void main(String[] args) { 
    run(new TextFields(), 375, 200); 
  } 
} 
 
class UpperCaseDocument extends PlainDocument { 
  private boolean upperCase = true; 
  public void setUpperCase(boolean flag) { 
    upperCase = flag; 
  } 
  public void 
  insertString(int offset, String str, AttributeSet attSet) 
  throws BadLocationException { 
    if(upperCase) str = str.toUpperCase(); 
    super.insertString(offset, str, attSet); 
  } 
} ///:~ 

The JTextField t3 is included as a place to report when the action listener for the 
JTextField t1 is fired. You’ll see that the action listener for a JTextField is fired only when 
you press the Enter key. 

 The JTextField t1 has several listeners attached to it. The T1 listener is a 
DocumentListener that responds to any change in the "document" (the contents of the 
JTextField, in this case). It automatically copies all text from t1 into t2. In addition, t1’s 
document is set to a derived class of PlainDocument, called UpperCaseDocument, 
which forces all characters to uppercase. It automatically detects backspaces and performs 
the deletion, adjusting the caret and handling everything as you expect.  

Exercise 13:   (3) Modify TextFields.java so that the characters in t2 retain the original 
case that they were typed in, instead of automatically being forced to uppercase.  

958 Thinking in Java Bruce Eckel 



 

Borders 

JComponent contains a method called setBorder( ), which allows you to place various 
interesting borders on any visible component. The following example demonstrates a 
number of the different borders that are available, using a method called showBorder( ) 
that creates a JPanel and puts on the border in each case. Also, it uses RTTI to find the 
name of the border that you’re using (stripping off all the path information), then puts that 
name in a JLabel in the middle of the panel:  

//: gui/Borders.java 
// Different Swing borders. 
import javax.swing.*; 
import javax.swing.border.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Borders extends JFrame { 
  static JPanel showBorder(Border b) { 
    JPanel jp = new JPanel(); 
    jp.setLayout(new BorderLayout()); 
    String nm = b.getClass().toString(); 
    nm = nm.substring(nm.lastIndexOf(‘.’) + 1); 
    jp.add(new JLabel(nm, JLabel.CENTER), 
      BorderLayout.CENTER); 
    jp.setBorder(b); 
    return jp; 
  } 
  public Borders() { 
    setLayout(new GridLayout(2,4)); 
    add(showBorder(new TitledBorder("Title"))); 
    add(showBorder(new EtchedBorder())); 
    add(showBorder(new LineBorder(Color.BLUE))); 
    add(showBorder( 
      new MatteBorder(5,5,30,30,Color.GREEN))); 
    add(showBorder( 
      new BevelBorder(BevelBorder.RAISED))); 
    add(showBorder( 
      new SoftBevelBorder(BevelBorder.LOWERED))); 
    add(showBorder(new CompoundBorder( 
      new EtchedBorder(), 
      new LineBorder(Color.RED)))); 
  } 
  public static void main(String[] args) { 
    run(new Borders(), 500, 300); 
  } 
} ///:~ 

You can also create your own borders and put them inside buttons, labels, etc.—anything 
derived from JComponent.  

A mini-editor 

The JTextPane control provides a great deal of support for editing, without much effort. 
The following example makes very simple use of this component, ignoring the bulk of its 
functionality:  

//: gui/TextPane.java 
// The JTextPane control is a little editor. 
import javax.swing.*; 

Graphical User Interfaces 959 



 

import java.awt.*; 
import java.awt.event.*; 
import net.mindview.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TextPane extends JFrame { 
  private JButton b = new JButton("Add Text"); 
  private JTextPane tp = new JTextPane(); 
  private static Generator sg = 
    new RandomGenerator.String(7); 
  public TextPane() { 
    b.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        for(int i = 1; i < 10; i++) 
          tp.setText(tp.getText() + sg.next() + "\n"); 
      } 
    }); 
    add(new JScrollPane(tp)); 
    add(BorderLayout.SOUTH, b); 
  } 
  public static void main(String[] args) { 
    run(new TextPane(), 475, 425); 
  } 
} ///:~ 

The button adds randomly generated text. The intent of the JTextPane is to allow text to be 
edited in place, so you will see that there is no append( ) method. In this case (admittedly, a 
poor use of the capabilities of JTextPane), the text must be captured, modified, and placed 
back into the pane using setText( ).  

Elements are added to the JFrame using its default BorderLayout. The JTextPane is 
added (inside a JScrollPane) without specifying a region, so it just fills the center of the 
pane out to the edges. The JButton is added to the SOUTH, so the component will fit itself 
into that region; in this case, the button will nest down at the bottom of the screen.  

Notice the built-in features of JTextPane, such as automatic line wrapping. There are 
numerous other features that you can look up using the JDK documentation.  

Exercise 14:   (2) Modify TextPane.java to use a JTextArea instead of a JTextPane.  

Check boxes 

A check box provides a way to make a single on/off choice. It consists of a tiny box and a 
label. The box typically holds a little "x" (or some other indication that it is set) or is empty, 
depending on whether that item was selected.  

You’ll normally create a JCheckBox using a constructor that takes the label as an argument. 
You can get and set the state, and also get and set the label if you want to read or change it 
after the JCheckBox has been created.  

Whenever a JCheckBox is set or cleared, an event occurs, which you can capture the same 
way you do a button: by using an ActionListener. The following example uses a 
JTextArea to enumerate all the check boxes that have been checked:  

//: gui/CheckBoxes.java 
// Using JCheckBoxes. 
import javax.swing.*; 
import java.awt.*; 

960 Thinking in Java Bruce Eckel 



 

import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class CheckBoxes extends JFrame { 
  private JTextArea t = new JTextArea(6, 15); 
  private JCheckBox 
    cb1 = new JCheckBox("Check Box 1"), 
    cb2 = new JCheckBox("Check Box 2"), 
    cb3 = new JCheckBox("Check Box 3"); 
  public CheckBoxes() { 
    cb1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        trace("1", cb1); 
      } 
    }); 
    cb2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        trace("2", cb2); 
      } 
    }); 
    cb3.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        trace("3", cb3); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(new JScrollPane(t)); 
    add(cb1); 
    add(cb2); 
    add(cb3); 
  } 
  private void trace(String b, JCheckBox cb) { 
    if(cb.isSelected()) 
      t.append("Box " + b + " Set\n"); 
    else 
      t.append("Box " + b + " Cleared\n"); 
  } 
  public static void main(String[] args) { 
    run(new CheckBoxes(), 200, 300); 
  } 
} ///:~ 

The trace( ) method sends the name of the selected JCheckBox and its current state to the 
JTextArea using append( ), so you’ll see a cumulative list of the check boxes that were 
selected, along with their state.  

Exercise 15:   (5) Add a check box to the application created in Exercise 5, capture the 
event, and insert different text into the text field.  

Radio buttons 

The concept of radio buttons in GUI programming comes from pre-electronic car radios with 
mechanical buttons: When you push one in, any other buttons pop out. Thus, it allows you to 
force a single choice among many.  

To set up an associated group of JRadioButtons, you add them to a ButtonGroup (you 
can have any number of ButtonGroups on a form). One of the buttons can be optionally set 
to true (using the second argument in the constructor). If you try to set more than one radio 
button to true, then only the last one set will be true.  

Graphical User Interfaces 961 



 

Here’s a simple example of the use of radio buttons, showing event capture using an 
ActionListener:  

//: gui/RadioButtons.java 
// Using JRadioButtons. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class RadioButtons extends JFrame { 
  private JTextField t = new JTextField(15); 
  private ButtonGroup g = new ButtonGroup(); 
  private JRadioButton 
    rb1 = new JRadioButton("one", false), 
    rb2 = new JRadioButton("two", false), 
    rb3 = new JRadioButton("three", false); 
  private ActionListener al = new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      t.setText("Radio button " + 
        ((JRadioButton)e.getSource()).getText()); 
    } 
  }; 
  public RadioButtons() { 
    rb1.addActionListener(al); 
    rb2.addActionListener(al); 
    rb3.addActionListener(al); 
    g.add(rb1); g.add(rb2); g.add(rb3); 
    t.setEditable(false); 
    setLayout(new FlowLayout()); 
    add(t); 
    add(rb1); 
    add(rb2); 
    add(rb3); 
  } 
  public static void main(String[] args) { 
    run(new RadioButtons(), 200, 125); 
  } 
} ///:~ 

To display the state, a text field is used. This field is set to non-editable because it’s used only 
to display data, not to collect it. Thus it is an alternative to using a JLabel.  

Combo boxes (drop-down lists) 

Like a group of radio buttons, a drop-down list is a way to force the user to select only one 
element from a group of possibilities. However, it’s a more compact way to accomplish this, 
and it’s easier to change the elements of the list without surprising the user. (You can change 
radio buttons dynamically, but that tends to be visibly jarring.)  

By default, JComboBox box is not like the combo box in Windows, which lets you select 
from a list or type in your own selection. To produce this behavior you must call 
setEditable( ). With a JComboBox box, you choose one and only one element from the 
list. In the following example, the JComboBox box starts with a certain number of entries, 
and then new entries are added to the box when a button is pressed.  

//: gui/ComboBoxes.java 
// Using drop-down lists. 
import javax.swing.*; 
import java.awt.*; 

962 Thinking in Java Bruce Eckel 



 

import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class ComboBoxes extends JFrame { 
  private String[] description = { 
    "Ebullient", "Obtuse", "Recalcitrant", "Brilliant", 
    "Somnescent", "Timorous", "Florid", "Putrescent" 
  }; 
  private JTextField t = new JTextField(15); 
  private JComboBox c = new JComboBox(); 
  private JButton b = new JButton("Add items"); 
  private int count = 0; 
  public ComboBoxes() { 
    for(int i = 0; i < 4; i++) 
      c.addItem(description[count++]); 
    t.setEditable(false); 
    b.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        if(count < description.length) 
          c.addItem(description[count++]); 
      } 
    }); 
    c.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        t.setText("index: "+ c.getSelectedIndex() + "   " + 
         ((JComboBox)e.getSource()).getSelectedItem()); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(t); 
    add(c); 
    add(b); 
  } 
  public static void main(String[] args) { 
    run(new ComboBoxes(), 200, 175); 
  } 
} ///:~ 

The JTextField displays the "selected index," which is the sequence number of the currently 
selected element, as well as the text of the selected item in the combo box.  

List boxes 

List boxes are significantly different from JComboBox boxes, and not just in appearance. 
While a JComboBox box drops down when you activate it, a JList occupies some fixed 
number of lines on a screen all the time and doesn’t change. If you want to see the items in a 
list, you simply call getSelectedValues( ), which produces an array of String of the items 
that have been selected.  

A JList allows multiple selection; if you control-click on more than one item (holding down 
the Control key while performing additional mouse clicks), the original item stays highlighted 
and you can select as many as you want. If you select an item, then shift-click on another 
item, all the items in the span between the two are selected. To remove an item from a group, 
you can control-click it.  

//: gui/List.java 
import javax.swing.*; 
import javax.swing.border.*; 
import javax.swing.event.*; 
import java.awt.*; 

Graphical User Interfaces 963 



 

import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class List extends JFrame { 
  private String[] flavors = { 
    "Chocolate", "Strawberry", "Vanilla Fudge Swirl", 
    "Mint Chip", "Mocha Almond Fudge", "Rum Raisin", 
    "Praline Cream", "Mud Pie" 
  }; 
  private DefaultListModel lItems = new DefaultListModel(); 
  private JList lst = new JList(lItems); 
  private JTextArea t = 
    new JTextArea(flavors.length, 20); 
  private JButton b = new JButton("Add Item"); 
  private ActionListener bl = new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      if(count < flavors.length) { 
        lItems.add(0, flavors[count++]); 
      } else { 
        // Disable, since there are no more 
        // flavors left to be added to the List 
        b.setEnabled(false); 
      } 
    } 
  }; 
  private ListSelectionListener ll = 
    new ListSelectionListener() { 
      public void valueChanged(ListSelectionEvent e) { 
        if(e.getValueIsAdjusting()) return; 
        t.setText(""); 
        for(Object item : lst.getSelectedValues()) 
          t.append(item + "\n"); 
      } 
    }; 
  private int count = 0; 
  public List() { 
    t.setEditable(false); 
    setLayout(new FlowLayout()); 
    // Create Borders for components: 
    Border brd = BorderFactory.createMatteBorder( 
      1, 1, 2, 2, Color.BLACK); 
    lst.setBorder(brd); 
    t.setBorder(brd); 
    // Add the first four items to the List 
    for(int i = 0; i < 4; i++) 
      lItems.addElement(flavors[count++]); 
    add(t); 
    add(lst); 
    add(b); 
    // Register event listeners 
    lst.addListSelectionListener(ll); 
    b.addActionListener(bl); 
  } 
  public static void main(String[] args) { 
    run(new List(), 250, 375); 
  } 
} ///:~ 

You can see that borders have also been added to the lists.  

If you just want to put an array of Strings into a JList, there’s a much simpler solution; you 
pass the array to the JList constructor, and it builds the list automatically. The only reason 

964 Thinking in Java Bruce Eckel 



 

for using the "list model" in the preceding example is so that the list can be manipulated 
during the execution of the program.  

JLists do not automatically provide direct support for scrolling. Of course, all you need to do 
is wrap the JList in a JScrollPane, and the details are automatically managed for you.  

Exercise 16:   (5) Simplify List.java by passing the array to the constructor and 
eliminating the dynamic addition of elements to the list.  

Tabbed panes 

The JTabbedPane allows you to create a "tabbed dialog," which has filefolder tabs running 
across one edge. When you press a tab, it brings forward a different dialog.  

//: gui/TabbedPane1.java 
// Demonstrates the Tabbed Pane. 
import javax.swing.*; 
import javax.swing.event.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TabbedPane1 extends JFrame { 
  private String[] flavors = { 
    "Chocolate", "Strawberry", "Vanilla Fudge Swirl", 
    "Mint Chip", "Mocha Almond Fudge", "Rum Raisin", 
    "Praline Cream", "Mud Pie" 
  }; 
  private JTabbedPane tabs = new JTabbedPane(); 
  private JTextField txt = new JTextField(20); 
  public TabbedPane1() { 
    int i = 0; 
    for(String flavor : flavors) 
      tabs.addTab(flavors[i], 
        new JButton("Tabbed pane " + i++)); 
    tabs.addChangeListener(new ChangeListener() { 
      public void stateChanged(ChangeEvent e) { 
        txt.setText("Tab selected: " + 
          tabs.getSelectedIndex()); 
      } 
    }); 
    add(BorderLayout.SOUTH, txt); 
    add(tabs); 
  } 
  public static void main(String[] args) { 
    run(new TabbedPane1(), 400, 250); 
  } 
} ///:~ 

When you run the program, you’ll see that the JTabbedPane automatically stacks the tabs 
if there are too many of them to fit on one row. You can see this by resizing the window when 
you run the program from the console command line.  

Message boxes 

Windowing environments commonly contain a standard set of message boxes that allow you 
to quickly post information to the user or to capture information from the user. In Swing, 
these message boxes are contained in JOptionPane. You have many different possibilities 
(some quite sophisticated), but the ones you’ll most commonly use are probably the message 

Graphical User Interfaces 965 



 

dialog and confirmation dialog, invoked using the static 
JOptionPane.showMessageDialog( ) and JOptionPane.showConfirmDialog( ). 
The following example shows a subset of the message boxes available with JOptionPane:  

//: gui/MessageBoxes.java 
// Demonstrates JOptionPane. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class MessageBoxes extends JFrame { 
  private JButton[] b = { 
    new JButton("Alert"), new JButton("Yes/No"), 
    new JButton("Color"), new JButton("Input"), 
    new JButton("3 Vals") 
  }; 
  private JTextField txt = new JTextField(15); 
  private ActionListener al = new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      String id = ((JButton)e.getSource()).getText(); 
      if(id.equals("Alert")) 
        JOptionPane.showMessageDialog(null, 
          "There’s a bug on you!", "Hey!", 
          JOptionPane.ERROR_MESSAGE); 
      else if(id.equals("Yes/No")) 
        JOptionPane.showConfirmDialog(null, 
          "or no", "choose yes", 
          JOptionPane.YES_NO_OPTION); 
      else if(id.equals("Color")) { 
        Object[] options = { "Red", "Green" }; 
        int sel = JOptionPane.showOptionDialog( 
          null, "Choose a Color!", "Warning", 
          JOptionPane.DEFAULT_OPTION, 
          JOptionPane.WARNING_MESSAGE, null, 
          options, options[0]); 
        if(sel != JOptionPane.CLOSED_OPTION) 
          txt.setText("Color Selected: " + options[sel]); 
      } else if(id.equals("Input")) { 
        String val = JOptionPane.showInputDialog( 
            "How many fingers do you see?"); 
        txt.setText(val); 
      } else if(id.equals("3 Vals")) { 
        Object[] selections = {"First", "Second", "Third"}; 
        Object val = JOptionPane.showInputDialog( 
          null, "Choose one", "Input", 
          JOptionPane.INFORMATION_MESSAGE, 
          null, selections, selections[0]); 
        if(val != null) 
          txt.setText(val.toString()); 
      } 
    } 
  }; 
  public MessageBoxes() { 
    setLayout(new FlowLayout()); 
    for(int i = 0; i < b.length; i++) { 
      b[i].addActionListener(al); 
      add(b[i]); 
    } 
    add(txt); 
  } 
  public static void main(String[] args) { 
    run(new MessageBoxes(), 200, 200); 

966 Thinking in Java Bruce Eckel 



 

  } 
} ///:~ 

To write a single ActionListener, I’ve used the somewhat risky approach of checking the 
String labels on the buttons. The problem with this is that it’s easy to get the label a little bit 
wrong, typically in capitalization, and this bug can be hard to spot.  

Note that showOptionDialog( ) and showInputDialog( ) provide return objects that 
contain the value entered by the user.  

Exercise 17:   (5) Create an application using SwingConsole. In the JDK documentation 
from http://java.sun.com, find the JPasswordField and add this to the program. If the 
user types in the correct password, use JOptionPane to provide a success message to the 
user.  

Exercise 18:   (4) Modify MessageBoxes.java so that it has an individual 
ActionListener for each button (instead of matching the button text).  

Menus 

Each component capable of holding a menu, including JApplet, JFrame, JDialog, and 
their descendants, has a setJMenuBar( ) method that accepts a JMenuBar (you can have 
only one JMenuBar on a particular component). You add JMenus to the JMenuBar, and 
JMenuItems to the JMenus. Each JMenuItem can have an ActionListener attached to 
it, to be fired when that menu item is selected.  

With Java and Swing you must hand assemble all the menus in source code. Here is a very 
simple menu example:  

//: gui/SimpleMenus.java 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class SimpleMenus extends JFrame { 
  private JTextField t = new JTextField(15); 
  private ActionListener al = new ActionListener() { 
    public void actionPerformed(ActionEvent e) { 
      t.setText(((JMenuItem)e.getSource()).getText()); 
    } 
  }; 
  private JMenu[] menus = { 
    new JMenu("Winken"), new JMenu("Blinken"), 
    new JMenu("Nod") 
  }; 
  private JMenuItem[] items = { 
    new JMenuItem("Fee"), new JMenuItem("Fi"), 
    new JMenuItem("Fo"),  new JMenuItem("Zip"), 
    new JMenuItem("Zap"), new JMenuItem("Zot"), 
    new JMenuItem("Olly"), new JMenuItem("Oxen"), 
    new JMenuItem("Free") 
  }; 
  public SimpleMenus() { 
    for(int i = 0; i < items.length; i++) { 
      items[i].addActionListener(al); 
      menus[i % 3].add(items[i]); 
    } 
    JMenuBar mb = new JMenuBar(); 

Graphical User Interfaces 967 



 

    for(JMenu jm : menus) 
      mb.add(jm); 
    setJMenuBar(mb); 
    setLayout(new FlowLayout()); 
    add(t); 
  } 
  public static void main(String[] args) { 
    run(new SimpleMenus(), 200, 150); 
  } 
} ///:~ 

The use of the modulus operator in "i%3" distributes the menu items among the three 
JMenus. Each JMenuItem must have an ActionListener attached to it; here, the same 
ActionListener is used everywhere, but you’ll usually need an individual one for each 
JMenuItem.  

JMenuItem inherits AbstractButton, so it has some button-like behaviors. By itself, it 
provides an item that can be placed on a drop-down menu. There are also three types 
inherited from JMenuItem: JMenu, to hold other JMenuItems (so you can have cascading 
menus); JCheckBoxMenuItem, which produces a check mark to indicate whether that 
menu item is selected; and JRadioButtonMenuItem, which contains a radio button.  

As a more sophisticated example, here are the ice cream flavors again, used to create menus. 
This example also shows cascading menus, keyboard mnemonics, JCheckBoxMenuItems, 
and the way that you can dynamically change menus:  

//: gui/Menus.java 
// Submenus, check box menu items, swapping menus, 
// mnemonics (shortcuts) and action commands. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Menus extends JFrame { 
  private String[] flavors = { 
    "Chocolate", "Strawberry", "Vanilla Fudge Swirl", 
    "Mint Chip", "Mocha Almond Fudge", "Rum Raisin", 
    "Praline Cream", "Mud Pie" 
  }; 
  private JTextField t = new JTextField("No flavor", 30); 
  private JMenuBar mb1 = new JMenuBar(); 
  private JMenu 
    f = new JMenu("File"), 
    m = new JMenu("Flavors"), 
    s = new JMenu("Safety"); 
  // Alternative approach: 
  private JCheckBoxMenuItem[] safety = { 
    new JCheckBoxMenuItem("Guard"), 
    new JCheckBoxMenuItem("Hide") 
  }; 
  private JMenuItem[] file = { new JMenuItem("Open") }; 
  // A second menu bar to swap to: 
  private JMenuBar mb2 = new JMenuBar(); 
  private JMenu fooBar = new JMenu("fooBar"); 
  private JMenuItem[] other = { 
    // Adding a menu shortcut (mnemonic) is very 
    // simple, but only JMenuItems can have them 
    // in their constructors: 
    new JMenuItem("Foo", KeyEvent.VK_F), 
    new JMenuItem("Bar", KeyEvent.VK_A), 

968 Thinking in Java Bruce Eckel 



 

    // No shortcut: 
    new JMenuItem("Baz"), 
  }; 
  private JButton b = new JButton("Swap Menus"); 
  class BL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JMenuBar m = getJMenuBar(); 
      setJMenuBar(m == mb1 ? mb2 : mb1); 
      validate(); // Refresh the frame 
    } 
  } 
  class ML implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JMenuItem target = (JMenuItem)e.getSource(); 
      String actionCommand = target.getActionCommand(); 
      if(actionCommand.equals("Open")) { 
        String s = t.getText(); 
        boolean chosen = false; 
        for(String flavor : flavors) 
          if(s.equals(flavor)) 
            chosen = true; 
        if(!chosen) 
          t.setText("Choose a flavor first!"); 
        else 
          t.setText("Opening " + s + ". Mmm, mm!"); 
      } 
    } 
  } 
  class FL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JMenuItem target = (JMenuItem)e.getSource(); 
      t.setText(target.getText()); 
    } 
  } 
  // Alternatively, you can create a different 
  // class for each different MenuItem. Then you 
  // don’t have to figure out which one it is: 
  class FooL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      t.setText("Foo selected"); 
    } 
  } 
  class BarL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      t.setText("Bar selected"); 
    } 
  } 
  class BazL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      t.setText("Baz selected"); 
    } 
  } 
  class CMIL implements ItemListener { 
    public void itemStateChanged(ItemEvent e) { 
      JCheckBoxMenuItem target = 
        (JCheckBoxMenuItem)e.getSource(); 
      String actionCommand = target.getActionCommand(); 
      if(actionCommand.equals("Guard")) 
        t.setText("Guard the Ice Cream! " + 
          "Guarding is " + target.getState()); 
      else if(actionCommand.equals("Hide")) 
        t.setText("Hide the Ice Cream! " + 
          "Is it hidden? " + target.getState()); 

Graphical User Interfaces 969 



 

    } 
  } 
  public Menus() { 
    ML ml = new ML(); 
    CMIL cmil = new CMIL(); 
    safety[0].setActionCommand("Guard"); 
    safety[0].setMnemonic(KeyEvent.VK_G); 
    safety[0].addItemListener(cmil); 
    safety[1].setActionCommand("Hide"); 
    safety[1].setMnemonic(KeyEvent.VK_H); 
    safety[1].addItemListener(cmil); 
    other[0].addActionListener(new FooL()); 
    other[1].addActionListener(new BarL()); 
    other[2].addActionListener(new BazL()); 
    FL fl = new FL(); 
    int n = 0; 
    for(String flavor : flavors) { 
      JMenuItem mi = new JMenuItem(flavor); 
      mi.addActionListener(fl); 
      m.add(mi); 
      // Add separators at intervals: 
      if((n++ + 1) % 3 == 0) 
        m.addSeparator(); 
    } 
    for(JCheckBoxMenuItem sfty : safety) 
      s.add(sfty); 
    s.setMnemonic(KeyEvent.VK_A); 
    f.add(s); 
    f.setMnemonic(KeyEvent.VK_F); 
    for(int i = 0; i < file.length; i++) { 
      file[i].addActionListener(ml); 
      f.add(file[i]); 
    } 
    mb1.add(f); 
    mb1.add(m); 
    setJMenuBar(mb1); 
    t.setEditable(false); 
    add(t, BorderLayout.CENTER); 
    // Set up the system for swapping menus: 
    b.addActionListener(new BL()); 
    b.setMnemonic(KeyEvent.VK_S); 
    add(b, BorderLayout.NORTH); 
    for(JMenuItem oth : other) 
      fooBar.add(oth); 
    fooBar.setMnemonic(KeyEvent.VK_B); 
    mb2.add(fooBar); 
  } 
  public static void main(String[] args) { 
    run(new Menus(), 300, 200); 
  } 
} ///:~ 

In this program I placed the menu items into arrays and then stepped through each array, 
calling add( ) for each JMenuItem. This makes adding or subtracting a menu item 
somewhat less tedious.  

This program creates two JMenuBars to demonstrate that menu bars can be actively 
swapped while the program is running. You can see how a JMenuBar is made up of 
JMenus, and each JMenu is made up of JMenuItems, JCheckBoxMenuItems, or even 
other JMenus (which produce submenus). When a JMenuBar is assembled, it can be 
installed into the current program with the setJMenuBar( ) method. Note that when the 

970 Thinking in Java Bruce Eckel 



 

button is pressed, it checks to see which menu is currently installed by calling 
getJMenuBar( ), then it puts the other menu bar in its place.  

When testing for "Open," notice that spelling and capitalization are critical, but Java signals 
no error if there is no match with "Open." This kind of string comparison is a source of 
programming errors.  

The checking and unchecking of the menu items is taken care of automatically. The code 
handling the JCheckBoxMenuItems shows two different ways to determine what was 
checked: string matching (the less-safe approach, although you’ll see it used) and matching 
on the event target object. As shown, the getState( ) method can be used to reveal the state. 
You can also change the state of a JCheckBoxMenuItem with setState( ).  

The events for menus are a bit inconsistent and can lead to confusion: JMenuItems use 
ActionListeners, but JCheckBoxMenuItems use ItemListeners. The JMenu objects 
can also support ActionListeners, but that’s not usually helpful. In general, you’ll attach 
listeners to each JMenuItem, JCheckBoxMenuItem, or JRadioButtonMenuItem, 
but the example shows ItemListeners and ActionListeners attached to the various menu 
components.  

Swing supports mnemonics, or "keyboard shortcuts," so you can select anything derived from 
AbstractButton (button, menu item, etc.) by using the keyboard instead of the mouse. 
These are quite simple; for JMenuItem, you can use the overloaded constructor that takes, 
as a second argument, the identifier for the key. However, most AbstractButtons do not 
have constructors like this, so the more general way to solve the problem is to use the 
setMnemonic( ) method. The preceding example adds mnemonics to the button and some 
of the menu items; shortcut indicators automatically appear on the components.  

You can also see the use of setActionCommand( ). This seems a bit strange because in 
each case, the "action command" is exactly the same as the label on the menu component. 
Why not just use the label instead of this alternative string? The problem is 
internationalization. If you retarget this program to another language, you want to change 
only the label in the menu, and not change the code (which would no doubt introduce new 
errors). By using setActionCommand( ), the "action command" can be immutable, but the 
menu label can change. All the code works with the "action command," so it’s unaffected by 
changes to the menu labels. Note that in this program, not all the menu components are 
examined for their action commands, so those that aren’t do not have their action command 
set.  

The bulk of the work happens in the listeners. BL performs the JMenuBar swapping. In 
ML, the "figure out who rang" approach is taken by getting the source of the ActionEvent 
and casting it to a JMenuItem, then getting the action command string to pass it through a 
cascaded if statement.  

The FL listener is simple even though it’s handling all the different flavors in the flavor 
menu. This approach is useful if you have enough simplicity in your logic, but in general, 
you’ll want to take the approach used with FooL, BarL, and BazL, in which each is attached 
to only a single menu component, so no extra detection logic is necessary, and you know 
exactly who called the listener. Even with the profusion of classes generated this way, the 
code inside tends to be smaller, and the process is more foolproof.  

You can see that menu code quickly gets long-winded and messy. This is another case where 
the use of a GUI builder is the appropriate solution. A good tool will also handle the 
maintenance of the menus.  

Exercise 19:   (3) Modify Menus.java to use radio buttons instead of check boxes on the 
menus.  

Graphical User Interfaces 971 



 

Exercise 20:   (6) Create a program that breaks a text file into words. Distribute those 
words as labels on menus and submenus.  

Pop-up menus 

The most straightforward way to implement a JPopupMenu is to create an inner class that 
extends MouseAdapter, then add an object of that inner class to each component that you 
want to produce pop-up behavior:  

//: gui/Popup.java 
// Creating popup menus with Swing. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Popup extends JFrame { 
  private JPopupMenu popup = new JPopupMenu(); 
  private JTextField t = new JTextField(10); 
  public Popup() { 
    setLayout(new FlowLayout()); 
    add(t); 
    ActionListener al = new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        t.setText(((JMenuItem)e.getSource()).getText()); 
      } 
    }; 
    JMenuItem m = new JMenuItem("Hither"); 
    m.addActionListener(al); 
    popup.add(m); 
    m = new JMenuItem("Yon"); 
    m.addActionListener(al); 
    popup.add(m); 
    m = new JMenuItem("Afar"); 
    m.addActionListener(al); 
    popup.add(m); 
    popup.addSeparator(); 
    m = new JMenuItem("Stay Here"); 
    m.addActionListener(al); 
    popup.add(m); 
    PopupListener pl = new PopupListener(); 
    addMouseListener(pl); 
    t.addMouseListener(pl); 
  } 
  class PopupListener extends MouseAdapter { 
    public void mousePressed(MouseEvent e) { 
      maybeShowPopup(e); 
    } 
    public void mouseReleased(MouseEvent e) { 
      maybeShowPopup(e); 
    } 
    private void maybeShowPopup(MouseEvent e) { 
      if(e.isPopupTrigger()) 
        popup.show(e.getComponent(), e.getX(), e.getY()); 
    } 
  } 
  public static void main(String[] args) { 
    run(new Popup(), 300, 200); 
  } 
} ///:~ 

972 Thinking in Java Bruce Eckel 



 

The same ActionListener is added to each JMenuItem. It fetches the text from the menu 
label and inserts it into the JTextField.  

