

Mobile Deep Learning with
TensorFlow Lite, ML Kit and
Flutter

Build scalable real-world projects to implement end-to-end
neural networks on Android and iOS

Anubhav Singh
Rimjhim Bhadani

BIRMINGHAM - MUMBAI

Mobile Deep Learning with TensorFlow Lite,
ML Kit and Flutter
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandhre
Acquisition Editor: Ali Abidi
Content Development Editor: Nathanya Dias
Senior Editor: Ayaan Hoda
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Deepika Naik

First published: April 2020

Production reference: 1030420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-121-2

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Anubhav Singh is the founder of The Code Foundation, an AI-focused start-up that works
on multimedia processing and natural language processing, with the goal of making AI
accessible to everyone. An International rank holder in the Cyber Olympiad, he's
continuously developing software for the community in domains that don't get a lot of
attention. Anubhav is a Venkat Panchapakesan Memorial Scholarship awardee and an Intel
Software Innovator. Anubhav loves talking about what he's learned and is an active
community speaker for Google Developer Groups all over the country and can often be
found guiding learners on their journey in machine learning.

Rimjhim Bhadani is a lover of open source. She has always believed in making
development resources accessible to everyone at minimal costs. She is a big fan of mobile
application development and has developed a number of projects, most of which aim to
solve major and minor daily life challenges. She has been an Android mentor at Google
Code-in and an Android developer for Google Summer of Code. Supporting her vision to
serve the community, she is one of six Indian students to be recognized as a Google Venkat
Panchapakesan Memorial Scholar and one of three Indian students to be awarded the
Grace Hopper Student Scholarship in 2019.

About the reviewer
Subhash Shah is an experienced solutions architect. With 14 years of experience in
software development, he now works as an independent technical consultant. He is an
advocate of open source development and its utilization in solving critical business
problems. His interests include microservices architecture, enterprise solutions, machine
learning, integrations, and databases. He is an admirer of quality code and test-driven
development (TDD). His technical skills include translating business requirements into
scalable architecture and designing sustainable solutions. He is a co-author of Hands-On
High Performance with Spring 5, Hands-On AI for Banking, and MySQL 8 Administrator’s Guide,
all from Packt Publishing. He has also been a technical reviewer for other books.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Deep Learning for Mobile 7
Growth of AI-powered mobile devices 7

Changes in hardware to support AI 8
Why do mobile devices need to have AI chips? 9
Improved user experience with AI on mobile devices 10

Personalization 10
Virtual assistants 10
Facial recognition 11
AI-powered cameras 13
Predictive text 14

Most popular mobile applications that use AI 15
Netflix 15
Seeing AI 15
Allo 16
English Language Speech Assistant 16
Socratic 16

Understanding machine learning and deep learning 17
Understanding machine learning 17
Understanding deep learning 18

The input layer 19
The hidden layers 19
The output layer 19
The activation function 20

Introducing some common deep learning architectures 20
Convolutional neural networks 20
Generative adversarial networks 22
Recurrent neural networks 23
Long short-term memory 24

Introducing reinforcement learning and NLP 25
Reinforcement learning 25
NLP 26

Methods of integrating AI on Android and iOS 26
Firebase ML Kit 27
Core ML 28
Caffe2 28
TensorFlow 29

Summary 30

Chapter 2: Mobile Vision - Face Detection Using On-Device Models 31
Technical requirements 31

Table of Contents

[ii]

Introduction to image processing 32
Understanding images 32
Manipulating images 34

Rotation 34
Grayscale conversion 35

Developing a face detection application using Flutter 35
Adding the pub dependencies 36
Building the application 37

Creating the first screen 38
Building the row title 39
Building the row with button widgets 40
Creating the whole user interface 42

Creating the second screen 43
Getting the image file 44
Analyzing the image to detect faces 44
Marking the detected faces 46
Displaying the final image on the screen 48

Creating the final MaterialApp 49
Summary 50

Chapter 3: Chatbot Using Actions on Google 51
Technical requirements 52
Understanding the tools available for creating chatbots 52

Wit.ai 53
Dialogflow 53

How does Dialogflow work? 53
Creating a Dialogflow account 55
Creating a Dialogflow agent 56
Understanding the Dialogflow Console 57

Creating an Intent and grabbing entities 58
Creating your first action on Google 60

Why would you want to build an action on Google? 61
Creating Actions on a Google project 62

Creating an integration to the Google Assistant 64
Implementing a Webhook 67
Deploying a webhook to Cloud Functions for Firebase 68
Creating an Action on Google release 69
Creating the UI for the conversational application 71

Creating the Text Controller 72
Creating ChatMessage 75

Integrating the Dialogflow agent 80
Adding audio interactions with the assistant 82

Adding the plugin 83
Adding SpeechRecognition 84
Adding the mic button 85

Summary 88

Table of Contents

[iii]

Chapter 4: Recognizing Plant Species 89
Technical requirements 90
Introducing image classification 90
Understanding the project architecture 91
Introducing the Cloud Vision API 93
Configuring the Cloud Vision API for image recognition 95

Enabling the Cloud Vision API 96
Creating a Cloud Vision API key 97

Using an SDK/tools to build a model 99
Introducing Google's Colaboratory 100

Creating a custom TensorFlow Lite model for image recognition 102
Creating a Flutter application 108

Choosing between two different models 109
Creating the second screen 112

Creating the user interface 112
Adding the functionality 113
Displaying the chosen image on the screen 114

Running image recognition 116
Using the Cloud Vision API 117
Using an on-device TensorFlow Lite model 119
Updating the UI with results 122

Summary 126

Chapter 5: Generating Live Captions from a Camera Feed 127
Designing the project architecture 128
Understanding an image caption generator 128

Understanding the dataset 131
Building an image caption generation model 132

Initializing the caption dataset 133
Preparing the caption dataset 135
Training 137
Testing 143

Creating a simple click-deploy image caption generation model 144
Understanding the camera plugin 151

Installing the camera plugin 151
Adding methods for persistent storage and proper execution 151
Coding 152

Creating a camera application 153
Building the camera preview 153

Generating image captions from the camera feed 157
Creating the material app 161
Summary 163

Chapter 6: Building an Artificial Intelligence Authentication System 164
Technical requirements 165

Table of Contents

[iv]

A simple login application 165
Creating the UI 166

Adding Firebase authentication 173
Creating auth.dart 176
Adding authentication in SignupSigninScreen 178
Creating the main screen 180
Creating the home screen 182
Creating main.dart 184

Understanding anomaly detection for authentication 185
A custom model for authenticating users 186

Building a model for an authentication validity check 186
Hosting the custom authentication validation model 190

Implementing ReCaptcha for spam protection 192
ReCAPTCHA v2 193

Obtaining the API key 194
Code integration 195

Deploying the model in Flutter 197
Summary 200

Chapter 7: Speech/Multimedia Processing - Generating Music Using AI 201
Designing the project's architecture 202
Understanding multimedia processing 203

Image processing 203
Audio processing 209

Magenta 210
Video processing 212

Developing RNN-based models for music generation 216
Creating the LSTM-based model 218
Deploying a model using Flask 220

Deploying an audio generation API on Android and iOS 224
Creating the UI 226
Adding Audio Player 229
Deploying the model 231
Creating the final material app 235

Summary 235

Chapter 8: Reinforced Neural Network-Based Chess Engine 236
Introduction to reinforcement learning 237
Reinforcement learning in mobile games 239
Exploring Google's DeepMind 240

AlphaGo 240
Alpha Zero 241
Monte Carlo tree search 242

Alpha Zero-like AI for Connect 4 244
Creating a virtual representation of the board 247

Table of Contents

[v]

Allowing moves according to the game's rules 249
The state management system 252
Facilitating gameplay 253
Generating sample gameplays 254
System training 255
Monte Carlo tree search implementation 256
Implementing the neural network 257

Underlying project architecture 259
Developing a GCP-hosted REST API for the chess engine 259

Understanding the Universal Chess Interface 262
Deployment on GCP 263

Request for a quota increase on GPU instances 263
Creating a GPU instance 265
Deploying the script 266

Creating a simple chess UI on Android 270
Adding dependencies to pubspec.yaml 272
Understanding the mapping structure 272
Placing the images of the actual pieces 274
Making the pieces movable 278

Integrating the chess engine API with a UI 280
Creating the material app 285

Summary 286

Chapter 9: Building an Image Super-Resolution Application 287
Basic project architecture 288
Understanding GANs 289
Understanding how image super-resolution works 292

Understanding image resolution 292
Pixel resolution 292
Spatial resolution 293
Temporal resolution 293
Spectral resolution 293
Radiometric resolution 294

Understanding SRGANs 294
Creating a TensorFlow model for super-resolution 295

Project directory structure 295
Creating an SRGAN model for super-resolution 296

Building the UI for the application 298
Getting pictures from the device's local storage 302
Hosting a TensorFlow model on DigitalOcean 305

Creating a Flask server script 305
Deploying the Flask script to DigitalOcean Droplet 307

Integrating a hosted custom model on Flutter 312
Creating the Material app 315
Summary 316

Table of Contents

[vi]

Chapter 10: Road Ahead 317
Understanding recent trends in DL on mobile applications 317

Math solver 318
Netflix 319
Google Maps 319
Tinder 320
Snapchat 320

Exploring the latest developments in DL on mobile devices 320
Google's MobileNet 321
Alibaba Mobile Neural Network 321

Exploring current research areas for DL in mobile apps 322
Fashion images 323
Self-Attention Generative Adversarial Networks 323
Image animation 324

Summary 325

Appendix 326

Other Books You May Enjoy 350

Index 353

Preface
Deep learning is rapidly becoming the most popular topic in the industry. This book
introduces trending deep learning concepts and their use cases with an industrial- and
application-focused approach. You will cover a range of projects covering tasks such as
mobile vision, facial recognition, smart AI assistants, and augmented reality.

With the help of eight projects, you will learn to integrate deep learning processes into the
iOS and Android mobile platforms. This will help you to transform deep learning features
into robust mobile apps efficiently. This book gets you hands-on with selecting the right
deep learning architectures and optimizing mobile deep learning models while following
an application-oriented approach to deep learning on native mobile apps. We will later
cover various pretrained and custom-built deep learning model-based APIs, such as the ML
Kit through Google Firebase. Further on, the book will take you through examples of
creating custom deep learning models with the help of TensorFlow Lite using Python. Each
project will demonstrate how to integrate deep learning libraries into your mobile apps,
right from preparing the model through to deployment.

By the end of this book, you'll have the skills to build and deploy advanced deep learning
mobile applications on both iOS and Android.

Who this book is for
This book caters to app developers who wish to leverage the power of deep learning to
make better user experiences or who want to bring powerful intelligent features into their
applications. At the same time, it also works well for deep learning practitioners who wish
to deploy their deep learning models to cross-platform mobile applications.

A basic understanding of how mobile applications work and a good understanding of
Python is required for making the best use of this book. Having a high school-level
understanding of mathematics is advisable.

Preface

[2]

What this book covers
Chapter 1, Introduction to Deep Learning for Mobile, talks about the emerging importance of
deep learning on mobile devices. It covers the basic concepts of machine learning and deep
learning, also introducing you to the various options available for integrating deep learning
with Android and iOS. The chapter also introduces implementations of deep learning
projects using native and cloud-based learning methodologies.

Chapter 2, Mobile Vision – Face Detection Using On-Device Models, introduces you to mobile
vision and mobile vision models available in ML Kit. You will learn how to create a face
detection model in Keras and understand how to convert that to be used for mobile
devices. The model uses the Google Cloud Vision API for face detection.

Chapter 3, Chatbot Using Actions on Google, helps you to create your own customized
chatbot by extending the functionality of Google Assistant. The project provides a good
understanding of how to build a product that uses engaging voice and text-based
conversational interfaces using Actions on Google and Dialogflow's API.

Chapter 4, Recognizing Plant Species, provides an in-depth discussion on how to build a
custom Tensorflow Lite model that is able to perform visual recognition tasks using image
processing. The model developed runs on mobile devices and is primarily used to
recognize different plant species. The model uses a deep Convolutional Neural Network
(CNN) for visual recognition.

Chapter 5, Generating Live Captions from a Camera Feed, presents a method of using a camera
feed to generate natural language captions in real time. In this project, you'll create your
own camera application that uses a customized pretrained model generated by the image
caption generator. The model uses a CNN and Long Short-Term Memory (LSTM) for
caption generation.

Chapter 6, Building an Artificial Intelligence Authentication System, presents you with ways to
authenticate users and create a mechanism to identify rare and suspicious user interactions.
Upon identification of rare events, that is, those that differ from the majority of data, the
user is not allowed to log in, receiving a message saying that a malicious user was detected.
This could be of great use when the application in question contains highly secured data,
such as confidential emails or virtual banking vaults. The project uses an LSTM-based
model on network request headers to perform classification of anomalous logins.

Preface

[3]

Chapter 7, Speech/Multimedia Processing – Generating Music Using AI, explores ways to
generate music using AI. You will be introduced to multimedia processing. The chapter
demonstrates the methods used to generate music after training on samples. The project
uses recurrent neural networks and an LSTM-based model to generate MIDI music files.

Chapter 8, Reinforced Neural Network-Based Chess Engine, discusses Google’s DeepMind and
how reinforced neural networks can be used for machine-assisted gameplay on the
Android platform. You will first create a Connect4 engine to get an intuition for building a
self-learning, game-playing AI. Then, you will develop a chess engine based on deep
reinforcement learning and host it on Google Cloud Platform (GCP) as an API. Then,
you'll use the API for the chess engine to perform gameplay on mobile devices.

Chapter 9, Building an Image Super-Resolution Application, presents a method of generating
super-resolution images with the help of deep learning. You will learn a third method of
handling images on Android/iOS, and how to create TensorFlow models that can be hosted
on DigitalOcean and then included in Android/iOS apps. With this model being highly
resource-intensive, you will be instructed on how to host the model on the cloud. The
project uses generative adversarial networks.

Chapter 10, Road Ahead, briefly covers the most popular applications for deep
learning in mobile apps today, the current trends, and what is expected to
transpire in this field in the future.

To get the most out of this book
You'll need a working Python 3.5+ installation on your local system. It is a good idea to
install Python as part of the Anaconda distribution. To build the mobile apps, you'll need a
working installation of Flutter 2.0+. Furthermore, you'll often require both TensorFlow 1.x
and 2.x throughout the book; hence, having two Anaconda environments is essential:

Software/hardware covered in the
book OS requirements

Jupyter Notebook
Any OS with an updated web browser (preferably Google
Chrome/Mozilla Firefox/Apple Safari).Minimum RAM
requirement: 4 GB; however, 8 GB is recommended.

Microsoft Visual Studio Code Any OS with more than 4 GB of RAM; however, 8 GB is
recommended.

Smartphone with developer access Android/iOS with at least 2 GB of RAM; however, 3 GB is
recommended.

https://cdp.packtpub.com/mobile_deep_learning_projects/wp-admin/post.php?post=888&action=edit#post_33
https://cdp.packtpub.com/mobile_deep_learning_projects/wp-admin/post.php?post=888&action=edit#post_33
https://cdp.packtpub.com/mobile_deep_learning_projects/wp-admin/post.php?post=888&action=edit#post_33
https://cdp.packtpub.com/mobile_deep_learning_projects/wp-admin/post.php?post=888&action=edit#post_33
https://cdp.packtpub.com/mobile_deep_learning_projects/wp-admin/post.php?post=888&action=edit#post_33

Preface

[4]

All the software tools you'll need in this book are freely available. However, you'll have to
add your credit/debit card details to your account to activate GCP or DigitalOcean
platforms.

If you are using the digital version of this book, we advise you to type the code yourself or
access the code via the GitHub repository (link available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of the code.

Deep learning on Flutter mobile applications is at a very early stage of development. Upon
reading this book, if you write blogs and make videos on how to perform machine learning
or deep learning on mobile apps, you'll be contributing strongly to the growing ecosystem
of both app developers and machine learning practitioners.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mobile- Deep- Learning- Projects. In case there's an update to the code,
it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it from https:/ /static. packt- cdn. com/ downloads/
9781789611212_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Notice that the dialogflow variable here is an object of the actions-on-
google module."

A block of code is set as follows:

dependencies:
 flutter:
 sdk: flutter
 firebase_ml_vision: ^0.9.2+1
 image_picker: ^0.6.1+4

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To proceed to the console, click on the Start Building or Go to Actions Console buttons."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789611212_ColorImages.pdf

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Deep Learning

for Mobile
In this chapter, we will explore the emerging avenues of deep learning on mobile devices.
We will briefly discuss the basic concepts of machine learning and deep learning, and we'll
introduce the various options available for integrating deep learning with Android and
iOS. This chapter also introduces implementations of deep learning projects using native
and cloud-based learning methodologies.

In this chapter, we will cover the following topics:

Growth of artificial intelligence (AI)-powered mobile devices
Understanding machine learning and deep learning
Introducing to some common deep learning architectures
Introducing to reinforcement learning and natural language processing (NLP)
Methods of integrating AI on Android and iOS

Growth of AI-powered mobile devices
AI is becoming more mobile than it used to be, as smaller devices are being packed with
more computational power. Mobile devices, which were simply used to make phone calls
and send text messages, have now been transformed into smartphones with the
introduction of AI. These devices are now capable of leveraging the ever-increasing power
of AI to learn user behavior and preferences, enhance photographs, carry out full-fledged
conversations, and much more. The capabilities of an AI-powered smartphone is expected
to only grow day by day. According to Gartner, by 2022, 80% of smartphones will be AI-
enabled.

Introduction to Deep Learning for Mobile Chapter 1

[8]

Changes in hardware to support AI
To cope with the high computational powers of AI, there have been regular changes and
enhancements in hardware support of cellphones to provide them with the ability to think
and act. Mobile manufacturing companies have been constantly upgrading hardware
support on mobile devices to provide a seamless and personalized user experience.

Huawei has launched the Kirin 970 SoC, which enables on-device AI experiences using a
specially dedicated neural network processing unit. Apple devices are fitted with an AI
chip called neural engine, which is a part of the A11 Bionic chip. It is dedicated to machine
learning and deep learning tasks such as facial and voice recognition, recording animojis,
and object detection while capturing a picture. Qualcomm and MediaTek have released
their own chips that enable on-device AI solutions. Exynos 9810, announced by Samsung, is
a chip that is based on neural networks such as Snapdragon 845 of Qualcomm. The 2018
Samsung devices, Galaxy S9 and S9+, included these chips based on the country where they
are marketed. With it's Galaxy S9, the company made it pretty evident that it would
integrate AI to improve the functioning of the device's camera and translation of text in real
time. The latest Samsung Galaxy S10 series is powered by the Qualcomm Snapdragon 855
to support on-device AI computations.

Google Translate Word Lens and the Bixby personal assistant have been used to develop
the feature. With the technologies in place, it is possible for the device to translate up to 54
languages. The phones, which are smart enough to decide between a sensor of f/2.4 and
f/1.5, are well suited for capturing photographs in low-light conditions. Google Pixel 2
leverages the power of machine learning to integrate eight image processing units using its
coprocessor, Pixel Visual Core.

Introduction to Deep Learning for Mobile Chapter 1

[9]

Why do mobile devices need to have AI chips?
The incorporation of AI chips has not only helped to achieve greater efficiency and
computational power, but it has also preserved the user's data and privacy. The advantages
of including AI chips on mobile devices can be listed as follows:

Performance: The CPUs of mobile devices in the current date are unsuitable to
the demands of machine learning. Attempts to deploy machine learning models
on these devices often results in slow service and a faster battery drain, leading
to bad user experience. This is because the CPUs lack the efficiency to do
enormous amounts of small calculations as required by the AI computations. AI
chips, somewhat similar to Graphical Processing Units (GPU) chips that are
responsible for handling graphics on devices, provide a separate space to
perform calculations exclusively related to machine learning and deep learning
processes. This allows the CPU to focus its time on other important tasks. With
the incorporation of specialized AI hardware, the performance and battery life of
devices have improved.
User privacy: The hardware also ensures the increased safety of the user's
privacy and security. In traditional mobile devices, data analysis and machine
learning processes would require chunks of the user's data to be sent to the
cloud, posing a threat to the user's data privacy and security of mobile devices.
With the on-device AI chips in action, all of the required analyses and
calculations can be performed offline on the device itself. This incorporation of
dedicated hardware in mobile devices has tremendously reduced the risks of a
user's data getting hacked or leaked.
Efficiency: In the real world, tasks such as image recognition and processing
could be a lot faster with the incorporation of AI chips. The neural network
processing unit by Huawei is a well-suited example here. It can recognize images
with an efficiency of 2,000 pictures per second. The company claims that this is 20
times faster than the time taken by a standard CPU. When working with 16-bit
floating-point numbers, it can perform 1.92 teraflops, or 1 trillion floating
operations every second. The neural engine by Apple can handle around 600
billion operations per second.
Economy: On-device AI chips reduce the need to send data off into the cloud.
This capability empowers users to access the services offline and save data.
Therefore, people using the applications are saved from paying for the servers.
This is advantageous to users as well as developers.

Let's look at a brief overview of how AI on mobile devices has impacted the way we
interact with our smartphones.

Introduction to Deep Learning for Mobile Chapter 1

[10]

Improved user experience with AI on mobile devices
The use of AI has greatly enhanced user experience on mobile devices. This can be broadly
categorized into the following categories.

Personalization
Personalization primarily means modifying a service or a product to suit a specific
individual's preferences, sometimes related to clusters of individuals. On mobile devices,
the use of AI helps to improve user experience by making the device and apps adapt to a
user's habits and their unique profile instead of generic profile-oriented applications. The
AI algorithms on mobile devices leverage the available user-specific data, such as location,
purchase history, and behavior patterns, to predict and personalize present and future
interactions such as a user's preferred activity or music during a particular time of the day.

For instance, AI collects data on the user's purchase history and compiles it with the other
data that is obtained from online traffic, mobile devices, sensors embedded in electronic
devices, and vehicles. This compiled data is then used to analyze the user's behavior and
allow brands to take necessary actions to enhance the user engagement rate. Therefore,
users can leverage the benefits of AI-empowered applications to get personalized results,
which will reduce their scrolling time and let them explore more products and services.

The best examples out there are recommendation systems running through shopping
platforms such as Walmart, Amazon, or media platforms such as YouTube or Netflix.

In the year 2011, Amazon reported a 29% sales increase to $12.83 billion,
which was up from $9.9 billion. With its most successful recommendation
rate, 35% of Amazon's sales come from customers who followed the
recommendations generated by its product recommendation engine.

Virtual assistants
A virtual assistant is an application that understands voice commands and completes tasks
for the user. They are able to interpret human speech using Natural Language
Understanding (NLU) and generally respond via synthesized voices. You might use a
virtual assistant for nearly all of the tasks that a real personal assistant would do for you,
that is, making calls to people on your behalf, taking notes that you dictate, turning on or
turning off the lights in your home/office with the help of home automation, play music for
you, or even simply talk to you about any topic you'd like to talk about! A virtual assistant
might be able to take commands in the form of text, audio, or visual gestures. Virtual
assistants adapt to user habits over time and get smarter.