Drawing 

In a good GUI framework, drawing should be reasonably easy—and it is, in the Swing library. 
The problem with any drawing example is that the calculations that determine where things 
go are typically a lot more complicated than the calls to the drawing routines, and these 
calculations are often mixed together with the drawing calls, so it can seem that the interface 
is more complicated than it actually is.  

For simplicity, consider the problem of representing data on the screenhere, the data will be 
provided by the built-in Math.sin( ) method, which produces a mathematical sine function. 
To make things a little more interesting, and to further demonstrate how easy it is to use 
Swing components, a slider will be placed at the bottom of the form to dynamically control 
the number of sine wave cycles that are displayed. In addition, if you resize the window, 
you’ll see that the sine wave refits itself to the new window size.  

Although any JComponent may be painted and thus used as a canvas, if you just want a 
straightforward drawing surface, you will typically inherit from a JPanel. The only method 
you need to override is paintComponent( ), which is called whenever that component 
must be repainted (you normally don’t need to worry about this, because the decision is 
managed by Swing). When it is called, Swing passes a Graphics object to the method, and 
you can then use this object to draw or paint on the surface.  

In the following example, all the intelligence concerning painting is in the SineDraw class; 
the SineWave class simply configures the program and the slider control. Inside 
SineDraw, the setCycles( ) method provides a hook to allow another object—the slider 
control, in this case—to control the number of cycles.  

//: gui/SineWave.java 
// Drawing with Swing, using a JSlider. 
import javax.swing.*; 
import javax.swing.event.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
class SineDraw extends JPanel { 
  private static final int SCALEFACTOR = 200; 
  private int cycles; 
  private int points; 
  private double[] sines; 
  private int[] pts; 
  public SineDraw() { setCycles(5); } 
  public void paintComponent(Graphics g) { 
    super.paintComponent(g); 
    int maxWidth = getWidth(); 
    double hstep = (double)maxWidth / (double)points; 
    int maxHeight = getHeight(); 
    pts = new int[points]; 
    for(int i = 0; i < points; i++) 
      pts[i] = 
        (int)(sines[i] * maxHeight/2 * .95 + maxHeight/2); 
    g.setColor(Color.RED); 
    for(int i = 1; i < points; i++) { 
      int x1 = (int)((i - 1) * hstep); 
      int x2 = (int)(i * hstep); 
      int y1 = pts[i-1]; 
      int y2 = pts[i]; 

Graphical User Interfaces 973 



 

      g.drawLine(x1, y1, x2, y2); 
    } 
  } 
  public void setCycles(int newCycles) { 
    cycles = newCycles; 
    points = SCALEFACTOR * cycles * 2; 
    sines = new double[points]; 
    for(int i = 0; i < points; i++) { 
      double radians = (Math.PI / SCALEFACTOR) * i; 
      sines[i] = Math.sin(radians); 
    } 
    repaint(); 
  } 
} 
 
public class SineWave extends JFrame { 
  private SineDraw sines = new SineDraw(); 
  private JSlider adjustCycles = new JSlider(1, 30, 5); 
  public SineWave() { 
    add(sines); 
    adjustCycles.addChangeListener(new ChangeListener() { 
      public void stateChanged(ChangeEvent e) { 
        sines.setCycles( 
          ((JSlider)e.getSource()).getValue()); 
      } 
    }); 
    add(BorderLayout.SOUTH, adjustCycles); 
  } 
  public static void main(String[] args) { 
    run(new SineWave(), 700, 400); 
  } 
} ///:~ 

All of the fields and arrays are used in the calculation of the sine wave points; cycles 
indicates the number of complete sine waves desired, points contains the total number of 
points that will be graphed, sines contains the sine function values, and pts contains the y-
coordinates of the points that will be drawn on the JPanel. The setCycles( ) method 
creates the arrays according to the number of points needed and fills the sines array with 
numbers. By calling repaint( ), setCycles( ) forces paintComponent( ) to be called so 
the rest of the calculation and redraw will take place.  

The first thing you must do when you override paintComponent( ) is to call the base-class 
version of the method. Then you are free to do whatever you like; normally, this means using 
the Graphics methods that you can find in the documentation for java.awt.Graphics (in 
the JDK documentation from http://java.sun.com) to draw and paint pixels onto the 
JPanel. Here, you can see that almost all the code is involved in performing the calculations; 
the only two method calls that actually manipulate the screen are setColor( ) and 
drawLine( ). You will probably have a similar experience when creating your own program 
that displays graphical data; you’ll spend most of your time figuring out what it is you want to 
draw, but the actual drawing process will be quite simple.  

When I created this program, the bulk of my time was spent in getting the sine wave to 
display. Once I did that, I thought it would be nice to dynamically change the number of 
cycles. My programming experiences when trying to do such things in other languages made 
me a bit reluctant to try this, but it turned out to be the easiest part of the project. I created a 
JSlider (the arguments are the leftmost value of the JSIider, the rightmost value, and the 
starting value, respectively, but there are other constructors as well) and dropped it into the 
JFrame. Then I looked at the JDK documentation and noticed that the only listener was the 
addChangeListener, which was triggered whenever the slider was changed enough for it to 
produce a different value. The only method for this was the obviously named 
stateChanged( ), which provided a ChangeEvent object so that I could look backward to 

974 Thinking in Java Bruce Eckel 



 

the source of the change and find the new value. Calling the sines object’s setCycles( ) 
enabled the new value to be incorporated and the JPanel to be redrawn.  

In general, you will find that most of your Swing problems can be solved by following a 
similar process, and you’ll find that it’s generally quite simple, even if you haven’t used a 
particular component before.  

If your problem is more complex, there are other, more sophisticated alternatives for 
drawing, including third-party JavaBeans components and the Java 2D API. These solutions 
are beyond the scope of this book, but you should look them up if your drawing code becomes 
too onerous.  

Exercise 21:   (5) Modify SineWave.java to turn SineDraw into a JavaBean by adding 
"getter" and "setter" methods.  

Exercise 22:   (7) Create an application using SwingConsole. This should have three 
sliders, one each for the red, green, and blue values in java.awt.Color. The rest of the form 
should be a JPanel that displays the color determined by the three sliders. Also include non-
editable text fields that show the current RGB values.  

Exercise 23:   (8) Using SineWave.java as a starting point, create a program that 
displays a rotating square on the screen. One slider should control the speed of rotation, and 
a second slider should control the size of the box.  

Exercise 24:   (7) Remember the "sketching box" toy with two knobs, one that controls 
the vertical movement of the drawing point, and one that controls the horizontal movement? 
Create a variation of this toy, using SineWave.java to get you started. Instead of knobs, use 
sliders. Add a button that will erase the entire sketch.  

Exercise 25:   (8) Starting with SineWave.java, create a program (an application using 
the SwingConsole class) that draws an animated sine wave that appears to scroll past the 
viewing window like an oscilloscope, driving the animation with a java.util.Timer. The 
speed of the animation should be controlled with a javax.swing.JSlider control.  

Exercise 26:   (5) Modify the previous exercise so that multiple sine wave panels are 
created within the application. The number of sine wave panels should be controlled by 
command-line parameters.  

Exercise 27:   (5) Modify Exercise 25 so that the javax.swing.Timer class is used to 
drive the animation. Note the difference between this and java.util.Timer.  

Exercise 28:   (7) Create a dice class (just a class, without a GUI). Create five dice and 
throw them repeatedly. Draw the curve showing the sum of the dots from each throw, and 
show the curve evolving dynamically as you throw more and more times.  

Dialog boxes 

A dialog box is a window that pops up out of another window. Its purpose is to deal with 
some specific issue without cluttering the original window with those details. Dialog boxes 
are commonly used in windowed programming environments.  

To create a dialog box, you inherit from JDialog, which is just another kind of Window, 
like a JFrame. A JDialog has a layout manager (which defaults to BorderLayout), and 
you add event listeners to deal with events. Here’s a very simple example:  

Graphical User Interfaces 975 



 

//: gui/Dialogs.java 
// Creating and using Dialog Boxes. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
class MyDialog extends JDialog { 
  public MyDialog(JFrame parent) { 
    super(parent, "My dialog", true); 
    setLayout(new FlowLayout()); 
    add(new JLabel("Here is my dialog")); 
    JButton ok = new JButton("OK"); 
    ok.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        dispose(); // Closes the dialog 
      } 
    }); 
    add(ok); 
    setSize(150,125); 
  } 
} 
 
public class Dialogs extends JFrame { 
  private JButton b1 = new JButton("Dialog Box"); 
  private MyDialog dlg = new MyDialog(null); 
  public Dialogs() { 
    b1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        dlg.setVisible(true); 
      } 
    }); 
    add(b1); 
  } 
  public static void main(String[] args) { 
    run(new Dialogs(), 125, 75); 
  } 
} ///:~ 

Once the JDialog is created, setVisible(true) must be called to display and activate it. 
When the dialog window is closed, you must release the resources used by the dialog’s 
window by calling dispose( ).  

The following example is more complex; the dialog box is made up of a grid (using 
GridLayout) of a special kind of button that is defined here as class ToeButton. This 
button draws a frame around itself and, depending on its state, a blank, an "x," or an "o" in 
the middle. It starts out blank, and then depending on whose turn it is, changes to an "x" or 
an "o." However, it will also flip back and forth between "x" and "o" when you click on the 
button, to provide an interesting variation on the tic-tac-toe concept. In addition, the dialog 
box can be set up for any number of rows and columns by changing numbers in the main 
application window.  

//: gui/TicTacToe.java 
// Dialog boxes and creating your own components. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class TicTacToe extends JFrame { 
  private JTextField 
    rows = new JTextField("3"), 

976 Thinking in Java Bruce Eckel 



 

    cols = new JTextField("3"); 
  private enum State { BLANK, XX, OO } 
  static class ToeDialog extends JDialog { 
    private State turn = State.XX; // Start with x’s turn 
    ToeDialog(int cellsWide, int cellsHigh) { 
      setTitle("The game itself"); 
      setLayout(new GridLayout(cellsWide, cellsHigh)); 
      for(int i = 0; i < cellsWide * cellsHigh; i++) 
        add(new ToeButton()); 
      setSize(cellsWide * 50, cellsHigh * 50); 
      setDefaultCloseOperation(DISPOSE_ON_CLOSE); 
    } 
    class ToeButton extends JPanel { 
      private State state = State.BLANK; 
      public ToeButton() { addMouseListener(new ML()); } 
      public void paintComponent(Graphics g) { 
        super.paintComponent(g); 
        int 
          x1 = 0, y1 = 0, 
          x2 = getSize().width - 1, 
          y2 = getSize().height - 1; 
        g.drawRect(x1, y1, x2, y2); 
        x1 = x2/4; 
        y1 = y2/4; 
        int wide = x2/2, high = y2/2; 
        if(state == State.XX) { 
          g.drawLine(x1, y1, x1 + wide, y1 + high); 
          g.drawLine(x1, y1 + high, x1 + wide, y1); 
        } 
        if(state == State.OO) 
          g.drawOval(x1, y1, x1 + wide/2, y1 + high/2); 
      } 
      class ML extends MouseAdapter { 
        public void mousePressed(MouseEvent e) { 
          if(state == State.BLANK) { 
            state = turn; 
            turn = 
              (turn == State.XX ? State.OO : State.XX); 
          } 
          else 
            state = 
              (state == State.XX ? State.OO : State.XX); 
          repaint(); 
        } 
      } 
    } 
  } 
  class BL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JDialog d = new ToeDialog( 
        new Integer(rows.getText()), 
        new Integer(cols.getText())); 
      d.setVisible(true); 
    } 
  } 
  public TicTacToe() { 
    JPanel p = new JPanel(); 
    p.setLayout(new GridLayout(2,2)); 
    p.add(new JLabel("Rows", JLabel.CENTER)); 
    p.add(rows); 
    p.add(new JLabel("Columns", JLabel.CENTER)); 
    p.add(cols); 
    add(p, BorderLayout.NORTH); 

Graphical User Interfaces 977 



 

    JButton b = new JButton("go"); 
    b.addActionListener(new BL()); 
    add(b, BorderLayout.SOUTH); 
  } 
  public static void main(String[] args) { 
    run(new TicTacToe(), 200, 200); 
  } 
} ///:~ 

Because statics can only be at the outer level of the class, inner classes cannot have static 
data or nested classes.  

The paintComponent( ) method draws the square around the panel and the "x" or the "o." 
This is full of tedious calculations, but it’s straightforward.  

A mouse click is captured by the MouseListener, which first checks to see if the panel has 
anything written on it. If not, the parent window is queried to find out whose turn it is, which 
establishes the state of the ToeButton. Via the inner-class mechanism, the ToeButton 
then reaches back into the parent and changes the turn. If the button is already displaying an 
"x" or an "o," then that is flopped. You can see in these calculations the convenient use of the 
ternary if-else described in the Operators chapter. After a state change, the ToeButton is 
repainted.  

The constructor for ToeDialog is quite simple: It adds into a GridLayout as many buttons 
as you request, then resizes it for 50 pixels on a side for each button.  

TicTacToe sets up the whole application by creating the JTextFields (for inputting the 
rows and columns of the button grid) and the "go" button with its ActionListener. When 
the button is pressed, the data in the JTextFields must be fetched, and, since they are in 
String form, turned into ints using the Integer constructor that takes a String argument.  

File dialogs 

Some operating systems have a number of special built-in dialog boxes to handle the 
selection of things such as fonts, colors, printers, and the like. Virtually all graphical 
operating systems support the opening and saving of files, so Java’s JFileChooser 
encapsulates these for easy use.  

The following application exercises two forms of JFileChooser dialogs, one for opening and 
one for saving. Most of the code should by now be familiar, and all the interesting activities 
happen in the action listeners for the two different button clicks:  

//: gui/FileChooserTest.java 
// Demonstration of File dialog boxes. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class FileChooserTest extends JFrame { 
  private JTextField 
    fileName = new JTextField(), 
    dir = new JTextField(); 
  private JButton 
    open = new JButton("Open"), 
    save = new JButton("Save"); 
  public FileChooserTest() { 
    JPanel p = new JPanel(); 

978 Thinking in Java Bruce Eckel 



 

    open.addActionListener(new OpenL()); 
    p.add(open); 
    save.addActionListener(new SaveL()); 
    p.add(save); 
    add(p, BorderLayout.SOUTH); 
    dir.setEditable(false); 
    fileName.setEditable(false); 
    p = new JPanel(); 
    p.setLayout(new GridLayout(2,1)); 
    p.add(fileName); 
    p.add(dir); 
    add(p, BorderLayout.NORTH); 
  } 
  class OpenL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JFileChooser c = new JFileChooser(); 
      // Demonstrate "Open" dialog: 
      int rVal = c.showOpenDialog(FileChooserTest.this); 
      if(rVal == JFileChooser.APPROVE_OPTION) { 
        fileName.setText(c.getSelectedFile().getName()); 
        dir.setText(c.getCurrentDirectory().toString()); 
      } 
      if(rVal == JFileChooser.CANCEL_OPTION) { 
        fileName.setText("You pressed cancel"); 
        dir.setText(""); 
      } 
    } 
  } 
  class SaveL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      JFileChooser c = new JFileChooser(); 
      // Demonstrate "Save" dialog: 
      int rVal = c.showSaveDialog(FileChooserTest.this); 
      if(rVal == JFileChooser.APPROVE_OPTION) { 
        fileName.setText(c.getSelectedFile().getName()); 
        dir.setText(c.getCurrentDirectory().toString()); 
      } 
      if(rVal == JFileChooser.CANCEL_OPTION) { 
        fileName.setText("You pressed cancel"); 
        dir.setText(""); 
      } 
    } 
  } 
  public static void main(String[] args) { 
    run(new FileChooserTest(), 250, 150); 
  } 
} ///:~ 

Note that there are many variations you can apply to JFileChooser, including filters to 
narrow the file names that you will allow.  

For an "open file" dialog, you call showOpenDialog( ), and for a "save file" dialog, you call 
showSaveDialog( ). These commands don’t return until the dialog is closed. The 
JFileChooser object still exists, so you can read data from it. The methods 
getSelectedFile( ) and getCurrentDirectory( ) are two ways you can interrogate the 
results of the operation. If these return null, it means the user canceled out of the dialog.  

Exercise 29:   (3) In the JDK documentation for javax.swing, look up the 
JColorChooser. Write a program with a button that brings up the color chooser as a dialog.  

Graphical User Interfaces 979 



 

HTML on Swing components 

Any component that can take text can also take HTML text, which it will reformat according 
to HTML rules. This means you can very easily add fancy text to a Swing component. For 
example:  

//: gui/HTMLButton.java 
// Putting HTML text on Swing components. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class HTMLButton extends JFrame { 
  private JButton b = new JButton( 
    "<html><b><font size=+2>" + 
    "<center>Hello!<br><i>Press me now!"); 
  public HTMLButton() { 
    b.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        add(new JLabel("<html>" + 
          "<i><font size=+4>Kapow!")); 
        // Force a re-layout to include the new label: 
        validate(); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(b); 
  } 
  public static void main(String[] args) { 
    run(new HTMLButton(), 200, 500); 
  } 
} ///:~ 

You must start the text with "<html>," and then you can use normal HTML tags. Note that 
you are not forced to include the normal closing tags.  

The ActionListener adds a new JLabel to the form, which also contains HTML text. 
However, this label is not added during construction, so you must call the container’s 
validate( ) method in order to force a re-layout of the components (and thus the display of 
the new label).  

You can also use HTML text for JTabbedPane, JMenuItem, JToolTip, JRadioButton, 
and JCheckBox.  

Exercise 30:   (3) Write a program that shows the use of HTML text on all the items from 
the previous paragraph.  

Sliders and progress bars 

A slider (which has already been used in SineWave.java) allows the user to input data by 
moving a point back and forth, which is intuitive in some situations (volume controls, for 
example). A progress bar displays data in a relative fashion from "full" to "empty" so the user 
gets a perspective. My favorite example for these is to simply hook the slider to the progress 
bar so when you move the slider, the progress bar changes accordingly. The following 
example also demonstrates the ProgressMonitor, a more fullfeatured pop-up dialog:  

//: gui/Progress.java 

980 Thinking in Java Bruce Eckel 



 

// Using sliders, progress bars and progress monitors. 
import javax.swing.*; 
import javax.swing.border.*; 
import javax.swing.event.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class Progress extends JFrame { 
  private JProgressBar pb = new JProgressBar(); 
  private ProgressMonitor pm = new ProgressMonitor( 
    this, "Monitoring Progress", "Test", 0, 100); 
  private JSlider sb = 
    new JSlider(JSlider.HORIZONTAL, 0, 100, 60); 
  public Progress() { 
    setLayout(new GridLayout(2,1)); 
    add(pb); 
    pm.setProgress(0); 
    pm.setMillisToPopup(1000); 
    sb.setValue(0); 
    sb.setPaintTicks(true); 
    sb.setMajorTickSpacing(20); 
    sb.setMinorTickSpacing(5); 
    sb.setBorder(new TitledBorder("Slide Me")); 
    pb.setModel(sb.getModel()); // Share model 
    add(sb); 
    sb.addChangeListener(new ChangeListener() { 
      public void stateChanged(ChangeEvent e) { 
        pm.setProgress(sb.getValue()); 
      } 
    }); 
  } 
  public static void main(String[] args) { 
    run(new Progress(), 300, 200); 
  } 
} ///:~ 

The key to hooking the slider and progress bar components together is in sharing their 
model, in the line:  

pb.setModel(sb.getModel()); 

Of course, you could also control the two using a listener, but using the model is more 
straightforward for simple situations. The ProgressMonitor does not have a model and so 
the listener approach is required. Note that the ProgressMonitor only moves forward, and 
once it reaches the end it closes. The JProgressBar is fairly straightforward, but the 
JSlider has a lot of options, such as the orientation and major and minor tick marks. Notice 
how straightforward it is to add a titled border.  

Exercise 31:   (8) Create an "asymptotic progress indicator" that gets slower and slower as 
it approaches the finish point. Add random erratic behavior so it will periodically look like it’s 
starting to speed up.  

Exercise 32:   (6) Modify Progress.java so that it does not share models, but instead 
uses a listener to connect the slider and progress bar.  

Selecting look & feel 

"Pluggable look & feel" allows your program to emulate the look and feel of various operating 
environments. You can even dynamically change the look and feel while the program is 

Graphical User Interfaces 981 



 

982 Thinking in Java Bruce Eckel 

executing. However, you generally just want to do one of two things: either select the "cross-
platform" look and feel (which is Swing’s "metal"), or select the look and feel for the system 
you are currently on so your Java program looks like it was created specifically for that 
system (this is almost certainly the best choice in most cases, to avoid confounding the user). 
The code to select either of these behaviors is quite simple, but you must execute it before 
you create any visual components, because the components will be made based on the 
current look and feel, and will not be changed just because you happen to change the look 
and feel midway during the program (that process is more complicated and uncommon, and 
is relegated to Swing-specific books).  

Actually, if you want to use the cross-platform ("metal") look and feel that is characteristic of 
Swing programs, you don’t have to do anything—it’s the default. But if you want instead to 
use the current operating environment’s look and feel,8

 you just insert the following code, 
typically at the beginning of your main( ), but at least before any components are added: 

try { 
UIManager.setLookAndFeet( 
  UIManager.getSystemLookAndFeelClassName()); 
} catch(Exception e) { 
  throw new RuntimeException(e); 
} 

You don’t actually need anything in the catch clause because the UIManager will default to 
the cross-platform look and feel if your attempts to set up any of the alternatives fail. 
However, during debugging, the exception can be quite useful, so you may at least want to 
see some results via the catch clause.  

Here is a program that takes a command-line argument to select a look and feel, and shows 
how several different components look under the chosen look and feel:  

//: gui/LookAndFeel.java 
// Selecting different looks & feels. 
// {Args: motif} 
import javax.swing.*; 
import java.awt.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class LookAndFeel extends JFrame { 
  private String[] choices = 
    "Eeny Meeny Minnie Mickey Moe Larry Curly".split(" "); 
  private Component[] samples = { 
    new JButton("JButton"), 
    new JTextField("JTextField"), 
    new JLabel("JLabel"), 
    new JCheckBox("JCheckBox"), 
    new JRadioButton("Radio"), 
    new JComboBox(choices), 
    new JList(choices), 
  }; 
  public LookAndFeel() { 
    super("Look And Feel"); 
    setLayout(new FlowLayout()); 
    for(Component component : samples) 
      add(component); 
  } 
  private static void usageError() { 
    System.out.println( 
      "Usage:LookAndFeel [cross|system|motif]"); 

                                                            
8 You may argue about whether the Swing rendering does justice to your operating environment. 



 

    System.exit(1); 
  } 
  public static void main(String[] args) { 
    if(args.length == 0) usageError(); 
    if(args[0].equals("cross")) { 
      try { 
        UIManager.setLookAndFeel(UIManager. 
          getCrossPlatformLookAndFeelClassName()); 
      } catch(Exception e) { 
        e.printStackTrace(); 
      } 
    } else if(args[0].equals("system")) { 
      try { 
        UIManager.setLookAndFeel(UIManager. 
          getSystemLookAndFeelClassName()); 
      } catch(Exception e) { 
        e.printStackTrace(); 
      } 
    } else if(args[0].equals("motif")) { 
      try { 
        UIManager.setLookAndFeel("com.sun.java."+ 
          "swing.plaf.motif.MotifLookAndFeel"); 
      } catch(Exception e) { 
        e.printStackTrace(); 
      } 
    } else usageError(); 
    // Note the look & feel must be set before 
    // any components are created. 
    run(new LookAndFeel(), 300, 300); 
  } 
} ///:~ 

You can see that one option is to explicitly specify a string for a look and feel, as seen with 
MotifLookAndFeel. However, that one and the default "metal" look and feel are the only 
ones that can legally be used on any platform; even though there are look-and-feel strings for 
Windows and Macintosh, those can only be used on their respective platforms (these are 
produced when you call getSystemLookAndFeelClassName( ) and you’re on that 
particular platform).  

It is also possible to create a custom look and feel package, for example, if you are building a 
framework for a company that wants a distinctive appearance. This is a big job and is far 
beyond the scope of this book (in fact, you’ll discover it is beyond the scope of many 
dedicated Swing books!).  

Trees, tables & clipboard 

You can find a brief introduction and examples for these topics in the online supplements for 
this chapter at www.MindView.net.  

JNLP and Java Web Start 
It’s possible to sign an applet for security purposes. This is shown in the online supplement 
for this chapter at www.MindView.net. Signed applets are powerful and can effectively take 
the place of an application, but they must run inside a Web browser. This requires the extra 
overhead of the browser running on the client machine, and also means that the user 

Graphical User Interfaces 983 



 

984 Thinking in Java Bruce Eckel 

interface of the applet is limited and often visually confusing. The Web browser has its own 
set of menus and toolbars, which will appear above the applet.9  

The Java Network Launch Protocol (JNLP) solves the problem without sacrificing the 
advantages of applets. With a JNLP application, you can download and install a standalone 
Java application onto the client’s machine. This can be run from the command prompt, a 
desktop icon, or the application manager that is installed with your JNLP implementation. 
The application can even be run from the Web site from which it was originally downloaded.  

A JNLP application can dynamically download resources from the Internet at run time, and 
can automatically check the version if the user is connected to the Internet. This means that 
it has all of the advantages of an applet together with the advantages of standalone 
applications.  

Like applets, JNLP applications need to be treated with some caution by the client’s system. 
Because of this, JNLP applications are subject to the same sandbox security restrictions as 
applets. Like applets, they can be deployed in signed JAR files, giving the user the option to 
trust the signer. Unlike applets, if they are deployed in an unsigned JAR file, they can still 
request access to certain resources of the client’s system by means of services in the JNLP 
API. The user must approve these requests during program execution.  

JNLP describes a protocol, not an implementation, so you will need an implementation in 
order to use it. Java Web Start, or JAWS, is Sun’s freely available official reference 
implementation and is distributed as part of Java SE5- If you are using it for development, 
you must ensure that the JAR file (javaws.jar) is in your classpath; the easiest solution is to 
add javaws.jar to your classpath from its normal Java installation path in jre/lib. If you are 
deploying your JNLP application from a Web server, you must ensure that your server 
recognizes the MIME type application/x-java-jnlp-file. If you are using a recent version 
of the Tomcat server (http://jakarta.apache.org/tomcat) this is pre-configured. Consult the 
user guide for your particular server.  

Creating a JNLP application is not difficult. You create a standard application that is archived 
in a JAR file, and then you provide a launch file, which is a simple XML file that gives the 
client system all the information it needs to download and install your application. If you 
choose not to sign your JAR file, then you must use the services supplied by the JNLP API for 
each type of resource you want to access on the user’s machine.  

Here is a variation of FileChooserTest.java using the JNLP services to open the file 
chooser, so that the class can be deployed as a JNLP application in an unsigned JAR file.  

//: gui/jnlp/JnlpFileChooser.java 
// Opening files on a local machine with JNLP. 
// {Requires: javax.jnlp.FileOpenService; 
// You must have javaws.jar in your classpath} 
// To create the jnlpfilechooser.jar file, do this: 
// cd .. 
// cd .. 
// jar cvf gui/jnlp/jnlpfilechooser.jar gui/jnlp/*.class 
package gui.jnlp; 
import javax.jnlp.*; 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
 
public class JnlpFileChooser extends JFrame { 
  private JTextField fileName = new JTextField(); 

                                                            
9 Jeremy Meyer developed this section. 



 

  private JButton 
    open = new JButton("Open"), 
    save = new JButton("Save"); 
  private JEditorPane ep = new JEditorPane(); 
  private JScrollPane jsp = new JScrollPane(); 
  private FileContents fileContents; 
  public JnlpFileChooser() { 
    JPanel p = new JPanel(); 
    open.addActionListener(new OpenL()); 
    p.add(open); 
    save.addActionListener(new SaveL()); 
    p.add(save); 
    jsp.getViewport().add(ep); 
    add(jsp, BorderLayout.CENTER); 
    add(p, BorderLayout.SOUTH); 
    fileName.setEditable(false); 
    p = new JPanel(); 
    p.setLayout(new GridLayout(2,1)); 
    p.add(fileName); 
    add(p, BorderLayout.NORTH); 
    ep.setContentType("text"); 
    save.setEnabled(false); 
  } 
  class OpenL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      FileOpenService fs = null; 
      try { 
        fs = (FileOpenService)ServiceManager.lookup( 
          "javax.jnlp.FileOpenService"); 
      } catch(UnavailableServiceException use) { 
        throw new RuntimeException(use); 
      } 
      if(fs != null) { 
        try { 
          fileContents = fs.openFileDialog(".", 
            new String[]{"txt", "*"}); 
          if(fileContents == null) 
            return; 
          fileName.setText(fileContents.getName()); 
          ep.read(fileContents.getInputStream(), null); 
        } catch(Exception exc) { 
          throw new RuntimeException(exc); 
        } 
        save.setEnabled(true); 
      } 
    } 
  } 
  class SaveL implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      FileSaveService fs = null; 
      try { 
        fs = (FileSaveService)ServiceManager.lookup( 
          "javax.jnlp.FileSaveService"); 
      } catch(UnavailableServiceException use) { 
        throw new RuntimeException(use); 
      } 
      if(fs != null) { 
        try { 
          fileContents = fs.saveFileDialog(".", 
            new String[]{"txt"}, 
            new ByteArrayInputStream( 
              ep.getText().getBytes()), 
            fileContents.getName()); 

Graphical User Interfaces 985 



 

          if(fileContents == null) 
            return; 
          fileName.setText(fileContents.getName()); 
        } catch(Exception exc) { 
          throw new RuntimeException(exc); 
        } 
      } 
    } 
  } 
  public static void main(String[] args) { 
    JnlpFileChooser fc = new JnlpFileChooser(); 
    fc.setSize(400, 300); 
    fc.setVisible(true); 
  } 
} ///:~ 

Note that the FileOpenService and the FileSaveService classes are imported from the 
javax.jnlp package and that nowhere in the code is the JFileChooser dialog box referred 
to directly. The two services used here must be requested using the 
ServiceManager.lookup( ) method, and the resources on the client system can only be 
accessed via the objects returned from this method. In this case, the files on the client’s file 
system are being written to and read from using the FileContent interface, provided by the 
JNLP. Any attempt to access the resources directly by using, say, a File or a FileReader 
object would cause a SecurityException to be thrown in the same way that it would if you 
tried to use them from an unsigned applet. If you want to use these classes and not be 
restricted to the JNLP service interfaces, you must sign the JAR file.  

The commented jar command in JnlpFileChooser.java will produce the necessary JAR 
file. Here is an appropriate launch file for the preceding example.  

//:! gui/jnlp/filechooser.jnlp 
<?xml version="1.0" encoding="UTF-8"?> 
<jnlp spec = "1.0+" 
  codebase="file:C:/AAA-TIJ4/code/gui/jnlp" 
  href="filechooser.jnlp"> 
  <information> 
    <title>FileChooser demo application</title> 
    <vendor>Mindview Inc.</vendor> 
    <description> 
      Jnlp File chooser Application 
    </description> 
    <description kind="short"> 
      Demonstrates opening, reading and writing a text file 
    </description> 
    <icon href="mindview.gif"/> 
    <offline-allowed/> 
  </information> 
  <resources> 
    <j2se version="1.3+" 
      href="http://java.sun.com/products/autodl/j2se"/> 
    <jar href="jnlpfilechooser.jar" download="eager"/> 
  </resources> 
  <application-desc 
    main-class="gui.jnlp.JnlpFileChooser"/> 
</jnlp> 
///:~ 

You’ll find this launch file in the source-code download for this book (from 
www.MindView.net) saved as filechooser.jnlp without the first and last lines, in the same 
directory as the JAR file. As you can see, it is an XML file with one <jnlp> tag. This has a few 
sub-elements, which are mostly selfexplanatory.  

986 Thinking in Java Bruce Eckel 



 

The spec attribute of the jnlp element tells the client system what version of the JNLP the 
application can be run with. The codebase attribute points to the URL where this launch file 
and the resources can be found. Here, it points to a directory on the local machine, which is a 
good means of testing the application. Note that you’ll need to change this path so that it 
indicates the appropriate directory on your machine, in order for the program to load 
successfully. The href attribute must specify the name of this file.  

The information tag has various sub-elements that provide information about the 
application. These are used by the Java Web Start administrative console or equivalent, 
which installs the JNLP application and allows the user to run it from the command line, 
make shortcuts, and so on.  

The resources tag serves a similar purpose as the applet tag in an HTML file. The J2se sub-
element specifies the J2SE version required to run the application, and the jar sub-element 
specifies the JAR file in which the class is archived. The jar element has an attribute 
download, which can have the values "eager" or "lazy" that tell the JNLP implementation 
whether or not the entire archive needs to be downloaded before the application can be run.  

The application-desc attribute tells the JNLP implementation which class is the executable 
class, or entry point, to the JAR file.  

Another useful sub-element of the jnlp tag is the security tag, not shown here. Here’s what 
a security tag looks like:  

<security> 
   <all-permissions/> 
<security/> 

You use the security tag when your application is deployed in a signed JAR file. It is not 
needed in the preceding example because the local resources are all accessed via the JNLP 
services.  

There are a few other tags available, the details of which can be found in the specification at 
http://java.sun.com/products/javawehstart/downloadspec. html.  

To launch the program, you need a download page containing a hypertext link to the .jnlp 
file. Here’s what it looks like (without the first and last lines):  

//:! gui/jnlp/filechooser.html 
<html> 
Follow the instructions in JnlpFileChooser.java to 
build jnlpfilechooser.jar, then: 
<a href="filechooser.jnlp">click here</a> 
</html> 
///:~ 

Once you have downloaded the application once, you can configure it by using the 
administrative console. If you are using Java Web Start on Windows, then you will be 
prompted to make a shortcut to your application the second time you use it. This behavior is 
configurable.  

Only two of the JNLP services are covered here, but there are seven services in the current 
release. Each is designed for a specific task such as printing, or cutting and pasting to the 
clipboard. You can find more information at http://java.sun.com.  

Graphical User Interfaces 987 



 

Concurrency & Swing 
When you program with Swing you’re using threads. You saw this at the beginning of this 
chapter when you learned that everything should be submitted to the Swing event dispatch 
thread through SwingUtilities.invokeLater( ). However, the fact that you don’t have to 
explicitly create a Thread object means that threading issues can catch you by surprise. You 
must keep in mind that there is a Swing event dispatch thread, which is always there, 
handling all the Swing events by pulling each one out of the event queue and executing it in 
turn. By remembering the event dispatch thread you’ll help ensure that your application 
won’t suffer from deadlocking or race conditions.  

This section addresses threading issues that arise when working with Swing.  

Long-running tasks 

One of the most fundamental mistakes you can make when programming with a graphical 
user interface is to accidentally use the event dispatch thread to run a long task. Here’s a 
simple example:  

//: gui/LongRunningTask.java 
// A badly designed program. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.concurrent.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class LongRunningTask extends JFrame { 
  private JButton 
    b1 = new JButton("Start Long Running Task"), 
    b2 = new JButton("End Long Running Task"); 
  public LongRunningTask() { 
    b1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent evt) { 
        try { 
          TimeUnit.SECONDS.sleep(3); 
        } catch(InterruptedException e) { 
          System.out.println("Task interrupted"); 
          return; 
        } 
        System.out.println("Task completed"); 
      } 
    }); 
    b2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent evt) { 
        // Interrupt yourself? 
        Thread.currentThread().interrupt(); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
  } 
  public static void main(String[] args) { 
    run(new LongRunningTask(), 200, 150); 
  } 
} ///:~ 

988 Thinking in Java Bruce Eckel 



 

When you press b1, the event dispatch thread is suddenly occupied in performing the long-
running task. You’ll see that the button doesn’t even pop back out, because the event dispatch 
thread that would normally repaint the screen is busy. And you cannot do anything else, like 
press b2, because the program won’t respond until b1’s task is complete and the event 
dispatch thread is once again available. The code in b2 is a flawed attempt to solve the 
problem by interrupting the event dispatch thread.  

The answer, of course, is to execute long-running processes in separate threads. Here, the 
single-thread Executor is used, which automatically queues pending tasks and executes 
them one at a time:  

//: gui/InterruptableLongRunningTask.java 
// Long-running tasks in threads. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.concurrent.*; 
import static net.mindview.util.SwingConsole.*; 
 
class Task implements Runnable { 
  private static int counter = 0; 
  private final int id = counter++; 
  public void run() { 
    System.out.println(this + " started"); 
    try { 
      TimeUnit.SECONDS.sleep(3); 
    } catch(InterruptedException e) { 
      System.out.println(this + " interrupted"); 
      return; 
    } 
    System.out.println(this + " completed"); 
  } 
  public String toString() { return "Task " + id; } 
  public long id() { return id; } 
}; 
 
public class InterruptableLongRunningTask extends JFrame { 
  private JButton 
    b1 = new JButton("Start Long Running Task"), 
    b2 = new JButton("End Long Running Task"); 
  ExecutorService executor = 
    Executors.newSingleThreadExecutor(); 
  public InterruptableLongRunningTask() { 
    b1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        Task task = new Task(); 
        executor.execute(task); 
        System.out.println(task + " added to the queue"); 
      } 
    }); 
    b2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        executor.shutdownNow(); // Heavy-handed 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
  } 
  public static void main(String[] args) { 
    run(new InterruptableLongRunningTask(), 200, 150); 
  } 

Graphical User Interfaces 989 



 

} ///:~ 

This is better, but when you press b2, it calls shutdownNow( ) on the ExecutorService, 
thereby disabling it. If you try to add more tasks, you get an exception. Thus, pressing b2 
makes the program inoperable. What we’d like to do is to shut down the current task (and 
cancel pending tasks) without stopping everything. The Java SE5 Callable/Future 
mechanism described in the Concurrency chapter is just what we need. We’ll define a new 
class called TaskManager, which contains tuples that hold the Callable representing the 
task and the Future that comes back from the Callable. The reason the tuple is necessary is 
because it allows us to keep track of the original task, so that we may get extra information 
that is not available from the Future. Here it is:  

//: net/mindview/util/TaskItem.java 
// A Future and the Callable that produced it. 
package net.mindview.util; 
import java.util.concurrent.*; 
 
public class TaskItem<R,C extends Callable<R>> { 
  public final Future<R> future; 
  public final C task; 
  public TaskItem(Future<R> future, C task) { 
    this.future = future; 
    this.task = task; 
  } 
} ///:~ 

In the java.util.concurrent library, the task is not available via the Future by default 
because the task would not necessarily still be around when you get the result from the 
Future. Here, we force the task to stay around by storing it.  

TaskManager is placed in net.mindview.util so it is available as a general-purpose 
utility:  

//: net/mindview/util/TaskManager.java 
// Managing and executing a queue of tasks. 
package net.mindview.util; 
import java.util.concurrent.*; 
import java.util.*; 
 
public class TaskManager<R,C extends Callable<R>> 
extends ArrayList<TaskItem<R,C>> { 
  private ExecutorService exec = 
    Executors.newSingleThreadExecutor(); 
  public void add(C task) { 
    add(new TaskItem<R,C>(exec.submit(task),task)); 
  } 
  public List<R> getResults() { 
    Iterator<TaskItem<R,C>> items = iterator(); 
    List<R> results = new ArrayList<R>(); 
    while(items.hasNext()) { 
      TaskItem<R,C> item = items.next(); 
      if(item.future.isDone()) { 
        try { 
          results.add(item.future.get()); 
        } catch(Exception e) { 
          throw new RuntimeException(e); 
        } 
        items.remove(); 
      } 
    } 
    return results; 

990 Thinking in Java Bruce Eckel 



 

  } 
  public List<String> purge() { 
    Iterator<TaskItem<R,C>> items = iterator(); 
    List<String> results = new ArrayList<String>(); 
    while(items.hasNext()) { 
      TaskItem<R,C> item = items.next(); 
      // Leave completed tasks for results reporting: 
      if(!item.future.isDone()) { 
        results.add("Cancelling " + item.task); 
        item.future.cancel(true); // May interrupt 
        items.remove(); 
      } 
    } 
    return results; 
  } 
} ///:~ 

TaskManager is an ArrayList of Taskltem. It also contains a singlethread Executor, so 
when you call add( ) with a Callable, it submits the Callable and stores the resulting 
Future along with the original task. This way, if you need to do anything with the task, you 
have a reference to that task. As a simple example, in purge( ) the task’s toString( ) is 
used.  

This can now be used to manage the long-running tasks in our example:  

//: gui/InterruptableLongRunningCallable.java 
// Using Callables for long-running tasks. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.concurrent.*; 
import net.mindview.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
class CallableTask extends Task 
implements Callable<String> { 
  public String call() { 
    run(); 
    return "Return value of " + this; 
  } 
} 
 
public class 
InterruptableLongRunningCallable extends JFrame { 
  private JButton 
    b1 = new JButton("Start Long Running Task"), 
    b2 = new JButton("End Long Running Task"), 
    b3 = new JButton("Get results"); 
  private TaskManager<String,CallableTask> manager = 
    new TaskManager<String,CallableTask>(); 
  public InterruptableLongRunningCallable() { 
    b1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        CallableTask task = new CallableTask(); 
        manager.add(task); 
        System.out.println(task + " added to the queue"); 
      } 
    }); 
    b2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        for(String result : manager.purge()) 
          System.out.println(result); 

Graphical User Interfaces 991 



 

      } 
    }); 
    b3.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        // Sample call to a Task method: 
        for(TaskItem<String,CallableTask> tt : 
            manager) 
          tt.task.id(); // No cast required 
        for(String result : manager.getResults()) 
          System.out.println(result); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
    add(b3); 
  } 
  public static void main(String[] args) { 
    run(new InterruptableLongRunningCallable(), 200, 150); 
  } 
} ///:~ 

As you can see, CallableTask does exactly the same thing as Task except that it returns a 
result—in this case a String identifying the task.  

Non-Swing utilities (not part of the standard Java distribution) called SwingWorker (from 
the Sun Web site) and Foxtrot (from http://foxtrot.sourceforge.net) were created to solve a 
similar problem, but at this writing, those utilities had not been modified to take advantage 
of the Java SE5 Callable/Future mechanism.  

It’s often important to give the end user some kind of visual cue that a task is running, and of 
its progress. This is normally done through either a JProgressBar or a ProgressMonitor. 
This example uses a ProgressMonitor:  

//: gui/MonitoredLongRunningCallable.java 
// Displaying task progress with ProgressMonitors. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.concurrent.*; 
import net.mindview.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
class MonitoredCallable implements Callable<String> { 
  private static int counter = 0; 
  private final int id = counter++; 
  private final ProgressMonitor monitor; 
  private final static int MAX = 8; 
  public MonitoredCallable(ProgressMonitor monitor) { 
    this.monitor = monitor; 
    monitor.setNote(toString()); 
    monitor.setMaximum(MAX - 1); 
    monitor.setMillisToPopup(500); 
  } 
  public String call() { 
    System.out.println(this + " started"); 
    try { 
      for(int i = 0; i < MAX; i++) { 
        TimeUnit.MILLISECONDS.sleep(500); 
        if(monitor.isCanceled()) 
          Thread.currentThread().interrupt(); 

992 Thinking in Java Bruce Eckel 



 

        final int progress = i; 
        SwingUtilities.invokeLater( 
          new Runnable() { 
            public void run() { 
              monitor.setProgress(progress); 
            } 
          } 
        ); 
      } 
    } catch(InterruptedException e) { 
      monitor.close(); 
      System.out.println(this + " interrupted"); 
      return "Result: " + this + " interrupted"; 
    } 
    System.out.println(this + " completed"); 
    return "Result: " + this + " completed"; 
  } 
  public String toString() { return "Task " + id; } 
}; 
 
public class MonitoredLongRunningCallable extends JFrame { 
  private JButton 
    b1 = new JButton("Start Long Running Task"), 
    b2 = new JButton("End Long Running Task"), 
    b3 = new JButton("Get results"); 
  private TaskManager<String,MonitoredCallable> manager = 
    new TaskManager<String,MonitoredCallable>(); 
  public MonitoredLongRunningCallable() { 
    b1.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        MonitoredCallable task = new MonitoredCallable( 
          new ProgressMonitor( 
            MonitoredLongRunningCallable.this, 
            "Long-Running Task", "", 0, 0) 
        ); 
        manager.add(task); 
        System.out.println(task + " added to the queue"); 
      } 
    }); 
    b2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        for(String result : manager.purge()) 
          System.out.println(result); 
      } 
    }); 
    b3.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        for(String result : manager.getResults()) 
          System.out.println(result); 
      } 
    }); 
    setLayout(new FlowLayout()); 
    add(b1); 
    add(b2); 
    add(b3); 
  } 
  public static void main(String[] args) { 
    run(new MonitoredLongRunningCallable(), 200, 500); 
  } 
} ///:~ 

The MonitoredCallable constructor takes a ProgressMonitor as an argument, and its 
call( ) method updates the ProgressMonitor every half second. Notice that a 

Graphical User Interfaces 993 



 

MonitoredCallable is a separate task and thus should not try to control the UI directly, so 
SwingUtilities.invokeLater( ) is used to submit the progress change information to the 
monitor. Sun’s Swing Tutorial (on http://java.sun.com) shows an alternate approach of 
using a Swing Timer, which checks the status of the task and updates the monitor.  

If the "cancel" button is pressed on the monitor, monitor.isCanceled( ) will return true. 
Here, the task just calls interrupt ) on its own thread, which will land it in the catch clause 
where the monitor is terminated with the close( ) method.  

The rest of the code is effectively the same as before, except for the creation of the 
ProgressMonitor as part of the MonitoredLongRunningCallable constructor.  

Exercise 33:   (6) Modify InterruptableLongRunningCallable.java so that it runs 
all the tasks in parallel rather than sequentially.  

Visual threading 

The following example makes a Runnable JPanel class that paints different colors on 
itself. This application is set up to take values from the command line to determine how big 
the grid of colors is and how long to sleep( ) between color changes. By playing with these 
values, you may discover some interesting and possibly inexplicable features in the threading 
implementation on your platform:  

//: gui/ColorBoxes.java 
// A visual demonstration of threading. 
import javax.swing.*; 
import java.awt.*; 
import java.util.concurrent.*; 
import java.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
class CBox extends JPanel implements Runnable { 
  private int pause; 
  private static Random rand = new Random(); 
  private Color color = new Color(0); 
  public void paintComponent(Graphics g) { 
    g.setColor(color); 
    Dimension s = getSize(); 
    g.fillRect(0, 0, s.width, s.height); 
  } 
  public CBox(int pause) { this.pause = pause; } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        color = new Color(rand.nextInt(0xFFFFFF)); 
        repaint(); // Asynchronously request a paint() 
        TimeUnit.MILLISECONDS.sleep(pause); 
      } 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } 
  } 
} 
 
public class ColorBoxes extends JFrame { 
  private int grid = 12; 
  private int pause = 50; 
  private static ExecutorService exec = 
    Executors.newCachedThreadPool(); 

994 Thinking in Java Bruce Eckel 



 

  public void setUp() { 
    setLayout(new GridLayout(grid, grid)); 
    for(int i = 0; i < grid * grid; i++) { 
      CBox cb = new CBox(pause); 
      add(cb); 
      exec.execute(cb); 
    } 
  } 
  public static void main(String[] args) { 
    ColorBoxes boxes = new ColorBoxes(); 
    if(args.length > 0) 
      boxes.grid = new Integer(args[0]); 
    if(args.length > 1) 
      boxes.pause = new Integer(args[1]); 
    boxes.setUp(); 
    run(boxes, 500, 400); 
  } 
} ///:~ 

ColorBoxes configures a GridLayout so that it has grid cells in each dimension. Then it 
adds the appropriate number of CBox objects to fill the grid, passing the pause value to 
each one. In main( ) you can see how pause and grid have default values that can be 
changed if you pass in command-line arguments.  

CBox is where all the work takes place. This is inherited from JPanel and it implements the 
Runnable interface so that each JPanel can also be an independent task. These tasks are 
driven by a thread pool ExecutorService.  

The current cell color is color. Colors are created using the Color constructor that takes a 
24-bit number, which in this case is created randomly.  

paintComponent( ) is quite simple; it just sets the color to color and fills the entire 
JPanel with that color.  

In run( ), you see the infinite loop that sets the color to a new random color and then calls 
repaint( ) to show it. Then the thread goes to sleep( ) for the amount of time specified on 
the command line.  

The call to repaint( ) in run( ) deserves examination. At first glance, it may seem like we’re 
creating a lot of threads, each of which is forcing a paint. It might appear that this is violating 
the principle that you should only submit tasks to the event queue. However, these threads 
are not actually modifying the shared resource. When they call repaint( ), it doesn’t force a 
paint at that time, but only sets a "dirty flag" indicating that the next time the event dispatch 
thread is ready to repaint things, this area is a candidate for repainting. Thus the program 
doesn’t cause Swing threading problems.  

When the event dispatch thread actually does perform a paint( ), it first calls 
paintComponent( ), then paintBorder( ) and paintChildren( ). If you need to override 
paint( ) in a derived component, you must remember to call the base-class version of 
paint( ) so that the proper actions are still performed.  

Precisely because this design is flexible and threading is tied to each JPanel element, you 
can experiment by making as many threads as you want. (In reality, there is a restriction 
imposed by the number of threads your JVM can comfortably handle.)  

This program also makes an interesting benchmark, since it can show dramatic performance 
and behavioral differences between one JVM threading implementation and another, as well 
as on different platforms.  

Graphical User Interfaces 995 



 

Exercise 34:   (4) Modify ColorBoxes.java so that it begins by sprinkling points ("stars") 
across the canvas, then randomly changes the colors of those "stars."  

Visual programming 
     and JavaBeans 

So far in this book you’ve seen how valuable Java is for creating reusable pieces of code. The 
"most reusable" unit of code has been the class, since it comprises a cohesive unit of 
characteristics (fields) and behaviors (methods) that can be reused either directly via 
composition or through inheritance.  

Inheritance and polymorphism are essential parts of object-oriented programming, but in 
the majority of cases when you’re putting together an application, what you really want is 
components that do exactly what you need. You’d like to drop these parts into your design 
like the chips an electronic engineer puts on a circuit board. It seems that there should be 
some way to accelerate this "modular assembly" style of programming.  

"Visual programming" first became successful—very successful—with Microsoft’s Visual 
BASIC (VB), followed by a second-generation design in Borland’s Delphi (which was the 
primary inspiration for the JavaBeans design). With these programming tools the 
components are represented visually, which makes sense since they usually display some 
kind of visual component such as a button or a text field. The visual representation, in fact, is 
often exactly the way the component will look in the running program. So part of the process 
of visual programming involves dragging a component from a palette and dropping it onto 
your form. The Application Builder Integrated Development Environment (IDE) writes code 
as you do this, and that code will cause the component to be created in the running program.  

Simply dropping the component onto a form is usually not enough to complete the program. 
Often, you must change the characteristics of a component, such as its color, the text that’s 
on it, the database it’s connected to, etc. Characteristics that can be modified at design time 
are referred to as properties. You can manipulate the properties of your component inside 
the IDE, and when you create the program, this configuration data is saved so that it can be 
rejuvenated when the program is started.  

By now you’re probably used to the idea that an object is more than characteristics; it’s also a 
set of behaviors. At design time, the behaviors of a visual component are partially 
represented by events, meaning "Here’s something that can happen to the component." 
Ordinarily, you decide what you want to happen when an event occurs by tying code to that 
event.  

Here’s the critical part: The IDE uses reflection to dynamically interrogate the component 
and find out which properties and events the component supports. Once it knows what they 
are, it can display the properties and allow you to change them (saving the state when you 
build the program), and also display the events. In general, you do something like double-
clicking on an event, and the IDE creates a code body and ties it to that particular event. All 
you must do at that point is write the code that executes when the event occurs.  

All this adds up to a lot of work that’s done for you by the IDE. As a result, you can focus on 
what the program looks like and what it is supposed to do, and rely on the IDE to manage the 
connection details for you. The reason that visual programming tools have been so successful 
is that they dramatically speed up the process of building an application—certainly the user 
interface, but often other portions of the application as well.  

What is a JavaBean? 

996 Thinking in Java Bruce Eckel 



 

After the dust settles, then, a component is really just a block of code, typically embodied in a 
class. The key issue is the ability for the IDE to discover the properties and events for that 
component. To create a VB component, the programmer originally had to write a fairly 
complicated piece of code following certain conventions to expose the properties and events 
(it got easier as the years passed). Delphi was a second-generation visual programming tool, 
and the language was actively designed around visual programming, so it was much easier to 
create a visual component. However, Java has brought the creation of visual components to 
its most advanced state with JavaBeans, because a Bean is just a class. You don’t have to 
write any extra code or use special language extensions in order to make something a Bean. 
The only thing you need to do, in fact, is slightly modify the way that you name your 
methods. It is the method name that tells the IDE whether this is a property, an event, or just 
an ordinary method.  

In the JDK documentation, this naming convention is mistakenly termed a "design pattern." 
This is unfortunate, since design patterns (see Thinking in Patterns at www.MindView.net) 
are challenging enough without this sort of confusion. It’s not a design pattern, it’s just a 
naming convention, and it’s fairly simple:  

1. For a property named xxx, you typically create two methods: getXxx( ) and setXxx( 
). The first letter after "get" or "set" will automatically be lowercased by any tools that 
look at the methods, in order to produce the property name. The type produced by the 
"get" method is the same as the type of the argument to the "set" method. The name of 
the property and the type for the "get" and "set" are not related.  
 

2. For a boolean property, you can use the "get" and "set" approach above, but you can 
also use "is" instead of "get."  

 
3. Ordinary methods of the Bean don’t conform to the above naming convention, but 

they’re public.  
 

4. For events, you use the Swing "listener" approach. It’s exactly the same as you’ve been 
seeing: addBounceListener(BounceListener) and 
removeBounceListener(BounceListener) to handle a BounceEvent. Most of 
the time, the built-in events and listeners will satisfy your needs, but you can also 
create your own events and listener interfaces.  

 
We can use these guidelines to create a simple Bean:  

//: frogbean/Frog.java 
// A trivial JavaBean. 
package frogbean; 
import java.awt.*; 
import java.awt.event.*; 
 
class Spots {} 
 
public class Frog { 
  private int jumps; 
  private Color color; 
  private Spots spots; 
  private boolean jmpr; 
  public int getJumps() { return jumps; } 
  public void setJumps(int newJumps) { 
    jumps = newJumps; 
  } 
  public Color getColor() { return color; } 
  public void setColor(Color newColor) { 
    color = newColor; 
  } 
  public Spots getSpots() { return spots; } 

Graphical User Interfaces 997 



 

  public void setSpots(Spots newSpots) { 
    spots = newSpots; 
  } 
  public boolean isJumper() { return jmpr; } 
  public void setJumper(boolean j) { jmpr = j; } 
  public void addActionListener(ActionListener l) { 
    //... 
  } 
  public void removeActionListener(ActionListener l) { 
    // ... 
  } 
  public void addKeyListener(KeyListener l) { 
    // ... 
  } 
  public void removeKeyListener(KeyListener l) { 
    // ... 
  } 
  // An "ordinary" public method: 
  public void croak() { 
    System.out.println("Ribbet!"); 
  } 
} ///:~ 

First, you can see that it’s just a class. Usually, all your fields will be private and accessible 
only through methods and properties. Following the naming convention, the properties are 
jumps, color, spots, and jumper (notice the case change of the first letter in the property 
name). Although the name of the internal identifier is the same as the name of the property 
in the first three cases, in jumper you can see that the property name does not force you to 
use any particular identifier for internal variables (or, indeed, to even have any internal 
variables for that property). 

The events this Bean handles are ActionEvent and KeyEvent, based on the naming of the 
"add" and "remove" methods for the associated listener. Finally, you can see that the 
ordinary method croak( ) is still part of the Bean simply because it’s a public method, not 
because it conforms to any naming scheme.  

Extracting Beanlnfo 
with the Introspector 

One of the most critical parts of the JavaBean scheme occurs when you drag a Bean off a 
palette and drop it onto a form. The IDE must be able to create the Bean (which it can do if 
there’s a default constructor) and then, without access to the Bean’s source code, extract all 
the necessary information to create the property sheet and event handlers.  

Part of the solution is already evident from the Type Information chapter: Java reflection 
discovers all the methods of an unknown class. This is perfect for solving the JavaBean 
problem without requiring extra language keywords like those in other visual programming 
languages. In fact, one of the prime reasons that reflection was added to Java was to support 
JavaBeans (although reflection also supports object serialization and Remote Method 
Invocation, and is helpful in ordinary programming). So you might expect that the creator of 
the IDE would have to reflect each Bean and hunt through its methods to find the properties 
and events for that Bean.  

This is certainly possible, but the Java designers wanted to provide a standard tool, not only 
to make Beans simpler to use, but also to provide a standard gateway to the creation of more 
complex Beans. This tool is the Introspector class, and the most important method in this 
class is the static getBeanInfo( ). You pass a Class reference to this method, and it fully 

998 Thinking in Java Bruce Eckel 



 

interrogates that class and returns a BeanInfo object which you can dissect to find 
properties, methods, and events.  

Usually, you won’t care about any of this; you’ll probably get most of your Beans off the shelf, 
and you won’t need to know all the magic that’s going on underneath. You’ll simply drag 
Beans onto your form, then configure their properties and write handlers for the events of 
interest. However, it’s an educational exercise to use the Introspector to display 
information about a Bean. Here’s a tool that does it:  

//: gui/BeanDumper.java 
// Introspecting a Bean. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.beans.*; 
import java.lang.reflect.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class BeanDumper extends JFrame { 
  private JTextField query = new JTextField(20); 
  private JTextArea results = new JTextArea(); 
  public void print(String s) { results.append(s + "\n"); } 
  public void dump(Class<?> bean) { 
    results.setText(""); 
    BeanInfo bi = null; 
    try { 
      bi = Introspector.getBeanInfo(bean, Object.class); 
    } catch(IntrospectionException e) { 
      print("Couldn’t introspect " +  bean.getName()); 
      return; 
    } 
    for(PropertyDescriptor d: bi.getPropertyDescriptors()){ 
      Class<?> p = d.getPropertyType(); 
      if(p == null) continue; 
      print("Property type:\n  " + p.getName() + 
        "Property name:\n  " + d.getName()); 
      Method readMethod = d.getReadMethod(); 
      if(readMethod != null) 
        print("Read method:\n  " + readMethod); 
      Method writeMethod = d.getWriteMethod(); 
      if(writeMethod != null) 
        print("Write method:\n  " + writeMethod); 
      print("===================="); 
    } 
    print("Public methods:"); 
    for(MethodDescriptor m : bi.getMethodDescriptors()) 
      print(m.getMethod().toString()); 
    print("======================"); 
    print("Event support:"); 
    for(EventSetDescriptor e: bi.getEventSetDescriptors()){ 
      print("Listener type:\n  " + 
        e.getListenerType().getName()); 
      for(Method lm : e.getListenerMethods()) 
        print("Listener method:\n  " + lm.getName()); 
      for(MethodDescriptor lmd : 
          e.getListenerMethodDescriptors() ) 
        print("Method descriptor:\n  " + lmd.getMethod()); 
      Method addListener= e.getAddListenerMethod(); 
      print("Add Listener Method:\n  " + addListener); 
      Method removeListener = e.getRemoveListenerMethod(); 
      print("Remove Listener Method:\n  "+ removeListener); 
      print("===================="); 

Graphical User Interfaces 999 



 

    } 
  } 
  class Dumper implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      String name = query.getText(); 
      Class<?> c = null; 
      try { 
        c = Class.forName(name); 
      } catch(ClassNotFoundException ex) { 
        results.setText("Couldn’t find " + name); 
        return; 
      } 
      dump(c); 
    } 
  } 
  public BeanDumper() { 
    JPanel p = new JPanel(); 
    p.setLayout(new FlowLayout()); 
    p.add(new JLabel("Qualified bean name:")); 
    p.add(query); 
    add(BorderLayout.NORTH, p); 
    add(new JScrollPane(results)); 
    Dumper dmpr = new Dumper(); 
    query.addActionListener(dmpr); 
    query.setText("frogbean.Frog"); 
    // Force evaluation 
    dmpr.actionPerformed(new ActionEvent(dmpr, 0, "")); 
  } 
  public static void main(String[] args) { 
    run(new BeanDumper(), 600, 500); 
  } 
} ///:~ 

BeanDumper.dump( ) does all the work. First it tries to create a BeanInfo object, and if 
successful, calls the methods of BeanInfo that produce information about properties, 
methods, and events. In Introspector.getBeanInfo( ), you’ll see there is a second 
argument that tells the Introspector where to stop in the inheritance hierarchy. Here, it 
stops before it parses all the methods from Object, since we’re not interested in seeing those.  

For properties, getPropertyDescriptors( ) returns an array of PropertyDescriptors. 
For each PropertyDescriptor, you can call getPropertyType( ) to find the class of object 
that is passed in and out via the property methods. Then, for each property, you can get its 
pseudonym (extracted from the method names) with getName( ), the method for reading 
with getReadMethod( ), and the method for writing with getWriteMethod( ). These last 
two methods return a Method object that can actually be used to invoke the corresponding 
method on the object (this is part of reflection).  

For the public methods (including the property methods), getMethodDescriptors( ) 
returns an array of MethodDescriptors. For each one, you can get the associated Method 
object and print its name.  

For the events, getEventSetDescriptors( ) returns an array of EventSetDescriptors. 
Each of these can be queried to find out the class of the listener, the methods of that listener 
class, and the add- and removelistener methods. The BeanDumper program displays all of 
this information.  