Introduction to Deep Learning for Mobile Chapter 1

[11]

Leveraging the power of NLP, a virtual assistant can recognize commands from spoken
language, and identify people and pets from images that you upload to your assistant or
keep in any online album that is accessible to them.

The most popular virtual assistants on the market right now are Alexa by Amazon, Google
Assistant, iPhone's Siri, Cortana by Microsoft, and Bixby running on Samsung devices.
Some of the virtual assistants are passive listeners and respond only when they receive a
specific wake up command. For example, Google Assistant can be activated using "Hey
Google" or "OK Google", and can then be commanded to switch off the lights using "Switch
off the bedroom lights" or can be used to call a person from your contacts list using "Make a
call to <contact name>". In Google IO '18, Google unveiled the Duplex phone-calling
reservation AI, demonstrating that Google Assistant would not only be capable of making a
call, but it could also carry on a conversation and potentially book a reservation in a hair
salon all by itself.

The use of virtual assistants is growing exponentially and is expected to reach 1.8 billion
users by 2021. 54% of users agreed that virtual assistants help make daily tasks simpler, and
31% already use assistants in their daily lives. Additionally, 64% of users take advantage of
virtual assistants for more than one purpose.

Facial recognition
The technology that is powerful enough to identify or verify a face or understand a facial
expression from digital images and videos is known as facial recognition. This system
generally works by comparing the most common and prominent facial features from a
given image with the faces stored in a database. Facial recognition also has the ability to
understand patterns and variations based on an individual's facial textures and shape to
uniquely recognize a person and is often described as a biometric AI-based application.

Introduction to Deep Learning for Mobile Chapter 1

[12]

Initially, facial recognition was a form of computer application; however, recently, it is
being widely used on mobile platforms. Facial recognition, accompanied by biometrics
such as fingerprint and iris recognition, finds a common application in security systems on
mobile devices. Generally, the process of facial recognition is performed in two
steps—feature extraction and selection is the first, and the classification of objects is the
second. Later developments have introduced several other methods, such as the use of the
facial recognition algorithm, three-dimensional recognition, skin texture analysis, and
thermal cameras.

Face ID, introduced in Apple's iPhone X, is a biometric authentication successor to the
fingerprint-based authentication system found in several Android-based smartphones. The
facial recognition sensor of Face ID consists of two parts: a Romeo module and a
Juliet module. The Romeo module is responsible for projecting over 30,000 infrared dots
on to the face of the user. The counterpart of this module, the Juliet module, reads the
pattern formed by the dots on the user's face. The pattern is then sent to an on-device
Secure Enclave module in the CPU of the device to confirm whether the face matches
with the owner or not. These facial patterns cannot be directly accessed by Apple. The
system does not allow the authorization to work when the eyes of the user are closed,
which is an added layer of security.

The technology learns from changes in a user's appearance and works with makeup,
beards, spectacles, sunglasses, and hats. It also works in the dark. The Flood Illuminator is
a dedicated infrared flash that projects invisible infrared light on to the user's face to
properly read the facial points and helps the system to function in low-light conditions or
even complete darkness. Contrary to iPhones, Samsung devices primarily rely on two-
dimensional facial recognition accompanied by an iris scanner that works as a biometric
recognition in Galaxy Note 8. The leading premium smartphone seller in India, OnePlus,
also depends on only two-dimensional facial recognition.

The global market for software taking benefit of facial recognition is
expected to grow from $3.85 billion USD in 2017 to $9.78 billion USD by
2023. The Asia Pacific region, which holds around 16% of its market share,
is the fastest-growing region.

Introduction to Deep Learning for Mobile Chapter 1

[13]

AI-powered cameras
The integration of AI in cameras has empowered them to recognize, understand, and
enhance scenes and photographs. AI cameras are able to understand and control the
various parameters of cameras. These cameras work on the principles of a digital image
processing technique called computational photography. It uses algorithms instead of
optical processes seeking to use machine vision to identify and improve the contents of a
picture. These cameras use deep learning models that are trained on a huge dataset of
images, comprising several million samples, to automatically identify scenes, the
availability of light, and the angle of the scene being captured.

When the camera is pointed in the right direction, the AI algorithms of the camera take over
to change the settings of the camera to produce the best quality image. Under the hood, the
system that enables AI-powered photography is not simple. The models used are highly
optimized to produce the correct camera settings upon detection of the features of the scene
to be captured in almost real time. They may also add dynamic exposure, color
adjustments, and the best possible effect for the image. Sometimes, the images might be
postprocessed automatically by the AI models instead of being processed during the
clicking of the photograph in order to reduce the computational overhead of the device.

Nowadays, mobile devices are generally equipped with dual-lens cameras. These cameras
use two lenses to add the bokeh effect (which is Japanese for "blur") on pictures. The bokeh
effect adds a blurry sense to the background around the main subject, making it
aesthetically pleasing. AI-based algorithms assist in simulating the effect that identifies the
subject and blurs the remaining portion producing portrait effects.

The Google Pixel 3 camera works in two shooting modes called Top Shot and Photobooth.
The camera initially captures several frames before and after the moment that the user is
attempting to capture. The AI models that are available in the device are then able to pick
the best frame. This is made possible by the vast amount of training that is provided to the
image recognition system of the camera, which is then able to select the best-looking
pictures, almost as if a human were picking them. Photobooth mode allows the user to
simply hold the device toward a scene of action, and the images are automatically taken at
the moment that the camera predicts to be a picture-perfect moment.

Introduction to Deep Learning for Mobile Chapter 1

[14]

Predictive text
Predictive text is an input technology, generally used in messaging applications, that
suggests words to the user depending on the words and phrases that are being entered. The
prediction following each keypress is unique rather than producing a repeated sequence of
letters in the same constant order. Predictive text can allow an entire word to be inputted
by a single keypress, which can significantly speed up the input process. This makes input
writing tasks such as typing a text message, writing an email, or making an entry into an
address book highly efficient with the use of fewer device keys. The predictive text system
links the user's preferred interface style and their level of learned ability to operate the
predictive text software. The system eventually gets smarter by analyzing and adapting to
the user's language. The T9 dictionary is a good example of such text predictors. It analyzes
the frequency of words used and results in multiple most probable words. It is also capable
of considering combinations of words.

Quick Type is a predictive text feature that was announced by Apple in its
iOS 8 release. It uses machine learning and NLP, which allows the
software to build custom dictionaries based on the user's typing habits.
These dictionaries are later used for predictions. These prediction systems
also depend on the context of the conversation, and they are capable of
distinguishing between formal and informal languages. Additionally, it
supports multiple languages around the world, including U.S. English,
U.K. English, Canadian English, Australian English, French, German,
Italian, Brazilian Portuguese, Spanish, and Thai.

Google also introduced a new feature that would help users compose and send emails
faster than before. The feature, called Smart Compose, understands the text typed in so that
AI can suggest words and phrases to finish sentences. The Smart Compose feature helps
users to save time while writing emails by correcting spelling mistakes and grammatical
errors, along with suggesting the words that are most commonly typed by users. Smart
Reply is another feature, similar to reply suggestions in LinkedIn messaging, which
suggests replies that can be sent on a single click, according to the context of the email
received by the user. For example, if the user receives an email congratulating them of an
accepted application, it is likely that the Smart Reply feature would give options to reply
with—"Thank you!," "Thanks for letting me know," and "Thank you for accepting my
application." Users can then click on the preferred reply and send a quick response.

In the 1940s, Lin Yutang created a typewriter in which actuating keys
suggested the characters following the selected ones.

Introduction to Deep Learning for Mobile Chapter 1

[15]

Most popular mobile applications that use AI
In recent times, we have seen a great surge in the number of applications incorporating AI
into their features for increased user engagement and customized service delivery. In this
section, we will briefly discuss how some of the largest players in the domain of mobile
apps have leveraged the benefits of AI to boost their business.

Netflix
The best and the most popular example of machine learning in mobile apps is Netflix. The
application uses linear regression, logistic regression, and other machine learning
algorithms to provide the user with a perfect personalized recommendation experience.
The content that is classified by actors, genre, length, reviews, years, and more is used to
train the machine learning algorithms. All of these machine learning algorithms learn and
adapt to the user's actions, choices, and preferences. For example, John watched the first
episode of a new television series but didn't really like it, so he won't watch the subsequent
episodes. The recommendation systems involved in Netflix understand that he does not
prefer TV shows of that kind and removes them from his recommendations. Similarly, if
John picked the eighth recommendation from the recommendations lists or wrote a bad
review after watching a movie trailer, the algorithms involved try to adapt to his behavior
and preferences to provide extremely personalized content.

Seeing AI
Seeing AI, developed by Microsoft, is an intelligent camera app that uses computer vision
to audibly help blind and visually impaired people to know about their surroundings. It
comes with functionalities such as reading out short text and documents for the user,
giving a description about a person, identifying currencies, colors, handwriting, light, and
even images in other apps using the device's camera. To make the app this advanced and
responsive in real time, developers have used the idea of making servers communicate with
Microsoft Cognitive Services. OCR, barcode scanner, facial recognition, and scene
recognition are the most powerful technologies brought together by the application to
provide users with a collection of wonderful functionalities.

Introduction to Deep Learning for Mobile Chapter 1

[16]

Allo
Allo was an AI-centric messaging app developed by Google. As of March 2019, Allo has
been discontinued. However, it was an important milestone in the journey of AI-powered
apps at Google. The application allowed users to perform an action on their Android
phones via their voice. It used Smart Reply, a feature that suggested words and phrases by
analyzing the context of the conversation. The application was not just limited to text. In
fact, it was equally capable of analyzing images shared during a conversation and
suggesting replies. This was made possible by powerful image recognition algorithms.
Later, this Smart Reply feature was also implemented in the Google inbox and is now
present in the Gmail app.

English Language Speech Assistant
English Language Speech Assistant (ELSA), which is rated among the top five AI-based
applications, is the world's smartest AI pronunciation tutor. The mobile application helps
people improve their pronunciation. It is designed as an adventure game, differentiated by
levels. Each level presents a set of words for the user to pronounce, which is taken as input.
The user's response is examined carefully to point out their mistakes and help them
improve. When the application detects a wrong pronunciation, it teaches the user the
correct one by instructing them about the correct movements of the lips and the tongue so
that the word is said correctly.

Socratic
Socratic, a tutor application, allows a user to take pictures of mathematical problems and
gives answers explaining the theory behind it, with details of how it should be solved. The
application is not just limited to mathematics. Currently, it can help a user in 23 different
subjects, including English, physics, chemistry, history, psychology, and calculus. Using the
power of AI to analyze the required information, the application returns videos with step-
by-step solutions. The application's algorithm, combined with computer vision technology,
has the capability to read questions from images. Furthermore, it uses machine learning
classifiers trained on millions of sample questions, which helps with the accurate prediction
of concepts involved in solving a question.

Introduction to Deep Learning for Mobile Chapter 1

[17]

Now, let's take a deeper look at machine learning and deep learning.

Understanding machine learning and deep
learning
It is important to understand a few key concepts of machine learning and deep learning
before you are able to work on solutions that are inclusive of the technologies and
algorithms associated with the domain of AI. When we talk about the current state of AI,
we often mean systems where we are able to churn a huge amount of data to find patterns
and make predictions based on those patterns.

While the term "artificial intelligence" might bring up images of talking humanoid robots or
cars that drive by themselves to a layman, to a person studying the field, the images might
instead be in the form of graphs and networks of interconnected computing modules.

In the next section, we will begin with an introduction to machine learning.

Understanding machine learning
In the year 1959, Arthur Samuel coined the term machine learning. In a gentle rephrasing
of his definition of machine learning, the field of computer science that enables machines to
learn from past experiences and produce predictions based on them when provided
with unknown input is called machine learning.

A more precise definition of machine learning can be stated as follows:

A computer program that improves its performance, P, on any task, T, by
learning from its experience, E, regarding task T, is called a machine learning
program.
Using the preceding definition, in an analogy that is common at the moment, T is
a task related to prediction, while P is the measure of accuracy achieved by a
computer program while performing the task, T, based upon what the program
was able to learn, and the learning is called E. With the increase of E, the
computer program makes better predictions, which means that P is improved
because the program performs task T with higher accuracy.

Introduction to Deep Learning for Mobile Chapter 1

[18]

In the real world, you might come across a teacher teaching a pupil to perform a
certain task and then evaluating the skill of the pupil at performing the task by
making the pupil take an examination. The more training that the pupil receives,
the better they will be able to perform the task, and the better their score will be
in the examination.

In the next section, let's try to understand deep learning.

Understanding deep learning
We have been hearing the term learning for a long time, and in several contexts where it
usually means gaining experience at performing a task. However, what would deep mean
when prefixed to "learning"?

In computer science, deep learning refers to a machine learning model that has more than
one layer of learning involved. What this means is that the computer program is composed
of multiple algorithms through which the data passes one by one to finally produce the
desired output.

Deep learning systems are created using the concept of neural networks. Neural networks
are compositions of layers of neurons connected together such that data passes from one
layer of neurons to another until it reaches the final or the output layer. Each layer of
neurons gets data input in a form that may or may not be the same as the form in which the
data was initially provided as input to the neural network.

Consider the following diagram of a neural network:

A few terms are introduced in the preceding screenshot. Let's discuss each one of them
briefly.

Introduction to Deep Learning for Mobile Chapter 1

[19]

The input layer
The layer that holds the input values is called the input layer. Some argue that this layer is
not actually a layer but only a variable that holds the data, and hence is the data itself,
instead of being a layer. However, the dimensions of the matrix holding the layer are
important and must be defined correctly for the neural network to communicate to the first
hidden layer; therefore, it is conceptually a layer that holds data.

The hidden layers
Any layer that is an intermediary between the input layer and the output layer is called a
hidden layer. A typical neural network used in production environments may contain
hundreds of input layers. Often, hidden layers contain a greater number of neurons than
either the input or the output layer. However, in some special circumstances, this might not
hold true. Having a greater number of neurons in the hidden layers is usually done to
process the data in a dimension other than the input. This allows the program to reach
insights or patterns that may not be visible in the data in the format it is present in when
the user feeds it into the network.

The complexity of a neural network is directly dependent on the number of layers of
neurons in the network. While a neural network may discover deeper patterns in the data
by adding more layers, it also adds to the computational expensiveness of the network. It is
also possible that the network passes into an erroneous state called overfitting. On the
contrary, if the network is too simple, or, in other words, is not adequately deep, it will
reach another erroneous state called underfitting.

You can learn more about overfitting and underfitting at https:/ /
towardsdatascience. com/ overfitting- vs- underfitting- a-conceptual-
explanation- d94ee20ca7f9.

The output layer
The final layer in which the desired output is produced and stored is called the output
layer. This layer often corresponds to the number of desired output categories or has a
single neuron holding the desired regression output.

https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9
https://towardsdatascience.com/overfitting-vs-underfitting-a-conceptual-explanation-d94ee20ca7f9

Introduction to Deep Learning for Mobile Chapter 1

[20]

The activation function
Each layer in the neural network undergoes the application of a function called the
activation function. This function plays the role of keeping the data contained inside
neurons within a normalized range, which would otherwise grow too large or too small
and lead to errors in the computation relating to the handling of large decimal coefficients
or large numbers in computers. Additionally, it is the activation function that enables the
neural network to handle the non-linearity of patterns in data.

Introducing some common deep learning
architectures
After a brief revision of the key terms, we are now ready to dive deeper into the world of
deep learning. In this section, we will be learning about some famous deep learning
algorithms and how they work.

Convolutional neural networks
Inspired from the animal visual cortex, a convolutional neural network (CNN) is primarily
used for, and is the de facto standard for, image processing. The core concept of the
convolutional layer is the presence of kernels (or filters) that learn to differentiate between
the features of an image. A kernel is usually a much shorter matrix than the image matrix
and is passed over the entire image in a sliding-window fashion, producing a dot product
of the kernel with the corresponding slice of matrix from the image to be processed. The dot
product allows the program to identify the features in the image.

Consider the following image vector:

[[10, 10, 10, 0, 0, 0],
 [10, 10, 10, 0, 0, 0],
 [10, 10, 10, 0, 0, 0],
 [0, 0, 0, 10, 10, 10],
 [0, 0, 0, 10, 10, 10],
 [0, 0, 0, 10, 10, 10]]

Introduction to Deep Learning for Mobile Chapter 1

[21]

The preceding matrix corresponds to an image that looks like this:

On applying a filter to detect horizontal edges, the filter is defined by the following matrix:

[[1, 1, 1],
 [0, 0, 0],
 [-1, -1, -1]]

The output matrix produced after the convolution of the original image with the filter is as
follows:

[[0, 0, 0, 0],
 [30, 10, -10, -30],
 [30, 10, -10, -30],
 [0, 0, 0, 0]]

There are no edges detected in the upper half or lower half of the image. On moving
toward the vertical middle of the image from the left edge, a clear horizontal edge is found.
On moving further right, two unclear instances of a horizontal edge are found before
another clear instance of a horizontal edge. However, the clear horizontal edge found now
is in the opposite color as the previous one.

Thus, by simple convolutions, it is possible to uncover patterns in the image files. CNNs
also use several other concepts, such as pooling.

Introduction to Deep Learning for Mobile Chapter 1

[22]

It is possible to understand pooling from the following screenshot:

In the simplest terms, pooling is the method of consolidating several image pixels into a
single pixel. The pooling method used in the preceding screenshot is known as max
pooling, wherein only the largest value from the selected sliding-window kernel is kept in
the resultant matrix. This greatly simplifies the image and helps to train filters that are
generic and not exclusive to a single image.

Generative adversarial networks
Generative adversarial networks (GANs) are a fairly new concept in the field of AI and
have come as a major breakthrough in recent times. They were introduced by Ian
Goodfellow in his research paper, in 2014. The core idea behind a GAN is the parallel run of
two neural networks that compete against each other. The first neural network performs
the task of generating samples and is called the generator. The other neural network tries to
classify the sample based on the data previously provided and is called the discriminator.
The functioning of GANs can be understood with the following screenshot:

Introduction to Deep Learning for Mobile Chapter 1

[23]

Here, the random image vector undergoes a generative process to produce fake images that
are then classified by the discriminator that has been trained with the real images. The fake
images with higher classification confidence are further used for generation, while the ones
with lower confidence are discarded. Over time, the discriminator learns to correctly
recognize fake images, while the generator learns to produce images that resemble the real
images increasingly after each generation.

What we have at the end of the learning is a system that can produce near-real data, and
also a system that can classify samples with very high precision.

We will learn more about GANs in the upcoming chapters.

For an in-depth study of GANs, you can read the research paper by Ian
Goodfellow at https:/ /arxiv. org/ abs/ 1406. 2661.

Recurrent neural networks
Not all data in the world exists independently of time. Stock market prices and
spoken/written words are just a few examples of data that is bound to a time series.
Therefore, the sequence of data has a temporal dimension, and you might assume
that being able to use it in the manner befitting to data, which comes with the passage of
time instead of a chunk of data that remains constant, would be more intuitive and would
produce better prediction accuracy. In many cases, this has been found to be true and has
led to the emergence of neural network architectures that can take time as a factor while
learning and predicting.

One such architecture is the recurrent neural network (RNN). The major characteristic of
such a network is that it not only passes data from one layer to another in a sequential
manner, but it also takes data from any previous layer. Recall from the Understanding
machine learning and deep learning section the diagram of a simple artificial neural network
(ANN) with two hidden layers. The data was being fed into the next layer by the previous
layer only. In an RNN with, say, two hidden layers, it is not mandatory for the input to the
second hidden layer be provided only by the first hidden layer, as would be the case in a
simple ANN.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

Introduction to Deep Learning for Mobile Chapter 1

[24]

This is depicted by the dashed arrows in the following screenshot:

RNNs, in contrast to simple ANNs, use a method called backpropagation through time
(BPTT) instead of the classic backpropagation in ANNs. BPTT ensures that time is well
represented in the backward propagation of the error by defining it in functions relating to
the input that has to recur in the network.

Long short-term memory
It is very common to observe vanishing and exploding gradients in RNNs. These are a
severe bottleneck in the implementation of deep RNNs where the data is present in a form
where relationships between features are more complex than linear functions. To overcome
the vanishing gradient problem, the concept of long short-term memory (LSTM) was
introduced by German researchers Sepp Hochreiter and Juergen Schmidhuber, in 1997.

LSTM has proved highly useful in the fields of NLP, image caption generation, speech
recognition, and other domains, where it broke previously established records after it was
introduced. LSTMs store information outside the network that can be recalled at any
moment, much like a secondary storage device in a computer system. This allows for
delayed rewards to be introduced to the network. A spiritual analogy of LSTMs has been
made, which calls it the "karma" or reward that a person receives for their actions carried
out in the past.

We shall be diving deeper into LSTMs and CNNs in the upcoming chapters of this book.

Introduction to Deep Learning for Mobile Chapter 1

[25]

Introducing reinforcement learning and NLP
In this section, we shall be studying the basic concepts of reinforcement learning and NLP.
These are some very important topics in the field of AI. They may or may not use deep
learning networks for their implementations, but they are quite often implemented using
deep networks. Therefore, it is crucial to understand how they function.

Reinforcement learning
Reinforcement learning is a branch of machine learning that deals with creating AI "agents"
that perform a set of possible actions in a given environment in order to maximize a
reward. While the other two branches of machine learning—supervised and unsupervised
machine learning—usually perform learning on a dataset in the format of a table,
reinforcement learning agents mostly learn using a decision tree to be made in any given
situation such that the decision tree eventually leads to the leaf that has the maximum
reward.

For example, consider a humanoid robot that wishes to learn to walk. It could first start by
shoving both of its legs in front of itself, in which case it would fall, and the reward,
which, in this case, is the distance covered by the humanoid robot, would be 0. It will then
learn to add a certain amount of delay between the previous leg being put forward and the
next leg being put forward. Due to this certain amount of delay, it could be that the robot is
able to take x1 steps before, once again, both feet simultaneously push outward and it falls
down.

Reinforcement learning deploys the concept of exploration, which means the search for a
better solution, and exploitation, which means the usage of previously gained knowledge.
Continuing our example, since x1 is greater than 0, the algorithm learns to put
approximately the same certain amount of delay between the strides. Over time, with the
combined effect of exploitation and exploration, reinforcement learning algorithms become
very strong, and the humanoid, in this case, is able to learn not only how to walk but also
run.

Introduction to Deep Learning for Mobile Chapter 1

[26]

NLP
NLP is a vast field of AI that deals with the processing and understanding of human
languages through the use of computer algorithms. NLP comprises several methods and
techniques that are each geared toward a different part of human language understanding,
such as understanding meaning based on the similarity of two text extracts, generating
human language responses, understanding questions or instructions made in human
languages, and the translation of text from one language to another.

NLP has found vast usage in the current world of technology with several top tech
companies running toward excellence in the field. There are several voice-based user
assistants, such as Siri, Cortana, and Google Assistant, that heavily depend upon accurate
NLP in order to perform their functions correctly. NLP has also found usage in customer
support with automated customer support platforms that reply to the most frequently
made queries without the need of a human representative answering them. These NLP-
based customer support systems can also learn from the responses made by the real
representative while they interact with customers. One such major system in deployment
can be found in the Help section of the DBS DigiBank application created by the
Development Bank of Singapore.