Upon startup, the program forces the evaluation of frogbean.Frog. The output, after 
unnecessary details have been removed, is:  

Property type: 

1000 Thinking in Java Bruce Eckel 



 

  Color 
Property name: 
  color 
Read method: 
  public Color getColor() 
Write method: 
  public void setColor(Color) 
==================== 
Property type: 
  boolean 
Property name: 
  jumper 
Read method: 
  public boolean isJumper() 
Write method: 
  public void setJumper(boolean) 
==================== 
Property type: 
  int 
Property name: 
  jumps 
Read method: 
  public int getJumps() 
Write method: 
  public void setJumps(int) 
==================== 
Property type: 
  frogbean.Spots 
Property name: 
  spots 
Read method: 
  public frogbean.Spots getSpots() 
Write method: 
  public void setSpots(frogbean.Spots) 
==================== 
Public methods: 
public void setSpots(frogbean.Spots) 
public void setColor(Color) 
public void setJumps(int) 
public boolean isJumper() 
public frogbean.Spots getSpots() 
public void croak() 
public void addActionListener(ActionListener) 
public void addKeyListener(KeyListener) 
public Color getColor() 
public void setJumper(boolean) 
public int getJumps() 
public void removeActionListener(ActionListener) 
public void removeKeyListener(KeyListener) 
===================== 
Event support: 
Listener type: 
  KeyListener 
Listener method: 
  keyPressed 
Listener method: 
  keyReleased 
Listener method: 
  keyTyped 
Method descriptor: 
  public abstract void keyPressed(KeyEvent) 
Method descriptor: 
  public abstract void keyReleased(KeyEvent) 

Graphical User Interfaces 1001 



 

Method descriptor: 
  public abstract void keyTyped(KeyEvent) 
AddListener Method: 
  public void addKeyListener(KeyListener) 
Remove Listener Method: 
  public void removeKeyListener(KeyListener) 
==================== 
Listener type: 
  ActionListener 
Listener method: 
  actionPerformed 
Method descriptor: 
  public abstract void actionPerformed(ActionEvent) 
Add Listener Method: 
  public void addActionListener(ActionListener) 
Remove Listener Method: 
  public void removeActionListener(ActionListener) 
==================== 

This reveals most of what the Introspector sees as it produces a BeanInfo object from 
your Bean. You can see that the type of the property and its name are independent. Notice 
the lowercasing of the property name. (The only time this doesn’t occur is when the property 
name begins with more than one capital letter in a row.) And remember that the method 
names you’re seeing here (such as the read and write methods) are actually produced from a 
Method object that can be used to invoke the associated method on the object.  

The public method list includes the methods that are not associated with a property or an 
event, such as croak( ), as well as those that are. These are all the methods that you can call 
programmatically for a Bean, and the IDE can choose to list all of these while you’re making 
method calls, to ease your task.  

Finally, you can see that the events are fully parsed out into the listener, its methods, and the 
add- and remove-listener methods. Basically, once you have the BeanInfo, you can find out 
everything of importance for the Bean. You can also call the methods for that Bean, even 
though you don’t have any other information except the object (again, a feature of reflection).  

A more sophisticated Bean 

This next example is slightly more sophisticated, albeit frivolous. It’s a JPanel that draws a 
little circle around the mouse whenever the mouse is moved. When you press the mouse, the 
word "Bang!" appears in the middle of the screen, and an action listener is fired.  

The properties you can change are the size of the circle as well as the color, size, and text of 
the word that is displayed when you press the mouse. A BangBean also has its own 
addActionListener( ) and removeActionListener( ), so you can attach your own 
listener that will be fired when the user clicks on the BangBean. You should recognize the 
property and event support:  

//: bangbean/BangBean.java 
// A graphical Bean. 
package bangbean; 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import java.util.*; 
 
public class 
BangBean extends JPanel implements Serializable { 

1002 Thinking in Java Bruce Eckel 



 

  private int xm, ym; 
  private int cSize = 20; // Circle size 
  private String text = "Bang!"; 
  private int fontSize = 48; 
  private Color tColor = Color.RED; 
  private ActionListener actionListener; 
  public BangBean() { 
    addMouseListener(new ML()); 
    addMouseMotionListener(new MML()); 
  } 
  public int getCircleSize() { return cSize; } 
  public void setCircleSize(int newSize) { 
    cSize = newSize; 
  } 
  public String getBangText() { return text; } 
  public void setBangText(String newText) { 
    text = newText; 
  } 
  public int getFontSize() { return fontSize; } 
  public void setFontSize(int newSize) { 
    fontSize = newSize; 
  } 
  public Color getTextColor() { return tColor; } 
  public void setTextColor(Color newColor) { 
    tColor = newColor; 
  } 
  public void paintComponent(Graphics g) { 
    super.paintComponent(g); 
    g.setColor(Color.BLACK); 
    g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize); 
  } 
  // This is a unicast listener, which is 
  // the simplest form of listener management: 
  public void addActionListener(ActionListener l) 
  throws TooManyListenersException { 
    if(actionListener != null) 
      throw new TooManyListenersException(); 
    actionListener = l; 
  } 
  public void removeActionListener(ActionListener l) { 
    actionListener = null; 
  } 
  class ML extends MouseAdapter { 
    public void mousePressed(MouseEvent e) { 
      Graphics g = getGraphics(); 
      g.setColor(tColor); 
      g.setFont( 
        new Font("TimesRoman", Font.BOLD, fontSize)); 
      int width = g.getFontMetrics().stringWidth(text); 
      g.drawString(text, (getSize().width - width) /2, 
        getSize().height/2); 
      g.dispose(); 
      // Call the listener’s method: 
      if(actionListener != null) 
        actionListener.actionPerformed( 
          new ActionEvent(BangBean.this, 
            ActionEvent.ACTION_PERFORMED, null)); 
    } 
  } 
  class MML extends MouseMotionAdapter { 
    public void mouseMoved(MouseEvent e) { 
      xm = e.getX(); 
      ym = e.getY(); 

Graphical User Interfaces 1003 



 

      repaint(); 
    } 
  } 
  public Dimension getPreferredSize() { 
    return new Dimension(200, 200); 
  } 
} ///:~ 

The first thing you’ll notice is that BangBean implements the Serializable interface. This 
means that the IDE can "pickle" all the information for the BangBean by using serialization 
after the program designer has adjusted the values of the properties. When the Bean is 
created as part of the running application, these "pickled" properties are restored so that you 
get exactly what you designed.  

When you look at the signature for addActionListener( ), you’ll see that it can throw a 
TooManyListenersException. This indicates that it is unicast, which means it notifies 
only one listener when the event occurs. Ordinarily, you’ll use multicast events so that many 
listeners can be notified of an event. However, that runs into threading issues, so it will be 
revisited in the next section, "JavaBeans and synchronization." In the meantime, a unicast 
event sidesteps the problem.  

When you click the mouse, the text is put in the middle of the BangBean, and if the 
actionListener field is not null, its actionPerformed( ) is called, creating a new 
ActionEvent object in the process. Whenever the mouse is moved, its new coordinates are 
captured and the canvas is repainted (erasing any text that’s on the canvas, as you’ll see).  

Here is the BangBeanTest class to test the Bean:  

//: bangbean/BangBeanTest.java 
// {Timeout: 5} Abort after 5 seconds when testing 
package bangbean; 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class BangBeanTest extends JFrame { 
  private JTextField txt = new JTextField(20); 
  // During testing, report actions: 
  class BBL implements ActionListener { 
    private int count = 0; 
    public void actionPerformed(ActionEvent e) { 
      txt.setText("BangBean action "+ count++); 
    } 
  } 
  public BangBeanTest() { 
    BangBean bb = new BangBean(); 
    try { 
      bb.addActionListener(new BBL()); 
    } catch(TooManyListenersException e) { 
      txt.setText("Too many listeners"); 
    } 
    add(bb); 
    add(BorderLayout.SOUTH, txt); 
  } 
  public static void main(String[] args) { 
    run(new BangBeanTest(), 400, 500); 
  } 
} ///:~ 

1004 Thinking in Java Bruce Eckel 



 

When a Bean is used in an IDE, this class will not be used, but it’s helpful to provide a rapid 
testing method for each of your Beans. BangBeanTest places a BangBean within the 
JFrame, attaching a simple ActionListener to the BangBean to print an event count to 
the JTextField whenever an ActionEvent occurs. Usually, of course, the IDE would create 
most of the code that uses the Bean.  

When you run the BangBean through BeanDumper or put the BangBean inside a Bean-
enabled development environment, you’ll notice that there are many more properties and 
actions than are evident from the preceding code. That’s because BangBean is inherited 
from JPanel, and JPanel is also a Bean, so you’re seeing its properties and events as well.  

Exercise 35:   (6) Locate and download one or more of the free GUI builder development 
environments available on the Internet, or use a commercial product if you own one. 
Discover what is necessary to add BangBean to this environment and to use it.  

JavaBeans and synchronization 

Whenever you create a Bean, you must assume that it will run in a multithreaded 
environment. This means that:  

1. Whenever possible, all the public methods of a Bean should be synchronized. Of 
course, this incurs the synchronized runtime overhead (which has been significantly 
reduced in recent versions of the JDK). If that’s a problem, methods that will not 
cause problems in critical sections can be left unsynchronized, but keep in mind 
that such methods are not always obvious. Methods that qualify tend to be small (such 
as getCircleSize( ) in the following example) and/or "atomic"; that is, the method 
call executes in such a short amount of code that the object cannot be changed during 
execution (but review the Concurrency chapter— what you may think is atomic might 
not be). Making such methods unsynchronized might not have a significant effect 
on the execution speed of your program. You’re better off making all public methods 
of a Bean synchronized and removing the synchronized keyword on a method only 
when you know for sure that it makes a difference and that you can safely remove the 
keyword.  
 

2. When firing a multicast event to a bunch of listeners interested in that event, you must 
assume that listeners might be added or removed while moving through the list.  

 
The first point is fairly straightforward, but the second point requires a little more thought. 
BangBean.java ducked out of the concurrency question by ignoring the synchronized 
keyword and making the event unicast. Here is a modified version that works in a 
multithreaded environment and uses multicasting for events:  

//: gui/BangBean2.java 
// You should write your Beans this way so they 
// can run in a multithreaded environment. 
import javax.swing.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import java.util.*; 
import static net.mindview.util.SwingConsole.*; 
 
public class BangBean2 extends JPanel 
implements Serializable { 
  private int xm, ym; 
  private int cSize = 20; // Circle size 
  private String text = "Bang!"; 
  private int fontSize = 48; 

Graphical User Interfaces 1005 



 

  private Color tColor = Color.RED; 
  private ArrayList<ActionListener> actionListeners = 
    new ArrayList<ActionListener>(); 
  public BangBean2() { 
    addMouseListener(new ML()); 
    addMouseMotionListener(new MM()); 
  } 
  public synchronized int getCircleSize() { return cSize; } 
  public synchronized void setCircleSize(int newSize) { 
    cSize = newSize; 
  } 
  public synchronized String getBangText() { return text; } 
  public synchronized void setBangText(String newText) { 
    text = newText; 
  } 
  public synchronized int getFontSize(){ return fontSize; } 
  public synchronized void setFontSize(int newSize) { 
    fontSize = newSize; 
  } 
  public synchronized Color getTextColor(){ return tColor;} 
  public synchronized void setTextColor(Color newColor) { 
    tColor = newColor; 
  } 
  public void paintComponent(Graphics g) { 
    super.paintComponent(g); 
    g.setColor(Color.BLACK); 
    g.drawOval(xm - cSize/2, ym - cSize/2, cSize, cSize); 
  } 
  // This is a multicast listener, which is more typically 
  // used than the unicast approach taken in BangBean.java: 
  public synchronized void 
  addActionListener(ActionListener l) { 
    actionListeners.add(l); 
  } 
  public synchronized void 
  removeActionListener(ActionListener l) { 
    actionListeners.remove(l); 
  } 
  // Notice this isn’t synchronized: 
  public void notifyListeners() { 
    ActionEvent a = new ActionEvent(BangBean2.this, 
      ActionEvent.ACTION_PERFORMED, null); 
    ArrayList<ActionListener> lv = null; 
    // Make a shallow copy of the List in case 
    // someone adds a listener while we’re 
    // calling listeners: 
    synchronized(this) { 
      lv = new ArrayList<ActionListener>(actionListeners); 
    } 
    // Call all the listener methods: 
    for(ActionListener al : lv) 
      al.actionPerformed(a); 
  } 
  class ML extends MouseAdapter { 
    public void mousePressed(MouseEvent e) { 
      Graphics g = getGraphics(); 
      g.setColor(tColor); 
      g.setFont( 
        new Font("TimesRoman", Font.BOLD, fontSize)); 
      int width = g.getFontMetrics().stringWidth(text); 
      g.drawString(text, (getSize().width - width) /2, 
        getSize().height/2); 
      g.dispose(); 

1006 Thinking in Java Bruce Eckel 



 

      notifyListeners(); 
    } 
  } 
  class MM extends MouseMotionAdapter { 
    public void mouseMoved(MouseEvent e) { 
      xm = e.getX(); 
      ym = e.getY(); 
      repaint(); 
    } 
  } 
  public static void main(String[] args) { 
    BangBean2 bb2 = new BangBean2(); 
    bb2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        System.out.println("ActionEvent" + e); 
      } 
    }); 
    bb2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        System.out.println("BangBean2 action"); 
      } 
    }); 
    bb2.addActionListener(new ActionListener() { 
      public void actionPerformed(ActionEvent e) { 
        System.out.println("More action"); 
      } 
    }); 
    JFrame frame = new JFrame(); 
    frame.add(bb2); 
    run(frame, 300, 300); 
  } 
} ///:~ 

Adding synchronized to the methods is an easy change. However, notice in 
addActionListener( ) and removeActionListener( ) that the ActionListeners are 
now added to and removed from an ArrayList, so you can have as many as you want.  

You can see that the method notifyListeners( ) is not synchronized. It can be called from 
more than one thread at a time. It’s also possible for addActionListener( ) or 
removeActionListener( ) to be called in the middle of a call to notifyListeners( ), 
which is a problem because it traverses the ArrayList actionListeners. To alleviate the 
problem, the ArrayList is duplicated inside a synchronized clause, using the ArrayList 
constructor which copies the elements of its argument, and the duplicate is traversed. This 
way, the original ArrayList can be manipulated without impact on notifyListeners( ).  

The paintComponent( ) method is also not synchronized. Deciding whether to 
synchronize overridden methods is not as clear as when you’re just adding your own 
methods. In this example, it turns out that paintComponent( ) seems to work OK whether 
it’s synchronized or not. But the issues you must consider are:  

1. Does the method modify the state of "critical" variables within the object? To discover 
whether the variables are "critical," you must determine whether they will be read or 
set by other threads in the program. (In this case, the reading or setting is virtually 
always accomplished via synchronized methods, so you can just examine those.) In 
the case of paintComponent( ), no modification takes place. 
 

2. Does the method depend on the state of these "critical" variables? If a synchronized 
method modifies a variable that your method uses, then you might very well want to 
make your method synchronized as well. Based on this, you might observe that 
cSize is changed by synchronized methods, and therefore paintComponent( ) 

Graphical User Interfaces 1007 



 

should be synchronized. Here, however, you can ask, "What’s the worst thing that 
will happen if cSize is changed during a paintComponent( )?" When you see that 
it’s nothing too bad, and a transient effect at that, you can decide to leave 
paintComponent( ) unsynchronized to prevent the extra overhead from the 
synchronized method call. 

 
3. A third clue is to notice whether the base-class version of paintComponent( ) is 

synchronized, which it isn’t. This isn’t an airtight argument, just a clue. In this case, 
for example, a field that is changed via synchronized methods (that is, cSize) has 
been mixed into the paintComponent( ) formula and might have changed the 
situation. Notice, however, that synchronized doesn’t inherit; that is, if a method is 
synchronized in the base class, then it is not automatically synchronized in the 
derivedclass overridden version.  

 
4. paint( ) and paintComponent( ) are methods that must be as fast as possible. 

Anything that takes processing overhead out of these methods is highly 
recommended, so if you think you need to synchronize these methods it may be an 
indicator of bad design.  

 
The test code in main( ) has been modified from that seen in BangBeanTest to 
demonstrate the multicast ability of BangBean2 by adding extra listeners.  

Packaging a Bean 

Before you can bring a JavaBean into a Bean-enabled IDE, it must be put into a Bean 
container, which is a JAR file that includes all the Bean classes as well as a "manifest" file 
that says, "This is a Bean." A manifest file is simply a text file that follows a particular form. 
For the BangBean, the manifest file looks like this:  

Manifest-Version: 1.0  
 
Name: bangbean/BangBean.class  
Java-Bean: True  

The first line indicates the version of the manifest scheme, which until further notice from 
Sun is 1.0. The second line (empty lines are ignored) names the BangBean.class file, and 
the third says, "It’s a Bean." Without the third line, the program builder tool will not 
recognize the class as a Bean.  

The only tricky part is that you must make sure that you get the proper path in the "Name:" 
field. If you look back at BangBean.java, you’ll see it’s in package bangbean (and thus in 
a subdirectory called bangbean that’s off of the classpath), and the name in the manifest file 
must include this package information. In addition, you must place the manifest file in the 
directory above the root of your package path, which in this case means placing the file in the 
directory above the "bangbean" subdirectory. Then you must invoke jar from the same 
directory as the manifest file, as follows:  

jar cfm BangBean.jar BangBean.mf bangbean  

This assumes that you want the resulting JAR file to be named BangBean.jar, and that 
you’ve put the manifest in a file called BangBean.mf.  

You might wonder, "What about all the other classes that were generated when I compiled 
BangBean.java?" Well, they all ended up inside the bangbean subdirectory, and you’ll see 
that the last argument for the above jar command line is the bangbean subdirectory. When 
you give jar the name of a subdirectory, it packages that entire subdirectory into the JAR file 
(including, in this case, the original BangBean.java source-code file—you might not choose 

1008 Thinking in Java Bruce Eckel 



 

to include the source with your own Beans). In addition, if you turn around and unpack the 
JAR file you’ve just created, you’ll discover that your manifest file isn’t inside, but that jar 
has created its own manifest file (based partly on yours) called MANIFEST.MF and placed 
it inside the subdirectory META-INF (for "meta-information"). If you open this manifest 
file, you’ll also notice that digital signature information has been added by jar for each file, of 
the form:  

Digest-Algorithms: SHA MD5 
SHA-Digest: pDpEAG9NaeCx8aFtqPI4udSX/O0= 
MD5-Digest: 04NcSlhE3Smnzlp2hj6qeg== 

In general, you don’t need to worry about any of this, and if you make changes, you can just 
modify your original manifest file and reinvoke jar to create a new JAR file for your Bean. 
You can also add other Beans to the JAR file simply by adding their information to your 
manifest.  

One thing to notice is that you’ll probably want to put each Bean in its own subdirectory, 
since when you create a JAR file you hand the jar utility the name of a subdirectory, and it 
puts everything in that subdirectory into the JAR file. You can see that both Frog and 
BangBean are in their own subdirectories.  

Once you have your Bean properly inside a JAR file, you can bring it into a Beans-enabled 
IDE. The way you do this varies from one tool to the next, but Sun provides a freely available 
test bed for JavaBeans in its "Bean Builder." (Download from http://java.sun.com/beans.) 
You place a Bean into the Bean Builder by simply copying the JAR file into the correct 
subdirectory.  

Exercise 36:   (4) Add Frog.class to the manifest file in this section and run jar to 
create a JAR file containing both Frog and BangBean. Now either download and install the 
Bean Builder from Sun, or use your own Beans-enabled program builder tool and add the 
JAR file to your environment so you can test the two Beans.  

Exercise 37:   (5) Create your own JavaBean called Valve that contains two properties: a 
boolean called "on" and an int called "level." Create a manifest file, use jar to package your 
Bean, then load it into the Bean Builder or into a Beans-enabled program builder tool so that 
you can test it.  

More complex Bean support 

You can see how remarkably simple it is to make a Bean, but you aren’t limited to what 
you’ve seen here. The JavaBeans architecture provides a simple point of entry but can also 
scale to more complex situations. These situations are beyond the scope of this book, but they 
will be briefly introduced here. You can find more details at http://java.sun.com/beans.  

One place where you can add sophistication is with properties. The examples you’ve seen 
here have shown only single properties, but it’s also possible to represent multiple properties 
in an array. This is called an indexed property. You simply provide the appropriate methods 
(again following a naming convention for the method names), and the Introspector 
recognizes an indexed property so that your IDE can respond appropriately.  

Properties can be bound, which means that they will notify other objects via a 
PropertyChangeEvent. The other objects can then choose to change themselves based on 
the change to the Bean.  

Properties can be constrained, which means that other objects can veto a change to that 
property if it is unacceptable. The other objects are notified by using a 

Graphical User Interfaces 1009 



 

PropertyChangeEvent, and they can throw a PropertyVetoException to prevent the 
change from happening and to restore the old values.  

You can also change the way your Bean is represented at design time:  

1. You can provide a custom property sheet for your particular Bean. The ordinary 
property sheet will be used for all other Beans, but yours is automatically invoked 
when your Bean is selected.  
 

2. You can create a custom editor for a particular property, so the ordinary property 
sheet is used, but when your special property is being edited, your editor will 
automatically be invoked.  

 
3. You can provide a custom BeanInfo class for your Bean that produces information 

different from the default created by the Introspector.  
 

4. It’s also possible to turn "expert" mode on and off in all FeatureDescriptors to 
distinguish between basic features and more complicated ones.  

More to Beans 

There are a number of books about JavaBeans; for example, JavaBeans by Elliotte Rusty 
Harold (IDG, 1998).  

Alternatives to Swing 
Although the Swing library is the GUI sanctioned by Sun, it is by no means the only way to 
create graphical user interfaces. Two important alternatives are Macromedia Flash, using 
Macromedia’s Flex programming system, for client-side GUIs over the Web, and the open-
source Eclipse Standard Widget Toolkit (SWT) library for desktop applications.  

Why would you consider alternatives? For Web clients, you can make a fairly strong 
argument that applets have failed. Considering how long they’ve been around (since the 
beginning) and the initial hype and promise around applets, coming across a Web 
application that uses applets is still a surprise. Even Sun doesn’t use applets everywhere. 
Here’s an example:  

http://java.sun.c0m/developer/onlineTraining/new2java/javamap/intro.html  

An interactive map of Java features on the Sun site seems a very likely candidate for a Java 
applet, and yet they did it in Flash. This appears to be a tacit acknowledgement that applets 
have not been a success. More importantly, the Flash Player is installed on upwards of 98 
percent of computing platforms, so it can be considered an accepted standard. As you’ll see, 
the Flex system provides a very powerful client-side programming environment, certainly 
more powerful than JavaScript and with a look and feel that is often preferable to an applet. 
If you want to use applets, you must still convince the client to download the JRE, whereas 
the Flash Player is small and fast to download by comparison.  

For desktop applications, one problem with Swing is that users notice that they are using a 
different kind of application, because the look and feel of Swing applications is different from 
the normal desktop. Users are not generally interested in new looks and feels in an 
application; they are trying to get work done and prefer that an application look and feel like 
all their other applications. SWT creates applications that look like native applications, and 
because the library uses native components as much as possible, the applications tend to run 
faster than equivalent Swing applications.  

1010 Thinking in Java Bruce Eckel 



 

Graphical User Interfaces 1011 

Building Flash Web clients with 
     Flex 

Because the lightweight Macromedia Flash virtual machine is so ubiquitous, most people will 
be able to use a Flash-based interface without installing anything, and it will look and behave 
the same way across all systems and platforms.10

  

With Macromedia Flex, you can develop Flash user interfaces for Java applications. Flex 
consists of an XML- and script-based programming model, similar to programming models 
such as HTML and JavaScript, along with a robust library of components. You use the 
MXML syntax to declare layout management and widget controls, and you use dynamic 
scripting to add event-handling and service invocation code which links the user interface to 
Java classes, data models, Web services, etc. The Flex compiler takes your MXML and script 
files and compiles them into bytecode. The Flash virtual machine on the client operates like 
the Java Virtual Machine in that it interprets compiled bytecode. The Flash bytecode format 
is known as SWF, and SWF files are produced by the Flex compiler.  

Note that there’s an open-source alternative to Flex at http://openlaszlo.org; this has a 
structure that’s similar to Flex but may be a preferable alternative for some. Other tools also 
exist to create Flash applications in different ways.  

Hello, Flex 

Consider this MXML code, which defines a user interface (note that the first and last lines 
will not appear in the code that you download as part of this book’s source-code package):  

//:! gui/flex/helloflex1.mxml 
<?xml version="1.0" encoding="utf-8"?> 
<mx:Application 
  xmlns:mx="http://www.macromedia.com/2003/mxml" 
  backgroundColor="#ffffff"> 
  <mx:Label id="output" text="Hello, Flex!" /> 
</mx:Application> 
///:~ 

MXML files are XML documents, so they begin with an XML version/encoding directive. The 
outermost MXML element is the Application element, which is the topmost visual and 
logical container for a Flex user interface. You can declare tags representing visual controls, 
such as the Label element above, inside the Application element. Controls are always 
placed within a container, and containers encapsulate layout managers, among other 
mechanisms, so they manage the layout of the controls within them. In the simplest case, as 
in the above example, the Application acts as the container. The Application’s default 
layout manager merely places controls vertically down the interface in the order in which 
they are declared.  

ActionScript is a version of ECMAScript, or JavaScript, which looks quite similar to Java and 
supports classes and strong typing in addition to dynamic scripting. By adding a script to the 
example, we can introduce behavior. Here, the MXML Script control is used to place 
ActionScript directly into the MXML file:  

//:! gui/flex/helloflex2.mxml 
<?xml version="1.0" encoding="utf-8"?> 
<mx:Application 
                                                            
10 Sean Neville created the core of the material in this section. 



 

1012 Thinking in Java Bruce Eckel 

  xmlns:mx="http://www.macromedia.com/2003/mxml" 
  backgroundColor="#ffffff"> 
  <mx:Script> 
    <![CDATA[ 
    function updateOutput() { 
      output.text = "Hello! " + input.text; 
    } 
    ]]> 
  </mx:Script> 
  <mx:TextInput id="input" width="200" 
    change="updateOutput()" /> 
  <mx:Label id="output" text="Hello!" /> 
</mx:Application> 
///:~ 

A TextInput control accepts user input, and a Label displays the data as it is being typed. 
Note that the id attribute of each control becomes accessible in the script as a variable name, 
so the script can reference instances of the MXML tags. In the TextInput field, you can see 
that the change attribute is connected to the updateOutput( ) function so that the 
function is called whenever any kind of change occurs.  

Compiling MXML 

The easiest way to get started using Flex is with the free trial, which you can download at 
www.macromedia.com/software/flex/trial.11  The product is packaged in a number of 
editions, from free trials to enterprise server versions, and Macromedia offers additional 
tools for developing Flex applications. Exact packaging is subject to change, so check the 
Macromedia site for specifics. Also note that you may need to modify the jvm.config file in 
the Flex installation bin directory.  

To compile the MXML code into Flash bytecode, you have two options: 

1. You can place the MXML file in a Java Web application, alongside JSP and HTML 
pages in a WAR file, and have requests for the .mxml file compiled at run time 
whenever a browser requests the MXML document’s URL.  
 

2. You can compile the MXML file using the Flex command-line compiler, mxmlc.  
 

The first option, Web-based runtime compilation, requires a servlet container (such as 
Apache Tomcat) in addition to Flex. The servlet container’s WAR file(s) must be updated 
with Flex configuration information, such as servlet mappings which are added to the 
web.xml descriptor, and it must include the Flex JAR files—these steps are handled 
automatically when you install Flex. After the WAR file is configured, you can place the 
MXML files in the Web application and request the document’s URL through any browser. 
Flex will compile the application upon the first request, similar to the JSP model, and will 
thereafter deliver the compiled and cached SWF within an HTML shell.  

The second option does not require a server. When you invoke the Flex mxmlc compiler on 
the command line, you produce SWF files. You can deploy these as you desire. The mxmlc 
executable is located in the bin directory of a Flex installation, and invoking it with no 
arguments will provide a list of valid command-line options. Typically, you’ll specify the 
location of the Flex client component library as the value of the -flexlib command-line 
option, but in very simple examples like the two that we’ve seen so far, the Flex compiler will 
assume the location of the component library. So you can compile the first two examples like 
this:  

                                                            
11 Note that you must download Flex, and not FlexBuilder. The latter is an IDE design tool. 



 

mxmlc.exe helloflexl.mxml  
mxmlc.exe helloflex2.mxml  

This produces a helloflex2.swf file which can be run in Flash, or placed alongside HTML 
on any HTTP server (once Flash has been loaded into your Web browser, you can often just 
double-click on the SWF file to start it up in the browser).  

For helloflex2.swf, you’ll see the following user interface running in the Flash Player: 

This was not too hard to do…| 

Hello! This was not too hard to do… 

In more complex applications, you can separate MXML and ActionScript by referencing 
functions in external ActionScript files. From MXML, you use the following syntax for the 
Script control: 

 <mx:Script source="MyExternalScript.as" /> 

This code allows the MXML controls to reference functions located in a file named 
MyExternalScript.as as if they were located within the MXML file.  

MXML and ActionScript 

MXML is declarative shorthand for ActionScript classes. Whenever you see an MXML tag, 
there exists an ActionScript class of the same name. When the Flex compiler parses MXML, 
it first transforms the XML into ActionScript and loads the referenced ActionScript classes, 
and then compiles and links the ActionScript into an SWF.  

You can write an entire Flex application in ActionScript alone, without using any MXML. 
Thus, MXML is a convenience. User interface components such as containers and controls 
are typically declared using MXML, while logic such as event handling and other client logic 
is handled through ActionScript and Java.  

You can create your own MXML controls and reference them using MXML by writing 
ActionScript classes. You may also combine existing MXML containers and controls in a new 
MXML document that can then be referenced as a tag in another MXML document. The 
Macromedia Web site contains more information about how to do this.  

Containers and controls 

The visual core of the Flex component library is a set of containers which manage layout, and 
an array of controls which go inside those containers. Containers include panels, vertical and 
horizontal boxes, tiles, accordions, divided boxes, grids, and more. Controls are user 
interface widgets such as buttons, text areas, sliders, calendars, data grids, and so forth.  

The remainder of this section will show a Flex application that displays and sorts a list of 
audio files. This application demonstrates containers, controls, and how to connect to Java 
from Flash.  

We start the MXML file by placing a DataGrid control (one of the more sophisticated Flex 
controls) within a Panel container:  

//:! gui/flex/songs.mxml 
<?xml version="1.0" encoding="utf-8"?> 
<mx:Application 

Graphical User Interfaces 1013 



 

  xmlns:mx="http://www.macromedia.com/2003/mxml" 
  backgroundColor="#B9CAD2" pageTitle="Flex Song Manager" 
  initialize="getSongs()"> 
  <mx:Script source="songScript.as" /> 
  <mx:Style source="songStyles.css"/> 
  <mx:Panel id="songListPanel" 
    titleStyleDeclaration="headerText" 
    title="Flex MP3 Library"> 
    <mx:HBox verticalAlign="bottom"> 
      <mx:DataGrid id="songGrid" 
        cellPress="selectSong(event)" rowCount="8"> 
        <mx:columns> 
          <mx:Array> 
            <mx:DataGridColumn columnName="name" 
              headerText="Song Name" width="120" /> 
            <mx:DataGridColumn columnName="artist" 
              headerText="Artist" width="180" /> 
            <mx:DataGridColumn columnName="album" 
              headerText="Album" width="160" /> 
          </mx:Array> 
        </mx:columns> 
      </mx:DataGrid> 
      <mx:VBox> 
        <mx:HBox height="100" > 
          <mx:Image id="albumImage" source="" 
            height="80" width="100" 
            mouseOverEffect="resizeBig" 
            mouseOutEffect="resizeSmall" /> 
          <mx:TextArea id="songInfo" 
            styleName="boldText" height="100%" width="120" 
            vScrollPolicy="off" borderStyle="none" /> 
        </mx:HBox> 
        <mx:MediaPlayback id="songPlayer" 
          contentPath="" 
          mediaType="MP3" 
          height="70" 
          width="230" 
          controllerPolicy="on" 
          autoPlay="false" 
          visible="false" /> 
      </mx:VBox> 
    </mx:HBox> 
    <mx:ControlBar horizontalAlign="right"> 
      <mx:Button id="refreshSongsButton" 
        label="Refresh Songs" width="100" 
        toolTip="Refresh Song List" 
        click="songService.getSongs()" /> 
    </mx:ControlBar> 
  </mx:Panel> 
  <mx:Effect> 
    <mx:Resize name="resizeBig" heightTo="100" 
      duration="500"/> 
    <mx:Resize name="resizeSmall" heightTo="80" 
      duration="500"/> 
  </mx:Effect> 
  <mx:RemoteObject id="songService" 
    source="gui.flex.SongService" 
    result="onSongs(event.result)" 
    fault="alert(event.fault.faultstring, ‘Error’)"> 
    <mx:method name="getSongs"/> 
  </mx:RemoteObject> 
</mx:Application> 
///:~ 

1014 Thinking in Java Bruce Eckel 



 

The DataGrid contains nested tags for its array of columns. When you see an attribute or a 
nested element on a control, you know that it corresponds to some property, event, or 
encapsulated object in the underlying ActionScript class. The DataGrid has an id attribute 
with the value songGrid, so ActionScript and MXML tags can reference the grid 
programmatically by using songGrid as a variable name. The DataGrid exposes many 
more properties than those shown here; the complete API for MXML controls and containers 
can be found online at http ://livedocs. macromedia. com/flex/is/asdocs_ en/index.html.  

The DataGrid is followed by a VBox containing an Image to show the front of the album 
along with song information, and a MediaPlayback control that will play MP3 files. This 
example streams the content in order to reduce the size of the compiled SWF. When you 
embed images, audio, and video files into a Flex application instead of streaming them, the 
files become part of the compiled SWF and are delivered along with your user interface assets 
instead of streamed on demand at run time.  

The Flash Player contains embedded codecs for playing and streaming audio and video in a 
variety of formats. Flash and Flex support the use of the Web’s most common image formats, 
and Flex also has the ability to translate scalable vector graphics (SVG) files into SWF 
resources that can be embedded in Flex clients.  

Effects and styles 

The Flash Player renders graphics using vectors, so it can perform highly expressive 
transformations at run time. Flex effects provide a small taste of these sorts of animations. 
Effects are transformations that you can apply to controls and containers using MXML 
syntax.  

The Effect tag shown in the MXML produces two results: The first nested tag dynamically 
grows an image when the mouse hovers over it, and the second dynamically shrinks that 
image when the mouse moves away. These effects are applied to the mouse events available 
on the Image control for albumlmage.  

Flex also provides effects for common animations like transitions, wipes, and modulating 
alpha channels. In addition to the built-in effects, Flex supports the Flash drawing API for 
truly innovative animations. Deeper exploration of this topic involves graphic design and 
animation, and is beyond the scope of this section.  

Standard styling is available through Flex’s support for Cascading Style Sheets (CSS). If you 
attach a CSS file to an MXML file, the Flex controls will follow those styles. For this example, 
songStyles.css contains the following CSS declaration:  

//:! gui/flex/songStyles.css 
.headerText { 
  font-family: Arial, "_sans"; 
  font-size: 16; 
  font-weight: bold; 
} 
 
.boldText { 
  font-family: Arial, "_sans"; 
  font-size: 11; 
  font-weight: bold; 
} 
///:~ 

This file is imported and used in the song library application via the Style tag in the MXML 
file. After the style sheet is imported, its declarations can be applied to Flex controls in the 

Graphical User Interfaces 1015 



 

MXML file. As an example, the style sheet’s boldText declaration is used by the TextArea 
control with the songInfo id.  

Events 

A user interface is a state machine; it performs actions as state changes occur. In Flex, these 
changes are managed through events. The Flex class library contains a wide variety of 
controls with extensive events covering all aspects of mouse movement and keyboard usage.  

The click attribute of a Button, for example, represents one of the events available on that 
control. The value assigned to click can be a function or an inline bit of script. In the MXML 
file, for example, the ControlBar holds the refreshSongsButton to refresh the list of 
songs. You can see from the tag that when the click event occurs, 
songService.getSongs( ) is called. In this example, the click event of the Button refers to 
the RemoteObject which corresponds to the Java method.  

Connecting to Java 

The RemoteObject tag at the end of the MXML file sets up the connection to the external 
Java class, gui.flex.SongService. The Flex client will use the getSongs( ) method in the 
Java class to retrieve the data for the DataGrid. To do so, it must appear as a service—an 
endpoint with which the client can exchange messages. The service defined in the 
RemoteObject tag has a source attribute which denotes the Java class of the 
RemoteObject, and it specifies an ActionScript callback function, onSongs( ), to be 
invoked when the Java method returns. The nested method tag declares the method 
getSongs( ), which makes that Java method accessible to the rest of the Flex application.  

All invocations of services in Flex return asynchronously, through events fired to these 
callback functions. The RemoteObject also raises an alert dialog control in the event of an 
error.  

The getSongs( ) method may now be invoked from Flash using ActionScript:  

songService.getSongs();  

Because of the MXML configuration, this will call getSongs( ) in the SongService class:  

//: gui/flex/SongService.java 
package gui.flex; 
import java.util.*; 
 
public class SongService { 
  private List<Song> songs = new ArrayList<Song>(); 
  public SongService() { fillTestData(); } 
  public List<Song> getSongs() { return songs; } 
  public void addSong(Song song) { songs.add(song); } 
  public void removeSong(Song song) { songs.remove(song); } 
  private void fillTestData() { 
    addSong(new Song("Chocolate", "Snow Patrol", 
      "Final Straw", "sp-final-straw.jpg", 
      "chocolate.mp3")); 
    addSong(new Song("Concerto No. 2 in E", "Hilary Hahn", 
      "Bach: Violin Concertos", "hahn.jpg", 
      "bachviolin2.mp3")); 
    addSong(new Song("‘Round Midnight", "Wes Montgomery", 
      "The Artistry of Wes Montgomery", 
      "wesmontgomery.jpg", "roundmidnight.mp3")); 

1016 Thinking in Java Bruce Eckel 



 

  } 
} ///:~ 

Each Song object is just a data container:  

//: gui/flex/Song.java 
package gui.flex; 
 
public class Song implements java.io.Serializable { 
  private String name; 
  private String artist; 
  private String album; 
  private String albumImageUrl; 
  private String songMediaUrl; 
  public Song() {} 
  public Song(String name, String artist, String album, 
  String albumImageUrl, String songMediaUrl) { 
    this.name = name; 
    this.artist = artist; 
    this.album = album; 
    this.albumImageUrl = albumImageUrl; 
    this.songMediaUrl = songMediaUrl; 
  } 
  public void setAlbum(String album) { this.album = album;} 
  public String getAlbum() { return album; } 
  public void setAlbumImageUrl(String albumImageUrl) { 
    this.albumImageUrl = albumImageUrl; 
  } 
  public String getAlbumImageUrl() { return albumImageUrl;} 
  public void setArtist(String artist) { 
    this.artist = artist; 
  } 
  public String getArtist() { return artist; } 
  public void setName(String name) { this.name = name; } 
  public String getName() { return name; } 
  public void setSongMediaUrl(String songMediaUrl) { 
    this.songMediaUrl = songMediaUrl; 
  } 
  public String getSongMediaUrl() { return songMediaUrl; } 
} ///:~ 

When the application is initialized or you press the refreshSongsButton, getSongs( ) is 
called, and upon returning, the ActionScript onSongs(event.result) is called to populate 
the songGrid.  

Here is the ActionScript listing, which is included with the MXML file’s Script control:  

//: gui/flex/songScript.as 
function getSongs() { 
  songService.getSongs(); 
} 
 
function selectSong(event) { 
  var song = songGrid.getItemAt(event.itemIndex); 
  showSongInfo(song); 
} 
 
function showSongInfo(song) { 
  songInfo.text = song.name + newline; 
  songInfo.text += song.artist + newline; 
  songInfo.text += song.album + newline; 

Graphical User Interfaces 1017 



 

  albumImage.source = song.albumImageUrl; 
  songPlayer.contentPath = song.songMediaUrl; 
  songPlayer.visible = true; 
} 
 
function onSongs(songs) { 
  songGrid.dataProvider = songs; 
} ///:~ 

To handle DataGrid cell selections, we add the cellPress event attribute to the DataGrid 
declaration in the MXML file:  

cellPress="selectSong(event)"  

When the user clicks on a song in the DataGrid, this will call selectSong( ) in the 
ActionScript above.  

Data models and data binding 

Controls can directly invoke services, and ActionScript event callbacks give you a chance to 
programmatically update the visual controls when services return data. While the script 
which updates the controls is straightforward, it can get verbose and cumbersome, and its 
functionality is so common that Flex handles the behavior automatically, with data binding.  

In its simplest form, data binding allows controls to reference data directly instead of 
requiring glue code to copy data into a control. When the data is updated, the control which 
references it is also automatically updated without any need for programmer intervention. 
The Flex infrastructure correctly responds to the data change events, and updates all controls 
which are bound to the data.  

Here is a simple example of data binding syntax:  

<mx:Slider id="mySlider"/> 
<mx:Text text="{mySlider.value}" /> 

To perform data binding, you place references within curly braces: {}. Everything within 
those curly braces is deemed an expression for Flex to evaluate.  

The value of the first control, a Slider widget, is displayed by the second control, a Text 
field. As the Slider changes, the Text field’s text property is automatically updated. This 
way, the developer does not need to handle the Slider’s change events in order to update the 
Text field.  

Some controls, such as the Tree control and the DataGrid in the song library application, 
are more sophisticated. These controls have a dataprovider property to facilitate binding to 
collections of data. The ActionScript onSongs( ) function shows how the 
SongService.getSongs( ) method is bound to the dataprovider of the Flex DataGrid. 
As declared in the RemoteObject tag in the MXML file, this function is the callback that 
ActionScript invokes whenever the Java method returns.  

A more sophisticated application with more complex data modeling, such as an enterprise 
application making use of Data Transfer Objects or a messaging application with data 
conforming to complex schemas, may encourage further decoupling of the source of data 
from the controls. In Flex development, we perform this decoupling by declaring a "Model" 
object, which is a generic MXML container for data. The model contains no logic. It mirrors 
the Data Transfer Object found in enterprise development, and the structures of other 
programming languages. By using the model, we can databind our controls to the model, and 

1018 Thinking in Java Bruce Eckel 



 

at the same time have the model databind its properties to service inputs and outputs. This 
decouples the sources of data, the services, from the visual consumers of the data, facilitating 
use of the Model- View-Controller (MVC) pattern. In larger, more sophisticated applications, 
the initial complexity caused by inserting a model is often only a small tax compared to the 
value of a cleanly decoupled MVC application.  

In addition to Java objects, Flex can also access SOAP-based Web services and RESTful 
HTTP services using the WebService and HttpService controls, respectively. Access to all 
services is subject to security authorization constraints.  

Building and deploying 

With the earlier examples, you could get away without a -flexlib flag on the command line, 
but to compile this program, you must specify the location of the flex-config.xml file using 
the -flexlib flag. For my installation, the following command works, but you’ll have to 
modify it for your own configuration (the command is a single line, which has been 
wrapped):  

//:! gui/flex/buiId-command.txt 
mxmlc -flexlib C:/"Program 
Files"/Macromedia/Flex/jrun4/servers/default/flex/WEB-INF/flex 
songs.mxml 
///:~ 

This command will build the application into an SWF file which you can view in your 
browser, but the book’s code distribution file contains no MP3 files or JPG files, so you won’t 
see anything but the framework when you run the application.  

In addition, you must configure a server in order to successfully talk to the Java files from the 
Flex application. The Flex trial package comes with the JRun server, and you can start this 
through your computer’s menus once Flex is installed, or via the command line:  

jrun -start default  

You can verify that the server has been successfully started by opening 
http://localhost:8700/samples in a Web browser and viewing the various samples (this is 
also a good way to get more familiar with the abilities of Flex).  

Instead of compiling the application on the command line, you can compile it via the server. 
To do this, drop the song source files, CSS style sheet, etc., into the 
jrun4/servers/default/flex directory and access them in a browser by opening 
http://localhost:870o/flex/songs.mxml.  

To successfully run the app, you must configure both the Java side and the Flex side.  

Java: The compiled Song.java and SongService.java files must be placed in your WEB-
INF/classes directory. This is where you drop WAR classes according to the J2EE 
specification. Alternatively, you can JAR the files and drop the result in WEB-INF/lib. It 
must be in a directory that matches its Java package structure. If you’re using JRun, these 
would be placed in jrun4/servers/defauIt/flex/WEB-
INF/classes/gui/flex/Song.cIass and jrun4/servers/default/flex/WEBINF/ 
classes/gui/flex/SongService.class. You also need the image and MP3 support files 
available in the Web app (for JRun, jrun4/servers/default/flex is the Web app root).  

Flex: For security reasons, Flex cannot access Java objects unless you give permission by 
modifying your flex-config.xml file. For JRun, this is located at 
jrun4/servers/default/flex/WEB-INF/flex/flex-config.xml. Go to the <remote-

Graphical User Interfaces 1019 



 

1020 Thinking in Java Bruce Eckel 

objects> entry in that file, look at the <whitelist> section within, and see the following 
note:  

<!-- 
For security, the whitelist is locked down by default. Uncomment the source element 
below to enable access to all classes during development.  
 
We strongly recommend not allowing access to all source files in production, since this 
exposes Java and Flex system classes. <source>*</source> 
--> 
 

Uncomment that <source> entry to allow access, so that it reads <source>*</source>. 
The meaning of this and other entries is described in the Flex configuration docs.  

Exercise 38:   (3) Build the "simple example of data binding syntax" shown above.  

Exercise 39:   (4) The code download for this book does not include the MP3S or JPGs 
shown in SongService.java. Find some MP3S and JPGs, modify SongService.java to 
include their file names, download the Flex trial and build the application.  

Creating SWT applications 
As previously noted, Swing took the approach of building all the UI components pixel-by-
pixel, in order to provide every component desired whether the underlying OS had those 
components or not. SWT takes the middle ground by using native components if the OS 
provides them, and synthesizing components if it doesn’t. The result is an application that 
feels to the user like a native application, and often has noticeably faster performance than 
the equivalent Swing program. In addition, SWT tends to be a less complex programming 
model than Swing, which can be desirable in a large portion of applications.12

  

Because SWT uses the native OS to do as much of its work as possible, it can automatically 
take advantage of OS features that may not be available to Swing—for example, Windows has 
"subpixel rendering" that makes fonts on LCD screens clearer.  

It’s even possible to create applets using SWT.  

This section is not meant to be a comprehensive introduction to SWT; it’s just enough to give 
you a flavor of it, and to see how SWT contrasts with Swing. You’ll discover that there are lots 
of SWT widgets and that they are all reasonably straightforward to use. You can explore the 
details in the full documentation and many examples that can be found at www.eclipse.org. 
There are also a number of books on programming with SWT, and more on the way.  

Installing SWT 

SWT applications require downloading and installing the SWT library from the Eclipse 
project. Go to www.eclipse.org/downloads/ and choose a mirror. Follow the links to the 
current Eclipse build and locate a compressed file with a name that begins with "swt" and 
includes the name of your platform (for example, "win32"). Inside this file you’ll find 
swt.jar. The easiest way to install the swt.jar file is to put it into your jre/lib/ext directory 
(that way you don’t have to make any modifications to your classpath). When you 
decompress the SWT library, you may find additional files that you need to install in 
appropriate places for your platform. For example, the Win32 distribution comes with DLL 
files that need to be placed somewhere in your java.library.path (this is usually the same 

                                                            
12 Chris Grindstaff was very helpful in translating SWT examples and providing SWT information. 



 

as your PATH environment variable, but you can run object/ShowProperties.java to 
discover the actual value of java.library.path). Once you’ve done this, you should be able 
to transparently compile and execute an SWT application as if it were any other Java 
program.  

The documentation for SWT is in a separate download.  

An alternative approach is just to install the Eclipse editor, which includes both SWT and the 
SWT documentation that you can view through the Eclipse help system.  

Hello, SWT 

Let’s start with the simplest possible "hello world"-style application:  

//: swt/HelloSWT.java 
// {Requires: org.eclipse.swt.widgets.Display; You must 
// install the SWT library from http://www.eclipse.org } 
import org.eclipse.swt.widgets.*; 
 
public class HelloSWT { 
  public static void main(String [] args) { 
    Display display = new Display(); 
    Shell shell = new Shell(display); 
    shell.setText("Hi there, SWT!"); // Title bar 
    shell.open(); 
    while(!shell.isDisposed()) 
      if(!display.readAndDispatch()) 
        display.sleep(); 
    display.dispose(); 
  } 
} ///:~ 

If you download the source code from this book, you’ll discover that the "Requires" comment 
directive ends up in the Ant build.xml as a prerequisite for building the swt subdirectory; 
all the files that import org.eclipse.swt require that you install the SWT library from 
www.eclipse.org.  

The Display manages the connection between SWT and the underlying operating system—it 
is part of a Bridge between the operating system and SWT. The Shell is the top-level main 
window, within which all the other components are built. When you call setText( ), the 
argument becomes the label on the title bar of the window.  

To display the window and thus the application, you must call open( ) on the Shell.  

Whereas Swing hides the event-handling loop from you, SWT forces you to write it explicitly. 
At the top of the loop, you check to see whether the shell has been disposed—note that this 
gives you the option of inserting code to perform cleanup activities. But this means that the 
main( ) thread is the user interface thread. In Swing, a second event-dispatching thread is 
created behind the scenes, but in SWT your main( ) thread is what handles the UI. Since by 
default there’s only one thread and not two, this makes it somewhat less likely that you’ll 
clobber the UI with threads.  

Notice that you don’t have to worry about submitting tasks to the user interface thread like 
you do in Swing. SWT not only takes care of this for you, it throws an exception if you try to 
manipulate a widget with the wrong thread. However, if you need to spawn other threads to 
perform long-running operations, you still need to submit changes in the same way that you 
do with Swing. For this, SWT provides three methods which can be called on the Display 
object: asyncExec(Runnable), syncExec(Runnable) and timerExec(int, Runnable).  

Graphical User Interfaces 1021 



 

The activity of your main( ) thread at this point is to call readAndDispatch( ) on the 
Display object (this means that there can only be one Display object per application). The 
readAndDispatch( ) method returns true if there are more events in the event queue, 
waiting to be processed. In that case, you want to call it again, immediately. However, if 
nothing is pending, you call the Display object’s sleep( ) to wait for a short time before 
checking the event queue again.  

Once the program is complete, you must explicitly dispose( ) of your Display object. SWT 
often requires you to explicitly dispose of resources, because these are usually resources from 
the underlying operating system, which may otherwise become exhausted.  

To prove that the Shell is the main window, here’s a program that makes a number of Shell 
objects:  

//: swt/ShellsAreMainWindows.java 
import org.eclipse.swt.widgets.*; 
 
public class ShellsAreMainWindows { 
  static Shell[] shells = new Shell[10]; 
  public static void main(String [] args) { 
    Display display = new Display(); 
    for(int i = 0; i < shells.length; i++) { 
      shells[i] = new Shell(display); 
      shells[i].setText("Shell #" + i); 
      shells[i].open(); 
    } 
    while(!shellsDisposed()) 
      if(!display.readAndDispatch()) 
        display.sleep(); 
    display.dispose(); 
  } 
  static boolean shellsDisposed() { 
    for(int i = 0; i < shells.length; i++) 
      if(shells[i].isDisposed()) 
        return true; 
    return false; 
  } 
} ///:~ 

When you run it, you’ll get ten main windows. The way the program is written, if you close 
any one of the windows, it will close all of them.  

SWT also uses layout managers—different ones than Swing, but the same idea. Here’s a 
slightly more complex example that takes the text from System.getProperties( ) and adds 
it to the shell:  

//: swt/DisplayProperties.java 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import org.eclipse.swt.layout.*; 
import java.io.*; 
 
public class DisplayProperties { 
  public static void main(String [] args) { 
    Display display = new Display(); 
    Shell shell = new Shell(display); 
    shell.setText("Display Properties"); 
    shell.setLayout(new FillLayout()); 
    Text text = new Text(shell, SWT.WRAP | SWT.V_SCROLL); 
    StringWriter props = new StringWriter(); 
    System.getProperties().list(new PrintWriter(props)); 

1022 Thinking in Java Bruce Eckel 



 

    text.setText(props.toString()); 
    shell.open(); 
    while(!shell.isDisposed()) 
      if(!display.readAndDispatch()) 
        display.sleep(); 
    display.dispose(); 
  } 
} ///:~ 

In SWT, all widgets must have a parent object of the general type Composite, and you must 
provide this parent as the first argument in the widget constructor. You see this in the Text 
constructor, where shell is the first argument. Virtually all constructors also take a flag 
argument that allows you to provide any number of style directives, depending on what that 
particular widget accepts. Multiple style directives are bitwise-ORed together as seen in this 
example.  

When setting up the Text( ) object, I added style flags so that it wraps the text, and 
automatically adds a vertical scroll bar if it needs to. You’ll discover that SWT is very 
constructor-based; there are many attributes of a widget that are difficult or impossible to 
change except via the constructor. Always check a widget constructor’s documentation for the 
accepted flags. Note that some constructors require a flag argument even when they have no 
"accepted" flags listed in the documentation. This allows future expansion without modifying 
the interface.  

Eliminating redundant code 

Before going on, notice that there are certain things you do for every SWT application, just 
like there were duplicate actions for Swing programs. For SWT, you always create a Display, 
make a Shell from the Display, create a readAndDispatch( ) loop, etc. Of course, in some 
special cases, you may not do this, but it’s common enough that it’s worth trying to eliminate 
the duplicate code as we did with net.mindview.util.SwingConsole.  

We’ll need to force each application to conform to an interface:  

//: swt/util/SWTApplication.java 
package swt.util; 
import org.eclipse.swt.widgets.*; 
 
public interface SWTApplication { 
  void createContents(Composite parent); 
} ///:~ 

The application is handed a Composite object (Shell is a subclass) and must use this to 
create all of its contents inside createContents( ). SWTConsole.run( ) calls 
createContents( ) at the appropriate point, sets the size of the shell according to what the 
user passes to run( ), opens the shell and then runs the event loop, and finally disposes of 
the shell at program exit:  

//: swt/util/SWTConsole.java 
package swt.util; 
import org.eclipse.swt.widgets.*; 
 
public class SWTConsole { 
  public static void 
  run(SWTApplication swtApp, int width, int height) { 
    Display display = new Display(); 
    Shell shell = new Shell(display); 
    shell.setText(swtApp.getClass().getSimpleName()); 
    swtApp.createContents(shell); 

Graphical User Interfaces 1023 



 

    shell.setSize(width, height); 
    shell.open(); 
    while(!shell.isDisposed()) { 
      if(!display.readAndDispatch()) 
        display.sleep(); 
    } 
    display.dispose(); 
  } 
} ///:~ 

This also sets the title bar to the name of the SWTApplication class, and sets the width 
and height of the Shell.  

We can create a variation of DisplayProperties.Java that displays the machine environment, 
using SWTConsole:  

//: swt/DisplayEnvironment.java 
import swt.util.*; 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import org.eclipse.swt.layout.*; 
import java.util.*; 
 
public class DisplayEnvironment implements SWTApplication { 
  public void createContents(Composite parent) { 
    parent.setLayout(new FillLayout()); 
    Text text = new Text(parent, SWT.WRAP | SWT.V_SCROLL); 
    for(Map.Entry entry: System.getenv().entrySet()) { 
      text.append(entry.getKey() + ": " + 
        entry.getValue() + "\n"); 
    } 
  } 
  public static void main(String [] args) { 
    SWTConsole.run(new DisplayEnvironment(), 800, 600); 
  } 
} ///:~ 

SWTConsole allows us to focus on the interesting aspects of an application rather than the 
repetitive code.  

Exercise 40:   (4) Modify DisplayProperties.java so that it uses SWTConsole.  

Exercise 41:   (4) Modify Display Environment.java so that it does nor use 
SWTConsole.  

Menus 

To demonstrate basic menus, this example reads its own source code and breaks it into 
words, then populates the menus with these words:  

//: swt/Menus.java 
// Fun with menus. 
import swt.util.*; 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import java.util.*; 
import net.mindview.util.*; 
 
public class Menus implements SWTApplication { 

1024 Thinking in Java Bruce Eckel 



 

  private static Shell shell; 
  public void createContents(Composite parent) { 
    shell = parent.getShell(); 
    Menu bar = new Menu(shell, SWT.BAR); 
    shell.setMenuBar(bar); 
    Set<String> words = new TreeSet<String>( 
      new TextFile("Menus.java", "\\W+")); 
    Iterator<String> it = words.iterator(); 
    while(it.next().matches("[0-9]+")) 
      ; // Move past the numbers. 
    MenuItem[] mItem = new MenuItem[7]; 
    for(int i = 0; i < mItem.length; i++) { 
      mItem[i] = new MenuItem(bar, SWT.CASCADE); 
      mItem[i].setText(it.next()); 
      Menu submenu = new Menu(shell, SWT.DROP_DOWN); 
      mItem[i].setMenu(submenu); 
    } 
    int i = 0; 
    while(it.hasNext()) { 
      addItem(bar, it, mItem[i]); 
      i = (i + 1) % mItem.length; 
    } 
  } 
  static Listener listener = new Listener() { 
    public void handleEvent(Event e) { 
      System.out.println(e.toString()); 
    } 
  }; 
  void 
  addItem(Menu bar, Iterator<String> it, MenuItem mItem) { 
    MenuItem item = new MenuItem(mItem.getMenu(),SWT.PUSH); 
    item.addListener(SWT.Selection, listener); 
    item.setText(it.next()); 
  } 
  public static void main(String[] args) { 
    SWTConsole.run(new Menus(), 600, 200); 
  } 
} ///:~ 

A Menu must be placed on a Shell, and Composite allows you to fetch its shell with 
getShell( ). TextFile is from net.mindview.util and has been described earlier in the 
book; here a TreeSet is filled with words so they will appear in sorted order. The initial 
elements are numbers, which are discarded. Using the stream of words, the top-level menus 
on the menu bar are named, then the submenus are created and filled with words until there 
are no more words.  

In response to selecting one of the menu items, the Listener simply prints the event so you 
can see what kind of information it contains. When you run the program, you’ll see that part 
of the information includes the label on the menu, so you can base the menu response on 
that—or you can provide a different listener for each menu (which is the safer approach, for 
internationalization).  

Tabbed panes, buttons, and events 

SWT has a rich set of controls, which they call widgets. Look at the documentation for 
org.eclipse.swt.widgets to see the basic ones, and org.eclipse.swt.custom to see 
fancier ones.  

Graphical User Interfaces 1025 



 

To demonstrate a few of the basic widgets, this example places a number of sub-examples 
inside tabbed panes. You’ll also see how to create Composites (roughly the same as Swing 
JPanels) in order to put items within items.  

//: swt/TabbedPane.java 
// Placing SWT components in tabbed panes. 
import swt.util.*; 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import org.eclipse.swt.events.*; 
import org.eclipse.swt.graphics.*; 
import org.eclipse.swt.layout.*; 
import org.eclipse.swt.browser.*; 
 
public class TabbedPane implements SWTApplication { 
  private static TabFolder folder; 
  private static Shell shell; 
  public void createContents(Composite parent) { 
    shell = parent.getShell(); 
    parent.setLayout(new FillLayout()); 
    folder = new TabFolder(shell, SWT.BORDER); 
    labelTab(); 
    directoryDialogTab(); 
    buttonTab(); 
    sliderTab(); 
    scribbleTab(); 
    browserTab(); 
  } 
  public static void labelTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("A Label"); // Text on the tab 
    tab.setToolTipText("A simple label"); 
    Label label = new Label(folder, SWT.CENTER); 
    label.setText("Label text"); 
    tab.setControl(label); 
  } 
  public static void directoryDialogTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("Directory Dialog"); 
    tab.setToolTipText("Select a directory"); 
    final Button b = new Button(folder, SWT.PUSH); 
    b.setText("Select a Directory"); 
    b.addListener(SWT.MouseDown, new Listener() { 
        public void handleEvent(Event e) { 
          DirectoryDialog dd = new DirectoryDialog(shell); 
          String path = dd.open(); 
          if(path != null) 
            b.setText(path); 
        } 
      }); 
    tab.setControl(b); 
  } 
  public static void buttonTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("Buttons"); 
    tab.setToolTipText("Different kinds of Buttons"); 
    Composite composite = new Composite(folder, SWT.NONE); 
    composite.setLayout(new GridLayout(4, true)); 
    for(int dir : new int[]{ 
        SWT.UP, SWT.RIGHT, SWT.LEFT, SWT.DOWN 
      }) { 
      Button b = new Button(composite, SWT.ARROW | dir); 
      b.addListener(SWT.MouseDown, listener); 

1026 Thinking in Java Bruce Eckel 



 

    } 
    newButton(composite, SWT.CHECK, "Check button"); 
    newButton(composite, SWT.PUSH, "Push button"); 
    newButton(composite, SWT.RADIO, "Radio button"); 
    newButton(composite, SWT.TOGGLE, "Toggle button"); 
    newButton(composite, SWT.FLAT, "Flat button"); 
    tab.setControl(composite); 
  } 
  private static Listener listener = new Listener() { 
      public void handleEvent(Event e) { 
        MessageBox m = new MessageBox(shell, SWT.OK); 
        m.setMessage(e.toString()); 
        m.open(); 
      } 
    }; 
  private static void newButton(Composite composite, 
    int type, String label) { 
    Button b = new Button(composite, type); 
    b.setText(label); 
    b.addListener(SWT.MouseDown, listener); 
  } 
  public static void sliderTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("Sliders and Progress bars"); 
    tab.setToolTipText("Tied Slider to ProgressBar"); 
    Composite composite = new Composite(folder, SWT.NONE); 
    composite.setLayout(new GridLayout(2, true)); 
    final Slider slider = 
      new Slider(composite, SWT.HORIZONTAL); 
    final ProgressBar progress = 
      new ProgressBar(composite, SWT.HORIZONTAL); 
    slider.addSelectionListener(new SelectionAdapter() { 
        public void widgetSelected(SelectionEvent event) { 
          progress.setSelection(slider.getSelection()); 
        } 
      }); 
    tab.setControl(composite); 
  } 
  public static void scribbleTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("Scribble"); 
    tab.setToolTipText("Simple graphics: drawing"); 
    final Canvas canvas = new Canvas(folder, SWT.NONE); 
    ScribbleMouseListener sml= new ScribbleMouseListener(); 
    canvas.addMouseListener(sml); 
    canvas.addMouseMoveListener(sml); 
    tab.setControl(canvas); 
  } 
  private static class ScribbleMouseListener 
    extends MouseAdapter implements MouseMoveListener { 
    private Point p = new Point(0, 0); 
    public void mouseMove(MouseEvent e) { 
      if((e.stateMask & SWT.BUTTON1) == 0) 
        return; 
      GC gc = new GC((Canvas)e.widget); 
      gc.drawLine(p.x, p.y, e.x, e.y); 
      gc.dispose(); 
      updatePoint(e); 
    } 
    public void mouseDown(MouseEvent e) { updatePoint(e); } 
    private void updatePoint(MouseEvent e) { 
      p.x = e.x; 
      p.y = e.y; 

Graphical User Interfaces 1027 



 

    } 
  } 
  public static void browserTab() { 
    TabItem tab = new TabItem(folder, SWT.CLOSE); 
    tab.setText("A Browser"); 
    tab.setToolTipText("A Web browser"); 
    Browser browser = null; 
    try { 
      browser = new Browser(folder, SWT.NONE); 
    } catch(SWTError e) { 
      Label label = new Label(folder, SWT.BORDER); 
      label.setText("Could not initialize browser"); 
      tab.setControl(label); 
    } 
    if(browser != null) { 
      browser.setUrl("http://www.mindview.net"); 
      tab.setControl(browser); 
    } 
  } 
  public static void main(String[] args) { 
    SWTConsole.run(new TabbedPane(), 800, 600); 
  } 
} ///:~ 

Here, createContents( ) sets the layout and then calls the methods that each create a 
different tab. The text on each tab is set with setText( ) (you can also create buttons and 
graphics on a tab), and each one also sets its tool tip text. At the end of each method, you’ll 
see a call to setControl( ), which places the control that the method created into the dialog 
space of that particular tab.  

labelTab( ) demonstrates a simple text label. directoryDialogTab( ) holds a button 
which opens a standard DirectoryDialog object so the user can select a directory. The 
result is set as the button’s text.  

buttonTab( ) shows the different basic buttons. sliderTab( ) repeats the Swing example 
from earlier in the chapter of tying a slider to a progress bar.  

scribbleTab( ) is a fun example of graphics. A drawing program is produced from only a 
few lines of code.  