Extensive research is underway in this domain, and it is expected to dominate every other
field of AI in the upcoming days. In the next section, let's take a look at what the currently
available methods of integrating deep learning with mobile applications are.

Methods of integrating AI on Android and
iOS
With the ever-increasing popularity of AI, mobile application users expect apps to adapt to
the information that is provided and made available to them. The only way to make
applications adaptive to the data is by deploying fine-tuned machine learning models to
provide a delightful user experience.

Introduction to Deep Learning for Mobile Chapter 1

[27]

Firebase ML Kit
Firebase ML Kit is a machine learning Software Development Kit (SDK) that is available
on Firebase for mobile developers. It facilitates the hosting and serving of mobile machine
learning models. It reduces the heavy tasks of running machine learning models on mobile
devices to API calls that cover common mobile use cases such as face detection, text
recognition, barcode scanning, image labeling, and landmark recognition. It simply takes
input as parameters in order to output a bunch of analytical information. The APIs
provided by ML Kit can run on the device, on the cloud, or on both. The on-device APIs are
independent of network connections and, consequently, work faster compared to cloud-
based APIs. The cloud-based APIs are hosted on the Google Cloud Platform and uses
machine learning technology to provide a higher level of accuracy. If the available APIs do
not cover the required use case, custom TensorFlow Lite models can be built, hosted, and
served using the Firebase console. The ML Kit acts as an API layer between the custom
models, making it easy to run. Let's look at the following screenshot:

Here, you can see what the dashboard for Firebase ML Kit looks like.

Introduction to Deep Learning for Mobile Chapter 1

[28]

Core ML
Core ML, a machine learning framework released by Apple in iOS 11, is used to make
applications running on iOS, such as Siri, Camera, and QuickType more intelligent.
Delivering efficient performance, Core ML facilitates the easy integration of machine
learning models on iOS devices, giving the applications the power to analyze and predict
from the available data. Standard machine learning models such as tree ensembles, SVMs,
and generalized linear models are supported by Core ML. It contains extensive deep
learning models with over 30 types of neuron layers.

Using the Vision framework, features such as face tracking, face detection, text detection,
and object tracking can be easily integrated with the apps. The Natural Language
framework helps to analyze natural text and deduce its language-specific metadata. When
used with Create ML, the framework can be used to deploy custom NLP models. The
support for GamePlayKit helps in the evaluation of learned decision trees. Core ML is
highly efficient as it is built on top of low-level technologies such as Metal and Accelerate.
This allows it to take advantage of the CPU and GPU. Moreover, Core ML does not require
an active network connection to run. It has high on-device optimizations. This ensures that
all of the computations are done offline, within the device itself, minimizing memory
footprint and power consumption.

Caffe2
Built on the original Convolution Architecture for Fast Embedding (Caffe), which
was developed at the University of California, Berkeley, Caffe2 is a lightweight, modular,
and scalable deep learning framework developed by Facebook. It helps developers and
researchers deploy machine learning models and deliver AI-powered performance on
Android, iOS, and Raspberry Pi. Additionally, it supports integration in Android Studio,
Microsoft Visual Studio, and Xcode. Caffe2 comes with native Python and C++ APIs that
work interchangeably, facilitating easy prototyping and optimizations. It is efficient enough
to handle large sets of data, and it facilitates automation, image processing, and statistical
and mathematical operations. Caffe2, which is open source and hosted on GitHub,
leverages community contributions for new models and algorithms.

Introduction to Deep Learning for Mobile Chapter 1

[29]

TensorFlow
TensorFlow, an open source software library developed by Google Brain, facilitates high-
performance numerical computation. Due to its flexible architecture, it allows easy
deployment of deep learning models and neural networks across CPUs, GPUs, and TPUs.
Gmail uses a TensorFlow model to understand the context of a message and predicts
replies in its widely known feature, Smart Reply. TensorFlow Lite is a lightweight version
of TensorFlow that aids the deployment of machine learning models on Android and iOS
devices. It leverages the power of the Android Neural Network API to support hardware
acceleration.

The TensorFlow ecosystem, which is available for mobile devices through TensorFlow Lite,
is illustrated in the following diagram:

Introduction to Deep Learning for Mobile Chapter 1

[30]

In the preceding diagram, you can see that we need to convert a TensorFlow model into a
TensorFlow Lite model before we can use it on mobile devices. This is important because
TensorFlow models are bulkier and suffer more latency than the Lite models, which are
optimized to run on mobile devices. The conversion is carried out through the TF Lite
converter, which can be used in the following ways:

Using Python APIs: The conversion of a TensorFlow model into a
TensorFlow Lite model can be carried out using Python, with any of the
following lines of code:

TFLiteConverter.from_saved_model(): Converts SavedModel
directories.
TFLiteConverter.from_keras_model(): Converts tf.keras models.
TFLiteConverter.from_concrete_functions(): Converts concrete
functions.

Using the command-line tool: The TensorFlow Lite converter is available as a CLI
tool as well, albeit it is somewhat less diverse in its capabilities than the Python
API version:

tflite_convert \
 --saved_model_dir=/tf_model \
 --output_file=/tflite_model.tflite

We will demonstrate the conversion of a TensorFlow model into a TensorFlow Lite model
in the upcoming chapters.

Summary
In this chapter, we learned about the growth of AI in mobile devices, which provides
machines with the ability to reason and make decisions without being explicitly
programmed. We also studied machine learning and deep learning, which are inclusive of
the technologies and algorithms associated with the domain of AI. We looked at various
deep learning architectures, including CNNs, GANs, RNNs, and LSTMs.

We introduced reinforcement learning and NLP, along with the different methods of
integrating AI on Android and iOS. Basic knowledge of deep learning and of how we can
integrate it with mobile apps is important for the upcoming chapters, where we shall be
extensively using this knowledge to create some real-world applications.

In the next chapter, we will learn about face detection using on-device models.

2
Mobile Vision - Face Detection

Using On-Device Models
In this chapter, we will build a Flutter application that is capable of detecting faces from
media uploaded from the gallery of a device or directly from the camera using the ML Kit's
Firebase Vision Face Detection API. The API leverages the power of pre-trained models
hosted on Firebase and provides the application, the ability to identify the key features of a
face, detect the expression, and get the contours of the detected faces. As the face detection
is performed in real time by the API, it can also be used to track faces in a video sequence,
in a video chat, or in games that respond to the user's expression. The application, coded in
Dart, will work efficiently on Android and iOS devices.

In this chapter, we will be covering the following topics:

Introduction to image processing
Developing a face detection application using Flutter

Let's begin with a brief introduction into how image recognition works!

Technical requirements
You require Visual Studio Code with Flutter and the Dart plugin, and will need to setup the
Firebase console. The GitHub repository for this chapter is at https:/ /github. com/
PacktPublishing/Mobile- Deep- Learning- Projects/ tree/ master/ Chapter2.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter2

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[32]

Introduction to image processing
In this chapter, we shall be detecting faces in images. In the context of artificial intelligence,
the action of processing an image for the purpose of extracting information about the visual
content of that image is called image processing.

Image processing is an emerging field, thanks to the surge in the number of better AI-
powered cameras, medical imagery-based machine learning, self-driving vehicles, analysis
of people's emotions from images, and many other applications.

Consider the use of image processing by a self-driving vehicle. The vehicle needs to make
decisions in as close to real time as possible to ensure the best possible accident-free
driving. A delay in the response of the AI model running the car could lead to catastrophic
consequences. Several techniques and algorithms have been developed for fast and
accurate image processing. One of the most famous algorithms in the domain of image
processing is the convolutional neural network (CNN).

We will not be developing a complete CNN in this chapter, however, we have briefly
discussed CNNs in Chapter 1, Introduction to Deep Learning for Mobile. Later, we shall build
a face detection Flutter app using a pre-trained model that's present on the device.

Understanding images
Before we delve into the processing of images, let's discuss the anatomy of an image from
the perspective of computer software. Consider the following simple image:

The preceding image is a 10 x 10 pixel image (zoomed in); the top two rows of pixels are
purple, the next six rows of pixels are red and the last two rows of pixels are in yellow.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[33]

However, the computer does not see the colors in this image. The computer sees this image
in the format of a matrix of pixel densities. We are dealing with an RGB image here. RGB
images are composed of three layers of colors—namely red, green, and blue. Each of these
layers is represented by a matrix in the image. The elements of each matrix correspond to
the intensity of the color represented by that matrix in each pixel of the image.

Let's examine the preceding image in a program. One of the two rows of pixels that is
purple is represented by the following array:

[[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255],
[255, 0, 255]]

In the preceding matrix, the first column of 255 represents the color red. The second
column represents green and the third column represents blue. Thus, the first pixel of the
image on the top left corner is a combination of red, green, and blue. Both red and blue are
at their full intensities, while green is entirely missing. Thus, as expected, the combined
color produced is purple, which is essentially red and blue mixed in equal proportions. If
we observe any pixel from the red region of the image, as expected, we get the following
array:

[255, 0, 0]

Similarly, from the yellow region, since the color yellow is a combination of red and green
in equal proportions, the pixel is represented by this:

[255, 255, 0]

Now, if we turn off the red and green components of the image, keeping only the blue
channel on, we get the following image:

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[34]

This is very much according to our previous observation that only the top two rows of
pixels contain the blue component and the rest of the image has no blue component, hence
it is depicted in black, which indicates the absence of intensity, or 0 intensity of blue.

Manipulating images
In this section, we shall be discussing how some common manipulations on images can be
done to aid with image processing. Often, some simple manipulations on images can lead
to quicker and better predictions.

Rotation
Let's say we wish to rotate the image in our example by 90 degrees. If we examine the first
row of pixels from the top after the rotation, we would expect that the first two pixels of the
row would be purple, the middle six would be red, and the last two would be yellow. In
the analogy of rotation of matrices, this might be seen as a transpose operation wherein the
rows are converted to columns and vice versa. The image then looks like this:

And, as expected, the first row of pixels is represented by the following matrix:

[[255, 0, 255],
[255, 0, 255],
[255, 0, 0],
[255, 0, 0],
[255, 0, 0],
[255, 0, 0],
[255, 0, 0],
[255, 0, 0],
[255, 255, 0],
[255, 255, 0]]

In this matrix, the first two elements represent purple, followed by six red, and the last two
yellow.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[35]

Grayscale conversion
It is often useful to completely remove the color information from an image before
performing machine learning on it. The reason is that color is sometimes not a contributing
factor in the prediction being asked for. For example, in a system that detects digits in an
image, the shape of the digit matters, whereas the color of the digit does not contribute to
the solution.

Grayscale images, in simple terms, is a measure of how much light is visible in an area of
the image. Usually, the most dominant light-colored elements are completely removed to
display contrast with the less visible areas.

The formula for converting RGB to grayscale is as follows:

Y is the final value that the pixel being converted to grayscale would hold. The R, G, and B
are the values of red, green, and blue for that particular pixel. The output produced is as
follows:

Let's now dive into developing a face detection application!

Developing a face detection application
using Flutter
With the basic understanding of how a CNN works from Chapter 1, Introduction to Deep
Learning for Mobile, and how image processing is done at the most basic level, we are ready
to proceed with using the pre-trained models from Firebase ML Kit to detect faces from the
given images.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[36]

We will be using the Firebase ML Kit Face Detection API to detect the faces in an image.
The key features of the Firebase Vision Face Detection API are as follows:

Recognize and return the coordinates of facial features such as the eyes, ears,
cheeks, nose, and mouth of every face detected.
Get the contours of detected faces and facial features.
Detect facial expressions, such as whether a person is smiling or has one eye
closed.
Get an identifier for each individual face detected in a video frame. This
identifier is consistent across invocations and can be used to perform image
manipulation on a particular face in a video stream.

Let's begin with the first step, adding the required dependencies.

Adding the pub dependencies
We start by adding the pub dependencies. A dependency is an external package that is
required for a particular functionality to work. All of the required dependencies for the
application are specified in the pubspec.yaml file. For every dependency, the name of the
package should be mentioned. This is generally followed by a version number specifying
which version of the package we want to use. Additionally, the source of the package,
which tells pub how to locate the package, and any description that the source needs to find
the package can also be included.

To get information about specific packages, visit https:/ /pub. dartlang.
org/packages.

The dependencies that we will be using for this project are as follows:

firebase_ml_vision: A Flutter plugin that adds support for the functionalities
of Firebase ML Kit
image_picker: A Flutter plugin that enables taking pictures with the camera
and selecting images from Android or iOS image library

Here's what the dependencies section of the pubspec.yaml file will look like after
including the dependencies:

dependencies:
 flutter:
 sdk: flutter

https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages
https://pub.dartlang.org/packages

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[37]

 firebase_ml_vision: ^0.9.2+1
 image_picker: ^0.6.1+4

In order to use the dependencies that we have added to the pubspec.yaml file, we need to
install them. This can simply be done by running flutter pub get in the Terminal or
clicking Get Packages, which is located on the right side of the action ribbon at the top of
the pubspec.yaml file. Once we have installed all the dependencies, we can simply import
them into our project. Now, let's look at the basic functionality of the application that we
will be working on in this chapter.

Building the application
Now we build the application. The application, named Face Detection, will consist of two
screens. The first one will have a text title with two buttons, allowing the user to choose an
image from the device's picture gallery or take a new image using the camera. After this,
the user is directed to the second screen, which shows the image that was selected for face
detection highlighting the detected faces. The following screenshot shows the flow of the
application:

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[38]

The widget tree of the application looks like this:

Let's now discuss the creation and implementation of each of the widgets in detail.

Creating the first screen
Here we are creating the first screen. The user interface of the first screen will contain a text
title, Pick Image, and two buttons, Camera and Gallery. This can be thought of as a column
containing the text title and a row with two buttons, as shown in the following screenshot:

In the following sections, we will build each of these elements, called widgets, and then
bring them together under a scaffold.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[39]

In English, scaffold means a structure or a platform that provides some
support. In terms of Flutter, a scaffold can be thought of as a primary
structure on the device screen upon which all the secondary components,
in this case widgets, can be placed together.

In Flutter, every UI component is a widget. They are the central class
hierarchy in the Flutter framework. If you have worked previously with
Android Studio, a widget can be thought of as a TextView or Button or
any other view component.

Building the row title
Then is building the row title. We start by creating a stateful widget, FaceDetectionHome,
inside the face_detection_home.dart file. FaceDetectionHomeState will contain
all the methods required to build the first screen of the application.

Let's define a method called buildRowTitle() to create the text header:

Widget buildRowTitle(BuildContext context, String title) {
 return Center(
 child: Padding(
 padding: EdgeInsets.symmetric(horizontal: 8.0, vertical: 16.0),
 child: Text(
 title,
 style: Theme.of(context).textTheme.headline,
), //Text
) //Padding
); //Center
}

The method is used to create a widget with a title using the value that is passed in the
title string as an argument. The text is aligned to the center horizontally by using
Center() and is provided a padding of 8.0 horizontally and 16.0 vertically using
EdgeInsets.symmetric(horizontal: 8.0, vertical: 16.0). It contains a child,
which is used to create the Text with the title. The typographical style of the text is
modified to textTheme.headline to change the default size, weight, and spacing of the
text.

Flutter uses the logical pixel as a unit of measure, which is the same as
device-independent pixel (dp). Further, the number of device pixels in
each logical pixel can be expressed in terms of devicePixelRatio. For the
sake of simplicity, we will just use numeric terms to talk about width,
height, and other measurable properties.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[40]

Building the row with button widgets
Next is building the row with button widgets. After placing our text title, we will now
create a row of two buttons that will enable the user to pick an image either from the
gallery or take a new image from the camera. Let's do this in the following steps:

We start by defining createButton() to create buttons with all the required1.
properties:

Widget createButton(String imgSource) {
 return Expanded(
 child: Padding(
 padding: EdgeInsets.symmetric(horizontal: 8.0),
 child: RaisedButton(
 color: Colors.blue,
 textColor: Colors.white,
 splashColor: Colors.blueGrey,
 onPressed: () {
 onPickImageSelected(imgSource);
 },
 child: new Text(imgSource)
),
)
);
}

The method returns a widget, that is, RaisedButton, after providing a horizontal
padding of 8.0. The color of the button is set to blue and the color of the button
text is set to white. splashColor is set to blueGrey to indicate that the button is
clicked by producing a rippling effect.

The code snippet inside onPressed is executed when the button is pressed. Here,
we make a call to onPickImageSelected(), which is defined in a later section of
the chapter. The text that is displayed inside the button is set to imgSource,
which, here, can be the gallery or the camera. Additionally, the whole code
snippet is wrapped inside Expanded() to make sure that the created button
completely occupies all the available space.

Now we use the buildSelectImageRowWidget() method to build a row with2.
two buttons to list the two image sources:

Widget buildSelectImageRowWidget(BuildContext context) {
 return Row(
 children: <Widget>[
 createButton('Camera'),
 createButton('Gallery')

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[41]

],
);
}

In the preceding code snippet, we call the previously defined
createButton() method to add Camera and Gallery as image source buttons
and add them to the children widget list for the row.

Now, let's define onPickImageSelected(). This method uses3.
the image_picker library to direct the user either to the gallery or the camera to
get an image:

void onPickImageSelected(String source) async {
 var imageSource;
 if (source == ‘Camera’) {
 imageSource = ImageSource.camera;
 } else {
 imageSource = ImageSource.gallery;
 }
 final scaffold = _scaffoldKey.currentState;
 try {
 final file = await ImagePicker.pickImage(source:
imageSource);
 if (file == null) {
 throw Exception('File is not available');
 }
 Navigator.push(
 context,
 new MaterialPageRoute(
 builder: (context) => FaceDetectorDetail(file)),
);
 } catch (e) {
 scaffold.showSnackBar(SnackBar(
 content: Text(e.toString()),
));
 }
}

First, imageSource is set to either camera or gallery using an if-else block. If
the value passed is Camera, the source of the image file is set to
ImageSource.camera; otherwise, it is set to ImageSource.gallery.

Once the source of the image is decided pickImage() is used to pick the correct
imageSource. If the source was Camera, the user will be directed to the camera
to take an image; otherwise, they will be directed to choose an image from the
gallery.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[42]

To handle the exception if the image was not returned successfully by
pickImage(), the call to the method is enclosed inside a try-catch block. If an
exception occurs, the execution is directed to the catch block and a snackbar with
an error message being shown on the screen by making a call to
showSnackBar():

After the image has been chosen successfully and the file variable has the
required uri, the user migrates to the next screen, FaceDetectorDetail, which
is discussed in the section, Creating the second screen, and using
Navigator.push() it passes the current context and the chosen file into the
constructor. On the FaceDetectorDetail screen, we populate the image holder
with the selected image and show details about the detected faces.

Creating the whole user interface
Now, we create the whole user interface, all of the created widgets are put together inside
the build() method overridden inside the FaceDetectorHomeState class.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[43]

In the following code snippet, we create the final scaffold for the first screen of the
application:

@override
Widget build(BuildContext context) {
 return Scaffold(
 key: _scaffoldKey,
 appBar: AppBar(
 centerTitle: true,
 title: Text('Face Detection'),
),
 body: SingleChildScrollView(
 child: Column(
 children: <Widget>[
 buildRowTitle(context, 'Pick Image'),
 buildSelectImageRowWidget(context)
],
)
)
);
}

The text of the toolbar is set to Face Detection by setting the title inside the appBar.
Also, the text is aligned to the center by setting centerTitle to true. Next, the body of
the scaffold is a column of widgets. The first is a text title and the next is a row of buttons.

The whole code inside FaceDetectorHome.dart can be viewed at
https:/ /github. com/ PacktPublishing/ Mobile- Deep- Learning-
Projects/ blob/ master/ Chapter2/ flutter_ face_ detection/ lib/ face_
detection_ home. dart.

Creating the second screen
Next, we create the second screen. After successfully obtaining the image selected by the
user, we migrate to the second screen of the application, where we display the selected
image. Also, we mark the faces that were detected in the image using Firebase ML Kit. We
start by creating a stateful widget named FaceDetection inside a new Dart
file, face_detection.dart.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection_home.dart

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[44]

Getting the image file
First of all, the image that was selected needs to be passed to the second screen for analysis.
We do this using the FaceDetection() constructor.

Constructors are special methods that are used for initializing the
variables of a class. They have the same name as the class. Constructors do
not have a return type and are called automatically when the object of the
class is created.

We declare a file variable and initialize it using a parameterized constructor as follows:

File file;
FaceDetection(File file){
 this.file = file;
}

Now let's move on to the next step.

Analyzing the image to detect faces
Now, we analyze the image to detect faces. We will create an instance of the
FirebaseVision face detector to detect the faces using the following steps:

First, we create a global faces variable inside the1.
FaceDetectionState class, as shown in the following code:

List<Face> faces;

Now we define a detectFaces() method, inside which we instantiate2.
FaceDetector as follows:

void detectFaces() async{
 final FirebaseVisionImage visionImage =
FirebaseVisionImage.fromFile(widget.file);
 final FaceDetector faceDetector =
FirebaseVision.instance.faceDetector(FaceDetectorOptions(mode:
FaceDetectorMode.accurate, enableLandmarks: true,
enableClassification: true));
 List<Face> detectedFaces = await
faceDetector.processImage(visionImage);
 for (var i = 0; i < faces.length; i++) {
 final double smileProbablity =
detectedFaces[i].smilingProbability;
 print("Smiling: $smileProb");

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[45]

 }
 faces = detectedFaces;
 }

We first create a FirebaseVisionImage instance called visionImage of the image file
that was selected using the FirebaseVisionImage.fromFile() method. Next, we create
an instance of FaceDetector by using the
FirebaseVision.instance.faceDetector() method and store it in a variable called
faceDetector. Now we call processImage() using the FaceDetector instance,
faceDetector, which was created earlier, and pass in the image file as a parameter. The
method call returns a list of detected faces, which is stored in a list variable
called detectedFaces. Note that processImage() returns a list of type Face. Face is an
object whose attributes contain the characteristic features of a detected face. A Face object
has the following attributes:

getLandmark

hashCode

hasLeftEyeOpenProbability

hasRightEyeOpenProbability

headEulerEyeAngleY

headEylerEyeAngleZ

leftEyeOpenProbability

rightEyeOpenProbability

smilingProbability

Now we iterate through the list of faces using a for loop. We can get the value of
smilingProbablity for the ith face using detectedFaces[i].smilingProbability.
We store it in a variable called smileProbablity and print its value to the console using
print(). Finally, we set the value of the global faces list to detectedFaces.

The async modifier added to the detectFaces()
method enables asynchronous execution of the method, which means that
a separate thread, different from the main thread of execution, is created.
An async method works on callback mechanisms to return the value
computed by it once the execution has been completed.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[46]

To make sure that the faces are detected as soon as the user migrates to the second screen,
we override initState() and call detectFaces() from inside it:

 @override
 void initState() {
 super.initState();
 detectFaces();
 }

initState() is the first method that is called after the widget is created.

Marking the detected faces
Next, marking the detected faces. After detecting all the faces present in the image, we will
paint rectangular boxes around them with the following steps:

 First we need to convert the image file into raw bytes. To do so, we define a1.
loadImage method as follows:

void loadImage(File file) async {
 final data = await file.readAsBytes();
 await decodeImageFromList(data).then(
 (value) => setState(() {
 image = value;
 }),
);
}

The loadImage() method takes in the image file as input. Then we convert the
contents of the file into bytes using file.readAsByte() and store the result in
data. Next, we call decodeImageFromList(), which is used to load a single
image frame from a byte array into an Image object and store the final result
value in the image. We call this method from inside detectFaces(), which was
defined earlier.

Now we define a CustomPainter class called FacePainter to paint rectangular2.
boxes around all the detected faces. We start as follows:

class FacePainter extends CustomPainter {
 Image image;
 List<Face> faces;
 List<Rect> rects = [];
 FacePainter(ui.Image img, List<Face> faces) {
 this.image = img;
 this.faces = faces;

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[47]

 for(var i = 0; i < faces.length; i++) {
 rects.add(faces[i].boundingBox);
 }
 }
 }
}

We start by defining three global variables, image, faces, and rects. image of
type Image is used to get the byte format of the image file. faces is a List of
Face objects that were detected. Both image and faces are initialized inside
the FacePainter constructor. Now we iterate through the faces and get the
bounding rectangles of each of the face using faces[i].boundingBox and store
it in the rects list.

Next, we override paint() to paint the Canvas with rectangles, as follows:3.

 @override
 void paint(Canvas canvas, Size size) {
 final Paint paint = Paint()
 ..style = PaintingStyle.stroke
 ..strokeWidth = 8.0
 ..color = Colors.red;
 canvas.drawImage(image, Offset.zero, Paint());
 for (var i = 0; i < faces.length; i++) {
 canvas.drawRect(rects[i], paint);
 }
 }

We start by creating an instance of the Paint class to describe the style to paint the Canvas,
that is, the image we have been working with. Since we need to paint rectangular borders,
we set style to PaintingStyle.stroke to paint just the edges of the shape. Next, we set
strokeWidth, that is, the width of the rectangular border, to 8. Also, we set the color to
red. Finally, we paint the image using cavas.drawImage(). We iterate through each of
the rectangles for the detected faces inside the rects list and draw rectangles using
canvas.drawRect().

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[48]

Displaying the final image on the screen
After successfully detecting faces and painting rectangles around them, we will
now display the final image on the screen. We first build the final scaffold for our second
screen. We will override the build() method inside FaceDetectionState to return the
scaffold as follows:

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("Face Detection"),
),
 body: (image == null)
 ? Center(child: CircularProgressIndicator(),)
 : Center(
 child: FittedBox(
 child: SizedBox(
 width: image.width.toDouble(),
 height: image.width.toDouble(),
 child: CustomPaint(painter: FacePainter(image, faces))
),
),
)
);
 }

We start by creating the appBar for the screen, providing a title, Face Detection. Next,
we specify the body of the scaffold. We first check the value of the image that stores the
byte array of the image selected. Till the time it is null we are sure that the process of
detecting faces is in progress. Therefore, we use a CircularProgressIndicator(). Once
the process for detecting faces is over the user interface is updated to show a SizedBox
with the same width and height as the selected image. The child property of the
SizedBox is set to CustomPaint, which uses the FacePainter class we created earlier to
paint rectangular borders around the detected faces.

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[49]

The whole code in face_detection.dart can be viewed at https:/ /
github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/
master/ Chapter2/ flutter_ face_ detection/ lib/ face_ detection. dart.

Creating the final MaterialApp
At last, we create the final MaterialApp. We create the main.dart file, which provides the
point of execution for the whole code. We create a stateless widget
called FaceDetectorApp, which is used to return a MaterialApp specifying the title,
theme, and home screen:

class FaceDetectorApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return new MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Flutter Demo',
 theme: new ThemeData(
 primarySwatch: Colors.blue,
),
 home: new FaceDetectorHome(),
);
 }
}

Now we define the main() method to execute the whole application by passing in the
instance of FaceDetectorApp() as follows:

void main() => runApp(new FaceDetectorApp());

The whole code inside main.dart can be viewed at https:/ /github. com/
PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/ master/
Chapter2/ flutter_ face_ detection/ lib/ main. dart

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/face_detection.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter2/flutter_face_detection/lib/main.dart

Mobile Vision - Face Detection Using On-Device Models Chapter 2

[50]

Summary
In this chapter, we examined the concept behind image processing and how we can
integrate it with our Android- or iOS-based application made using Flutter to perform face
detection. The chapter started with adding relevant dependencies to support the
functionalities of Firebase ML Kit and the image_picker library. The required UI
components with the necessary functionalities were added. The implementation mainly
covered image file selection using the Flutter plugin and how images can be processed once
they are selected. An example of on-device Face Detector model usage was presented,
along with an in-depth discussion of the method by which the implementation was carried
out.

In the next chapter, we will be discussing how you can create your own AI-powered
chatbot that can double-up as a virtual assistant using the Actions on Google platform.

3
Chatbot Using Actions on

Google
In this project, we will cover the implementation of conversational chatbots using
Dialogflow API, and how to make them perform different actions on Google Assistant with
the help of Actions on Google. This project will provide you with a good understanding of
how to build a product that uses engaging voice and text-based conversational interfaces.

We will implement a chatbot that will ask for the user's name and then generate a lucky
number for the user. We will also look into how a chatbot can be made available on the
Google Assistant platform using Actions on Google.

The following topics will be covered in this chapter:

Understanding the tools available for creating chatbots
Creating a Dialogflow account
Creating a Dialogflow agent
Understanding the Dialogflow Console
Creating your first Action on Google
Creating Actions on a Google project
Implementing a Webhook
Deploying a Webhook to Cloud Functions for Firebase
Creating an Action on Google release
Creating the UI for the conversational application
Integrating the Dialogflow agent
Adding audio interactions with the assistant

Chatbot Using Actions on Google Chapter 3

[52]

Technical requirements
For the mobile application, you will need Visual Studio Code with the Flutter and Dart
plugin, as well as the Firebase console set up and running.

The code files for this chapter can be found in this book's GitHub repository at https:/ /
github.com/PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/ master/ Chapter3.

Understanding the tools available for
creating chatbots
If you're looking to build a conversational experience for users using a chatbot, you'll have
a large number of options to build upon. There are several platforms available with
different sets of features, each unique in terms of the services they offer.

One genre of chatbots that has been on a constant rise in the last decade, and has
successfully paved the way for chatbots to be more readily accepted into professional
websites and industry, is artificially intelligent chatbots. What sort of intelligence do these
bots offer? What business objectives do they solve?

Let's try to answer both of these questions with a scenario.

Say you own a department store, and employ several employees at your store so that they
can guide your customers to the right departments. One day, you realize that these
employees were actually adding to the crowding of the store. In order to replace them, you
come up with an app that is able to respond to questions such as, Where can I find some
cereal? with answers such as The groceries section is toward the north-west of the store, right
beside the Fruits section!.

The chatbot thus exhibits the ability to understand the requirement of the user, which in
this case is to find cereal. Then, the chatbot was able to determine the relationship between
cereal and groceries. From its knowledge of the inventory of the store, it is able to direct the
user to the right department. To be able to come up with associations, and even with
translations of words from one language to another, deep learning plays a critical role in
the inner workings of chatbots.

In the following sections, we shall explore various artificial intelligence-enabled tools that
can be used to create chatbots and deploy them on mobile phones.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3

Chatbot Using Actions on Google Chapter 3

[53]

Wit.ai
Made by Facebook, the Wit.ai platform offers a suite of APIs around Natural Language
Processing (NLP) and speech-to-text services. The Wit.ai platform is completely open
source and offers some state-of-the-art services in the domains of NLP. It can be easily
integrated with mobile apps and wearables, and can even be used for home automation.
The speech to text services offered by the platform makes it very suitable for creating
applications that use a voice interface.

Developers can easily design complete conversations and even add personality to their
chatbots. Wit.ai supports conversations and speech to text services in more than 130
languages, which makes it a great choice for applications that focus on worldwide linguistic
accessibility.

To find out more about the platform, visit https:/ / wit.ai/ .

Dialogflow
Dialogflow, renamed from Api.ai, provides deep neural network-based natural language
processing for creating conversational interfaces that seamlessly integrate with multiple
platforms, such as Facebook Messenger, Slack, WhatsApp, Telegram, and so on.

Dialogflow projects run on the Google Cloud and are able to draw benefits from all the
Google Cloud offerings related to building conversations, such as getting the user's
location, deploying webhooks on Firebase or App Engine, and initiating actions in the
Google-developed apps on both Android and iOS. You can learn more about the platform
at https://dialogflow. com/ .

Now, let's delve deeper into Dialogflow and its capabilities, in order to learn how to
develop a Google Assistant-like application for mobile devices.

How does Dialogflow work?
In the previous section, we were briefly introduced to some tools we can use to develop
chatbot and conversational interfaces using text and voice, as required. We came across
Dialogflow, which we will be discussing in depth in this section. We will also use it to
quickly develop an industry-grade chat solution.

Before we begin developing a Dialogflow chatbot, we need to understand how Dialogflow
works and learn about a few of the terminologies related to Dialogflow.

https://wit.ai/
https://wit.ai/
https://wit.ai/
https://wit.ai/
https://wit.ai/
https://wit.ai/
https://wit.ai/
https://wit.ai/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/
https://dialogflow.com/

Chatbot Using Actions on Google Chapter 3

[54]

The flow of information in an application using Dialogflow can be seen in the following
diagram:

Let's discuss the terms that were introduced in the preceding diagram:

User: The user is the person using the chatbot/application, and is responsible for
making a user request. A user request is simply a spoken word or sentence
made by the user that has to be interpreted by the chatbot. An appropriate
response needs to be generated against it.
Integration: Integration is a software component that is responsible for passing
user requests to the chatbot logic and the agent response to the user. This
integration could be to an app or website that you've created, or to an existing
service such as Slack, Facebook Messenger, or simply a script which makes calls
to the Dialogflow chatbot.

Chatbot Using Actions on Google Chapter 3

[55]

Agent: The chatbot we develop using the Dialogflow tool is called an agent. The
responses that are generated by the chatbot are known as agent responses.
Intent: This is a representation of what a user is trying to do in their user request.
The natural language input made by the user has to be matched with an intent to
determine the kind of response to be generated for any specific request.
Entities: In a user request, the user might, at times, use words or phrases that
might be required for processing the response. These are extracted from the user
request in the form of entities and then used as required. For example, if the user
says "Where can I get some mangoes?" the chatbot is supposed to extract the
word mangoes in order to search its available database or the internet to come up
with a proper response.
Context: To understand context in Dialogflow, consider the following scenario,
where you talk to a chatbot without the capability of maintaining context:
You ask your chatbot "Who is the prime minister of India?" and it generates the
appropriate response. Next, you ask your chatbot "What is his age?" Your chatbot
does not know who "his" refers to here. Thus, context is the state of the
conversation that is maintained over a chat session or a part of the session unless
the context is overridden by something new in the conversation with the chatbot.
Fulfillment: Fulfillment is a software component that handles the business logic
within the chatbot. It is an API that can be accessed through webhooks, takes
input about the entities that are passed to it, and generates a response that is then
used by the chatbot to generate the final agent response.

With the basic terminology and workflow of Dialogflow covered, we shall now build a
basic Dialogflow agent that can provide responses to user requests.

Creating a Dialogflow account
To start using Dialogflow, you need to create an account on the Dialogflow website. To do
this, follow these steps:

Visit https:/ / dialogflow. com to begin the account creation process.1.

https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com

Chatbot Using Actions on Google Chapter 3

[56]

You will need a Google Account to create a Dialogflow account. If you
have not created one already, visit https:/ / accounts. google. com.

On the home page of the Dialogflow website, click on Sign up for free to create2.
an account or Go to console to open the Dialogflow Console:

Upon clicking Sign in with Google, you'll be asked to log in with your Google3.
Account. You shall be asked for Account Permissions to use Dialogflow and then
to accept the Terms and Conditions.

Now, we can start creating a Dialogflow agent.

Creating a Dialogflow agent
As we discussed in the How does Dialogflow work? section, the agent is the chatbot we are
creating in the Dialogflow platform.

https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com
https://accounts.google.com

Chatbot Using Actions on Google Chapter 3

[57]

Once your account has been successfully created, you'll be presented with the landing
screen of the Dialogflow Console, prompting you to Create an agent:

Click on the Create an agent prompt. You'll be taken to a screen that looks1.
similar to the following:

Fill in the name for the agent. We shall name it DemoBot.3.
Link any existing Google Project to the chatbot. If you do not already have an4.
eligible Google Project, a new project will be created when you click on the
Create button.

You need to have a billing enabled on Google Project to create Dialogflow
chatbots. To find out how to create a Google Project, go to https:/ /
cloud. google. com/ billing/ docs/ how- to/ manage- billing- account.

Understanding the Dialogflow Console
The Dialogflow Console is the graphical user interface for managing chatbots, intents,
entities, and all the other features offered by Dialogflow.

https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account
https://cloud.google.com/billing/docs/how-to/manage-billing-account

Chatbot Using Actions on Google Chapter 3

[58]

After creating an agent, you should be able to see the following screen:

The Dialogflow Console prompts you to create a new Intent. Let's create a new Intent that
recognizes the user's name and uses it to generate a lucky number for the user.

Creating an Intent and grabbing entities
Now, we shall create an intent that takes input from the user and determines the user's
name. Then, the intent extracts the value of the name and stores it in an entity, which will
be passed to the webhook later for processing. Follow these steps to do so:

Click on Create Intent button on the top right of the screen. The Intent creation1.
form opens up.
We must provide a name for the intent, say, luckyNum. Then, scroll down to the2.
Training phrases section and add a training phrase: name is John.

Chatbot Using Actions on Google Chapter 3

[59]

Grab the required entity and select the word John. A drop-down list will appear3.
that matches the word with any predefined entity. We shall use the
@sys.person entity to grab the name and store it as the userName parameter, as
shown in the following screenshot:

Chatbot Using Actions on Google Chapter 3

[60]

Scroll down to the Actions and parameters section and add the userName4.
parameter, as shown in the following screenshot:

Now, whenever the user query is similar to name is something, something will5.
be extracted into the $userName variable. This can now be passed to the
webhook or Firebase Cloud Function to generate a response according to its
value.

Now, let's add an action so that the Dialogflow agent can be accessed over Google
Assistant.

Creating your first action on Google
Before we create an Action on Google, let's try to understand what an Action is. You might
have heard about the Google Assistant, which is essentially comparable to Siri or Cortana.
It is built around the concept of the virtual assistant, a piece of software that is capable of
performing tasks for users based upon their direction, either in the form of text or voice.

Each task that the Google Assistant can perform is called an Action. Thus, tasks that are
performed when the user makes requests similar to "show me the shopping list" or "make a
call to Sam" are actions in which a function, say, showShoppingList() or
makeCall(Sam), is executed with the appropriate arguments attached to it.

Chatbot Using Actions on Google Chapter 3

[61]

The Actions on Google platform make it possible for us to create chatbots that act as an
Action on the Google Assistant. Once invoked, we can have a conversation until it's ended
by the user.

Invoking the Action is performed within the Google Assistant, which matches the
invocation request to the list of Actions in its directory and launches the appropriate
action. Then, the next few interactions the user makes are with the action. Thus, the Google
Assistant acts as an aggregator for several such actions and provides a method of
invocation to them.

Why would you want to build an action on
Google?
What sort of business benefit does the Actions on Google platform offer to developers who
are interested in building chatbots? Consider the following screenshot:

Chatbot Using Actions on Google Chapter 3

[62]

Merely by talking to the Google Assistant, the user is able to get Uber options. This is
because the Talk to Uber invocation matched with the chatbot that was developed by Uber
and was made available through the Actions on Google platform, which is responding to
the Talk to Uber user request.

Thus, Uber is able to push its availability and interactivity by offering a text-free interface
(if using voice input) and benefits from the state-of-the-art NLP algorithms that have been
put into the Google Assistant, thus eventually enhancing its sales.

Publishing the chatbot you create to Actions on Google effectively allows you to provide a
conversational interface for your business. You can use webhooks (which we shall cover
later in this chapter, to manage the business logic. Now, let's create an Action on Google
and link it to our chatbot.

Creating Actions on a Google project
In this section, we will create an Actions on Google Project and then integrate it with the
Google Assistant app. This will allow the chatbot we've built to be accessible through the
Google Assistant app, which is available on billions of devices globally.

Let's begin by creating the Actions on Google project:

In your browser, open https:/ /developers. google. com/actions/ to open up1.
the Actions on xGoogle home page, where you can read all about the platform
and also be introduced to its documentation.
To proceed to the console, click on the Start Building or Go to Actions Console2.
button. You'll be taken to the Actions on Google console, where you'll be
prompted to create a project.
On proceeding with project creation, you'll be able to see a dialogue box, as3.
shown in the following screenshot:

https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/
https://developers.google.com/actions/

Chatbot Using Actions on Google Chapter 3

[63]

You must select the same Google Project that you created the Dialogflow chatbot
agent in.

Click on Import Project to add an Action for your Dialogflow chatbot to the4.
Google Assistant. On the next screen that loads, choose the Conversational
template to create our Action.
You'll then be brought to the Actions on Google Console, which looks like this: 5.

Chatbot Using Actions on Google Chapter 3

[64]

On the top bar, you'll be able to see the Project ID for your Google Project that the
Action is being built in. On the left vertical navigation bar, all the different steps
that you'll need to follow in order to complete your setup for the Action will be
listed. On the right main content section, a quick walkthrough is provided for
setting up your first Action.

Click on Decide how your Action is invoked. You'll need to provide a unique6.
invocation string for your Action. For the sample in this chapter, we used the
Talk to Peter please invocation. You will need to select a somewhat different
invocation.

After setting an invocation successfully, the walkthrough asks you to add an
Action.

Click on the Add Action(s) link to begin the process of Action creation.7.
In the Create Action dialogue box that appears, choose Custom intent on the left8.
listing and then click on the Build button. This will take you back to the
Dialogflow interface.

Now, you need to enable Actions on Google to access your chatbot's intents.

Creating an integration to the Google Assistant
By default, the chatbot you have built in the Dialogflow console does not allow the Actions
on Google project to access the intents available in it. We can enable access to intents by
following these steps:

On the Dialogflow interface, click on the Integrations button on the left1.
navigation pane.
On the page that loads, you'll be provided with integration options with different2.
services that are supported by Dialogflow, which includes all major social chat
platforms, along with Amazon's Alexa and Microsoft's Cortana.
On your screen, you should see the Integration Settings button for the Google3.
Assistant. Click on that button. A dialogue box will open, as shown in the
following screenshot:

Chatbot Using Actions on Google Chapter 3

[65]

The dialog box in the preceding screenshot allows you to quickly define
integration settings between your Dialogflow agent and your Actions on Google
project.

Under Default Invocation, set the Default Welcome Intent as the intent that will4.
be the first to run when the user begins an interaction with your chatbot through
the Google Assistant.
In Implicit Invocation, specify the luckyNum intent we created earlier. This will5.
be used to generate the lucky number for the user.
Enabling Auto-preview changes is a good idea since it allows you to propagate6.
the integration settings automatically to the Actions on Google Console and the
Google Assistant Test Simulator (which we'll discuss shortly) in order to test our
application before creating a release for it.

Chatbot Using Actions on Google Chapter 3

[66]

Now, let's provide a meaningful prompt for Default Welcome Intent in order to ask the
user to enter their name, so that when the user responds, their input is similar to the
training phrase of the luckyNum intent, thereby invoking it:

Click on the Intents button. Then, click on Default Welcome Intent. Scroll down1.
to the Responses section of the Intent editing page and remove all responses
there. Since the luckyNum intent is expecting the user to say something similar
to My name is XYZ, the apt question for it would be What is your name?.
Thus, we'll set the response here as Hi, what is your name?.

Notice that the Responses section has a new navigation pill in its tabbed
navigation named Google Assistant. This allows us to specify a different response
for this intent when it's invoked from the Google Assistant.

Click on the tab and enable the User response from the DEFAULT tab as the first2.
response. We're doing this since we do not want to specify a different response
that's specific to the Google Assistant in our chatbot.
Scroll up to the Events section and check that it looks similar to the following3.
screenshot:

If any of the preceding two Events are missing, you can include them by simply4.
typing them in and selecting them from the auto-suggest box that appears.
Click on Save at the top right of the middle section of the Dialogflow Console.5.

Now, we're ready to create our business logic in order to generate the lucky number for the
user. First, we'll create a webhook for the luckyNum intent and then deploy it to Cloud
Functions for Firebase.

Chatbot Using Actions on Google Chapter 3

[67]

Implementing a Webhook
In this section, we will enable the webhooks for the luckyNum intent and prepare the
webhook code for the logic of the luckyNum intent. Follow these steps to do so:

Open the Intent editing page for the luckyNum intent and scroll down to the1.
Fulfillment section. Here, turn on the Enable webhook call for this intent
option.

Now, this intent will look for the response to be generated from the webhook.

Open a text editor of your choice to create the code for the webhook so that it's in2.
JavaScript and will run on the Node.js platform provided by Firebase:

'use strict';

The preceding line ensures that we use a set of coding standards that have been
defined in ECMAScript 5 that provide several useful modifications to the
JavaScript language, thus making it more secure and less confusing.

Modules in JavaScript are imported into the project using the require function.3.
Include the actions-on-google module, along with the firebase-functions
module, since the script will be deployed to Firebase:

// Import the Dialogflow module from the Actions on Google client
library.
const {dialogflow} = require('actions-on-google');

// Import the firebase-functions package for deployment.
const functions = require('firebase-functions');

Instantiate a new client object for the Dialogflow agent we've built:4.

// Instantiate the Dialogflow client.
const app = dialogflow({debug: true});

Notice that the Dialogflow variable here is an object of the actions-on-google
module.

Chatbot Using Actions on Google Chapter 3

[68]

Set the Intent that the webhook responds to as luckyNum and we pass it to the5.
conv variable:

app.intent('luckyNum', (conv, {userName}) => {

 let name = userName.name;
 conv.close('Your lucky number is: ' + name.length);

});

The app variable holds the state information of the conversation being handled
and the userName parameter that we extracted from the luckyNum intent. Then,
we declare the variable name and set it to the name key of the userName variable.
This is done because the userName variable is a JavaScript object. You can view
this in the Test console on the right-hand section by typing in a matching
invocation for the luckyNum intent, such as My name is Max.

Set the webhook so that it responds to all HTTPS POST requests and export it as6.
a Dialogflow Fulfillment via Firebase:

// Set the DialogflowApp object to handle the HTTPS POST request.
exports.dialogflowFirebaseFulfillment =
functions.https.onRequest(app);

The script we have developed in this section needs to deployed to a server for it to respond.
We shall use Cloud Functions for Firebase to deploy this script and use it as the webhook
endpoint for the chatbot.

Deploying a webhook to Cloud Functions for
Firebase
Now that we're done creating the logic of the webhook, it is pretty simple to deploy it using
Cloud Functions on Firebase. Follow these steps to do so:

Click on the Fulfillment button on the left navigation of the Dialogflow Console.1.
Enable the Inline Editor to be able to add your webhook and deploy it directly to
Cloud Functions.