Finally, browserTab( ) shows the power of the SWT Browser component—a full-featured 
Web browser in a single component.  

Graphics 

Here’s the Swing SineWave.java program translated to SWT:   

//: swt/SineWave.java 
// SWT translation of Swing SineWave.java. 
import swt.util.*; 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import org.eclipse.swt.events.*; 
import org.eclipse.swt.layout.*; 
 
class SineDraw extends Canvas { 
  private static final int SCALEFACTOR = 200; 
  private int cycles; 
  private int points; 

1028 Thinking in Java Bruce Eckel 



 

  private double[] sines; 
  private int[] pts; 
  public SineDraw(Composite parent, int style) { 
    super(parent, style); 
    addPaintListener(new PaintListener() { 
      public void paintControl(PaintEvent e) { 
        int maxWidth = getSize().x; 
        double hstep = (double)maxWidth / (double)points; 
        int maxHeight = getSize().y; 
        pts = new int[points]; 
        for(int i = 0; i < points; i++) 
          pts[i] = (int)((sines[i] * maxHeight / 2 * .95) 
            + (maxHeight / 2)); 
        e.gc.setForeground( 
          e.display.getSystemColor(SWT.COLOR_RED)); 
        for(int i = 1; i < points; i++) { 
          int x1 = (int)((i - 1) * hstep); 
          int x2 = (int)(i * hstep); 
          int y1 = pts[i - 1]; 
          int y2 = pts[i]; 
          e.gc.drawLine(x1, y1, x2, y2); 
        } 
      } 
    }); 
    setCycles(5); 
  } 
  public void setCycles(int newCycles) { 
    cycles = newCycles; 
    points = SCALEFACTOR * cycles * 2; 
    sines = new double[points]; 
    for(int i = 0; i < points; i++) { 
      double radians = (Math.PI / SCALEFACTOR) * i; 
      sines[i] = Math.sin(radians); 
    } 
    redraw(); 
  } 
} 
 
public class SineWave implements SWTApplication { 
  private SineDraw sines; 
  private Slider slider; 
  public void createContents(Composite parent) { 
    parent.setLayout(new GridLayout(1, true)); 
    sines = new SineDraw(parent, SWT.NONE); 
    sines.setLayoutData( 
      new GridData(SWT.FILL, SWT.FILL, true, true)); 
    sines.setFocus(); 
    slider = new Slider(parent, SWT.HORIZONTAL); 
    slider.setValues(5, 1, 30, 1, 1, 1); 
    slider.setLayoutData( 
      new GridData(SWT.FILL, SWT.DEFAULT, true, false)); 
    slider.addSelectionListener(new SelectionAdapter() { 
      public void widgetSelected(SelectionEvent event) { 
        sines.setCycles(slider.getSelection()); 
      } 
    }); 
  } 
  public static void main(String[] args) { 
    SWTConsole.run(new SineWave(), 700, 400); 
  } 
} ///:~ 

Instead of JPanel, the basic drawing surface in SWT is Canvas.  

Graphical User Interfaces 1029 



 

If you compare this version of the program with the Swing version, you’ll see that SineDraw 
is virtually identical. In SWT, you get the graphics context gc from the event object that’s 
handed to the PaintListener, and in Swing the Graphics object is handed directly to the 
paintComponent( ) method. But the activities performed with the graphics object are the 
same, and setCycles( ) is identical.  

createContents( ) requires a bit more code than the Swing version, to lay things out and 
set up the slider and its listener, but again, the basic activities are roughly the same.  

Concurrency in SWT 

Although AWT/Swing is single-threaded, it’s easily possible to violate that single-
threadedness in a way that produces a non-deterministic program. Basically, you don’t want 
to have multiple threads writing to the display because they will write over each other in 
surprising ways.  

SWT doesn’t allow this—it throws an exception if you try to write to the display using more 
than one thread. This will prevent a novice programmer from accidentally making this 
mistake and introducing hard-to-find bugs into a program.  

Here is the translation of the Swing ColorBoxes.java program in SWT:  

//: swt/ColorBoxes.java 
// SWT translation of Swing ColorBoxes.java. 
import swt.util.*; 
import org.eclipse.swt.*; 
import org.eclipse.swt.widgets.*; 
import org.eclipse.swt.events.*; 
import org.eclipse.swt.graphics.*; 
import org.eclipse.swt.layout.*; 
import java.util.concurrent.*; 
import java.util.*; 
import net.mindview.util.*; 
 
class CBox extends Canvas implements Runnable { 
  class CBoxPaintListener implements PaintListener { 
    public void paintControl(PaintEvent e) { 
      Color color = new Color(e.display, cColor); 
      e.gc.setBackground(color); 
      Point size = getSize(); 
      e.gc.fillRectangle(0, 0, size.x, size.y); 
      color.dispose(); 
    } 
  } 
  private static Random rand = new Random(); 
  private static RGB newColor() { 
    return new RGB(rand.nextInt(255), 
      rand.nextInt(255), rand.nextInt(255)); 
  } 
  private int pause; 
  private RGB cColor = newColor(); 
  public CBox(Composite parent, int pause) { 
    super(parent, SWT.NONE); 
    this.pause = pause; 
    addPaintListener(new CBoxPaintListener()); 
  } 
  public void run() { 
    try { 
      while(!Thread.interrupted()) { 
        cColor = newColor(); 

1030 Thinking in Java Bruce Eckel 



 

        getDisplay().asyncExec(new Runnable() { 
          public void run() { 
            try { redraw(); } catch(SWTException e) {} 
            // SWTException is OK when the parent 
            // is terminated from under us. 
          } 
        }); 
        TimeUnit.MILLISECONDS.sleep(pause); 
      } 
    } catch(InterruptedException e) { 
      // Acceptable way to exit 
    } catch(SWTException e) { 
      // Acceptable way to exit: our parent 
      // was terminated from under us. 
    } 
  } 
} 
 
public class ColorBoxes implements SWTApplication { 
  private int grid = 12; 
  private int pause = 50; 
  public void createContents(Composite parent) { 
    GridLayout gridLayout = new GridLayout(grid, true); 
    gridLayout.horizontalSpacing = 0; 
    gridLayout.verticalSpacing = 0; 
    parent.setLayout(gridLayout); 
    ExecutorService exec = new DaemonThreadPoolExecutor(); 
    for(int i = 0; i < (grid * grid); i++) { 
      final CBox cb = new CBox(parent, pause); 
      cb.setLayoutData(new GridData(GridData.FILL_BOTH)); 
      exec.execute(cb); 
    } 
  } 
  public static void main(String[] args) { 
    ColorBoxes boxes = new ColorBoxes(); 
    if(args.length > 0) 
      boxes.grid = new Integer(args[0]); 
    if(args.length > 1) 
      boxes.pause = new Integer(args[1]); 
    SWTConsole.run(boxes, 500, 400); 
  } 
} ///:~ 

As in the previous example, painting is controlled by creating a PaintListener with a 
paintControl( ) method that is called when the SWT thread is ready to paint your 
component. The PaintListener is registered in the CBox constructor.  

What’s notably different in this version of CBox is the run( ) method, which cannot just call 
redraw( ) directly but must submit the redraw( ) to the asyncExec( ) method on the 
Display object, which is roughly the same as SwingUtilities.invokeLater( ). If you 
replace this with a direct call to redraw( ), you’ll see that the program just stops.  

When running the program, you will see little visual artifacts—horizontal lines occasionally 
running through a box. This is because SWT is not doublebuffered by default, while Swing is. 
Try running the Swing version side by side with the SWT version and you’ll see it more 
clearly. You can write code to double-buffer SWT; you’ll find examples on the 
www.eclipse.org Web site.  

Exercise 42:   (4) Modify swt/ColorBoxes.java so that it begins by sprinkling points 
("stars") across the canvas, then randomly changes the colors of those "stars."  

Graphical User Interfaces 1031 



 

SWT vs. Swing? 

It’s hard to get a complete picture from such a short introduction, but you should at least 
start to see that SWT, in many situations, can be a more straightforward way to write code 
than Swing. However, GUI programming in SWT can still be complex, so your motivation for 
using SWT should probably be, first, to give the user a more transparent experience when 
using your application (because the application looks/feels like the other applications on that 
platform), and second, if the responsiveness provided by SWT is important. Otherwise, 
Swing may be an appropriate choice.  

Exercise 43:   (6) Choose any one of the Swing examples that wasn’t translated in this 
section, and translate it to SWT. (Note: This makes a good homework exercise for a class, 
since the solutions are not in the solution guide.)  

   

1032 Thinking in Java Bruce Eckel 



 

Graphical User Interfaces 1033 

Summary 
The Java GUI libraries have seen some dramatic changes during the lifetime of the language. 
The Java 1.0 AWT was roundly criticized as being a poor design, and while it allowed you to 
create portable programs, the resulting GUI was "equally mediocre on all platforms." It was 
also limiting, awkward, and unpleasant to use compared with the native application 
development tools available for various platforms.  

When Java 1.1 introduced the new event model and JavaBeans, the stage was set—now it was 
possible to create GUI components that could easily be dragged and dropped inside a visual 
IDE. In addition, the design of the event model and JavaBeans clearly shows strong 
consideration for ease of programming and maintainable code (something that was not 
evident in the 1.0 AWT). But it wasn’t until the JFC/Swing classes appeared that the 
transition was complete. With the Swing components, cross-platform GUI programming can 
be a civilized experience.  

IDEs are where the real revolution lies. If you want a commercial IDE for a proprietary 
language to get better, you must cross your fingers and hope that the vendor will give you 
what you want. But Java is an open environment, so not only does it allow for competing 
IDEs, it encourages them. And for these tools to be taken seriously, they must support 
JavaBeans. This means a leveled playing field; if a better IDE comes along, you’re not tied to 
the one you’ve been using. You can pick up and move to the new one and increase your 
productivity. This kind of competitive environment for GUI IDEs has not been seen before, 
and the resulting marketplace can generate very positive results for programmer 
productivity.  

This chapter was only meant to give you an introduction to the power of GUI programming 
and to get you started so that you can see how relatively simple it is to feel your way through 
the libraries. What you’ve seen so far will probably suffice for a good portion of your UI 
design needs. However, there’s a lot more to Swing, SWT and Flash/Flex; these are meant to 
be fully powered UI design toolkits. There’s probably a way to accomplish just about 
everything you can imagine.  

Resources 

Ben Galbraith’s online presentations at www.galbraiths.org/presentations provide some 
nice coverage of both Swing and SWT.  

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide, 
available for sale from www.MindView.net.  





 

A: Supplements  
There are a number of supplements to this book, including the items, 
seminars, and services available through the MindView Web site.  

This appendix describes these supplements so that you can decide if they will be helpful to 
you.  

Note that although the seminars are often held as public events, they may be given as private, 
inhouse seminars at your location.  

Downloadable supplements  
The code for this book is available for download from www.MindView.net. This includes the 
Ant build files and other support files necessary to do a successful build and execution of all 
the examples in the book.  

In addition, a few portions of the book were moved to electronic form. The subjects include:  

• Cloning Objects  
 

• Passing & Returning Objects  
 

• Analysis and Design  
 

• Portions of other chapters from Thinking in Java, 3
rd

 Edition that were not relevant 

enough to put in the print version of the 4
th

 edition of this book.  

Thinking in C: Foundations for Java  
At www.MindView.net, you will find the Thinking in C seminar as a free download. This 
presentation, created by Chuck Allison and developed by MindView, is a multimedia Flash 
course which gives you an introduction to the C syntax, operators and functions that Java 
syntax is based upon.  

Note that you must have the Flash Player from www.Macromedia.com installed on your 
system in order to play Thinking in C.  

Thinking in Java seminar  
My company, MindView, Inc., provides five-day, hands-on, public and in-house training 
seminars based on the material in this book. Formerly called the Hands-On Java seminar, 
this is our main introductory seminar that provides the foundation for our more advanced 
seminars. Selected material from each chapter represents a lesson, which is followed by a 
monitored exercise period so that each student receives personal attention. You can find 
schedule and location information, testimonials, and details at www.MindView.net.  

 



 

Hands-On Java seminar-on-CD  
The Hands-On Java CD contains an extended version of the material from the Thinking in 
Java seminar and is based on this book. It provides at least some of the experience of the live 
seminar without the travel and expense. There is an audio lecture and slides corresponding 
to every chapter in the book. I created the seminar and I narrate the material on the CD. The 
material is in Flash format, so it should run on any platform that supports the Flash Player. 
The Hands-On Java CD is for sale at www.MindView.net, where you can find trial demos of 
the product.  

Thinking in Objects seminar  
This seminar introduces the ideas of object-oriented programming from the standpoint of 
the designer. It explores the process of developing and building a system, primarily focusing 
on socalled “Agile Methods” or “Lightweight Methodologies,” especially Extreme 
Programming (XP). I introduce methodologies in general, small tools like the “index-card” 
planning techniques described in Planning Extreme Programming by Beck and Fowler 
(Addison-Wesley, 2001), CRC cards for object design, pair programming, iteration planning, 
unit testing, automated building, source-code control, and similar topics. The course includes 
an XP project that will be developed throughout the week.  

If you are starting a project and would like to begin using object-oriented design techniques, 
we can use your project as the example and produce a first-cut design by the end of the week.  

Visit www.MindView.net for schedule and location information, testimonials, and details.  

Thinking in Enterprise Java  
This book has been spawned from some of the more advanced chapters in earlier editions of 
Thinking in Java. This book isn’t a second volume of Thinking in Java, but rather focused 
coverage of the more advanced topic of enterprise programming. It is currently available (in 
some form, likely still in development) as a free download from www.MindView.net. 
Because it is a separate book, it can expand to fit the necessary topics. The goal, like Thinking 
in Java, is to produce a very understandable introduction to the basics of the enterprise 
programming technologies so that the reader is prepared for more advanced coverage of 
those topics.  

The list of topics will include, but is not limited to:  

• Introduction to Enterprise Programming  
• Network Programming with Sockets and Channels  
• Remote Method Invocation (RMI)  
• Connecting to Databases  
• Naming and Directory Services 
• Servlets  
• Java Server Pages  
• Tags, JSP Fragments and Expression Language  
• Automating the Creation of User Interfaces  
• Enterprise JavaBeans  
• XML  
• Web Services  
• Automated Testing  

1036 Thinking in Java Bruce Eckel 



 

You can find the current state of Thinking in Enterprise Java at www.MindView.net.  

Thinking in Patterns (with Java)  
One of the most important steps forward in object-oriented design is the “design patterns” 
movement, chronicled in Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley, 1995). That book shows 23 general classes of problems and their solutions, primarily 
written in C++. The Design Patterns book is a source of what has now become an essential, 
almost mandatory, vocabulary for OOP programmers. Thinking in Patterns introduces the 
basic concepts of design patterns along with examples in Java. The book is not intended to be 
a simple translation of Design Patterns, but rather a new perspective with a Java mindset. It 
is not limited to the traditional 23 patterns, but also includes other ideas and problem-
solving techniques as appropriate.  

This book began as the last chapter in Thinking in Java, 1
st

 Edition, and as ideas continued to 
develop, it became clear that it needed to be its own book. At the time of this writing, it is still 
in development, but the material has been worked and reworked through numerous 
presentations of the Objects & Patterns seminar (which has now been split into the 
Designing Objects & Systems and Thinking in Patterns seminars).  

You can find out more about this book at www.MindView.net.  

Thinking in Patterns seminar  
This seminar has evolved from the Objects & Patterns seminar that Bill Venners and I gave 
for the past several years. That seminar grew too full, so we’ve split it into two seminars: this 
one, and the Designing Objects & Systems seminar, described earlier in this appendix.  

The seminar strongly follows the material and presentation in the Thinking in Patterns book, 
so the best way to find out what’s in the seminar is to learn about the book from 
www.MindView.net.  

Much of the presentation emphasizes the design evolution process, starting with an initial 
solution and moving through the logic and process of evolving the solution to more 
appropriate designs. The last project shown (a trash recycling simulation) has evolved over 
time, and you can look at that evolution as a prototype for the way your own design can start 
as an adequate solution to a particular problem and evolve into a flexible approach to a class 
of problems.  

This seminar will help you:  

• Dramatically increase the flexibility of your designs.  
• Build in extensibility and reusability.  
• Create denser communications about designs using the language of patterns.  

Following each lecture there will be a set of patterns exercises for you to solve, where you are 
guided to write code to apply particular patterns to the solution of programming problems.  

Visit www.MindView.net for schedule and location information, testimonials, and details.  

Appendix A: Supplements 1037 



 

1038 Thinking in Java Bruce Eckel 

Design consulting and reviews  
My company also provides consulting, mentoring, design reviews and implementation 
reviews to help guide your project through its development cycle, including your company’s 
first Java project. Visit www.MindView.net for availability and details.  

   



 

B: Resources  
Software  

The JDK from http://java.sun.com. Even if you choose to use a third-party development 
environment, it’s always a good idea to have the JDK on hand in case you come up against 
what might be a compiler error. The JDK is the touchstone, and if there is a bug in it, chances 
are it will be well known.  

The JDK documentation from http://java.sun.com, in HTML. I have never found a 
reference book on the standard Java libraries that wasn’t out of date or missing information. 
Although the JDK documentation from Sun is shot through with small bugs and is 
sometimes unusably terse, all the classes and methods are at least there. Sometimes people 
are initially uncomfortable using an online resource rather than a printed book, but it’s worth 
your while to get over this and open the HTML docs so you can at least get the big picture. If 
you can’t figure it out at that point, then reach for the printed books.  

Editors & IDEs  
There is a healthy competition in this arena. Many offerings are free (and the non-free ones 
usually have free trials), so your best bet is to simply try them out yourself and see which one 
fits your needs. Here are a few:  

JEdit, Slava Pestov’s free editor, is written in Java, so you get the bonus of seeing a desktop 
Java application in action. This editor is based heavily on plug-ins, many of which have been 
written by the active community. Download from www.jedit.org.  

NetBeans, a free IDE from Sun, at www.netbeans.org. Designed for drag-and-drop GUI 
building, code editing, debugging, and more.  

Eclipse, an open-source project backed by IBM, among others. The Eclipse platform is also 
designed to be an extensible foundation, so you can build your own standalone applications 
on top of Eclipse. This project created the SWT described in the Graphical User Interfaces 
chapter. Download from www.Eclipse.org.  

IntelliJ IDEA, the payware favorite of a large faction of Java programmers, many of whom 
claim that IDEA is always a step or two ahead of Eclipse, possibly because IntelliJ is not 
creating both an IDE and a development platform, but just sticking to creating an IDE. You 
can download a free trial from www.jetbrains.com.  

Books  
Core JavaTM 2, 7th  Edition, Volumes I & II, by Horstmann & Cornell (Prentice Hall, 
2005). Huge, comprehensive, and the first place I go when I’m hunting for answers. The 
book I recommend when you’ve completed Thinking in Java and need to cast a bigger net.  

The JavaTM Class Libraries: An Annotated Reference, by Patrick Chan and Rosanna 
Lee (Addison-Wesley, 1997). Although sadly out of date, this is what the JDK reference 
should have been: enough description to make it usable. One of the technical reviewers for 
Thinking in Java said, “If I had only one Java book, this would be it (well, in addition to 
yours, of course).” I’m not as thrilled with it as he is. It’s big, it’s expensive, and the quality of 

 



 

the examples doesn’t satisfy me. But it’s a place to look when you’re stuck, and it seems to 
have more depth (and sheer size) than most alternatives. However, Core Java 2 has more 
recent coverage of many of the library components.  

Java Network Programming, 2nd  Edition, by Elliotte Rusty Harold (O’Reilly, 2000). I 
didn’t begin to understand Java networking (or networking in general, for that matter) until I 
found this book. I also find his Web site, Café au Lait, to be a stimulating, opinionated, and 
upto-date perspective on Java developments, unencumbered by allegiances to any vendors. 
His regular updates keep up with fast-changing news about Java. See www.cafeaulait.org.  

Design Patterns, by Gamma, Helm, Johnson and Vlissides (Addison-Wesley, 1995). The 
seminal book that started the patterns movement in programming, mentioned numerous 
places in this book.  

Refactoring to Patterns, by Joshua Kerievsky (Addison-Wesley, 2005). Marries 
refactoring and design patterns. The most valuable thing about this book is that it shows you 
how to evolve a design by folding in patterns as they are needed.  

The Art of UNIX Programming, by Eric Raymond (Addison-Wesley, 2004). Although 
Java is a cross-platform language, the prevalence of Java on the server has made knowledge 
of Unix/Linux important. Eric’s book is an excellent introduction to the history and 
philosophy of this operating system, and is a fascinating read if you just want to understand 
some of the roots of computing.  

Analysis & design  

Extreme Programming Explained, 2nd  Edition, by Kent Beck with Cynthia Andres. 
(Addison-Wesley, 2005). I’ve always felt that there might be a much different, much better 
program development process, and I think XP comes pretty darn close. The only book that 
has had a similar impact on me was Peopleware (described later), which talks primarily 
about the environment and dealing with corporate culture. Extreme Programming 
Explained talks about programming and turns most things, even recent “findings,” on their 
ear. They even go so far as to say that pictures are OK as long as you don’t spend too much 
time on them and are willing to throw them away. (You’ll notice that the book does not have 
the “UML stamp of approval” on its cover.) I could see deciding to work for a company based 
solely on whether they used XP. Small book, small chapters, effortless to read, exciting to 
think about. You start imagining yourself working in such an atmosphere, and it brings 
visions of a whole new world.  

UML Distilled, 2nd  Edition, by Martin Fowler (Addison-Wesley, 2000). When you first 
encounter UML, it is daunting because there are so many diagrams and details. According to 
Fowler, most of this stuff is unnecessary, so he cuts through to the essentials. For most 
projects, you only need to know a few diagramming tools, and Fowler’s goal is to come up 
with a good design rather than worry about all the artifacts of getting there. In fact, the first 
half of the book is all that most people will need. A nice, thin, readable book; the first one you 
should get if you need to understand UML.  

Domain-Driven Design, by Eric Evans (Addison-Wesley, 2004). This book focuses on the 
domain model as the primary artifact of the design process. I have found this to be an 
important shift in emphasis that helps keep designers at the right level of abstraction.  

The Unified Software Development Process, by Ivar Jacobsen, Grady Booch, and 
James Rumbaugh (Addison-Wesley, 1999). I went in fully prepared to dislike this book. It 
seemed to have all the makings of a boring college text. I was pleasantly surprised—although 
there are a few parts that have explanations that seem as if those concepts aren’t clear to the 
authors. The bulk of the book is not only clear, but enjoyable. And best of all, the process 
makes a lot of practical sense. It’s not Extreme Programming (and does not have their clarity 

1040 Thinking in Java Bruce Eckel 



 

about testing), but it’s also part of the UML juggernaut; even if you can’t get XP through the 
door, most people have climbed aboard the “UML is good” bandwagon (regardless of their 
actual level of experience with it), so you can probably get it adopted. I think this book 
should be the flagship of UML, and the one you can read after Fowler’s UML Distilled when 
you want more detail.  

Before you choose any method, it’s helpful to gain perspective from those who are not trying 
to sell you one. It’s easy to adopt a method without really understanding what you want out 
of it or what it will do for you. Others are using it, which seems a compelling reason. 
However, humans have a strange little psychological quirk: If they want to believe something 
will solve their problems, they’ll try it. (This is experimentation, which is good.) But if it 
doesn’t solve their problems, they may redouble their efforts and begin to announce loudly 
what a great thing they’ve discovered. (This is denial, which is not good.) The assumption 
here may be that if you can get other people in the same boat, you won’t be lonely, even if it’s 
going nowhere (or sinking).  

This is not to suggest that all methodologies go nowhere, but that you should be armed to the 
teeth with mental tools that help you stay in experimentation mode (“It’s not working; let’s 
try something else”) and out of denial mode (“No, that’s not really a problem. Everything’s 
wonderful, we don’t need to change”). I think the following books, read before you choose a 
method, will provide you with these tools.  

Software Creativity, by Robert L. Glass (Prentice Hall, 1995). This is the best book I’ve 
seen that discusses perspective on the whole methodology issue. It’s a collection of short 
essays and papers that Glass has written and sometimes acquired (P.J. Plauger is one 
contributor), reflecting his many years of thinking and study on the subject. They’re 
entertaining and only long enough to say what’s necessary; he doesn’t ramble and bore you. 
He’s not just blowing smoke, either; there are hundreds of references to other papers and 
studies. All programmers and managers should read this book before wading into the 
methodology mire.  

Software Runaways: Monumental Software Disasters, by Robert L. Glass (Prentice 
Hall, 1998). The great thing about this book is that it brings to the forefront what we don’t 
talk about: the number of projects that not only fail, but fail spectacularly. I find that most of 
us still think, “That can’t happen to me” (or “That can’t happen again”), and I think this puts 
us at a disadvantage. By keeping in mind that things can always go wrong, you’re in a much 
better position to make them go right.  

Peopleware, 2nd  Edition, by Tom DeMarco and Timothy Lister (Dorset House, 1999). 
You must read this book. It’s not only fun, it rocks your world and destroys your 
assumptions. Although DeMarco and Lister have backgrounds in software development, this 
book is about projects and teams in general. But the focus is on the people and their needs, 
rather than the technology and its needs. They talk about creating an environment where 
people will be happy and productive, rather than deciding what rules those people should 
follow to be adequate components of a machine. This latter attitude, I think, is the biggest 
contributor to programmers smiling and nodding when XYZ method is adopted, and then 
quietly doing whatever they’ve always done.  

Secrets of Consulting: A Guide to Giving & Getting Advice Successfully, by 
Gerald M. Weinberg (Dorset House, 1985). A superb book, one of my all-time favorites. It’s 
perfect if you are trying to be a consultant or if you’re using consultants and trying to do a 
better job. Short chapters, filled with stories and anecdotes that teach you how to get to the 
core of the issue with minimal struggle. Also see More Secrets of Consulting, published in 
2002, or most any other Weinberg book.  

Complexity, by M. Mitchell Waldrop (Simon & Schuster, 1992). This chronicles the coming 
together in Santa Fe, New Mexico, of a group of scientists from different disciplines to 
discuss real problems that their individual disciplines couldn’t solve (the stock market in 

Appendix B: Resources 1041 



 

economics, the initial formation of life in biology, why people do what they do in sociology, 
etc.). By crossing physics, economics, chemistry, math, computer science, sociology, and 
others, a multidisciplinary approach to these problems is developing. But more important, a 
different way of thinking about these ultra-complex problems is emerging: away from 
mathematical determinism and the illusion that you can write an equation that predicts all 
behavior, and toward first observing and looking for a pattern and trying to emulate that 
pattern by any means possible. (The book chronicles, for example, the emergence of genetic 
algorithms.) This kind of thinking, I believe, is useful as we observe ways to manage more 
and more complex software projects.  

Python  

Learning Python, 2nd  Edition, by Mark Lutz and David Ascher (O’Reilly, 2003). A nice 
programmer’s introduction to my favorite language, an excellent companion to Java. The 
book includes an introduction to Jython, which allows you to combine Java and Python in a 
single program (the Jython interpreter is compiled to pure Java bytecodes, so there is 
nothing special you need to add to accomplish this). This language union promises great 
possibilities.  

My own list of books  

Not all of these are currently available, but some can be found through used-book outlets.  

Computer Interfacing with Pascal & C (self-published under the Eisys imprint, 1988. 
Available for sale only from www.MindView.net). An introduction to electronics from back 
when CP/M was still king and DOS was an upstart. I used high-level languages and often the 
parallel port of the computer to drive various electronic projects. Adapted from my columns 
in the first and best magazine I wrote for, Micro Cornucopia. Alas, Micro C was lost long 
before the Internet appeared. Creating this book was an extremely satisfying publishing 
experience.  

Using C++ (Osborne/McGraw-Hill, 1989). One of the first books out on C++. This is out of 

print and replaced by its 2
nd

 edition, the renamed C++ Inside & Out.  

C++ Inside & Out (Osborne/McGraw-Hill, 1993). As noted, actually the 2
nd

 edition of 
Using C++. The C++ in this book is reasonably accurate, but it’s circa 1992 and Thinking in 
C++ is intended to replace it. You can find out more about this book and download the 
source code at www.MindView.net.  

Thinking in C++, 1st  Edition (Prentice Hall, 1995). This won the Software Development 
Magazine Jolt Award for best book of the year.  

Thinking in C++, 2nd  Edition, Volume 1 (Prentice Hall, 2000). Downloadable from 
www.MindView.net. Updated to follow the finalized language standard.  

Thinking in C++, 2nd  Edition, Volume 2, coauthored with Chuck Allison (Prentice Hall, 
2003). Downloadable from www.MindView.net.  

Black Belt C++: The Master’s Collection, Bruce Eckel, editor (M&T Books, 1994). Out 
of print. A collection of chapters by various C++ luminaries based on their presentations in 
the C++ track at the Software Development Conference, which I chaired. The cover on this 
book stimulated me to gain control over all future cover designs.  

Thinking in Java, 1st  Edition (Prentice Hall, 1998). The 1st  edition of this book won the 
Software Development Magazine Productivity Award, the Java Developer’s Journal Editor’s 

1042 Thinking in Java Bruce Eckel 



 

Appendix B: Resources 1043 

Choice Award, and the JavaWorld Reader’s Choice Award for best book. Downloadable from 
www.MindView.net.  

Thinking in Java, 2nd  Edition (Prentice Hall, 2000). This edition won the JavaWorld 
Editor’s Choice Award for best book. Downloadable from www.MindView.net.  

Thinking in Java, 3rd  Edition, (Prentice Hall, 2003). This edition won the Software 
Development Magazine Jolt Award for best book of the year, along with other awards listed 
on the back cover. Downloadable from www.MindView.net.  

 



 

 



 

Index 
Please note that some names will be duplicated in capitalized form. 
Following Java style, the capitalized names refer to Java classes, 
while lowercase names refer to a general concept.

! 

! · 71 
!= ∙ 70 

& 

& · 76 
&& · 71 
&= ∙ 76 

. 

.NET · 37 

.new syntax · 247 

.this syntax ∙ 246 

@ 

@ symbol, for annotations · 761 
@author · 58 
@Deprecated, annotation · 761 
@deprecated, Javadoc tag · 58 
@docRoot · 57 
@inheritDoc · 57 
@interface, and extends keyword · 769 
@link · 57 
@Override · 761 
@param · 58 
@Retention · 762 
@return · 58 
@see · 57 
@since · 58 
@SuppressWarnings · 761 
@Target · 762 
@Test · 762 
@Test, for @Unit · 778 
@TestObjectCleanup, @Unit tag · 785 
@TestObjectCreate, for @Unit · 782 
@throws · 58 
@Unit · 778; using · 778 
@version ∙ 57 

[ 

[ ], indexing operator · 134 

 

^ 

^ · 76 
^= ∙ 76 

| 

| · 76 
|| · 71 
|= ∙ 76 

+ 

+ · 69; String conversion with operator + · 64, 81, 356 

< 

< · 70 
<< · 76 
<<= · 77 
<= ∙ 70 

= 

== · 70 

> 

> · 70 
>= · 70 
>> · 76 
>>= ∙ 77 

A 

abstract: class · 219; inheriting from abstract classes 
· 220; keyword · 220; vs. interface · 231 

Abstract Window Toolkit (AWT) · 937 
AbstractButton · 958 
abstraction · 15 
AbstractSequentialList · 616 
AbstractSet · 568 
access: class · 159; control · 145, 162; control, 

violating with reflection · 432; inner classes & 
access rights  ·245; package access and friendly · 
153; specifiers · 20, 145, 153; within a directory, via 
the default package · 155 

 



 

action command · 976 
ActionEvent · 977, 1011 
ActionListener · 946 
ActionScript, for Macromedia Flex · 1019 
active objects, in concurrency · 931 
Adapter design pattern · 229, 235, 307, 448, 524, 

526, 569 
Adapter Method idiom · 307 
adapters, listener · 954 
add( ), ArrayList · 276 
addActionListener( ) · 1009, 1014 
addChangeListener · 980 
addition · 67 
addListener · 949 
Adler32 · 700 
agent-based programming · 934 
aggregate array initialization · 134 
aggregation · 21 
aliasing · 66; and String · 356; arrays · 135 
Allison, Chuck · 3, 12, 1043, 1050 
allocate( ) · 681 
allocateDirect( ) · 681 
alphabetic sorting · 295 
alphabetic vs. lexicographic sorting · 561 
AND: bitwise · 82; logical (&&) · 71 
annotation · 761; apt processing tool · 771; default 

element values · 763, 765; default value · 768; 
elements · 762; elements, allowed types for · 765; 
marker annotation · 762; processor · 764; 
processor based on reflection · 769 

anonymous inner class · 251, 649, 944; and 
tabledriven code · 616; generic · 459 

application: builder · 1003; framework · 264 
applying a method to a sequence · 520 
apt, annotation processing tool · 771 
argument: constructor · 108; covariant argument 

types · 504; final · 186, 649; generic type argument 
inference · 450; variable argument lists (unknown 
quantity and type of arguments) · 137 

Arnold, Ken · 938 
array: array of generic objects · 610; associative 

array · 278; bounds checking · 135; comparing 
arrays · 557; comparison with container · 535; 
copying an array · 555; covariance · 483; dynamic 
aggregate initialization syntax · 538; element 
comparisons · 557; first-class objects · 536; 
initialization · 134; length · 135, 536; 
multidimensional · 540; not Iterable · 306; of 
objects · 537; of primitives · 537; ragged · 541; 
returning an array · 539 

ArrayBlockingQueue · 872 
ArrayList · 283, 586; add( ) · 276; get( ) · 276; size( ) 

· 276 
Arrays: asList( ) · 280, 309, 585; binarySearch( ) · 

562; class, container utility · 555 
asCharBuffer( ) · 682 
aspect-oriented programming (AOP) · 509 
assert, and @Unit · 780 
assigning objects · 65 
assignment · 65 
associative array · 275, 278; another name for map · 

596 
atomic operation · 833 
AtomicInteger · 838 
atomicity, in concurrent programming · 826 
AtomicLong · 838 
AtomicReference · 838 
autoboxing · 296, 448; and generics · 450, 495 
auto-decrement operator · 69 

auto-increment operator · 69 
automatic type conversion · 166 
available( ) · 667 

B 

backwards compatibility · 467 
bag · 278 
bank teller simulation · 900 
base 16 · 74 
base 8 · 74 
base class · 156, 168, 195; abstract base class · 219; 

base-class interface · 199; constructor · 206; 
initialization · 170 

base types · 22 
basic concepts of object-oriented programming 

(OOP) · 15 
BASIC, Microsoft Visual BASIC · 1002 
BasicArrowButton · 958 
BeanInfo, custom · 1017 
Beans: and Borland’s Delphi · 1002; and Microsoft’s 

Visual BASIC · 1002; application builder · 1003; 
bound properties · 1017; component · 1003; 
constrained properties · 1017; custom BeanInfo · 
1017; custom property editor · 1017; custom 
property sheet · 1017; events · 1003; 
EventSetDescriptors · 1007; FeatureDescriptor · 
1017; getBeanInfo( ) · 1005; 
getEventSetDescriptors( ) · 1007; 
getMethodDescriptors( ) · 1007; getName( ) · 
1007; getPropertyDescriptors( ) · 1007; 
getPropertyType( ) · 1007; getReadMethod( ) · 
1007; getWriteMethod( ) · 1007; indexed property 
· 1017; Introspector · 1005; JAR files for packaging 
· 1015; manifest file · 1015; Method · 1007; 
MethodDescriptors · 1007; naming convention · 
1003; properties · 1003; PropertyChangeEvent · 
1017; PropertyDescriptors · 1007; 
ProptertyVetoException · 1017; reflection · 1003, 
1005; Serializable · 1011; visual programming · 
1002 

Beck, Kent · 1048 
benchmarking · 914 
binary: numbers · 74; numbers, printing · 79; 

operators · 76 
binarySearch( ) · 562, 635 
binding: dynamic binding · 196; dynamic, late, or 

runtime binding · 193; early · 26; late · 26; late 
binding · 196; method call binding · 196; runtime 
binding · 196 

BitSet · 644 
bitwise: AND · 82; AND operator (&) · 76; 

EXCLUSIVE OR XOR (^) · 76; NOT ~ · 76; 
operators · 76; OR · 82; OR operator (|) · 76 

blank final · 185 
Bloch, Joshua · 121, 725, 823, 836 
blocking: and available( ) · 668; in concurrent 

programs · 799 
BlockingQueue · 872, 887 
Booch, Grady · 1048 
book errors, reporting · 14 
Boolean · 91; algebra · 76; and casting · 83; 

operators that won’t work with boolean · 70; vs. C 
and C++ · 72 

Borland Delphi · 1002 
bound properties · 1017 

 



 

bounds: and Class references · 402; in generics · 
465, 480; self-bounded generic types · 500; 
superclass and Class references · 404 

bounds checking, array · 135 
boxing · 296, 448; and generics · 450, 495 
BoxLayout · 949 
branching, unconditional · 99 
break keyword · 99 
Brian’s Rule of Synchronization · 830 
browser, class · 159 
Budd, Timothy · 16 
buffer, nio · 679 
BufferedInputStream · 660 
BufferedOutputStream · 661 
BufferedReader · 341, 663, 665 
BufferedWriter · 663, 668 
busy wait, concurrency · 860 
button: creating your own · 955; radio button · 966; 

Swing · 942, 958 
ButtonGroup · 959, 966 
ByteArrayInputStream · 657 
ByteArrayOutputStream · 659 
ByteBuffer · 679 
bytecode engineering · 791; Javassist · 793 

C 

C#: programming language · 37 
C++ · 70; exception handling · 348; Standard 

Template Library (STL) · 646; templates · 440, 464 
CachedThreadPool · 805 
Callable, concurrency · 807 
callback · 648, 943; and inner classes · 262 
camel-casing · 60 
capacity, of a HashMap or HashSet · 630 
capitalization of package names · 50 
Cascading Style Sheets (CSS), and Macromedia Flex 

· 1023 
case statement · 105 
CASE_INSENSITIVE_ORDER String Comparator · 

634, 647 
cast · 27; and generic types · 497; and primitive 

types · 92; asSubclass( ) · 404; operators · 82; via a 
generic class · 498 

cast( ) · 404 
catch: catching an exception · 316; catching any 

exception · 323; keyword · 316 
Chain of Responsibility design pattern · 743 
chained exceptions · 328, 351 
change, vector of · 266 
channel, nio · 679 
CharArrayReader · 663 
CharArrayWriter · 663 
CharBuffer · 682 
CharSequence · 375 
Charset · 683 
check box · 965 
checked exceptions · 322, 347; converting to 

unchecked exceptions · 351 
checkedCollection( ) · 506 
CheckedInputStream · 699 
checkedList( ) · 506 
checkedMap( ) · 506 
CheckedOutputStream · 699 
checkedSet( ) · 506 
checkedSortedMap( ) · 506 
checkedSortedSet( ) · 506 
Checksum class · 700 

Chiba, Shigeru, Dr. · 793, 795 
class · 17; abstract class · 219; access · 159; 

anonymous inner class · 251, 649, 944; base class · 
156, 168, 195; browser · 159; class hierarchies and 
exception handling · 345; class literal · 399, 410; 
creators · 19; data · 51; derived class · 195; 
equivalence, and instanceof/isInstance( ) · 417; 
final classes · 188; inheritance diagrams · 182; 
inheriting from abstract classes · 220; inheriting 
from inner classes · 270; initialization · 400; 
initialization & class loading · 190; initialization of 
fields · 126; initializing the base class · 170; 
initializing the derived class · 170; inner class · 
243; inner class, and access rights · 245; inner 
class, and overriding · 270; inner class, and super · 
270; inner class, and Swing · 950; inner class, and 
upcasting · 248; inner class, identifiers and .class 
files · 273; inner class, in methods and scopes · 
249; inner class, nesting within any arbitrary scope 
· 250; instance of · 16; keyword · 21; linking · 400; 
loading · 191, 400; member initialization · 166; 
methods · 51; multiply nested · 259; nested class 
(static inner class) · 257; nesting inside an 
interface · 258; order of initialization · 128; private 
inner classes · 266; public class, and compilation 
units · 146; referring to the outer-class object in an 
inner class · 246; static inner classes · 257; style of 
creating classes · 158; subobject · 170 

Class · 960; Class object · 395, 717, 829; forName( ) · 
396, 953; getCanonicalName( ) · 398; getClass( ) · 
324; getConstructors( ) · 421; getInterfaces( ) · 
398; getMethods( ) · 421; getSimpleName( ) · 398; 
getSuperclass( ) · 398; isAssignableFrom( ) · 413; 
isInstance( ) · 411; isInterface( ) · 398; 
newInstance( ) · 398; object creation process · 131; 
references, and bounds · 402; references, and 
generics · 401; references, and wildcards · 402; 
RTTI using the Class object · 395 

class files, analyzing · 791 
class loader · 395 
class name, discovering from class file · 791 
ClassCastException · 216, 405 
ClassNotFoundException · 408 
classpath · 148 
cleanup: and garbage collector · 175; performing · 

121; verifying the termination condition with 
finalize( ) · 122; with finally · 334 

clear( ), nio · 681 
client programmer · 19; vs. library creator · 145 
close( ) · 666 
closure, and inner classes · 262 
code: coding standards · 14; coding style · 59; 

organization · 153; reuse · 165; source code · 12 
collecting parameter · 509, 530 
collection · 29, 278, 302, 634; classes · 275; filling 

with a Generator · 453; list of methods for · 580; 
utilities · 631 

Collections: addAll( ) · 280; enumeration( ) · 642; 
fill( ) · 568; unmodifiableList( ) · 584 
collision: during hashing · 608; name · 150 
combo box · 967 
comma operator · 96 
Command design pattern · 268, 429, 739, 805 
comments, and embedded documentation · 55 
Commitment, Theory of Escalating · 823 
common interface · 219 
Communicating Sequential Processes (CSP) · 934 
Comparable · 558, 589, 594 
Comparator · 559, 589 

Index 1047 



 

compareTo( ), in java.lang.Comparable · 558, 591 
comparing arrays · 557 
compatibility: backwards · 467; migration · 466 
compilation unit · 146 
compile-time constant · 183 
compiling a Java program · 54 
component, and JavaBeans · 1003 
composition · 21, 165; and design · 213; and dynamic 

behavior change · 214; combining composition & 
inheritance · 173; vs. inheritance · 179, 183, 595, 
642 

compression, library · 699 
concurrency: active objects · 931; and containers · 

637; and exceptions · 831; and Swing · 994; 
ArrayBlockingQueue · 872; atomicity · 826; 
BlockingQueue · 872, 887; Brian’s Rule of 
Synchronization · 830; Callable · 807; Condition 
class · 870; constructors · 816; contention, lock · 
914; CountDownLatch · 883; CyclicBarrier · 885; 
daemon threads · 811; DelayQueue · 887; 
Exchanger · 898; Executor · 804; I/O between 
tasks using pipes · 876; LinkedBlockingQueue · 
872; lock, explicit · 831; lock-free code · 833; long 
and double non-atomicity · 833; missed signals · 
864; performance tuning · 913; priority · 809; 
PriorityBlockingQueue · 889; producer-consumer · 
867; race condition · 827; ReadWriteLock · 929; 
ScheduledExecutor · 892; semaphore · 895; sleep( 
) · 808; SynchronousQueue · 904; task 
interference · 826; terminating tasks · 846; the 
Goetz Test for avoiding synchronization · 833; 
thread local storage · 845; thread vs. task, 
terminology · 820; UncaughtExceptionHandler · 
824; word tearing · 833 

ConcurrentHashMap · 598, 921, 925 
ConcurrentLinkedQueue · 921 
ConcurrentModificationException · 637; using 

CopyOnWriteArrayList to eliminate · 921, 933 
Condition class, concurrency · 870 
conditional compilation · 152 
conditional operator · 80 
conference, Software Development Conference · 10 
console: sending exceptions to · 351; Swing display 

framework in net.mindview.util.SwingConsole · 
942 

constant: compile-time constant · 183; constant 
folding · 183; groups of constant values · 236; 
implicit constants, and String · 355 

constrained properties · 1017 
constructor · 107; and anonymous inner classes · 

251; and concurrency · 816; and exception 
handling · 340, 341; and finally · 341; and 
overloading · 109; and polymorphism · 204; 
arguments · 108; baseclass constructor · 206; 
behavior of polymorphic methods inside 
constructors · 210; calling baseclass constructors 
with arguments · 170; calling from other 
constructors · 118; Constructor class for reflection · 
419; default · 115; initialization during inheritance 
and composition · 173; instance initialization · 253; 
name · 107; no-arg · 108, 115; order of constructor 
calls with inheritance · 204; return value · 108; 
static construction clause · 131; static method · 131; 
synthesized default constructor access · 421 

consulting & training provided by MindView, Inc. · 
1043 

container · 29; class · 275; classes · 275; comparison 
with array · 535; performance test · 616  

containers: basic behavior · 281; lock-free · 921; 
typesafe and generics · 275 

contention, lock, in concurrency · 914 
context switch · 798 
continue keyword · 99 
contravariance, and generics · 487 
control framework, and inner classes · 264 
control, access · 20, 162 
conversion: automatic · 166; narrowing conversion · 

83; widening conversion · 83 
Coplien, Jim: curiously recurring template pattern · 

501 
copying an array · 555 
CopyOnWriteArrayList · 900, 921 
CopyOnWriteArraySet · 921 
copyright notice, source code · 12 
CountDownLatch, for concurrency · 883 
covariant · 402; argument types · 504; arrays · 483; 

return types · 212, 415, 504 
CRC32 · 700 
critical section, and synchronized block · 839 
CSS (Cascading Style Sheets), and Macromedia Flex 

· 1023 
curiously recurring: generics · 501; template pattern 

in C++ · 501 
CyclicBarrier, for concurrency · 885 

D 

daemon threads · 811 
data: final · 183; primitive data types and use with 

operators · 84; static initialization · 129 
Data Transfer Object · 442, 571 
Data Transfer Object (Messenger idiom) · 617 
data type, equivalence to class · 18 
database table, SQL generated via annotations · 766 
DatagramChannel · 697 
DataInput · 665 
DataInputStream · 660, 663, 667 
DataOutput · 665 
DataOutputStream · 661, 664 
deadlock, in concurrency · 878 
decode( ), character set · 684 
decompiler, javap · 356, 434, 470 
Decorator design pattern · 512 
decoupling, via polymorphism · 26, 193 
decrement operator · 69 
default constructor · 115; access the same as the 

class · 421; synthesizing a default constructor · 170 
default keyword, in a switch statement · 104 
default package · 146, 155 
defaultReadObject( ) · 714 
defaultWriteObject( ) · 714 
DeflaterOutputStream · 699 
Delayed · 889 
DelayQueue, for concurrency · 887 
delegation · 172, 512 
Delphi, from Borland · 1002 
DeMarco, Tom · 1049 
deque, double-ended queue · 290, 595 
derived: derived class · 195; derived class, 

initializing · 170; types · 22 
design · 214; adding more methods to a design · 163; 

and composition · 213; and inheritance · 213; and 
mistakes · 162; library design · 145 

design pattern: Adapter · 229, 235, 448, 524, 526, 
569; Adapter method · 307; Chain of 
Responsibility · 743; Command · 268, 429, 739, 

 



 

805; Data Transfer Object (Messenger idiom) · 
442, 571, 617; Decorator · 512; Façade · 411; 
Factory Method · 239, 414, 446, 666; Factory 
Method, and anonymous classes · 255; Flyweight · 
573, 935; Iterator · 246, 287; Null Iterator · 426; 
Null Object · 426; Proxy · 422; Singleton · 161; 
State · 214; Strategy · 226, 234, 526, 547, 558, 559, 
648, 653, 743, 889; Template Method · 264, 408, 
475, 616, 696, 842, 919, 923; Visitor · 775 

destructor · 120, 121, 334; Java doesn’t have one · 
175 

diagram: class inheritance diagrams · 182; 
inheritance · 27 

dialog: box · 981; file · 984; tabbed · 970 
dictionary · 279 
Dijkstra, Edsger · 878 
dining philosophers, example of deadlock in 

concurrency · 878 
directory: and packages · 153; creating directories 

and paths · 655; lister · 647 
dispatching: double dispatching · 752; multiple, and 

enum · 752 
display framework, for Swing · 942 
dispose( ) · 982 
division · 67 
documentation · 11; comments & embedded 

documentation · 55 
double: and threading · 833; literal value marker (d 

or D) · 74 
double dispatching · 752; with EnumMap · 757 
double-ended queue (deque) · 290 
do-while · 95 
downcast · 182, 215; type-safe downcast · 405 
drawing lines in Swing · 978 
drop-down list · 967 
duck typing · 515, 524 
dynamic: aggregate initialization syntax for arrays · 

538; behavior change with composition · 214; 
binding · 193, 196; proxy · 423; type checking in 
Java · 584; type safety and containers · 506 

E 

early binding · 26, 196 
East, BorderLayout · 947 
editor, creating one using the Swing JTextPane · 964 
efficiency: and arrays · 535; and final · 189 
else keyword · 93 
encapsulation · 158; using reflection to break · 432 
encode( ), character set · 684 
end sentinel · 445 
endian: big endian · 688; little endian · 688 
entrySet( ), in Map · 607 
enum: adding methods · 727; and Chain of 

Responsibility design pattern · 743; and 
inheritance · 732; and interface · 733; and multiple 
dispatching · 752; and random selection · 732; and 
state machines · 747; and static imports · 726; and 
switch · 728; constant-specific methods · 740, 756; 
groups of constant values in C & C++ · 236; 
keyword · 142, 725; values( ) · 725, 729 

enumerated types · 142 
Enumeration · 641 
EnumMap · 739 
EnumSet · 457, 645; instead of flags · 737 
equals( ) · 70; and hashCode( ) · 589, 612; and 

hashed data structures · 605; conditions for 

defining properly · 604; overriding for HashMap · 
604 

equivalence: == · 70; object equivalence · 70 
erasure · 497; in generics · 463 
Erlang language · 800 
error: handling with exceptions · 313; recovery · 313; 

reporting · 348; reporting errors in book · 14; 
standard error stream · 318 

Escalating Commitment, Theory of · 823 
event: event-driven programming · 943; event-

driven system · 264; events and listeners · 950; 
JavaBeans · 1003; listener · 949; model, Swing · 
949; multicast, and JavaBeans · 1012; responding 
to a Swing event · 943 

EventSetDescriptors · 1007 
exception: and concurrency · 831; and constructors · 

340; and inheritance · 339, 345; and the console · 
351; catching an exception · 316; catching any 
exception · 323; chained exceptions · 351; chaining 
· 328; changing the point of origin of the exception 
· 327; checked · 322, 347; class hierarchies · 345; 
constructors · 341; converting checked to 
unchecked · 351; creating your own · 317; design 
issues · 343; Error class · 331; Exception class · 
331; exception handler · 316; exception handling · 
313; exception matching · 345; exceptional 
condition · 314; FileNotFoundException · 342; 
fillInStackTrace( ) · 325; finally · 333; generics · 
507; guarded region · 316; handler · 314; handling · 
32; logging · 319; losing an exception, pitfall · 337; 
NullPointerException · 331; printStackTrace( ) · 
325; reporting exceptions via a logger · 320; 
restrictions · 339; re-throwing an exception · 325; 
RuntimeException · 331; specification · 322, 348; 
termination vs. resumption · 317; Throwable · 323; 
throwing an exception · 314, 315; try · 334; try 
block · 316; typical uses of exceptions · 353; 
unchecked · 331 

Exchanger, concurrency class · 898 
executing operating system programs from within 

Java · 677 
Executor, concurrency · 804 
ExecutorService · 805 
explicit type argument specification for generic 

methods · 281, 452 
exponential notation · 75 
extending a class during inheritance · 23 
extends · 156, 169, 215; and @interface · 769; and 

interface · 233; keyword · 168 
extensible program · 199 
extension: sign · 77; zero · 77 
extension, vs. pure inheritance · 214 
Externalizable · 708; alternative approach to using · 

712 
Extreme Programming (XP) · 1048 

F 

Façade · 411 
Factory Method design pattern · 239, 414, 446, 666; 

and anonymous classes · 255 
factory object · 199, 473 
fail fast containers · 637 
false · 71 
FeatureDescriptor · 1017 
Fibonacci · 448 
Field, for reflection · 419 
fields, initializing fields in interfaces · 236 

Index 1049 



 

FIFO (first-in, first out) · 299 
file: characteristics of files · 655; dialogs · 984; File 

class · 647, 657, 664; File.list( ) · 647; incomplete 
output files, errors and flushing · 668; JAR file · 
147; locking · 696; memory-mapped files · 693 

FileChannel · 680 
FileDescriptor · 657 
FileInputReader · 665 
FileInputStream · 657 
FileLock · 697 
FilenameFilter · 647 
FileNotFoundException · 342 
FileOutputStream · 659 
FileReader · 341, 663 
FileWriter · 663, 668 
fillInStackTrace( ) · 325 
FilterInputStream · 657 
FilterOutputStream · 659 
FilterReader · 663 
FilterWriter · 663 
final · 223, 442; and efficiency · 189; and private · 

187; and static · 183; argument · 186, 649; blank 
finals · 185; classes · 188; data · 183; keyword · 183; 
method · 196; methods · 186, 212; static primitives 
· 185; with object references · 183 

finalize( ) · 120, 177, 343; and inheritance · 206; 
calling directly · 121 

finally · 175, 177; and constructors · 341; and return · 
336; keyword · 333; not run with daemon threads · 
815; pitfall · 337 

finding .class files during loading · 148 
FixedThreadPool · 805 
flag, using EnumSet instead of · 737 
Flex: OpenLaszlo alternative to Flex · 1018; tool 

from Macromedia · 1018 
flip( ), nio · 681 
float: floating point true and false · 72; literal value 

marker (F) · 74 
FlowLayout · 947 
flushing output files · 668 
Flyweight design pattern · 573, 935 
focus traversal · 938 
folding, constant · 183 
for keyword · 95 
foreach · 97, 100, 138, 139, 152, 265, 277, 298, 303, 

386, 448, 449, 495, 725, 744; and Adapter Method 
· 307; and Iterable · 305 

format: precision · 365; specifiers · 365; string · 363; 
width · 365 

format( ) · 363 
Formatter · 364 
forName( ) · 396, 953 
FORTRAN programming language · 75 
forward referencing · 128 
Fowler, Martin · 145, 350, 1048 
framework, control framework and inner classes · 

264 
function: member function · 18; overriding · 23 
function object · 526 
functional languages · 800 
Future · 808 

G 

garbage collection · 120, 121; and cleanup · 175; how 
the collector works · 123; order of object 
reclamation · 177; reachable objects · 638 

Generator · 199, 446, 453, 459, 496, 522, 547, 559, 
569, 732, 748; filling a Collection · 453; general 
purpose · 454 

generics: @Unit testing · 786; and type-safe 
containers · 275; anonymous inner classes · 459; 
array of generic objects · 610; basic introduction · 
275; bounds · 465, 480; cast via a generic class · 
498; casting · 497; Class references · 401; 
contravariance · 487; curiously recurring · 501; 
erasure · 463, 497; example of a framework · 921; 
exceptions · 507; explicit type argument 
specification for generic methods · 281, 452; inner 
classes · 459; instanceof · 472, 497; isInstance( ) · 
472; methods · 449, 569; overloading · 499; 
reification · 467; self-bounded types · 500; 
simplest class definition · 292; supertype wildcards 
· 487; type tag · 472; unbounded wildcard · 489; 
varargs and generic methods · 452; wildcards · 483 

get( ): ArrayList · 276; HashMap · 296; no get( ) for 
Collection · 581 

getBeanInfo( ) · 1005 
getBytes( ) · 667 
getCanonicalName( ) · 398 
getChannel( ) · 680 
getClass( ) · 324, 397 
getConstructor( ) · 960 
getConstructors( ) · 421 
getenv( ) · 306 
getEventSetDescriptors( ) · 1007 
getInterfaces( ) · 398 
getMethodDescriptors( ) · 1007 
getMethods( ) · 421 
getName( ) · 1007 
getPropertyDescriptors( ) · 1007 
getPropertyType( ) · 1007 
getReadMethod( ) · 1007 
getSelectedValues( ) · 968 
getSimpleName( ) · 398 
getState( ) · 976 
getSuperclass( ) · 398 
getWriteMethod( ) · 1007 
Glass, Robert · 1049 
glue, in BoxLayout · 949 
Goetz Test, for avoiding synchronization · 833 
Goetz, Brian · 830, 833, 914, 936 
goto, lack of in Java · 101 
graphical user interface (GUI) · 264, 937 
graphics · 983; Graphics class · 978 
greater than (>) · 70 
greater than or equal to (>=) · 70 
greedy quantifiers · 374 
GridBagLayout · 948 
GridLayout · 948, 1001 
Grindstaff, Chris · 1028 
group, thread · 823 
groups, regular expression · 378 
guarded region, in exception handling · 316 
GUI: graphical user interface · 264, 937; GUI 

builders · 938 
GZIPInputStream · 699 
GZIPOutputStream · 699 

H 

handler, exception · 316 
Harold, Elliotte Rusty · 1017, 1048; XOM XML 

library · 720 
has-a · 21; relationship, composition · 180 

 



 

hash function · 608 
hashCode( ) · 598, 602, 608; and hashed data 

structures · 605; equals( ) · 589; issues when 
writing · 611; recipe for generating decent · 612 

hashing · 605, 608; and hash codes · 602; external 
chaining · 608; perfect hashing function · 608 

HashMap · 598, 629, 925, 957 
HashSet · 293, 589, 626 
Hashtable · 629, 642 
hasNext( ), Iterator · 288 
Hexadecimal · 74 
hiding, implementation · 158 
Holub, Allen · 931 
HTML on Swing components · 985 

I 

I/O: available( ) · 667; basic usage, examples · 665; 
between tasks using pipes · 876; blocking, and 
available( ) · 668; BufferedInputStream · 660; 
BufferedOutputStream · 661; BufferedReader · 
341, 663, 665; BufferedWriter · 663, 668; 
ByteArrayInputStream · 657; 
ByteArrayOutputStream · 659; characteristics of 
files · 655; CharArrayReader · 663; 
CharArrayWriter · 663; CheckedInputStream · 
699; CheckedOutputStream · 699; close( ) · 666; 
compression library · 699; controlling the process 
of serialization · 708; DataInput · 665; 
DataInputStream · 660, 663, 667; DataOutput · 
665; DataOutputStream · 661, 664; 
DeflaterOutputStream · 699; directory lister · 647; 
directory, creating directories and paths · 655; 
Externalizable · 708; File · 657, 664; File class · 
647; File.list( ) · 647; FileDescriptor · 657; 
FileInputReader · 665; FileInputStream · 657; 
FilenameFilter · 647; FileOutputStream · 659; 
FileReader · 341, 663; FileWriter · 663, 668; 
FilterInputStream · 657; FilterOutputStream · 659; 
FilterReader · 663; FilterWriter · 663; from 
standard input · 675; GZIPInputStream · 699; 
GZIPOutputStream · 699; InflaterInputStream · 
699; input · 657; InputStream · 657; 
InputStreamReader · 662, 663; 
internationalization · 662; interruptible · 854; 
library · 647; lightweight persistence · 703; 
LineNumberInputStream · 660; 
LineNumberReader · 663; mark( ) · 665; mkdirs( ) 
· 656; network I/O · 679; new nio · 679; 
ObjectOutputStream · 704; output · 657; 
OutputStream · 657, 658; OutputStreamWriter · 
662, 663; pipe · 657; piped streams · 672; 
PipedInputStream · 657; PipedOutputStream · 
657, 659; PipedReader · 663; PipedWriter · 663; 
PrintStream · 661; PrintWriter · 663, 668, 669; 
PushbackInputStream · 660; PushbackReader · 
663; RandomAccessFile · 664, 665, 671; read( ) · 
657; readDouble( ) · 670; Reader · 657, 662, 663; 
readExternal( ) · 708; readLine( ) · 343, 663, 668, 
676; readObject( ) · 704; redirecting standard I/O · 
677; renameTo( ) · 656; reset( ) · 665; seek( ) · 665, 
671; SequenceInputStream · 657, 664; Serializable 
· 708; setErr(PrintStream) · 677; 
setIn(InputStream) · 677; setOut(PrintStream) · 
677; StreamTokenizer · 663; StringBuffer · 657; 
StringBufferInputStream · 657; StringReader · 
663, 666; StringWriter · 663; System.err · 675; 
System.in · 675; System.out · 675; transient · 711; 

typical I/O configurations · 665; Unicode · 663; 
write( ) · 657; writeBytes( ) · 670; writeChars( ) · 
670; writeDouble( ) · 670; writeExternal( ) · 708; 
writeObject( ) · 704; Writer · 657, 662, 663; 
ZipEntry · 701; ZipInputStream · 699; 
ZipOutputStream · 699 