Chatbot Using Actions on Google Chapter 3

[69]

You will have to clear out the default boilerplate code that is in the Inline Editor
to do this.

Paste the code in the editor from the previous section into the index.js tabbed2.
navigation pill and click on Deploy.

Remember that the environment that's being used for deployment is
Node.js, so index.js is the file that shall contain all your business logic.
The package.json file manages the required packages for your project.

Using Cloud Functions comes with the advantage of the simplicity and minimal setup that
goes into deploying your webhook. On the other hand, the restriction of having just
index.js set prevents you from splitting your webhook logic into several files, which is
typically done in large chatbot applications. Now, you're ready to create a release for your
Action.

Creating an Action on Google release
Finally, we're at the stage where we can create a release for our Actions on Google chatbot.
But before doing so, it is important to test out the chatbot in the Google Assistant Test
Simulator:

Click on the Simulator button on the left navigation pane of the Actions on1.
Google Console to enter the simulator. In the simulator, you'll be shown an
interface similar to using Google Assistant on your phone. A suggested input
will contain the invocation method for your action.

Chatbot Using Actions on Google Chapter 3

[70]

Enter the invocation for your action in the simulator, which in our case is Talk2.
to Peter Please. This will produce an output from the Default Welcome
Intent asking for your name. Upon entering your name as the response, similar
to My name is Sammy, you'll be shown your lucky number, like this:

Chatbot Using Actions on Google Chapter 3

[71]

Now that we know our chatbot is working fine, along with its integration to Action on
Google, let's create a release for it:

Click on Overview in the Actions on Google Console and you'll be able to see the1.
Get ready for deployment prompt.
The Actions Test console asks you to enter some required information for your2.
Action. These are usually the descriptions in short and long format, details of the
developer, a privacy policy, terms and conditions for the action, and logos. After
filling everything in successfully, click on Save.
Click on Release from the left navigation bar under the Deploy category to open3.
the Releases page. Here, choose the Alpha release option and click on Submit for
release.

The deployment will take a few hours to go through. After it has been deployed, you will
be able to test your action on any device that has logged in to the Google Account that the
Action has been built in. After successfully creating and deploying the Dialogflow agent,
we will now develop a Flutter application with the capability to interact with the agent. The
single-screen application will have a user interface very similar to any basic mobile chat
app with a text box to type messages, which are the queries for the Dialogflow agent, and a
send button to send each query to the agent. The screen will also contain a list view to show
all the queries from the user and responses from the agent. Additionally, there will be a mic
option beside the Send button so that the user can utilize speech to text functionality to
send queries to the agent.

Creating the UI for the conversational
application
We will start by creating the basic user interface for the application using some hardcoded
texts to test if the UI is updating properly or not. Then, we will integrate the Dialogflow
agent so that it can answer queries and tell the user their lucky number, followed by the
addition of a mic option so that we can utilize the speech to text functionality.

Chatbot Using Actions on Google Chapter 3

[72]

The overall widget tree of the application will look as follows:

Now, let's discuss the implementation of each of these widgets in detail.

Creating the Text Controller
First of all, let's create a StatefulWidget called ChatScreen in a new dart file
called chat_screen.dart. Now, follow these steps:

Create a text box—TextField, in Flutter terms—that will allow the user to enter1.
their input text. To create the TextField, we need to define
createTextField():

Widget createTextField() {
 return new Flexible(
 child: new TextField(
 decoration:

Chatbot Using Actions on Google Chapter 3

[73]

 new InputDecoration.collapsed(hintText: "Enter your
message"),
 controller: _textController,
 onSubmitted: _handleSubmitted,
),
);
 }

The onSubmitted property works as a callback for the text field to handle
the text inputs when the user indicates that they are done entering the text
into the text field. The property is triggered when the Enter button on the
keyboard is pressed.

In the preceding TextField widget, a call to _handleSubmitted() is made when the user
has finished entering the text. _handleSubmitted() will be described in detail later.

We also specify the decoration property as collapsed in order to remove the default
borders that might appear in the text field. We also specify a hintText property as Enter
your message. To listen to the changes and update the TextField, we also attach an
instance of TextEditingController. The instance can be created by executing the
following code:

final TextEditingController _textController = new TextEditingController();

Unlike Java, Dart does not have keywords such as public, private, or
protected to define the scope of usage of a variable. Instead, it uses an
underscore, _, before an identifier name to specify that the identifier is
private to a class.

Next, create a send button that can be used to send queries to the agent inside2.
the createSendButton() function:

Widget createSendButton() {
 return new Container(
 margin: const EdgeInsets.symmetric(horizontal: 4.0),
 child: new IconButton(
 icon: new Icon(Icons.send),
 onPressed: () =>
_handleSubmitted(_textController.text),
),
);
 }

Chatbot Using Actions on Google Chapter 3

[74]

In Flutter, a graphical icon resembling a send button can easily be added using
the Icons class. For this, we create a new instance of Icon and specify
Icons.send in order to use the widget for the send button. This is used as an
argument for the icon property. We also set the onPressed property, which is
called when the user taps the send button. Here, again, we make a call to
_handleSubmitted.

=>, sometimes referred to as an arrow, is a shorthand notation that's used
to define methods containing one line. A method defined as fun() {
return 10; } can be written as fun() => return 10;.

The text field and the send button should appear side by side, so wrap them in a3.
single row by adding them as children to a Row widget. The wrapped up Row
widget is placed at the bottom of the screen. We create this widget
inside _buildTextComposer():

Widget _buildTextComposer() {
 return new IconTheme(
 data: new IconThemeData(color: Colors.blue),
 child: new Container(
 margin: const EdgeInsets.symmetric(horizontal: 8.0),
 child: new Row(
 children: <Widget>[
 createTextField(),
 createSendButton(),
],
),
),
);
 }

The _buildTextComposer() function returns an IconTheme widget with a Container as
its child. The Container contains a Row widget consisting of a text field and the send button
we created in Steps 1 and 2.

In the next section, we shall be building the ChatMessage widget, which is used to display
the user-chatbot interactions.

Chatbot Using Actions on Google Chapter 3

[75]

Creating ChatMessage
The query from the user and the response from the agent can be thought of as two different
parts of a single component. We will create two different containers for them and then add
them inside a single unit called ChatMessage. This will ensure that each query, along with
its answer, appears in the same order as they were input by the user. We will start by
creating a stateful widget called ChatMessage inside a new dart file called
chat_message.dart. The following image shows the division of a ChatMesage into a
query and a response:

To create the UI of the screen, follow these steps:

Create a container with some text that will display the query entered by the user1.
on the screen:

new Container(
 margin: const EdgeInsets.only(top: 8.0),
 child: new Text(“Here is the query text”,
 style: TextStyle(
 fontSize: 16.0,
 color: Colors.black45,
),
),
)

Chatbot Using Actions on Google Chapter 3

[76]

We start by providing a top margin of 8.0 to the container, which contains a
string to be displayed whenever a query is entered by the user. We will modify
this hardcoded string as a string parameter when _handleSubmitted() is
called. We also modify the fontSize property's margin to 16.0 and set the color
to black45 (a dark gray) to help the user differentiate between the queries and
responses.

Create a container to show the response string:2.

new Container(
 margin: const EdgeInsets.only(top: 8.0),
 child: new Text(“This will be the response string”,
 style: TextStyle(
 fontSize: 16.0
),
),
)

The container with the top margin property of 8.0 contains a hardcoded response
string. This will be modified later so that it can adapt to the responses from the
user.

Wrap the two containers inside a single Column and return it as a container from3.
the build() method that's overridden inside the stateful widget, that
is, ChatMessage:

@override
Widget build(BuildContext context) {
 return new Container(
 margin: const EdgeInsets.symmetric(vertical: 10.0),
 child: new Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 new Container(
 margin: const EdgeInsets.only(top: 8.0),
 child: new Text(“Here is the query text”,
 style: TextStyle(
 fontSize: 16.0,
 color: Colors.black45,
),
),
),
 new Container(
 margin: const EdgeInsets.only(top: 8.0),
 child: new Text(“this will be the response text”,
 style: TextStyle(

Chatbot Using Actions on Google Chapter 3

[77]

 fontSize: 16.0
),
),
)
]
)
);

In Flutter, texts are wrapped inside a Container. Generally, these tend to
overflow from the screens when they get too long to fit in the screen
horizontally. This can be seen as a red mark on the corner of the screen. To
avoid overflowing texts, make sure to wrap the Container with the Text
inside Flexible so that the text can occupy the space available vertically
and adjust itself.

To store and display all the strings (the queries and the responses), we will use a4.
List of the ChatMessage type:

final List<ChatMessage> _messages = <ChatMessage>[];

This list should appear above the TextField that we created earlier to take input
from the user.

To ensure that the fields appear properly in vertical order, we need to wrap them5.
inside a column and return the same from the Widget build() method of
ChatScreen.dart. The three children of the column are a flexible list view, a
divider, and a container with the text field. The UI is created by overriding the
build() method, as follows:

@override
Widget build(BuildContext context) {
 return new Column(
 children: <Widget>[
 new Flexible(
 child: new ListView.builder(
 padding: new EdgeInsets.all(8.0),
 reverse: true,
 itemBuilder: (_, int index) =>
_messages[index],
 itemCount: _messages.length,
),
),
 new Divider(
 height: 1.0,
),
 new Container(

Chatbot Using Actions on Google Chapter 3

[78]

 decoration: new BoxDecoration(
 color: Theme.of(context).cardColor,
),
 child: _buildTextComposer(),
),
],
);
}

The ListView, with the ChatMessages as its children, is made Flexible to
allow it to occupy the entire space available on the screen in the vertical direction
after placing the divider and the container for the text field. It is given padding of
8.0 in all four cardinal directions. Also, the reverse property is made true to
make it scrollable in the direction of bottom to top. The itemBuilder property is
assigned the current value of the index so that it can build the child items. Also, a
value is assigned to itemCount that helps the list view correctly estimate the
maximum scrollable content. The second child of the column creates a divider.
This is a devicePixel thick horizontal line marking the separation of the list
view and the text field. At the bottom-most position of the column, we place the
container with a text field as its child. This is built by making a method call to
_buildTextComposer(), which we defined previously.

Define _handleSubmit() inside the ChatScreen.dart method to correctly6.
respond to the user's "send the message" actions:

void _handleSubmitted(String query) {
 _textController.clear();
 ChatMessage message = new ChatMessage(
 query: query, response: “This is the response string”,
);
 setState(() {
 _messages.insert(0, message);
 });
}

The string parameter of the method contains the value of the query string entered
by the user. This query string, along with a hardcoded response string, is used to
create an instance of ChatMessage and is inserted into the _messages list.

Define a constructor inside ChatMessage so that the parameter values, query,7.
and response are passed and initialized properly:

final String query, response;
ChatMessage({this.query, this.response});

Chatbot Using Actions on Google Chapter 3

[79]

Modify the value of the Text property inside the container for queries and8.
responses to query and response, respectively, in ChatMessages.dart so that
the text that's displayed on the screen is the same as the text that was entered by
the user and the response that was obtained from the action assistant:

//Modifying the query text
child: new Text(query,
 style:.......
)

//Modify the response text
child: new Text(response,
 style:.......
)

After successfully compiling the code we've written so far, the screen should look
as follows:

In the preceding screenshot, you can see the dummy query text that will be written by the
user and the response string from the chatbot.

Chatbot Using Actions on Google Chapter 3

[80]

The whole chat_message.dart file can be viewed on GitHub at https:/
/github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/
master/ Chapter3/ ActionsOnGoogleWithFlutter- master/ lib/ chat_
message. dart.

In the following section, we will integrate the Dialogflow agent so that we have real-time
responses for user queries.

Integrating the Dialogflow agent
Now that we've created a very basic user interface for our application, we will integrate the
Dialogflow agent with the application so that the text that's entered by the user is
responded to in real time by the agent. Follow these steps:

To integrate Dialogflow in the application, we will use the Flutter plugin1.
called flutter_dialogflow.

To explore this plugin, please go to https:/ /pub. dartlang. org/
packages/ flutter_ dialogflow.

Add the dependency to the plugin inside the pubspec.yaml file:

dependencies:
 flutter_dialogflow: ^0.1.0

Next, we need to install the dependency. This can be done either using the $2.
flutter pub get command-line argument or by clicking the option that
appears on the screen. Here, we will use dialogflow_v2 so let's import the
package inside our chat_screen.dart file:

import 'package:flutter_dialogflow/dialogflow_v2.dart';

Add the .json file containing the GCP credentials that you downloaded while3.
creating the Dialogflow agent on the console in the project. For this, create an
assets folder and place the file inside it:

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_message.dart
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow
https://pub.dartlang.org/packages/flutter_dialogflow

Chatbot Using Actions on Google Chapter 3

[81]

Add the path of the file to the assets section of the pubspec.yaml file:4.

flutter:
 uses-material-design: true
 assets:
 - assets/your_file_downloaded_google_cloud.json

Modify _handleSubmitted() so that it can communicate with the agent and5.
get responses to the queries that are entered by the user:

Future _handleSubmitted(String query) async {
 _textController.clear();

 //Communicating with DailogFlow agent
 AuthGoogle authGoogle = await AuthGoogle(fileJson: "assets/gcp-
api.json").build();
 Dialogflow dialogflow = Dialogflow(authGoogle:
authGoogle,language: Language.english);
 AIResponse response = await dialogflow.detectIntent(query);
 String rsp = response.getMessage();
 ChatMessage message = new ChatMessage(
 query: query, response: rsp
);
 setState(() {
 _messages.insert(0, message);
 });
}

First, we create an AuthGoogle instance called authGoogle by specifying the path to the
assets folder. Next, we create an instance of the Dialogflow agent specifying the Google
authentication instance and the language that would be used to communicate with it. Here,
we've chosen English. The response is then fetched using response.getMessage() and is
stored in the rsp string variable, which is then passed while creating the instance of
ChatMessage to ensure that both strings (the input text and the response) are updated
properly on the screen.

Chatbot Using Actions on Google Chapter 3

[82]

The following screenshot shows the application after the preceding modifications were
made to reflect actual queries from the user and responses from the Dialogflow agent:

In the next section, we will be adding audio interaction capabilities to the application.

Adding audio interactions with the assistant
Now, we will add speech recognition to the application so that it can listen to the user's
queries and act accordingly.

Chatbot Using Actions on Google Chapter 3

[83]

Adding the plugin
We will be using the speech_recognition plugin here. Let's add the dependency, as
follows:

Add the dependency to the pubspec.yaml file, like so:1.

dependencies:
 speech_recognition: "^0.3.0"

Get the packages by running the following command-line argument:2.

 flutter packages get

Now, since we are using the microphone of the device, we need to ask for the3.
user's permission. To do this, we need to add the following lines of code:

On iOS, permissions are specified inside infos.plist:

<key>NSMicrophoneUsageDescription</key>
<string>This application needs to access your microphone</string>
<key>NSSpeechRecognitionUsageDescription</key>
<string>This application needs the speech recognition
permission</string>

On Android, the permissions are specified inside the AndroidManifest.xml file:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Now, we are ready to import the package into our chat_screen.dart file so4.
that we can use it:

import 'package:speech_recognition/speech_recognition.dart';

In the next section, we will add methods that will utilize the speech_recognition plugin
to help with audio interactions.

Chatbot Using Actions on Google Chapter 3

[84]

Adding SpeechRecognition
After adding the speech_recognition plugin and importing the package, we are all set to
use it in our application. Let's start by adding methods that will handle speech recognition
inside the application, as follows:

Add and initialize the required variables:1.

SpeechRecognition _speechRecognition;
bool _isAvailable = false;
bool _isListening = false;
String transcription = '';

_speechRecognition is an instance of SpeechRecognition. _isAvailable is
important as it lets the platform (Android/iOS) know that we are interacting with
it and that _isListening will be used to check whether the application is
currently listening to the microphone or not.

Initially, we set the values of both boolean variables to false. transcription is
a string variable that will be used to store the string that was listened to.

Define the activateSpeechRecognizer() method in order to set up the audio2.
operations:

void activateSpeechRecognizer() {
 _speechRecognition = SpeechRecognition();

 _speechRecognition.setAvailabilityHandler((bool result)
 => setState(() => _isAvailable = result));

 _speechRecognition.setRecognitionStartedHandler(()
 => setState(() => _isListening = true));

 _speechRecognition.setRecognitionResultHandler((String text)
 => setState(() => transcription = text));

 _speechRecognition.setRecognitionCompleteHandler(()
 => setState(() => _isListening = false));
}

Chatbot Using Actions on Google Chapter 3

[85]

In the preceding code snippet, we initialized the instance of SpeechRecognition
inside _speechRecognition. Then, we set AvailabilityHandler by calling
the _speechRecognition.setAvailabilityHandler() callback function,
which needs to pass back a boolean result that can be assigned to
_isAvailable. Next, we set RecognitionStartedHandler, which is executed
when the speech recognition service is started and sets _isListening to true to
indicate that the microphone of the mobile device is currently active and is
listening. Then, we set RecognitionResultHandler using
setRecognitionResultHandler, which will give us back the resultant text.
This is stored in the string transcription. Finally, we set
RecognitionCompleteHandler, which sets _isListening to false when the
microphone stops listening.

Expose the initState() function call, activateSpeechRecognizer(), inside3.
it to set up the _speechRecognition instance, as follows:

@override
void initState(){
 super.initState();
 activateSpeechRecognizer();
}

At this point, the application is capable of recognizing audio and converting it into text.
Now, we will enhance the UI so that the user can provide audio as input.

Adding the mic button
Now that we've activated the speech recognizer, we will add a mic icon beside the send
button to allow the user to utilize the option for speech recognition. Follow these steps to
do so:

First, we define the createMicButton() function, which is added as a third1.
child to the Row widget inside _buildTextComposer():

Widget createMicButton() {
 return new Container(
 margin: const EdgeInsets.symmetric(horizontal: 4.0),
 child: new IconButton(
 icon: new Icon(Icons.mic),
 onPressed: () {
 if (_isAvailable && !_isListening) {
 _speechRecognition.recognitionStartedHandler();
 _speechRecognition .listen(locale: "en_US")

Chatbot Using Actions on Google Chapter 3

[86]

 .then((transcription) => print('$transcription'));
 } else if (_isListening) {
 _isListening = false;
 transcription = '';
 _handleSubmitted(transcription);
 _speechRecognition
 .stop()
 .then((result) => setState(() => _isListening =
result));
 }
 }
),
);
 }

In the preceding code snippet, we return a Container with a child, IconButton, that has
the widget as Icons.mic. We provide a dual functionality to the button using
onPressed() so that it can start listening to the user and, when pressed again, can stop the
recording and call the _handleSubmitted() method by passing the recorded string for
interaction with the agent.

First, we check if the microphone is available and is not already listening to the user using
the _isAvailable and _isListening variables. If the condition in the if statement is
true, we set the value of _isListening to true. Then, we start listening by calling
the .listen() method on _speechRecognition. The locale parameter specifies the
language, which is en_US here. The corresponding string is stored in the
transcription variable.

When the mic is pressed for a second time to stop recording, the if condition won't be
satisfied since the value of _isListening is set to true. Now, the else block is executed.
Here, a call to _handleSubmitted() is made by passing the value of the transcript so that
it can interact with the agent, after which the value of _isListening is set to true using
the result:

Chatbot Using Actions on Google Chapter 3

[87]

After successfully compiling all the code and wrapping ChatScreen inside a
MaterialApp instance in the main.dart file, the application will look similar to what you
can see in the preceding screenshot.

The chat_screen.dart file can be viewed at https:/ /github. com/
PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/ master/
Chapter3/ ActionsOnGoogleWithFlutter- master/ lib/ chat_ screen. dart.

The whole project can be accessed at https:/ /github. com/
PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/ master/
Chapter3/ ActionsOnGoogleWithFlutter- master.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter3/ActionsOnGoogleWithFlutter-master/lib/chat_screen.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter3/ActionsOnGoogleWithFlutter-master

Chatbot Using Actions on Google Chapter 3

[88]

Summary
In this chapter, we looked at some of the most common tools that are available for creating
chatbots and then proceeded with an in-depth discussion of Dialogflow to understand the
basic terminology that's used. We understood how the Dialogflow Console works so that
we can create our own Dialogflow agent. We did this by creating an intent that's capable of
extracting the user's name and adding it as an integration to Google Assistant so that it can
respond with lucky numbers.

After deploying the webhook for Cloud Functions for Firebase and creating Actions on
Google release, we created a conversational Flutter application. We learned how to create a
conversation application interface and integrated the Dialogflow agent to facilitate deep
learning models based on the responses of the chatbot. Finally, we used a Flutter plugin to
add speech recognition to the application, which again uses the deep learning-based
models for converting voice into text.

In the next chapter, we'll look into defining and deploying our own custom deep learning
models and integrating them into mobile apps.

4
Recognizing Plant Species

The project will provide an in-depth discussion on how to build a custom TensorFlow Lite
model that is able to perform recognition of plant species from images. The model will run
on mobile devices and will be primarily used to recognize different plant species. The
model uses a deep convolutional neural network (CNN) for image processing developed
on the Keras API of TensorFlow. This chapter also introduces you to the usage of cloud-
based APIs for performing image processing. The Cloud Vision API provided by Google
Cloud Platform (GCP) has been taken as an example.

By the end of this chapter, you'll understand the importance of cloud-based services for
deep learning (DL) applications as well as the benefits of on-device models for performing
offline and instantaneous deep learning tasks on mobile devices.

In this chapter, we will cover the following topics:

Introducing image classification
Understanding the project architecture
Introducing the Cloud Vision API
Configuring the Cloud Vision API for image recognition
Using a software development kit (SDK)/tools to build a model
Creating a custom TensorFlow Lite model for image recognition
Creating a Flutter application
Running image recognition

Recognizing Plant Species Chapter 4

[90]

Technical requirements
The technical prerequisites for this chapter are as follows:

Anaconda with Python 3.6 and higher1.
TensorFlow 2.02.
A GCP account with billing enabled3.
Flutter4.

You can find the code that we present in this chapter at our GitHub repository: https:/ /
github.com/PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/ master/ Chapter4

Introducing image classification
Image classification is a major application domain for artificial intelligence (AI) in the
modern day. We can find instances of image classification in a large number of places all
around us, such as face unlocking for mobile phones, object recognition, optical character
recognition, tagging of people in photos, and several others. While these task seems pretty
simple when you think of it from a human's perspective, it is not as simple when it comes
to computers. Firstly, the system has to recognize objects or people from an image and
draw a bounding box around it/them and proceed to classification. Both these steps are
compute-intensive and hard to perform for machines.

There are several challenges in image processing that researchers are trying to overcome
every day, such as face recognition for people with glasses on or a newly grown beard,
recognizing and tracking multiple people by their faces in crowded places, and character
recognition for new styles of handwriting or entirely new languages. Deep learning has
been a great tool for overcoming these challenges, with its ability to learn several invisible
patterns in images.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter4

Recognizing Plant Species Chapter 4

[91]

A very common approach to deep learning for image processing is to deploy CNNs, which
we have covered in an earlier chapter. To review its concepts and basic working, refer to
Chapter 2, Mobile Vision – Face Detection Using On-Device Models. In this project, we will be
covering how these models can be transformed into condensed models that can run
efficiently on mobile devices.

You might wonder how we are going to build these models. For the sake of simplicity of
syntax, strong support for the TensorFlow API, and a wide community for technical help,
we will be using Python to build these models. While it is quite evident that you would
need a Python runtime on your development machine, for this project, we will be opting
for a quicker and more robust option—Google's Colaboratory environment. Colaboratory
(or Colab, in short) provides ready-to-use runtimes with several important machine
learning (ML) and data science-related modules that are pre-installed on the runtime. Also,
Colaboratory offers support for Graphics Processing Unit (GPU)- and Tensor Processing
Unit (TPU)-enabled runtimes, which makes training deep learning models a piece of a
cake. We will then be deploying our TensorFlow Lite model directly on the device, a good
practice for models that are geared toward working fast and that do not need regular
updates.

Let's begin understanding the project architecture.

Understanding the project architecture
The project we'll be building in this chapter will include the following technologies:

TensorFlow (https:/ /www. tensorflow. org): To build the classification model
using a CNN
TensorFlow Lite (https:/ /www. tensorflow. org/ lite): A format of a condensed
TensorFlow model that can be run efficiently on mobile devices
Flutter (https:/ / flutter. dev): A development library for cross-platform
applications

https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev
https://flutter.dev

Recognizing Plant Species Chapter 4

[92]

You can read about these technologies by visiting the preceding links. A block diagram of
these technologies playing their roles in this project is given in the following screenshot:

Firstly, we will be training a classification model on a dataset of several hundreds of
images. For this, we will be building a TensorFlow model using Python. Then, the model
has to be saved in the format of .tflite, which is the extension for TensorFlow Lite models.
The backend side ends here and we switch to the frontend.

In the frontend, we first build an application using Flutter that can load images from a
gallery that exists on the device. The predictive model residing on Firebase is downloaded
and cached onto the device. The image selected from the gallery is passed to the model,
which predicts the labels containing the name of the plant species being shown in the
image. The storage of the model on the mobile device allows the model to be used even
when offline.

Recognizing Plant Species Chapter 4

[93]

On-device models are a powerful and preferred way of using deep learning on mobile
applications. Several applications on the average person's mobile phone today use on-
device models to bring intelligence to their applications. On-device models are often
compressed forms of models developed on desktops, and may or may not be compiled into
bytecode. Frameworks such as TensorFlow Lite perform special optimizations on .tflite
models so that they are smaller and faster in working than when they are in their non-
mobile form.

But before we start building our custom model for the task, let's take a comprehensive look
at which pre-existing tools or services we have available for performing such tasks.

Introducing the Cloud Vision API
The Cloud Vision API is a popular API from the GCP suite. It has been a benchmark service
for building applications using computer vision. Briefly, computer vision is the ability of
computers to recognize entities in an image, ranging from human faces to roads and
vehicles for autonomous driving tasks. Furthermore, computer vision can be used to
automate tasks that are performed by the human visual system—such as counting the
number of moving vehicles on a road, and observing changes in the physical
environment. Computer vision has found a wide application in the following domains:

Tagging of recognized faces on social media platforms
Extracting text from images
Recognizing objects from images
Autonomous driving vehicles
Medical imagery-based predictions
Reverse image search
Landmark detection
Celebrity recognition

Recognizing Plant Species Chapter 4

[94]

The Cloud Vision API provides easy access to some of the preceding tasks, returning labels
for each recognized entity. For example, we can see that in the following screenshot, the
famous Howrah Bridge, a 200-year-old engineering masterpiece, has been recognized
correctly. Drawing from the information about the landmark, it is predicted that this image
belongs to the city of Kolkata:

As for the labels of the preceding screenshot, the most dominant labels are for bridge and
suspension bridge, which are both relevant to the bridge in consideration. As visible in the
preceding screenshot, it is also possible to check for any recognized text in the image by
clicking on the Text tab in the Response section. To check whether the image is good for
safe searching or has some element of disturbing content in it, click on the Safe Search tab.
For example, the image of getting a call from a famous celebrity is likely a spoof, as shown
in the following screenshot:

Recognizing Plant Species Chapter 4

[95]

Next, we will begin with setting up a GCP account and then move on to create a sample
Flutter application for using the API.

Configuring the Cloud Vision API for image
recognition
In this section, we will be preparing to use the Cloud Vision API, using our Flutter
application. It is mandatory to have a Google Account for this task, which we will assume
that you already have. If not, you can create a Google Account free of charge by signing up
at the following link: https:/ / accounts. google. com/signup

If you have a Google Account at this stage, proceed to the next section.

https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup
https://accounts.google.com/signup

Recognizing Plant Species Chapter 4

[96]

Enabling the Cloud Vision API
To create a GCP Account, head over to the following link: https:/ / cloud. google.
com. After the initial signup, you will be able to see a dashboard resembling the following
screenshot:

In the top-left corner, you'll be able to see the three-bars menu, which brings up a list of all
the services and products available on GCP. The Project name is displayed on the left of the
search bar. Make sure you create and enable billing for the project to progress further with
this chapter. On the right, you can see the user profile information, notifications, and the
Google Cloud Shell invocation icon. The center of the dashboard displays the various logs
and statistics of the running services for the current user.

https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com
https://cloud.google.com

Recognizing Plant Species Chapter 4

[97]

In order to access the Cloud Vision API and to consume it, we first need to enable it for the
project and create an API key for the service. To do so, perform the following steps:

Click on the hamburger menu icon in the top left. This brings up a menu that1.
resembles the one shown in the following screenshot:

Click on the APIs & Services option. This brings up the APIs dashboard, which2.
shows statistics relating to the APIs enabled on the project.
Click on the Enable APIs and Services button. 3.
In the search box that appears, type Cloud Vision API. 4.
Click on the relevant search result. The API provider will be listed as Google. 5.
Once the API page opens up, click on Enable. After this, you should get an icon6.
displaying that indicates that you have enabled this API, and the Enable button
changes to Manage.

In order to be able to use the Cloud Vision API, you must create an API key for this service.
We will do this in the next section.

Recognizing Plant Species Chapter 4

[98]

Creating a Cloud Vision API key
Now, you'll have to create an API key for accessing the API and fetching responses from
it. To do so, perform the following steps:

Open the left navigation menu again and hover over the APIs & Services menu1.
item. A sub-menu appears—click on Credentials.
Click on the Create Credentials button. In the dropdown that appears, choose2.
API key, as shown in the following screenshot:

An API key gets created. You will need this API key while making calls to the3.
Cloud Vision API.

The API key method only works for a few select APIs and services of GCP
and is not very safe. You will need to use the method with Service
Accounts if you want complete access to all APIs and services, and fine-
grained security. To do so, you can read the following article in the official
GCP documentation: https:/ / cloud. google. com/ docs/ authentication/

https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/
https://cloud.google.com/docs/authentication/

Recognizing Plant Species Chapter 4

[99]

With the API key at your disposal, you're now ready to make API calls through the Flutter
app. In the next section, we will develop the predictive model on Colaboratory and save it
as a .tflite model.

Using an SDK/tools to build a model
We covered the preparation for using a pre-existing service-based deep learning model for
the task at hand, to predict the species of plant present in a picture. We will be training an
image classifier model on samples from five different species of flowers. The model will
then try to determine the species to which any image of a flower might belong. However,
such models are usually trained on a generally available dataset, and would not have the
specificity that might be required at times—for example, in a scientific laboratory. Hence,
you must learn how to build your own models for predicting the plant species.

This can be achieved either by training a model completely from scratch or, alternatively,
by extending a previously existing model. The upside to training a model completely from
scratch is that you have complete control over the data being fed into the model, and
whatever learning the model does during training. However, if the model is designed in
such a way, it might suffer from slowness or bias. Extending a pretrained model such as the
MobileNet model by the TensorFlow team comes with the benefit of being blazingly fast. A
downside to the method is that it may not be as accurate as the model built from scratch,
but the time-accuracy trade-off makes the MobileNet model preferable for operating on
mobile devices.

Bias is a very critical problem with ML models. Such a bias—or sampling
bias, in the terminology of statistics, refers to the skew in a dataset in
terms of having an equal number of samples for each category of
classification in the dataset. Such categories then get fewer samples to
train on and hence have a high chance of being omitted from the output
predictions of the model. A good example of a biased model might be a
facial recognition model trained only on the faces of small children. The
model may entirely fail to recognize the faces of adults or old people.

You can learn more about identifying bias in samples in the following
course by Khan Academy: https:/ / www.khanacademy. org/ math/ ap-
statistics/ gathering- data- ap/sampling- observational- studies/ a/
identifying- bias- in- samples- and- surveys

https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys
https://www.khanacademy.org/math/ap-statistics/gathering-data-ap/sampling-observational-studies/a/identifying-bias-in-samples-and-surveys

Recognizing Plant Species Chapter 4

[100]

Thus, in the upcoming sections, we will be using the MobileNet model for its capability to
perform fast on mobile devices. To do so, we will be using the Keras API of TensorFlow.
The language to be used for the task is Python, which, as earlier mentioned, best covers the
capabilities of the TensorFlow framework. We'll assume you have basic working
knowledge of Python for the upcoming section. However, it is important to understand
how TensorFlow and Keras work together in this project.

We will be working in the Colaboratory environment. Let's begin by understanding the
tool.

Introducing Google's Colaboratory
The Colaboratory tool provided by Google allows users to run Notebook-like runtimes on
the computing resources provided by the company, with options to use GPUs and TPUs
free of cost, for as long as the users want. The runtimes come preloaded with several
Python modules relevant to ML and data science. The notebooks in Colaboratory are all
able to access GCP APIs (with the proper configuration in place) directly from within the
code. Each notebook has a temporary storage space of its own that gets destroyed when the
runtime is disconnected. Also, it is possible to sync Colaboratory notebooks with GitHub,
allowing state-of-the-art version control. Generally, Colaboratory notebooks reside on the
Google Drive storage of the user. They can be shared and worked on together in real time
with multiple users.

To open up Colaboratory, head over to the following link: https:/ / colab. research.
google.com

You will be presented with a sample, welcome notebook. Feel free to explore the welcome
notebook, to get a basic understanding of how Colaboratory works. To the left of the
notebook, you will be able to see the navigation tab pills, as shown in the following
screenshot:

https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com

Recognizing Plant Species Chapter 4

[101]

The Table of contents tab displays the headings and sub-headings created in the notebook,
using the Markdown format to declare them. The Code snippets tab provides quick click-
and-insert snippets of code for some common functionalities on Colaboratory. If you are
not very familiar with Colaboratory and wish to perform a specific task, you might want to
search the task here. The third tab, Files, is the storage space allocated to this notebook. The
files stored here are privy to this notebook and do not show up anywhere else. Any files
downloaded by using the script or created by the script are stored here. You can use the
File Manager present on this screen to explore the entire directory structure of the
notebook.

On the right, the main content section is the notebook itself. To become
familiar with using Colaboratory and Notebooks, we highly recommend
reading the following article: https:/ / www.geeksforgeeks. org/ how- to-
use-google- colab/

https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/
https://www.geeksforgeeks.org/how-to-use-google-colab/

Recognizing Plant Species Chapter 4

[102]

Creating a custom TensorFlow Lite model
for image recognition
Once you have had a fair go at Colaboratory, we're all set up to build the custom
TensorFlow Lite model for the task of recognizing plant species. To do so, we will begin
with a new Colaboratory notebook and perform the following steps:

Import the necessary modules for the project. Firstly, we import TensorFlow and1.
NumPy. NumPy will be useful for handling the image arrays, and TensorFlow
will be used to build the CNN. The code to import the modules can be seen in the
following snippet:

!pip install tf-nightly-gpu-2.0-preview
import tensorflow as tf
import numpy as np
import os

Notice the !pip install <package-name> command used on the first line.
This is used to install packages in a running Colaboratory notebook, which, in this
case, installs the latest TensorFlow release that internally implements the Keras
library, which will be used to build the CNN.

You can read more about using the !pip install command, and other
ways to import and install new libraries to your Colaboratory runtime,
here: https:/ /colab. research. google. com/ notebooks/ snippets/
importing_ libraries. ipynb

To run the cell of code, hold the Shift key and press Enter. The download-and-2.
install progress for the TensorFlow release is shown below the cell you execute
your code in. It will take a few seconds, after which you will get a message
similar to Successfully installed <package_name>, <package_name>,
....
Finally, we'll require the os module to handle the files on the filesystem.3.
Download the dataset and extract the images. 4.

https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb
https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb

Recognizing Plant Species Chapter 4

[103]

Now, we'll download the dataset from the Uniform Resource Locator (URL)
available and extract it to a folder named /content/flower_photos, as
illustrated in the following code block:

_URL =
"https://storage.googleapis.com/download.tensorflow.org/example_images/flow
er_photos.tgz"

zip_file = tf.keras.utils.get_file(origin=_URL,
 fname="flower_photos.tgz",
 extract=True, cache_subdir='/content',)

base_dir = os.path.join(os.path.dirname(zip_file), 'flower_photos')

You can explore the contents of the folder extracted by using the Files tab on the
left panel. You'll find the folder contains a further five folders with the following
names—daisy, dandelion, roses, sunflower, and tulips. These will be species of
flowers we will be training our model on, and henceforth referred to as labels.
We'll talk about these folder names again in the next step.

The next step is to set up generators for passing data to TensorFlow-based Keras5.
models.
We'll now be creating two generator functions for feeding data into the Keras6.
neural network. The ImageDataGenerator class of Keras provides two utility
functions to feed data to a Python program, either by reading off the disk using
the flow_from_directory method or by converting images to NumPy arrays,
by using the flow_from_dataframe method. Here, we will be using the
flow_from_directory method as we already have a folder containing the
images.

However, it has to be noted here that it was on purpose that the folder
names containing the images are the same as the label to which the images
belong. This is a design of the folder structure that the
flow_from_directory method demands in order for it to function
properly. You can read more about this method here: https:/ /
theailearner. com/ 2019/ 07/06/ imagedatagenerator- flow_ from_
directory- method/

https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/
https://theailearner.com/2019/07/06/imagedatagenerator-flow_from_directory-method/

Recognizing Plant Species Chapter 4

[104]

This can be summarized with the directory tree shown in the following
screenshot:

Then, we create an object of the ImageDataGenerator class and use it to create a7.
generator for the training dataset, as shown in the following code block:

IMAGE_SIZE = 224
BATCH_SIZE = 64

datagen = tf.keras.preprocessing.image.ImageDataGenerator(
 rescale=1./255,
 validation_split=0.2)

train_generator = datagen.flow_from_directory(
 base_dir,
 target_size=(IMAGE_SIZE, IMAGE_SIZE),
 batch_size=BATCH_SIZE,
 subset='training')

The datagen object takes two parameters—the rescale and the
validation_split. The rescale parameter tells the object to convert all black-
and-white images to a range of 0 to 255, as is on the Red, Green, and Blue (RGB)
scale since the MobileNet model has been trained on RGB images. The
validation_split parameter allocates 20% (0.2 x 100) of the images from the
dataset as the validation set. However, we'll need to create a generator for the
validation set as well, just as we have done for the training set.

The training set generator, train_generator, takes the target_size and
batch_size parameters, along with other parameters. The target_size
parameter sets the dimension of the image to be generated. This is made to match
the dimensions of the images in the MobileNet model. The batch_size
parameter indicates how many images should be generated in a single batch.

Recognizing Plant Species Chapter 4

[105]

For the validation set, we have the generator, as shown in the following code8.
block:

val_generator = datagen.flow_from_directory(
 base_dir,
 target_size=(IMAGE_SIZE, IMAGE_SIZE),
 batch_size=BATCH_SIZE,
 subset='validation')

Let's take a quick look at the shape of the data being generated by these9.
generators, as follows:

for image_batch, label_batch in train_generator:
 break
image_batch.shape, label_batch.shape

This produces the following output: ((64, 224, 224, 3), (64, 5)),
meaning that in the first batch of train_generator, 64 images of dimensions
224 x 224 x 3 were created, along with 64 labels of 5 one-hot encoding formatting.

The encoding index assigned to each label can be obtained by running the10.
following code:

print(train_generator.class_indices)

This produces the following output: {'daisy': 0, 'dandelion': 1,
'roses': 2, 'sunflowers': 3, 'tulips': 4} . Notice the alphabetical
order of the label names.

Now, we'll save these labels for future usage to deploy the model in the Flutter11.
application, as follows:

labels = '\n'.join(sorted(train_generator.class_indices.keys()))

with open('labels.txt', 'w') as f:
 f.write(labels)

Recognizing Plant Species Chapter 4

[106]

Next, we will create a base model and freeze layers. In this step, we'll first create12.
a base model and then freeze all the layers of the model except the last one, like
this:

IMG_SHAPE = (IMAGE_SIZE, IMAGE_SIZE, 3)

base_model =
tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
 include_top=False,
 weights='imagenet')

The base model is created by importing the MobileNetV2 model provided by the
TensorFlow team. The input shape is set to (64, 64, 3), and the weights from the
ImageNet dataset are imported. The model might not exist on your system, in
which case it will be downloaded from an external resource.

Then, we freeze the base model so that the weights in the MobileNetV2 model13.
remain unaffected by future training, as follows:

base_model.trainable = False

Now, we will create an extended CNN, and extend the base model to add14.
another layer after the base model layers, like this:

model = tf.keras.Sequential([
 base_model,
 tf.keras.layers.Conv2D(32, 3, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.GlobalAveragePooling2D(),
 tf.keras.layers.Dense(5, activation='softmax')
])

We created a sequential model extending the base model, which essentially
means that data is passed between the successive layers unidirectionally, one
layer at a time. We also added a 2D convolutional layer with the relu activation
function, and then a Dropout layer followed by a Pooling layer. Finally, an
output layer is added with the softmax activation.

Then, the model has to be compiled in order to perform training on it, as follows:15.

model.compile(optimizer=tf.keras.optimizers.Adam(),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

Recognizing Plant Species Chapter 4

[107]

We set the loss as categorical cross-entropy and the model evaluation metric as
the accuracy of prediction. Softmax has been found to perform best with
categorical cross-entropy as the loss function, hence the choice.

Train and save the model. We're finally at one of the most exciting steps in16.
ML—training. Run the following code:

epochs = 10

history = model.fit(train_generator,
 epochs=epochs,
 validation_data=val_generator)

The model is trained for 10 epochs, which means every sample is thrown at the
neural network at least 10 times. Notice the use of train_generator and
val_generator in this function. The training takes quite some time on this, even
with 12GB+ of RAM and TPU acceleration available (which would be an overkill
on any personal, mid-end device). You'll be able to observe the training logs
below the cell that runs the preceding code.

We can then save the model, after which we can proceed to convert the saved17.
model file, as follows:

saved_model_dir = ''
tf.saved_model.save(model, saved_model_dir)

Convert and download the model file to TensorFlow Lite. We can now convert18.
the saved model file using the following code. This saves the model as
a model.tflite file, like this:

converter =
tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()

with open('model.tflite', 'wb') as f:
 f.write(tflite_model)

We now need to download this file, for embedding it into the Flutter application19.
that we build. We can do so using the following code:

from google.colab import files
files.download('model.tflite')
files.download('labels.txt')

Recognizing Plant Species Chapter 4

[108]

Notice that we use the files module from the google.colab library. We also
downloaded the labels.txt file that we had created in Step 11.

We are now ready to proceed with creating the Flutter application to demonstrate the
Cloud Vision API usage, along with the usage of the embedded TensorFlow Lite model.

Creating a Flutter application
After successfully creating the TensorFlow Lite model for recognizing a wide variety of
plant species, let's now create a Flutter application for running the TensorFlow Lite model
on mobile devices. The application will have two screens. The first screen will contain two
buttons for letting the user choose between two different models—the Cloud Vision API
and the TensorFlow Lite model—that could be used to make predictions on any chosen
image. The second screen will contain a Floating Action Button (FAB) to enable the user to
choose images from the device's gallery, an image view to display the image chosen by the
user, and a text to display the predictions using the chosen model.

The following screenshot illustrates the flow of the application:

Now, let's look at the steps to build the application.

Recognizing Plant Species Chapter 4

[109]

Choosing between two different models
Let's start by creating the first screen of the application. The first screen will consist of two
different buttons, to let the user choose between the Cloud Vision API and the TensorFlow
Lite model.

First of all, we create a new choose_a_model.dart file that will contain a ChooseModel
stateful widget. The file will contain the code to create the first screen of the application,
containing a column with some text and two raised buttons, as shown in the following
screenshot:

Recognizing Plant Species Chapter 4

[110]

The steps to create the first screen of the application are as follows:

First of all, we will define some global string variables that will be used later in1.
creating buttons for choosing the models, and saving the model chosen by the
user, as follows:

var str_cloud = 'Cloud Vision API';
var str_tensor = 'TensorFlow Lite';

Now, let's define a method to create a simple Text widget, as follows:2.

Widget buildRowTitle(BuildContext context, String title) {
 return Center(
 child: Padding(
 padding: EdgeInsets.symmetric(horizontal: 8.0,
vertical: 16.0),
 child: Text(
 title,
 style: Theme.of(context).textTheme.headline,
),
),
);
}

The method returns a widget that is aligned to the center and contains some text
with the value of title passed as an argument with a Choose a Model string
themed to a headline. The text is also provided with some horizontal and vertical
padding, using the padding property with EdgeInsets.symmetric().

Next, we will define a createButton() method for creating buttons, as follows:3.

Widget createButton(String chosenModel) {
 return (RaisedButton(
 color: Colors.blue,
 textColor: Colors.white,
 splashColor: Colors.blueGrey,
 child: new Text(chosenModel),
 onPressed: () {
 var a = (chosenModel == str_cloud ? 0 : 1);
 Navigator.push(
 context,
 new MaterialPageRoute(
 builder: (context) =>
PlantSpeciesRecognition(a)
),
);
 }

Recognizing Plant Species Chapter 4

[111]

)
);
}

The method returns a RaisedButton method with a color of blue, a
textColor value of white, and a splashColor value of blueGrey. The button
has a Text child that is built using the value passed in chosenModel. If the
button for running the Cloud Vision API was clicked by the user, the value of
chosenModel will be the Cloud Vision API, and if the button for TensorFlow Lite
was clicked, it will have the value TensorFlow Lite.

When the button is pressed, we first check the value in chosenModel. If it is the
same as str_cloud—that is, the Cloud Vision API—the value assigned to
variable a is 0; otherwise, the value assigned to variable a is 1. The value is
passed along with migration to PlantSpeciesRecognition using
Navigator.push(), which is described in later sections.

Finally, we create the appBar and body of the first screen and return the4.
Scaffold from the build() method, like this:

@override
Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 centerTitle: true,
 title: Text('Plant Species Recognition'),
),
 body: SingleChildScrollView(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 buildRowTitle(context, 'Choose Model'),
 createButton(str_cloud),
 createButton(str_tensor),
],
)
)
);
}

The appBar contains a title of Plant Species Recognition that is placed at the center.
The body of the Scaffold is a column with some text and two buttons with values of
str_cloud and str_tensor, aligned to the center.