Icon · 960 
IdentityHashMap · 598, 630 
if-else statement · 80, 93 
IllegalAccessException · 408 
IllegalMonitorStateException · 861 
ImageIcon · 960 
immutable · 427 
implementation · 18; and interface · 179, 222; and 

interface, separating · 20; and interface, separation 
· 158; hiding · 145, 158, 248; separation of interface 
and implementation · 949 

implements keyword · 223 
import keyword · 146 
increment operator · 69; and concurrency · 828 
indexed property · 1017 
indexing operator [ ] · 134 
indexOf( ), String · 421 
inference, generic type argument inference · 450 
InflaterInputStream · 699 
inheritance · 21, 156, 165, 168, 193; and enum · 732; 

and final · 189; and finalize( ) · 206; and generic 
code · 439; and synchronized · 1015; class 
inheritance diagrams · 182; combining 
composition & inheritance · 173; designing with 
inheritance · 213; diagram · 27; extending a class 
during · 23; extending interfaces with inheritance · 
232; from abstract classes · 220; from inner classes 
· 270; initialization with inheritance · 190; method 
overloading vs. overriding · 178; multiple 
inheritance in C++ and Java · 230; pure 
inheritance vs. extension · 214; specialization · 
180; vs. composition · 179, 183, 595, 642 

initial capacity, of a HashMap or HashSet · 630 
initialization: and class loading · 190; array 

initialization · 134; base class · 170; class · 400; 
class member · 166; constructor initialization 
during inheritance and composition · 173; 
initializing with the constructor · 107; instance 
initialization · 132, 253; lazy · 166; member 
initializers · 206; non-static instance initialization · 
132; of class fields · 126; of method variables · 125; 
order of initialization · 128, 211; static · 191; with 
inheritance · 190 

inline method calls · 186 
inner class · 243; access rights · 245; and overriding 

· 270; and control frameworks · 264; and super · 
270; and Swing · 950; and threads · 816; and 
upcasting · 248; anonymous inner class · 649, 944; 
and table-driven code · 616; callback · 262; closure 
· 262; generic · 459; hidden reference to the object 
of the enclosing class · 246; identifiers and .class 
files · 273; in methods & scopes · 249; inheriting 
from inner classes · 270; local · 250; motivation · 
260; nesting within any arbitrary scope · 250; 
private inner classes · 266; referring to the outer-
class object · 246; static inner classes · 257 

InputStream · 657 
InputStreamReader · 662, 663 
instance: instance initialization · 253; non-static 

instance initialization · 132; of a class · 16 
instanceof · 410; and generic types · 497; dynamic 

instanceof with isInstance( ) · 411; keyword · 405 
Integer: parseInt( ) · 984; wrapper class · 136 

Index 1051 



 

interface: and enum · 733; and generic code · 439; 
and implementation, separation of · 20, 158, 949; 
and inheritance · 232; base-class interface · 199; 
classes nested inside · 258; common interface · 
219; for an object · 17; initializing fields in 
interfaces · 236; keyword · 222; name collisions 
when combining interfaces · 233; nesting 
interfaces within classes and other interfaces · 237; 
private, as nested interfaces · 239; upcasting to an 
interface · 225; vs. abstract · 231; vs. 
implementation · 179 

internationalization, in I/O library · 662 
interrupt( ): concurrency · 851; threading · 820 
interruptible io · 854 
Introspector · 1005 
invocation handler, for dynamic proxy · 423 
is-a · 214; relationship, inheritance · 180; and 

upcasting · 181; vs. is-like-a relationships · 24 
isAssignableFrom( ), Class method · 413 
isDaemon( ) · 813 
isInstance( ) · 411; and generics · 472 
isInterface( ) · 398 
is-like-a · 215 
Iterable · 448, 571; and array · 306; and foreach · 

305 
Iterator · 287, 289, 302; hasNext( ) · 288; next( ) · 

288 
Iterator design pattern · 246 

J 

Jacobsen, Ivar · 1048 
JApplet · 946; menus · 972 
JAR · 1015; file · 147; jar files and classpath · 149; 

utility · 702 
Java: and set-top boxes · 76; AWT · 937; bytecodes · 

357; compiling and running a program · 54; Java 
Foundation Classes (JFC/Swing) · 937; Java 
Virtual Machine (JVM) · 395; Java Web Start · 
989; public Java seminars · 10 

Java standard library, and thread-safety · 884 
JavaBeans, see Beans · 1002 
javac · 54 
javadoc · 55 
javap decompiler · 356, 434, 470 
Javassist · 793 
JButton · 960; Swing · 942 
JCheckBox · 960, 965 
JCheckBoxMenuItem · 973, 976 
JComboBox · 967 
JComponent · 961, 978 
JDialog · 981; menus · 972 
JDK 1.1 I/O streams · 662 
JDK, downloading and installing · 54 
JFC, Java Foundation Classes (Swing) · 937 
JFileChooser · 984 
JFrame · 946; menus · 972 
JIT, just-in-time compilers · 125 
JLabel · 963 
JList · 968 
JMenu · 972, 976 
JMenuBar · 972, 977 
JMenuItem · 960, 972, 976, 977, 978 
JNLP, Java Network Launch Protocol · 989 
join( ), threading · 820 
JOptionPane · 970 
Joy, Bill · 70 
JPanel · 959, 978, 1001 

JPopupMenu · 977 
JProgressBar · 987 
JRadioButton · 960, 966 
JScrollPane · 946, 969 
JSlider · 987 
JTabbedPane · 970 
JTextArea · 945 
JTextField · 943, 961 
JTextPane · 964 
JToggleButton · 958 
JUnit, problems with · 778 
JVM (Java Virtual Machine) · 395 

K 

keyboard: navigation, and Swing · 938; shortcuts · 
976 

keySet( ) · 629 

L 

label · 101 
labeled: break · 101; continue · 101 
late binding · 26, 193, 196 
latent typing · 515, 524 
layout, controlling layout with layout managers · 

946 
lazy initialization · 166 
least-recently-used (LRU) · 602 
left-shift operator (<<) · 76 
length: array member · 135; for arrays · 536 
less than (<) · 70 
less than or equal to (<=) · 70 
lexicographic: sorting · 295; vs. alphabetic sorting · 

561 
library: creator, vs. client programmer · 145; design · 

145; use · 146 
LIFO (last-in, first-out) · 291 
lightweight: object · 287; persistence · 703 
LineNumberInputStream · 660 
LineNumberReader · 663 
LinkedBlockingQueue · 872 
LinkedHashMap · 598, 601, 630 
LinkedHashSet · 294, 589, 626, 627 
LinkedList · 283, 290, 299, 586 
linking, class · 400 
list: boxes · 968; drop-down list · 967 
List · 275, 278, 283, 586, 968; performance 

comparison · 620; sorting and searching · 634 
listener: adapters · 954; and events · 950; interfaces 

· 953 
Lister, Timothy · 1049 
ListIterator · 586 
literal: class literal · 399, 410; double · 74; float · 74; 

long · 74; values · 73 
little endian · 688 
livelock · 935 
load factor, of a HashMap or HashSet · 630 
loader, class · 395 
loading: .class files · 148; class · 191, 400; 

initialization & class loading · 190 
local: inner class · 250; variable · 48 
lock: contention, in concurrency · 914; explicit, in 

concurrency · 831; in concurrency · 829; optimistic 
locking · 927 

lock-free code, in concurrent programming · 833 

 



 

locking, file · 696, 697 
logarithms, natural · 75 
logging, building logging into exceptions · 319 
logical: AND · 82; operator and short-circuiting · 73; 

operators · 71; OR · 82 
long: and threading · 833; literal value marker (L) · 

74 
look & feel, pluggable · 987 
LRU, least-recently-used · 602 
lvalue · 65 

M 

machines, state, and enum · 747 
Macromedia Flex · 1018 
main( ) · 169 
manifest file, for JAR files · 702, 1015 
Map · 275, 278, 296; EnumMap · 739; in-depth 

exploration of · 596; performance comparison · 
628 

Map.Entry · 607 
MappedByteBuffer · 694 
mark( ) · 665 
marker annotation · 762 
matcher, regular expression · 375 
matches( ), String · 371 
Math.random( ) · 296; range of results · 625 
mathematical operators · 67, 697 
member: initializers · 206; member function · 18; 

object · 20 
memory exhaustion, solution via References · 638 
memory-mapped files · 693 
menu: JDialog, JApplet, JFrame · 972; 

JPopupMenu · 977 
message box, in Swing · 970 
message, sending · 17 
Messenger idiom · 442, 571, 617 
meta-annotations · 763 
Metadata · 761 
method: adding more methods to a design · 163; 

aliasing during method calls · 66; applying a 
method to a sequence · 520; behavior of 
polymorphic methods inside constructors · 210; 
distinguishing overloaded methods · 110; final · 
186, 196, 212; generic · 449; initialization of 
method variables · 125; inline method calls · 186; 
inner classes in methods & scopes · 249; lookup 
tool · 951; method call binding · 196; overloading · 
109; overriding private · 202; polymorphic method 
call · 193; private · 212; protected methods · 180; 
recursive · 360; static · 119, 196 

Method · 1007; for reflection · 419 
MethodDescriptors · 1007 
Meyer, Jeremy · 761, 791, 989 
Meyers, Scott · 19 
microbenchmarks · 625 
Microsoft Visual BASIC · 1002 
migration compatibility · 466 
missed signals, concurrency · 864 
mistakes, and design · 162 
mixin · 509 
mkdirs( ) · 656 
mnemonics (keyboard shortcuts) · 976 
Mock Object · 431 
modulus · 67 
monitor, for concurrency · 829 
Mono · 37 
multicast · 1011; event, and JavaBeans · 1012 

multidimensional arrays · 540 
multiparadigm programming · 16 
multiple dispatching: and enum · 752; with 

EnumMap · 757 
multiple implementation inheritance · 261 
multiple inheritance, in C++ and Java · 230 
multiplication · 67 
multiply nested class · 259 
multitasking · 799 
mutual exclusion (mutex), concurrency · 828 
MXML, Macromedia Flex input format · 1018 
mxmlc, Macromedia Flex compiler · 1020 

N 

name: clash · 146; collisions · 150; collisions when 
combining interfaces · 233; creating unique 
package names · 148; qualified · 398 

namespaces · 146 
narrowing conversion · 83 
natural logarithms · 75 
nested class (static inner class) · 257 
nesting interfaces · 237 
net.mindview.util.SwingConsole · 942 
network I/O · 679 
Neville, Sean · 1018 
new I/O · 679 
new operator · 120; and primitives, array · 135 
newInstance( ) · 960; reflection · 398 
next( ), Iterator · 288 
nio · 679; and interruption · 854; buffer · 679; 

channel · 679; performance · 694 
no-arg constructor · 108, 115 
North, BorderLayout · 947 
not equivalent (!=) · 70 
NOT, logical (!) · 71 
notifyAll( ) · 860 
notifyListeners( ) · 1015 
null · 45 
Null Iterator design pattern · 426 
Null Object design pattern · 426 
NullPointerException · 331 
numbers, binary · 74 

O 

object · 16; aliasing · 66; arrays are first-class objects 
· 536; assigning objects by copying references · 65; 
Class object · 395, 717, 829; creation · 108; equals( 
) · 70; equivalence · 70; equivalence vs. reference 
equivalence · 70; final · 183; getClass( ) · 397; 
hashCode( ) · 598; interface to · 17; lock, for 
concurrency · 829; member · 20; object-oriented 
programming · 393; process of creation · 131; 
serialization · 703; standard root class, default 
inheritance from · 168; wait( ) and notifyAll( ) · 
860; web of objects · 704 

object pool · 895 
object-oriented, basic concepts of object-oriented 

programming (OOP) · 15 
ObjectOutputStream · 704 
Octal · 74 
ones complement operator · 76 
OOP: basic characteristics · 16; basic concepts of 

object-oriented programming · 15; protocol · 222; 

Index 1053 



 

Simula-67 programming language · 17; 
substitutability · 16 

OpenLaszlo, alternative to Flex · 1018 
operating system, executing programs from within 

Java · 677 
operation, atomic · 833 
operator · 64; + and += overloading for String · 169; 

+, for String · 356; binary · 76; bitwise · 76; casting 
· 82; comma operator · 96; common pitfalls · 82; 
indexing operator [ ] · 134; logical · 71; logical 
operators and short-circuiting · 73; 
onescomplement · 76; operator overloading for 
String · 356; overloading · 81; precedence · 64; 
relational · 70; shift · 76; String conversion with 
operator + · 64, 81; ternary · 80; unary · 69, 76 

optional methods, in the Java containers · 583 
OR · 82; (||) · 71 
order: of constructor calls with inheritance · 204; of 
initialization · 128, 190, 211 
ordinal( ), for enum · 726 
organization, code · 153 
OSExecute · 678 
OutputStream · 657, 658 
OutputStreamWriter · 662, 663 
overflow, and primitive types · 92 
overloading: and constructors · 109; distinguishing 
overloaded methods · 110; generics · 499; lack of 
name hiding during inheritance · 178; method 
overloading · 109; on return values · 114; operator + 
and += overloading for String · 169, 356; operator 
overloading · 81; vs. overriding · 178 
overriding: and inner classes · 270; function · 23; 
private methods · 202; vs. overloading · 178 

P 

package · 146; access, and friendly · 153; and 
directory structure · 153; creating unique package 
names · 148; default · 146, 155; names, 
capitalization · 50; package access, and protected · 
180 

paintComponent( ) · 978, 983 
painting on a JPanel in Swing · 978 
parameter, collecting · 509, 530 
parameterized types · 439 
parseInt( ) · 984 
pattern, regular expression · 373 
perfect hashing function · 608 
performance: and final · 189; nio · 694; test, 

containers · 616; tuning, for concurrency · 913 
persistence · 715; lightweight persistence · 703 
PhantomReference · 638 
philosophers, dining, example of deadlock in 

concurrency · 878 
pipe · 657 
piped streams · 672 
PipedInputStream · 657 
PipedOutputStream · 657, 659 
PipedReader · 663, 876 
PipedWriter · 663, 876 
pipes, and I/O · 876 
Plauger, P.J. · 1049 
pluggable look & feel · 987 
pointer, Java exclusion of pointers · 262 
polymorphism · 25, 193, 217, 393, 437; and 

constructors · 204; and multiple dispatching · 752; 
behavior of polymorphic methods inside 
constructors · 210 

pool, object · 895 
portability in C, C++ and Java · 84 
position, absolute, when laying out Swing 

components · 949 
possessive quantifiers · 374 
post-decrement · 69 
postfix · 69 
post-increment · 69 
pre-decrement · 69 
preferences API · 722 
prefix · 69 
pre-increment · 69 
prerequisites, for this book · 15 
primitive: comparison · 70; data types, and use with 

operators · 84; final · 183; final static primitives · 
185; initialization of class fields · 126; types · 43 

primordial class loader · 395 
printf( ) · 363 
printStackTrace( ) · 323, 325 
PrintStream · 661 
PrintWriter · 663, 668, 669; convenience 

constructor in Java SE5 · 672 
priority, concurrency · 809 
PriorityBlockingQueue, for concurrency · 889 
PriorityQueue · 300, 593 
private · 20, 145, 153, 155, 180, 829; illusion of 

overriding private methods · 187; inner classes · 
266; interfaces, when nested · 239; method 
overriding · 202; methods · 212 

problem space · 16 
process control · 677 
process, concurrent · 799 
ProcessBuilder · 678 
ProcessFiles · 790 
producer-consumer, concurrency · 867 
programmer, client · 19 
programming: basic concepts of object-oriented 

programming (OOP) · 15; event-driven 
programming · 943; Extreme Programming (XP) · 
1048; multiparadigm · 16; object-oriented · 393 

progress bar · 986 
promotion, to int · 84, 92 
property · 1003; bound properties · 1017; 

constrained properties · 1017; custom property 
editor · 1017; custom property sheet · 1017; 
indexed property · 1017 

PropertyChangeEvent · 1017 
PropertyDescriptors · 1007 
ProptertyVetoException · 1017 
protected · 20, 145, 153, 156, 180; and package 

access · 180; is also package access · 158 
protocol · 222 
proxy: and java.lang.ref.Reference · 638; for 

unmodifiable methods in the Collections class · 
585 

Proxy design pattern · 422 
public · 20, 145, 153, 154; and interface · 222; class, 

and compilation units · 146 
pure substitution · 24, 214 
PushbackInputStream · 660 
PushbackReader · 663 
pushdown stack · 291; generic · 444 
Python · 1, 3, 6, 35, 39, 515, 564, 799, 1050 

Q 

qualified name · 398 

 



 

quantifier: greedy · 374; possessive · 374; regular 
expression · 374; reluctant · 374 

queue · 275, 290, 299, 593; performance · 620; 
synchronized, concurrency · 872 

queuing discipline · 300 

R 

race condition, in concurrency · 827 
RAD (Rapid Application Development) · 418 
radio button · 966 
ragged array · 541 
random selection, and enum · 732 
random( ) · 296 
RandomAccess, tagging interface for containers · 

312 
RandomAccessFile · 664, 665, 671, 680 
raw type · 464 
reachable objects and garbage collection · 638 
read( ) · 657; nio · 681 
readDouble( ) · 670 
Reader · 657, 662, 663 
readExternal( ) · 708 
reading from standard input · 675 
readLine( ) · 343, 663, 668, 676 
readObject( ) · 704; with Serializable · 712 
ReadWriteLock · 929 
recursion, unintended via toString( ) · 360 
redirecting standard I/O · 677 
ReentrantLock · 832, 856 
refactoring · 145 
reference: assigning objects by copying references · 

65; final · 183; finding exact type of a base 
reference · 395; null · 45; reference equivalence vs. 
object equivalence · 70 

reference counting, garbage collection · 123 
Reference, from java.lang.ref · 638 
referencing, forward · 128 
reflection · 418, 419, 951, 1005; and Beans · 1003; 

and weak typing · 350; annotation processor · 764, 
769; breaking encapsulation with · 432; difference 
between RTTI and reflection · 419; example · 959; 
latent typing and generics · 519 

regex · 373 
Registered Factories, variation of Factory Method 

design pattern · 414 
regular expressions · 370 
rehashing · 630 
reification, and generics · 467 
relational operators · 70 
reluctant quantifiers · 374 
removeActionListener( ) · 1009, 1014 
removeXXXListener( ) · 950 
renameTo( ) · 656 
reporting errors in book · 14 
request, in OOP · 17 
reset( ) · 665 
responsive user interfaces · 822 
resume( ), and deadlocks · 850 
resumption, termination vs. resumption, exception 

handling · 317 
re-throwing an exception · 325 
return: an array · 539; and finally · 336; constructor 

return value · 108; covariant return types · 212, 
504; overloading on return value · 114; returning 
multiple objects · 442 

reusability · 20 
reuse: code reuse · 165; reusable code · 1002 

rewind( ) · 684 
right-shift operator (>>) · 76 
rollover · 961 
RoShamBo · 752 
Rumbaugh, James · 1048 
running a Java program · 54 
runtime binding · 196; polymorphism · 193 
runtime type information (RTTI) · 216; Class object · 

395, 960; ClassCastException · 405; Constructor 
class for reflection · 419; Field · 419; 
getConstructor( ) · 960; instanceof keyword · 405; 
isInstance( ) · 411; Method · 419; misuse · 437; 
newInstance( ) · 960; reflection · 418; reflection, 
difference between · 419; shape example · 393; 
type-safe downcast · 405 

RuntimeException · 331, 351 
rvalue · 65 

S 

ScheduledExecutor, for concurrency · 892 
scheduler, thread · 802 
scope: inner class nesting within any arbitrary scope 

· 250; inner classes in methods & scopes · 249 
scrolling in Swing · 946 
searching: an array · 562; sorting and searching 

Lists · 634 
section, critical section and synchronized block · 839 
seek( ) · 665, 671 
self-bounded types, in generics · 500 
semaphore, counting · 895 
seminars: public Java seminars · 10; training, 

provided by MindView, Inc. · 1043 
sending a message · 17 
sentinel, end · 445 
separation of interface and implementation · 20, 

158, 949 
sequence, applying a method to a sequence · 520 
SequenceInputStream · 657, 664 
Serializable · 703, 708, 711, 719, 1011; readObject( ) · 

712; writeObject( ) · 712  
serialization: and object storage · 715; and transient · 

711; controlling the process of serialization · 708; 
defaultReadObject( ) · 714; defaultWriteObject( ) · 
714; Versioning · 714 

Set · 275, 278, 293, 589; mathematical relationships 
· 456; performance comparison · 626 

setActionCommand( ) · 976 
setBorder( ) · 963 
setErr(PrintStream) · 677 
setIcon( ) · 961 
setIn(InputStream) · 677 
setLayout( ) · 946 
setMnemonic( ) · 976 
setOut(PrintStream) · 677 
setToolTipText( ) · 961 
shape: example · 22, 197; example, and runtime type 

information · 393 
shift operators · 76 
short-circuit, and logical operators · 73 
shortcut, keyboard · 976 
shuffle( ) · 635 
side effect · 64, 70, 114 
sign extension · 77 
signals, missed, in concurrency · 864 
signature, method · 48 
signed twos complement · 79 
Simula-67 programming language · 17 

Index 1055 



 

simulation · 900 
sine wave · 978 
single dispatching · 752 
SingleThreadExecutor · 806 
Singleton design pattern · 161 
size( ), ArrayList · 276 
size, of a HashMap or HashSet · 630 
sizeof( ), lack of in Java · 84 
sleep( ), in concurrency · 808 
slider · 986 
Smalltalk · 16 
SocketChannel · 697 
SoftReference · 638 
Software Development Conference · 10 
solution space · 15 
SortedMap · 600 
SortedSet · 592 
sorting · 557; alphabetic · 295; and searching Lists · 

634; lexicographic · 295 
source code · 12; copyright notice · 12 
South, BorderLayout · 947 
space: namespaces · 146; problem space · 16; 

solution space · 15 
specialization · 180 
specification, exception specification · 322, 348 
specifier, access · 20, 145, 153 
split( ), String · 226, 371 
sprintf( ) · 369 
SQL generated via annotations · 766 
stack · 290, 291, 642; generic pushdown · 444 
standard input, reading from · 675 
standards, coding · 14 
State design pattern · 214 
state machines, and enum · 747 
stateChanged( ) · 980 
static · 223; and final · 183; block · 131; construction 

clause · 131; data initialization · 129; final static 
primitives · 185; import, and enum · 726; 
initialization · 191, 396; initializer · 414; inner 
classes · 257; keyword · 51, 119; method · 119, 196; 
strong type checking · 347; synchronized static · 
829; type checking · 437; vs. dynamic type 
checking · 584 

STL, C++ · 646 
stop( ), and deadlocks · 850 
Strategy design pattern · 226, 234, 526, 547, 558, 

559, 648, 653, 743, 889 
stream, I/O · 657 
StreamTokenizer · 663 
String: CASE_INSENSITIVE_ORDER Comparator · 

634; class methods · 355; concatenation with 
operator += · 81; conversion with operator + · 64, 
81; format( ) · 369; immutability · 355; indexOf( ) · 
421; lexicographic vs. alphabetic sorting · 561; 
methods · 361; operator + and += overloading · 
169; regular expression support in · 371; sorting, 
CASE_INSENSITIVE_ORDER · 647; split( ) 
method · 226; toString( ) · 166 

StringBuffer · 657 
StringBufferInputStream · 657 
StringBuilder, vs. String, and toString( ) · 357 
StringReader · 663, 666 
StringWriter · 663 
strong static type checking · 347 
Stroustrup, Bjarne · 144 
structural typing · 515, 524 
struts, in BoxLayout · 949 
Stub · 431 
style: coding style · 59; of creating classes · 158 

subobject · 170, 179 
substitutability, in OOP · 16 
substitution: inheritance vs. extension · 214; 

principle · 24 
subtraction · 67 
suites, @Unit vs. JUnit · 787 
super · 171; and inner classes · 270; keyword · 169 
superclass · 169; bounds · 404 
supertype wildcards · 487 
suspend( ), and deadlocks · 850 
SWF, Flash bytecode format · 1018 
Swing · 937; and concurrency · 994; component 

examples · 957; components, using HTML with · 
985; event model · 949 

switch: and enum · 728; keyword · 104 
switch, context switching in concurrency · 798 
synchronized · 829; and inheritance · 1015; and 

wait( ) & notifyAll( ) · 860; block, and critical 
section · 839; Brian’s Rule of Synchronization · 
830; containers · 637; deciding what methods to 
synchronize · 1015; queue · 872; static · 829 

SynchronousQueue, for concurrency · 904 
System.arraycopy( ) · 555 
System.err · 318, 675 
System.in · 675 
System.out · 675 
System.out, changing to a PrintWriter · 676 
systemNodeForPackage( ), preferences API · 723 

T 

tabbed dialog · 970 
table-driven code · 741; and anonymous inner 

classes · 616 
task vs. thread, terminology · 820 
tearing, word tearing · 833 
Template Method design pattern · 264, 408, 475, 

616, 696, 842, 919, 923 
templates, C++ · 440, 464 
termination condition, and finalize( ) · 122 
termination vs. resumption, exception handling · 

317 
ternary operator · 80 
testing: annotation-based unit testing with @Unit · 

778; techniques · 258; unit testing · 169 
Theory of Escalating Commitment · 823 
this keyword · 116 
thread: group · 823; interrupt( ) · 851; isDaemon( ) · 

813; notifyAll( ) · 860; priority · 809; resume( ), 
and deadlocks · 850; safety, Java standard library · 
884; scheduler · 802; states · 849; stop( ), and 
deadlocks · 850; suspend( ), and deadlocks · 850; 
thread local storage · 845; vs. task, terminology · 
820; wait( ) · 860 

ThreadFactory, custom · 812 
throw keyword · 315 
Throwable base class for Exception · 323 
throwing an exception · 315 
time conversion · 889 
Timer, repeating · 866 
TimeUnit · 809, 889 
toArray( ) · 629 
tool tips · 961 
TooManyListenersException · 1011 
toString( ) · 166; guidelines for using StringBuilder · 

359 
training seminars provided by MindView, Inc. · 1043 
transferFrom( ) · 681 

 



 

Index 1057 

transferTo( ) · 681 
transient keyword · 711 
translation unit · 146 
TreeMap · 598, 600, 629 
TreeSet · 294, 589, 592, 626 
true · 71 
try · 177, 334; try block in exceptions · 316 
tryLock( ), file locking · 697 
tuple · 442, 455, 461 
twos complement, signed · 79 
type: argument inference, generic · 450; base · 22; 

checking, static · 347, 437; data type equivalence to 
class · 18; derived · 22; duck typing · 515, 524; 
dynamic type safety and containers · 506; finding 
exact type of a base reference · 395; generics and 
type-safe containers · 275; latent typing · 515, 524; 
parameterized · 439; primitive · 43; primitive data 
types and use with operators · 84; structural typing 
· 515, 524; tag, in generics · 472; type checking and 
arrays · 535; type safety in Java · 82; type-safe 
downcast · 405 

TYPE field, for primitive class literals · 399 

U 

UML: indicating composition · 21; Unified Modeling 
Language · 18, 1048 

unary: minus (-) · 69; operator · 76; operators · 69; 
plus (+) · 69 

unbounded wildcard in generics · 489 
UncaughtExceptionHandler, Thread class · 824 
unchecked exception · 331; converting from 

checked·351 
unconditional branching · 99 
unicast · 1011 
Unicode · 663 
Unified Modeling Language (UML) · 18, 1048 
unit testing · 169; annotation-based with @Unit · 

778 
unmodifiable, making a Collection or Map 

unmodifiable · 635 
unmodifiableList( ), Collections · 584 
unsupported methods, in the Java containers · 583 
UnsupportedOperationException · 584 
upcasting · 27, 181, 193; and interface · 225; and 

runtime type information · 394; inner classes and 
upcasting · 248  

user interface: graphical user interface (GUI) · 264, 
937; responsive, with threading · 822 

userNodeForPackage( ), preferences API · 723 
Utilities, java.util.Collections · 631 

V 

value, preventing change at run time · 183 
values( ), for enum · 725, 729 
varargs · 137, 520; and generic methods · 452 
Varga, Ervin · 5, 855 
variable: defining a variable · 96; initialization of 

method variables · 125; local · 48; variable 
argument lists (unknown quantity and type of 
arguments) · 137 

Vector · 624, 641 
vector of change · 266 
Venners, Bill · 122 
versioning, serialization · 714 

Visitor design pattern, and annotations, mirror API · 
775 

Visual BASIC, Microsoft · 1002 
visual programming · 1002; environments · 938 
volatile · 826, 833, 836 

W 

wait( ) · 860 
waiting, busy · 860 
Waldrop, M. Mitchell · 1050 
WeakHashMap · 598, 640 
WeakReference · 638 
web of objects · 704 
Web Start, Java · 989 
West, BorderLayout · 947 
while · 94 
widening conversion · 83 
wildcards: and Class references · 402; in generics · 

483; supertype · 487; unbounded · 489 
windowClosing( ) · 982 
word tearing, in concurrent programming · 833 
write( ) · 657; nio · 681 
writeBytes( ) · 670 
writeChars( ) · 670 
writeDouble( ) · 670 
writeExternal( ) · 708 
writeObject( ) · 704; with Serializable · 712 
Writer · 657, 662, 663 

X 

XDoclet · 761 
XML · 720 
XOM XML library · 720 
XOR (Exclusive-OR) · 76 

Y 

You Aren’t Going to Need It (YAGNI) · 427 

Z 

zero extension · 77 
ZipEntry · 701 
ZipInputStream · 699 
ZipOutputStream · 699 


	index