Recognizing Plant Species Chapter 4

[112]

Creating the second screen
When a model is chosen by the user, the application migrates to a second screen that will
let the user select an image from the device's local storage and run the chosen model on it to
make predictions. We start here by creating a new file,
plant_species_recognition.dart, containing a PlantSpeciesRecognition stateful
widget.

Creating the user interface
We will start by creating a new file, PlantSpeciesRecognition.dart, containing a
stateful widget named PlantSpeciesRecognition, and we'll override its build()
method for placing the user interface (UI) components of the application:

Let's create a Scaffold with an FAB and AppBar with the application title that1.
will be returned from the build() method. The FAB will let the user choose an
image from the device's gallery to predict the species of the plant contained in the
image, as follows:

return Scaffold(
 appBar: AppBar(
 title: const Text('Plant Species Recognition'),
),
 floatingActionButton: FloatingActionButton(
 onPressed: chooseImageGallery,
 tooltip: 'Pick Image',
 child: Icon(Icons.image),
),
);

In the preceding code snippet, the AppBar will contain Plant Species
Recognition text. This will be displayed as the title of the application on the
application bar placed on the top of the screen.

In Flutter, const keywords help in freezing the state of an object. The
complete state of an object described as const is determined during the
compile time of the application itself and remains immutable. Also, the
keyword is useful for small memory optimizations when used with
constructors such as Text(). Adding a second Text() constructor in the
code reuses the memory that was allocated for the
first Text() constructor, thus reusing the memory space and making the
application faster.

Recognizing Plant Species Chapter 4

[113]

Next, we add the floatingActionButton property by specifying
the FloatingActionButton class and passing in the needed parameters.

FloatingActionButtons are circular buttons that hover on the top of
the contents on the screen. One screen, in general, should contain one FAB
that resides on the bottom-right corner and is unaffected by the scrolling
of the contents.

onPressed is added to chooseImageGallery that will be called when the button is
pressed. Next, we add the tooltip property with a String value of 'Pick Image',
describing the action that the button will perform. Finally, we add Icon(Icons.image) as
child to place the material icon image on the top of the FAB.

Adding the functionality
Now, let's add the functionality to allow the user to choose an image from the device's
gallery. We will do this by using the image_picker plugin, and the whole of the code will
be placed inside the chooseImageGallery method, as follows:

First, add the dependency to the pubspec.yaml file, specifying the name and the1.
version number, like this:

dev_dependencies:
flutter_test:
sdk: flutter
image_picker: ^0.6.0

For a detailed discussion on pub dependencies, refer to Chapter 2, Mobile
Vision – Face Detection Using On-Device Models. Be sure to run the Flutter
packages to include the dependency in the project. To read more about
the image_picker plugin, visit https:/ /github. com/ flutter/ plugins/
tree/ master/ packages/ image_ picker.

Import the library in PlantSpeciesRecognition.dart, as follows:2.

import 'package:image_picker/image_picker.dart';

At this point, we declare the following two global variables inside3.
plant_species_recognition.dart:

File_image: To store the image file chosen from the gallery
bool _busy (with an initial value of false): A flag variable to handle UI
operations smoothly

https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker
https://github.com/flutter/plugins/tree/master/packages/image_picker

Recognizing Plant Species Chapter 4

[114]

Now, let's define the chooseImageGallery() method that will be called when4.
the FloatingActionButton button is pressed, as follows:

Future chooseImageGallery() async {
 var image = await ImagePicker.pickImage(source:
ImageSource.gallery);
 if (image == null) return;
 setState(() {
 _busy = true;
 });
}

Here, we use the ImagePicker.pickImage() method to get the image from the gallery by
mentioning it as the source. We store the returned value in the variable image. If the value
returned from the call is null, we return the call since no further operations can be
performed on a null value. Otherwise, change the value of _busy to true to indicate that
further operations on the image are going on.

setState() is a synchronous callback to notify the framework that the
internal state of the object has been changed. This change might actually
affect the UI of the application and, thus, the framework will need to
schedule a build for the State object. Refer to the following link for
further discussion: https:/ / api. flutter. dev/ flutter/ widgets/ State/
setState. html

At this point, the application compiles successfully, and pressing the FAB launches the
gallery from which an image can be chosen. However, the chosen image is not displayed on
the screen, so now, let's work on this.

Displaying the chosen image on the screen
Now, let's add a widget to display the image selected in the previous section, as follows:

We will use a list of widgets, the image that was chosen from the gallery, and the1.
prediction results, stacked or overlaid over each other to be displayed on the
screen. Therefore, we begin by declaring an empty list of widgets that would
contain all the children of the stack. Also, we declare a size instance to query the
size of the window containing the application using the MediaQuery class, as
follows:

List<Widget> stackChildren = [];
Size size = MediaQuery.of(context).size;

https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html

Recognizing Plant Species Chapter 4

[115]

Now, the image is added as the first child of the stack, like this:2.

stackChildren.add(Positioned(
 top: 0.0,
 left: 0.0,
 width: size.width,
 child: _image == null ?Text('No Image Selected') :
Image.file(_image),
));

The Positioned class is used to control the position of a child of the stack; here,
by specifying the values of the top, left, and width properties. The top and
left values specify the distance of the top and left edge of the child from the top
and left edge of the stack, respectively, which here is 0—that is, the top-left corner
of the device's screen. The width value specifies the width of the child—here, the
width of the window containing the application, which means the image will
occupy the whole width.

Next, we will add the child, which would be a text saying that no image is3.
selected if the value of _image is null; otherwise, it contains the image selected
by the user.

To display the stack on the screen, we add the stackChildren list as the body of
the Scaffold returned by the build() method, as follows:

return Scaffold(
 appBar: AppBar(
 title: const Text('Plant Species Recognition'),
),
 //Add stackChildren in body
 body: Stack(
 children: stackChildren,
),
 floatingActionButton: FloatingActionButton(
 onPressed: chooseImageGallery,
 tooltip: 'Pick Image',
 child: Icon(Icons.image),
),
);

In the previous code, we pass stackChildren inside Stack(), to create an
overlaid structure of all the widgets contained inside the list.

Recognizing Plant Species Chapter 4

[116]

Compiling the code at this point would produce the following result: 4.

At this point, clicking on the FAB will launch the gallery, and the chosen image is displayed
on the screen.

Next, we will load the TensorFlow Lite model on the device, and make HTTP requests to
the Cloud Vision API to have a recognition result on the selected image.

Running image recognition
Now, the image chosen from the gallery can be used as an input for the two prediction
methods of the Cloud Vision API and TensorFlow Lite model. Next, let's define methods
for running both of them.

Recognizing Plant Species Chapter 4

[117]

Using the Cloud Vision API
In this section, we simply define a visionAPICall method that is used to make an http
Post request to the CloudVision API, passing in the request string encoded as json, which
returns a json response that is parsed to get the values from the desired labels:

First of all, we define an http plugin dependency in the pubspec.yaml file, as1.
follows:

http: ^0.12.0+2

Import the plugin in PlantSpeciesRecognition.dart to assist in making2.
http requests, like this:

import 'package:http/http.dart' as http;

Now, we define the method to create a request URL and make3.
an http POST request, as follows:

List<int> imageBytes = _image.readAsBytesSync();
String base64Image = base64Encode(imageBytes);

To be able to send the image file for analysis along with the HTTP post request,
we will need to convert the png file to Base64 format—that is, into a string
containing just the American Standard Code for Information Exchange (ASCII)
values. First, we use readAsByteSync() to read the content of _image as a list of
bytes and store it in imageBytes. Then, we encode this list in Base64 format by
passing it the imageBytes list as an argument for base64Encode.

Next, we create the request string, which will have the following format:4.

var request_str = {
 "requests":[
 {
 "image":{
 "content": "$base64Image"
 },
 "features":[
 {
 "type":"LABEL_DETECTION",
 "maxResults":1
 }
]
 }
]
};

Recognizing Plant Species Chapter 4

[118]

While the entire string will be hardcoded, the value of the content key will vary
depending on the image that is chosen by the user, and its base64-encoded
format.

We store the URL that needs to be called in the url variable, like this: 5.

var url =
'https://vision.googleapis.com/v1/images:annotate?key=API_KEY;

Be sure to replace API_KEY with your generated key.

Make an HTTP post request using the http.post() method, passing in the url6.
and the response string, like this:

var response = await http.post(url, body:
json.encode(request_str));
print('Response status: ${response.statusCode}');
print('Response body: ${response.body}');

We also check the status code using response.statusCode, which should have
a value of 200 if the request was successful.

Since the response from the server is in JSON format, we use json.decode() to7.
decode it, and, further, parse it to store the desired values in the str variable, as
follows:

var responseJson = json.decode(response.body);
str =
'${responseJson["responses"][0]["labelAnnotations"][0]["description
"]}:
${responseJson["responses"][0]["labelAnnotations"][0]["score"].toSt
ringAsFixed(3)}';

The whole visionAPICall() method, after putting everything together, will8.
look like this:

Future visionAPICall() async {
List<int> imageBytes = _image.readAsBytesSync();
print(imageBytes);
String base64Image = base64Encode(imageBytes);
var request_str = {
 "requests":[
 {
 "image":{
 "content": "$base64Image"
 },
 "features":[

Recognizing Plant Species Chapter 4

[119]

 {
 "type":"LABEL_DETECTION",
 "maxResults":1
 }
]
 }
]
};
var url =
'https://vision.googleapis.com/v1/images:annotate?key=AIzaSyDJFPQO3
N3h78CLOFTBdkPIN3aE9_ZYHy0';

var response = await http.post(url, body:
json.encode(request_str));
print('Response status: ${response.statusCode}');
print('Response body: ${response.body}');

var responseJson = json.decode(response.body);
str =
'${responseJson["responses"][0]["labelAnnotations"][0]["description
"]}:
${responseJson["responses"][0]["labelAnnotations"][0]["score"].toSt
ringAsFixed(3)}';
}

In the next section, we will cover the steps to use an on-device TensorFlow Lite model.

Using an on-device TensorFlow Lite model
Now, let's add functionality for the second choice of the user—that is, analyzing the chosen
image using a TensorFlow Lite model. Here, we will be using our previously created
TensorFlow Lite model. The following steps discuss in detail how to use an on-device
TensorFlow Lite model:

We will start by adding the tflite dependency in the pubspec.yaml file, like1.
this:

dev_dependencies:
flutter_test:
 sdk: flutter
image_picker: ^0.6.0
//Adding tflite dependency
tflite: ^0.0.5

Recognizing Plant Species Chapter 4

[120]

Next, we configure aaptOptions in Android. Add the following lines of code to2.
the android/app/build.gradle file, inside the android block:

aaptOptions {
 noCompress 'tflite'
 noCompress 'lite'
 }

The preceding code snippet makes sure that the tflite files are not stored in
compressed form in the Android Package Kit (APK).

Next, we need to include the already saved model.tflite and labels.txt3.
files in the assests folder, as shown in the following screenshot:

Specify the paths to the files inside the pubspec.yaml file, as follows:4.

flutter:
uses-material-design: true
//Specify the paths to the respective files
assets:
 - assets/model.tflite
 - assets/labels.txt

Now, we are all set to start with loading and running our first TensorFlow Lite5.
model on the device. We begin by importing the tflite.dart file into
PlantSpeciesRecognition.dart, as follows:

import 'package:tflite/tflite.dart';

To carry out all the related tasks, we define the analyzeTFLite() method.6.
Here, we start by loading the model, passing the model.tflite file and
the labels.txt file as inputs to the model and labels parameters in
Tflite.loadModel().

Recognizing Plant Species Chapter 4

[121]

We store the resulting output in the res string variable that will contain the
success value if the model was loaded successfully, as follows:

String res = await Tflite.loadModel(
 model: "assets/model.tflite",
 labels: "assets/labels.txt",
 numThreads: 1 // defaults to 1
);
print('Model Loaded: $res');

We now run the model on the image using the Tflite.runModelOnImage()7.
method and passing the path of the selected image stored inside the device. We
store the result in the recognitions variable, like this:

var recognitions = await Tflite.runModelOnImage(
 path: _image.path
);
setState(() {
 _recognitions = recognitions;
});

Once the model has run successfully on the image and the results have been8.
stored in the recognitions local variable, we create a _recognitions global
list and set its state to the value stored in recognitions so that the UI can be
updated properly with the results.

The whole analyzeTfLite() method, after putting everything together, will
look like this:

Future analyzeTFLite() async {
 String res = await Tflite.loadModel(
 model: "assets/model.tflite",
 labels: "assets/labels.txt",
 numThreads: 1 // defaults to 1
);
 print('Model Loaded: $res');
 var recognitions = await Tflite.runModelOnImage(
 path: _image.path
);
 setState(() {
 _recognitions = recognitions;
 });
 print('Recognition Result: $_recognitions');
}

Recognizing Plant Species Chapter 4

[122]

Both of the preceding defined methods, visionAPICall() and
analyzeTFLite(), are called from chooseImageGallery(), after an image is
successfully chosen and stored, depending upon the button clicked by the user,
which is decided upon by the value passed in the PlantSpeciesRecognition
constructor: 0 for the Cloud Vision API, and 1 for TensorFlow Lite.

The modified chooseImagGallery() method will look like this:

Future chooseImageGallery() async {
 var image = await ImagePicker.pickImage(source:
ImageSource.gallery);
 if (image == null) return;
 setState(() {
 _busy = true;
 _image = image;
 });

 //Deciding on which method should be chosen for image analysis
 if(widget.modelType == 0)
 await visionAPICall();
 else if(widget.modelType == 1)
 await analyzeTFLite();
 setState(() {
 _image = image;
 _busy = false;
 });
}

The await keyword is mentioned before the method call to make sure all of the operations
take place asynchronously. Here, we also set the value of _image to image and _busy to
false to indicate that all the processing has been completed and the UI can now be
updated.

Updating the UI with results
In the previous section, Creating the user interface, we updated the UI by adding an extra
child to stackChildren, to show the image selected by the user. Now, we will add
another child to the stack to show the result of the image analysis, as follows:

First, we will add the results of the Cloud Vision API, as follows:1.

stackChildren.add(Center (
 child: Column(
 children: <Widget>[

Recognizing Plant Species Chapter 4

[123]

 str != null?
 new Text(str,
 style: TextStyle(
 color: Colors.black,
 fontSize: 20.0,
 background: Paint()
 ..color = Colors.white,
)
): new Text('No Results')
],
)
)
);

Recall that the JSON response of the request was already parsed, formatted, and
stored in the str variable. Here, we have used the value of str to create a Text
with a specified color and background. We then added this Text as a child to a
column and aligned the Text to display at the center of the screen. Finally, we
wrapped the entire format around stackChildren.add(), to add it to the stack
of UI elements.

Next, we will add the results of TensorFlow Lite, as follows:2.

stackChildren.add(Center(
child: Column(
 children: _recognitions != null
 ? _recognitions.map((res) {
 return Text(
 "${res["label"]}: ${res["confidence"].toStringAsFixed(3)}",
 style: TextStyle(
 color: Colors.black,
 fontSize: 20.0,
 background: Paint()
 ..color = Colors.white,
),
);
 }).toList() : [],
),
));

The result of the TensorFlow Lite model stored in the _recognitions list is
iterated element by element and is mapped to a list specified using .map(). Each
element of the list is further transformed to a Text and is added as a column's
child aligned to the center of the screen.

Recognizing Plant Species Chapter 4

[124]

Also, note that either output from the Cloud Vision API or the TensorFlow Lite
model needs to be added to the stack. To ensure this, we wrap the preceding code
inside an if-else block such that the output of the former is added if the value
passed in the constructor—that is, modelChosen—is 0, and the latter is added if
the value is 1.

Finally, running the Cloud Vision API on various sets of images would give3.
different outputs. Some of the examples are shown in the following screenshot:

Recognizing Plant Species Chapter 4

[125]

The recognitions differ when the same set of images is used with the TensorFlow Lite
model. Some examples are shown in the following screenshot:

In the previous screenshot, we can see that the species of the flowers for which the images
are loaded into the gallery are correctly identified.

Recognizing Plant Species Chapter 4

[126]

Summary
In this chapter, we covered how we can use image processing using a popular deep-
learning-based API service. We also discussed how we can apply the same with a custom
trained model, by extending a previously created base model. While we did not explicitly
mention it, the extension of the base model was a part of the process termed transfer
learning (TL), where models trained on a certain dataset are imported into and used in a
completely different scenario, with little or minimal fine-tuning.

Furthermore, the chapter covered why and when TensorFlow Lite is a good candidate for
building a model, and how Flutter can be used for applying the same on the device model,
which runs offline and is very fast. This chapter sets a milestone, with the introduction of
Python and TensorFlow into the project, both of which will be used extensively in the
upcoming chapters.

In the next chapter, we'll be covering a very exciting domain of computer science—namely,
augmented reality—and see the application of deep learning in the real world.

5
Generating Live Captions from

a Camera Feed
As humans, we see a million objects around us every day, in different scenarios. For
humans, describing a scene is usually a trivial task: something we do without even taking a
noticeable amount of time to think. But it is a huge task for machines to comprehend the
elements and scenarios presented to it in visual media such as images or videos. However,
for several applications of artificial intelligence (AI), it is useful to have the capability of
comprehending such images in the computer system. For example, it would be of immense
help to visually impaired people if we could devise machines that could translate their
surroundings into audio in real time. Also, there has been a constant effort from researchers
to generate captions for images and videos in real time, so as to improve the accessibility of
content presented on websites and apps.

This chapter presents a method of using a camera feed for generating natural language
captions in real time. In this project, you will create a camera application that uses a
customized pre-trained model stored on the device. The model uses a deep Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) for caption generation.

We will cover the following topics in this chapter:

Designing the project architecture
Understanding an image caption generator
Understanding the camera plugin
Creating a camera application
Generating image captions from the camera feed
Creating the material app

Let's begin by discussing the architecture that we will follow for this project.

Generating Live Captions from a Camera Feed Chapter 5

[128]

Designing the project architecture
In this project, we will be building a mobile app, which, when pointed at any scenery, will
be able to create captions describing that scenery. Such an app is highly beneficial for
people with visual defects, as it can be used both as an assistive technology on the web and
as a day-to-day app if paired with a voice interface such as Alexa or Google Home. The app
will be calling a hosted API that will produce captions for any given image passed to it. The
API returns three best possible captions for the image, and the app then displays them right
below the camera view in the app.

From a bird's-eye view, the project architecture can be illustrated by means of the following
diagram:

The input will be the camera feed obtained in a smartphone, which is sent to an image
caption generation model hosted as a web API. The model is hosted as a Docker container
on Red Hat OpenShift. The image caption generation model returns a caption for the
image, which is then displayed to the user.

With a clear idea about how we'll be building the app, let's first talk about the problems
with image captioning, and how we can solve them.

Understanding an image caption generator
A very popular domain of computer science is that of image processing. It deals with the
manipulation of images and the various methods by which we can extract information from
them. Another popular domain, Natural Language Processing (NLP), deals with how we
can make machines that can understand and produce meaningful natural languages. Image
captioning defines a mixture of the two topics, which attempts to first extract the
information of objects appearing in any image and then to generate a caption describing the
objects.

Generating Live Captions from a Camera Feed Chapter 5

[129]

The caption should be generated in such a way that it is a meaningful string of words and is
expressed in the form of a natural language sentence.

Consider the following image:

The objects that can be detected in the image are as follows: spoon, glass, coffee, and table.

However, do we have answers to the following questions?

Does the glass contain the coffee or the spoon, or is it empty?1.
Is the table above or below the glass?2.
Is the spoon above the table or below it?3.

We realize that, in order to answer the preceding questions, we need to use sentences such
as the following:

The glass contains coffee.1.
The glass is kept on the table.2.
The spoon is kept on the table.3.

Generating Live Captions from a Camera Feed Chapter 5

[130]

Hence, instead of simply recognizing the items in the image, if we attempt to create a
caption around it, we also need to establish some positional and characteristical relations
between the visible items. This will help us arrive at a good caption for the image, which
could be something such as a glass of coffee on a table with a spoon lying beside it. In
image caption generation algorithms, we try to create such captions from images.

However, a single caption may not always be enough to describe the scenery, and we might
have to choose between two equally possible captions, as illustrated in the following
screenshot:

Photo by Allef Vinicius on Unsplash

How do you describe the image in the preceding screenshot?

You could come up with any of the following captions:

Two trees with cloudy sky in the background.1.
A chair and a guitar kept on the ground.2.

This opens up the question of what, according to a user, is important in any image. While
there are recent methods devised to handle such situations, such as the Attention
Mechanism method, we will not be discussing these in depth in this chapter.

Generating Live Captions from a Camera Feed Chapter 5

[131]

You can check out a very cool demo of an image caption system created
by Microsoft at CaptionBot at https:/ /captionbot. ai.

Let's now define the dataset we will be using to create our image captioning model.

Understanding the dataset
As expected, we need a large collection of general-purpose images, along with possible
captions listed for them. We have shown in the previous section, Understanding an image
caption generator, that a single image can have multiple captions without any of them having
to be wrong. Hence, in this project, we will be working on the Flickr8k dataset. Besides this,
we will also require the GloVE embeddings created by Jeffrey Pennington, Richard Socher,
and Christopher D. Manning. In short, GloVE tells us which words are likely to follow after
any given word, helping us form meaningful sentences from a set of disjoint words.

You can read more about GloVE embeddings, and the paper describing
them, at https:/ /nlp. stanford. edu/ projects/ glove/ .

The Flickr8k dataset contains 8,000 samples of images, along with five possible captions for
each of the images. There are other datasets available for the task, such as the Flickr30k
dataset, with 30,000 samples, or the Microsoft COCO dataset, with 180,000 images. While
using larger databases is expected to produce better results, for the sake of being able to
train the model on an average machine, we will not be using them. However, in the event
of availability of high-grade computing power, you can definitely try building your model
around the larger datasets.

You can download the Flickr8k dataset by requesting it in this form
provided by the University of Illinois at Urbana-Champaign: https:/ /
forms. illinois. edu/ sec/ 1713398.

When you download the dataset, you'll be able to see the following folder structure:

Flickr8k/
 - dataset
 - images
 - 8091 images
 - text
 - Flickr8k.token.txt

https://www.captionbot.ai/
https://www.captionbot.ai/
https://www.captionbot.ai/
https://www.captionbot.ai/
https://www.captionbot.ai/
https://www.captionbot.ai/
https://www.captionbot.ai/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398
https://forms.illinois.edu/sec/1713398

Generating Live Captions from a Camera Feed Chapter 5

[132]

 - Flickr8k.lemma.txt
 - Flickr_8k.trainImages.txt
 - Flickr_8k.devImages.txt
 - Flickr_8k.testImages.txt
 - ExpertAnnotations.txt
 - CrowdFlowerAnnotations.txt

Out of the available text files, the one of interest to us is the Flickr8k.token.txt, which
contains the raw captions for each image in the images folder under the dataset
directory.

The captions are present in the following format:

1007129816_e794419615.jpg#0 A man in an orange hat staring at something .
1007129816_e794419615.jpg#1 A man wears an orange hat and glasses .
1007129816_e794419615.jpg#2 A man with gauges and glasses is wearing a
Blitz hat .
1007129816_e794419615.jpg#3 A man with glasses is wearing a beer can
crocheted hat .
1007129816_e794419615.jpg#4 The man with pierced ears is wearing glasses
and an orange hat .

On inspection, we can observe that each row in the preceding sample contains the
following parts:

Image_Filename#Caption_Number Caption

Thus, by going through each row in this file from the images present in the
dataset/images folder, we can map the captions to each image.

Let's now begin working on the image caption generator code.

Building an image caption generation model
In this section, we will be looking at the code that will help us create a pipeline to convert
images thrown at it into captions. We have broken this section down into four parts, as
follows:

Initializing the caption dataset1.
Preparing the caption dataset2.
Training3.
Testing4.

Let's begin with project initialization.

Generating Live Captions from a Camera Feed Chapter 5

[133]

Initializing the caption dataset
In the steps presented in this section, we'll be importing the required modules for the
project and loading the dataset into the memory. Let's begin with importing the required
modules, as follows:

Import the necessary libraries as follows:1.

import numpy as np
import pandas as pd

import nltk
from nltk.corpus import stopwords

import re
import string
import pickle

import matplotlib.pyplot as plt

%matplotlib inline

You can see that there are a number of modules and sub-modules we'll be using
in this project. They're all important at some point in the operation of the model
and so are the helper modules, in essence. We will import more modules specific
to building the model in the next step.

Import Keras and the sub-modules, as follows:2.

import keras
from keras.layers.merge import add
from keras.preprocessing import image
from keras.utils import to_categorical
from keras.models import Model, load_model
from keras.applications.vgg16 import VGG16
from keras.preprocessing.sequence import pad_sequences
from keras.layers import Input, Dense, Dropout, Embedding, LSTM
from keras.applications.resnet50 import ResNet50, preprocess_input,
decode_predictions

Generating Live Captions from a Camera Feed Chapter 5

[134]

We imported the Keras module, along with several other sub-modules and
methods, to help us with building the deep learning model quickly. Keras is one
of the most popular deep learning libraries available and is usable with several
other frameworks besides TensorFlow, such as Theano and PyTorch.

Load captions—in this step, we will load all the captions present in the3.
Flickr8k.token.txt file into a single captions list, like this:

caption_file = "./data/Flickr8k/text/Flickr8k.token.txt"

captions = []

with open(caption_file) as f:
 captions = f.readlines()

captions = [x.strip() for x in captions]

Once we have loaded all the captions from the file, let's see what they contain, as
follows:

captions[:5]

As expected, and mentioned earlier in the Understanding the dataset section, we
obtain the following first five rows in the dataset:

['1000268201_693b08cb0e.jpg#0\tA child in a pink dress is climbing
up a set of stairs in an entry way .',
 '1000268201_693b08cb0e.jpg#1\tA girl going into a wooden building
.',
 '1000268201_693b08cb0e.jpg#2\tA little girl climbing into a wooden
playhouse .',
 '1000268201_693b08cb0e.jpg#3\tA little girl climbing the stairs to
her playhouse .',
 '1000268201_693b08cb0e.jpg#4\tA little girl in a pink dress going
into a wooden cabin .']

Now that we have seen the pattern with which each row is written, we can move ahead
with splitting each row such that we can put the data in a data structure, which helps with
quicker access and updating than a large list of strings.

Generating Live Captions from a Camera Feed Chapter 5

[135]

Preparing the caption dataset
In the following steps, we will process the loaded captions dataset, and convert it to forms
suitable for performing training on it:

In this step, we split the image descriptions and store them in a dictionary format1.
for easier use in the future code, as shown in the following code block:

descriptions = {}

for x in captions:
 imgid, cap = x.split('\t')
 imgid = imgid.split('.')[0]
 if imgid not in descriptions.keys():
 descriptions[imgid] = []
 descriptions[imgid].append(cap)

In the preceding lines of code, we broke down each line in the file into the parts of
image ID and captions for each of those images. We created a dictionary out of it,
where the image ID is the dictionary key and each key-value pair contains a list of
five captions.

Next, we begin with basic string preprocessing in order to proceed with applying2.
natural language techniques on the captions, as follows:

for key, caps in descriptions.items():
 for i in range(len(caps)):
 caps[i] = caps[i].lower()
 caps[i] = re.sub("[^a-z]+", " ", caps[i])

Also, to aid us in allocating the right sizes of memory spaces in the future and to3.
prepare a vocabulary, let's create a list of all the words in the caption texts, like
this:

allwords = []

for key in descriptions.keys():
 _ = [allwords.append(i) for cap in descriptions[key] for i in
cap.split()]

Generating Live Captions from a Camera Feed Chapter 5

[136]

Once we've created a list of all the words, we can create a frequency count of the4.
words. In order to do so, we use the Counter method of the collections
module. Some words appear very rarely in the dataset. It is a good idea to
remove these words as they're unlikely to appear frequently in the input the user
provides and, hence, do not add much value to the caption generation algorithm.
We do so with the following code:

from collections import Counter

freq = dict(Counter(allwords))
freq = sorted(freq.items(), reverse=True, key=lambda x:x[1])

threshold = 15
freq = [x for x in freq if x[1]>threshold]

print(len(freq))

allwords = [x[0] for x in freq]

Let's try to see which words are used most frequently by running the following
code:

freq[:10]

We see the following output:

[('a', 62995),
 ('in', 18987),
 ('the', 18420),
 ('on', 10746),
 ('is', 9345),
 ('and', 8863),
 ('dog', 8138),
 ('with', 7765),
 ('man', 7275),
 ('of', 6723)]

We can conclude that the stop words make a large proportion of the caption texts.
However, since we need them while generating sentences, we will not remove them.

Generating Live Captions from a Camera Feed Chapter 5

[137]

Training
In the following steps, we load the training and test image datasets and perform training on
them:

Let's now load the separated training and test files into the dataset. They contain1.
the list of image filenames, which are actually the image IDs with file extensions,
as can be seen in the following code block:

train_file = "./data/Flickr8k/text/Flickr_8k.trainImages.txt"
test_file = "./data/Flickr8k/text/Flickr_8k.testImages.txt"

Now, we will be processing the train images list file to extract the image IDs, and
leave out the file extension since it is the same in all cases, as shown in the
following code snippet:

with open(train_file) as f:
 cap_train = f.readlines()

cap_train = [x.strip() for x in cap_train]

We do the same with the test images list, as follows:

with open(test_file) as f:
 cap_test = f.readlines()

cap_test = [x.strip() for x in cap_test]

train = [row.split(".")[0] for row in cap_train]
test = [row.split(".")[0] for row in cap_test]

Now, we will create a single string that merges all the five possible captions for2.
each of the images, and store them in a train_desc. dictionary. We use
#START# and #STOP# to differentiate between the captions, in order to use these
in the future for caption generation, as illustrated in the following code block:

train_desc = {}
max_caption_len = -1

for imgid in train:
 train_desc[imgid] = []
 for caption in descriptions[imgid]:
 train_desc[imgid].append("#START# " + caption + " #STOP#")
 max_caption_len = max(max_caption_len,
len(caption.split())+1)

Generating Live Captions from a Camera Feed Chapter 5

[138]

We'll be using the ResNet50 pre-trained model from the Keras model repository.3.
We set the input shape to 224 x 224 x 3, where 224 x 244 is the dimension of each
image as it will be passed to the model, and 3 is the number of color channels.
Note that, unlike the Modified National Institute of Standards and Technology
(MNIST) dataset, where the dimensions of each image were equal, this is not the
case with the Flickr8k dataset. The code can be seen in the following snippet:

model = ResNet50(weights="imagenet", input_shape=(224,224,3))
model.summary()

Once the model is downloaded or loaded from the cache, the summary of the
model will be displayed for each layer. However, we need to retrain the model for
our needs, and so we will remove and recreate the last two layers of the model.
To do so, we create a new model using the same inputs as in the loaded model,
and the output is equivalent to the second-last layer's output, as shown in the
following code snippet:

model_new = Model(model.input, model.layers[-2].output)

We'll be needing a function to repeatedly preprocess images, predict the features4.
contained in that image, and form a feature vector from the recognized objects or
properties in the image. Hence, we create an encode_image function that
accepts an image as the input parameter and returns a feature vector
representation of the image, by running it through the ResNet50 retrained
model, as follows:

def encode_img(img):
 img = image.load_img(img, target_size=(224,224))
 img = image.img_to_array(img)
 img = np.expand_dims(img, axis=0)
 img = preprocess_input(img)
 feature_vector = model_new.predict(img)
 feature_vector = feature_vector.reshape((-1,))
 return feature_vector

Now, we need to encode all images in the dataset into the feature vectors. To do5.
so, we first need to load all images from the dataset into the memory one by one
and apply the encode_img function to them. Let's first set the path of the
images folder, as shown in the following code snippet:

img_data = "./data/Flickr8k/dataset/images/"

Generating Live Captions from a Camera Feed Chapter 5

[139]

Once done, we iterate over all the images in the folder, using the list of training
images created previously, and apply the encode_img function to each image.
We then store the feature vectors in a dictionary with the image ID as the key, as
follows:

train_encoded = {}

for ix, imgid in enumerate(train):
 img_path = img_data + "/" + imgid + ".jpg"
 train_encoded[imgid] = encode_img(img_path)
 if ix%100 == 0:
 print(".", end="")

We similarly encode all images in the test dataset with the following code:

test_encoded = {}

for i, imgid in enumerate(test):
 img_path = img_data + "/" + imgid + ".jpg"
 test_encoded[imgid] = encode_img(img_path)
 if i%100 == 0:
 print(".", end="")

In the next few steps, we will need to match the loaded GloVe embeddings to the6.
list of words we have in our project. To do so, we will certainly have to find the
index of any given word or to find the word at any given index. To facilitate this,
we'll create two dictionaries from all the words we found in the captions dataset,
mapping them to and from their indices, as shown in the following code snippet:

word_index_map = {}
index_word_map = {}

for i,word in enumerate(allwords):
 word_index_map[word] = i+1
 index_word_map[i+1] = word

We'll also create two additional key-value pairs in both dictionaries with the
"#START#" and "#STOP#" words, as follows:

index_word_map[len(index_word_map)] = "#START#"
word_index_map["#START#"] = len(index_word_map)

index_word_map[len(index_word_map)] = "#STOP#"
word_index_map["#STOP#"] = len(index_word_map)

Generating Live Captions from a Camera Feed Chapter 5

[140]

Let's now load the GloVe embeddings into the project, like this:7.

f = open("./data/glove/glove.6B.50d.txt", encoding='utf8')

With the find open, we read the embeddings into a dictionary where each word is
the key, as follows:

embeddings = {}

for line in f:
 words = line.split()
 word_embeddings = np.array(words[1:], dtype='float')
 embeddings[words[0]] = word_embeddings

Once we are done reading the embeddings file, we will close it for better memory
management, as follows:

f.close()

Let's now create the embedding matrix between all the words in the captions we8.
have found in the dataset and the GloVe embeddings, as shown in the following
code block:

embedding_matrix = np.zeros((len(word_index_map) + 1, 50))
for word, index in word_index_map.items():
 embedding_vector = embeddings.get(word)

 if embedding_vector is not None:
 embedding_matrix[index] = embedding_vector

Notice that the maximum number of embeddings we store is 50, which is very
ample for generating long, meaningful strings.

Next, we will be creating another model that will specifically work on generating9.
the captions for unseen images after obtaining feature vectors from the previous
steps. To do so, we create an Input layer with the shape of the feature vector as
the input, as shown in the following code block:

in_img_feats = Input(shape=(2048,))
in_img_1 = Dropout(0.3)(in_img_feats)
in_img_2 = Dense(256, activation='relu')(in_img_1)

Generating Live Captions from a Camera Feed Chapter 5

[141]

Once done, we also need to take an input of the words in the captions in the entire
training dataset, in the form of an LSTM such that given any word, we are able to
predict the next 50 words. We do it with the following code:

in_caps = Input(shape=(max_caption_len,))
in_cap_1 = Embedding(input_dim=len(word_index_map) + 1,
output_dim=50, mask_zero=True)(in_caps)
in_cap_2 = Dropout(0.3)(in_cap_1)
in_cap_3 = LSTM(256)(in_cap_2)

Finally, we need to add a decoder layer that takes in the image features and the
words in the form of LSTM and outputs the next possible word in the generation
of the caption, like this:

decoder_1 = add([in_img_2, in_cap_3])
decoder_2 = Dense(256, activation='relu')(decoder_1)
outputs = Dense(len(word_index_map) + 1,
activation='softmax')(decoder_2)

Let's now get a summary of this model, after duly adding the input and output
layers, by running the following code:

model = Model(inputs=[in_img_feats, in_caps], outputs=outputs)
model.summary()

We get the following output, describing the model layers:

Generating Live Captions from a Camera Feed Chapter 5

[142]

Next, let's now set the weights of the model before training it.

We will be plugging in the embedding_matrix we created earlier between the10.
words in the GloVe embeddings and the words available in the captions of our
dataset, as shown in the following code block:

model.layers[2].set_weights([embedding_matrix])
model.layers[2].trainable = False

With this, we are ready to compile the model, as follows:

model.compile(loss='categorical_crossentropy', optimizer='adam')

Since the dataset is huge, we would not want to load all the images into the11.
dataset simultaneously while training. In order to facilitate memory-efficient
training of the model, we use a generator function, as follows:

def data_generator(train_descs, train_encoded, word_index_map,
max_caption_len, batch_size):
 X1, X2, y = [], [], []
 n = 0
 while True:
 for key, desc_list in train_descs.items():
 n += 1
 photo = train_encoded[key]
 for desc in desc_list:
 seq = [word_index_map[word] for word in
desc.split() if word in word_index_map]
 for i in range(1, len(seq)):
 xi = seq[0:i]
 yi = seq[i]
 xi = pad_sequences([xi],
maxlen=max_caption_len, value=0, padding='post')[0]
 yi = to_categorical([yi],
num_classes=len(word_index_map) + 1)[0]
 X1.append(photo)
 X2.append(xi)
 y.append(yi)
 if n==batch_size:
 yield [[np.array(X1), np.array(X2)],
np.array(y)]
 X1, X2, y = [], [], []
 n = 0

Generating Live Captions from a Camera Feed Chapter 5

[143]

We're now ready to train the model. Before we do so, we must set some of the12.
hyperparameters of the model, as shown in the following code snippet:

batch_size = 3
steps = len(train_desc)//batch_size

Once we've set the hyperparameters, we can begin training with the following
lines of code:

generator = data_generator(train_desc, train_encoded,
word_index_map, max_caption_len, batch_size)
model.fit_generator(generator, epochs=1, steps_per_epoch=steps,
verbose=1)
model.save('./model_weights/model.h5')

Testing
Now, in the following steps, we will create functions to predict captions based on the
model trained in the previous steps, and test the captioning on a sample image:

We're finally at the stage where we can use our model to generate the captions of1.
the images. We create a function that takes in the images and uses the
model.predict method to come up with one word at each step until #STOP# is
encountered in the predictions. It stops there and outputs the generated caption,
as follows:

def predict_caption(img):
 in_text = "#START#"
 for i in range(max_caption_len):
 sequence = [word_index_map[w] for w in in_text.split() if w
in word_index_map]
 sequence = pad_sequences([sequence],
maxlen=max_caption_len, padding='post')
 pred = model.predict([img, sequence])
 pred = pred.argmax()
 word = index_word_map[pred]
 in_text += (' ' + word)
 if word == "#STOP#":
 break
 caption = in_text.split()[1:-1]
 return ' '.join(caption)

Generating Live Captions from a Camera Feed Chapter 5

[144]

Let's test the generation model on some of the images in the test dataset, as2.
follows:

img_name = list(test_encoded.keys())[np.random.randint(0, 1000)]
img = test_encoded[img_name].reshape((1, 2048))

im = plt.imread(img_data + img_name + '.jpg')
caption = predict_caption(img)

print(caption)
plt.imshow(im)
plt.axis('off')
plt.show()

Say we input the image shown in the following screenshot to the algorithm:

We get the following generated caption for the image shown in the preceding screenshot: a
brown dog is running through the grass. While the caption is not very accurate, missing
out entirely on the second animal in the picture, it does well enough to determine that a
brown dog is running in the grass.

However, our trained model is very inaccurate and hence is unsuitable for use on
production or usage beyond experimentation. You may have noticed that we set the
number of epochs in the training to 1, which is a very low value. This was done in order to
allow the training of this program to complete within a reasonable time for you to follow
along with this book!

In the next section, we will look at how we can deploy an image caption generation model
as an API and use it to generate live camera-feed captions.

Generating Live Captions from a Camera Feed Chapter 5

[145]

Creating a simple click-deploy image caption
generation model
While the image caption generation model we developed in the previous section, Testing,
looks good enough, it is not very good. Hence, in this section, we will be showing you a
way to click-deploy a production-ready model as a Docker image, hosted on Red Hat
OpenShift and created by the amazing machine learning experts at IBM.

This is a very common practice to use microservices for such small and dedicated actions
that are performed on any website and, hence, we will be treating this image caption
service as a microservice.

The image we will be using is the MAX Image Caption Generator model developed by IBM. It
is based on the im2txt model's code, hosted on GitHub as an openly available TensorFlow
implementation of the Show and Tell: Lessons learned from the 2015 MSCOCO Image
Captioning Challenge paper by Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru
Erhan.

The model used in the image is trained on the much larger Microsoft COCO dataset that
contains more than 200,000 instances of labeled images, and over 300,000 instances of
images in total. The dataset contains images containing more than 1.5 million distinct
objects, and is one of the largest and most popular datasets for building object detection
and image labeling models. However, due to its sheer size, it is tough to train the model on
a low-end device. Hence, we will be using the already available Docker image instead of
attempting to train our model on it. However, the method described in the previous
sections of the project chapter is very similar to the method used by the code present in the
Docker image, and, with ample available resources, you can definitely try to train and
improve the accuracy of the model.

You can check out all the details about this Docker image project at the
following link: https:/ / developer. ibm. com/ exchanges/ models/ all/ max-
image- caption- generator/

While there are other methods available to deploy this image that you can read about on
the project page of this Docker image, we will be showing you the deployment on Red Hat
OpenShift, to quickly enable you to test the model simply by making a few clicks.

https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator/

Generating Live Captions from a Camera Feed Chapter 5

[146]

Let's see how we can deploy this image, as follows:

Create a Red Hat OpenShift account. To do so, point your browser to https:/ /1.
www.openshift. com/ and click on FREE TRIAL.
Choose to try out RedHat OpenShift Online, as shown in the following2.
screenshot:

In the next screen, choose to Sign up for Openshift Online. Then, click on3.
Register on the top right of the page to find the Registration page.
Fill in all the necessary details, and submit the form. You will be asked for email4.
verification, upon completion of which you will be taken to the subscription
Confirmation page, which will ask you to confirm the details of your free
subscription of the platform, as shown in the following screenshot:

https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/
https://www.openshift.com/

Generating Live Captions from a Camera Feed Chapter 5

[147]

Note that the preceding subscription details are subject to change at any time and
might reflect other values, regions, or duration of the subscription.

Once you confirm your subscription, you will have to wait for a few minutes5.
before your system resources are provisioned. Once the provisioning is complete,
you should be able to see the button that will take you to the management
console, as shown in the following screenshot:

On the left of the management console shown in the preceding screenshot, you
can find the various menu options, and on the center of the current page, you
will be prompted to create a new project.

Click on Create Project and fill the project name in the dialog box that appears.6.
Make sure that the project you create has a unique name. Once the project is
created, you will be presented with a dashboard showing the monitoring of all
the available resources and their usage.

Generating Live Captions from a Camera Feed Chapter 5

[148]

On the left menu, select Developer to switch to the Developer view of the
console, as shown in the following screenshot:

You should now be able to see the Developer view of the console, along with the7.
updated left menu. Here, click on Topology to get the following deployment
options:

Click on Container Image in the screen displayed to you with the deployment8.
options so as to bring up the form for container image deployment.

Generating Live Captions from a Camera Feed Chapter 5

[149]

Here, fill in the image name as codait/max-image-caption-generator and
click on the Search icon. The remainder of the fields are automatically fetched,
and you'll be displayed the information pertaining to the image, as shown in the
following screenshot:

In the next screen that appears with the deployment details, click on the9.
deployed image option at the center of the screen, as shown in the following
screenshot:

Generating Live Captions from a Camera Feed Chapter 5

[150]

Then, scroll down the information panel that appears up on the right of the10.
screen, and find the Routes information, which will resemble the following
screenshot:

Click on this route, and you'll be presented with the following Swagger UI for the
API that you have successfully deployed:

You can quickly check out the working of the model by posting an image to the
/model/predict route. Feel free to play around with the Swagger UI to get a good
understanding of its performance. You can also find the model metadata with the
/model/metadata route.

We're ready to use this API in our project. Let's see how to build the camera app and how
this API can be integrated into the app in the upcoming sections. We begin with building
the application using the camera plugin.

Generating Live Captions from a Camera Feed Chapter 5

[151]

Understanding the camera plugin
The Camera plugin, available as a camera dependency, allows us to access the device's
camera freely. It provides support for both Android and iOS devices. The plugin is open
sourced and is hosted on GitHub so that anyone can freely access the code, fix errors, and
suggest enhancements to the current version.

The plugin can be used to display the live camera preview on a widget, capture images,
and store them locally on a device. It can also be used to record a video. Further more, it
has the capability to access the image stream.

The Camera plugin can be added to any application with the following three simple steps:

Installing the package1.
Adding methods for persistent storage and proper execution2.
Coding3.

Let's now discuss each of these steps in detail.

Installing the camera plugin
To use the camera plugin in the application, we need to add camera as a dependency in
the pubspec.yaml file. This can be done as follows:

camera: 0.5.7+3

Finally, run flutter pub get to add the dependency to the application.

Adding methods for persistent storage and
proper execution
For iOS devices, we also need to specify a space to store configuration data that can be
easily accessed by the system. iOS devices determine the icons to be displayed, document
types supported by the application, and other behaviors, with the help of Info.plist files.
You need to modify the Info.plist file present in ios/Runner/Info.plist in this step.

Generating Live Captions from a Camera Feed Chapter 5

[152]

This can be done by adding the following text:

<key>NSCameraUsageDescription</key>
<string>Can I use the camera please?</string>
<key>NSMicrophoneUsageDescription</key>
<string>Can I use the mic please?</string>

For Android devices, the minimum software development kit (SDK) version required for
the plugin to execute properly is 21. Hence, change the minimum Android SDK version to
21 (or higher), stored in the android/app/build.gradle file, as follows:

minSdkVersion 21

After installing the dependencies and making the required changes, let's now start to code
the application.

Coding
After installing the plugin and making the required modifications, it can now be used to
access the camera, click pictures, and record videos.

The most important steps involved are as follows:

Import the plugin by running the following code:1.

import 'package:camera/camera.dart';

Detect available cameras by running the following code:2.

List<CameraDescription> cameras = await availableCameras();

Initialize the camera control instance as follows:3.

CameraController controller = CameraController(cameras[0],
ResolutionPreset.medium);
 controller.initialize().then((_) {
 if (!mounted) {
 return;
 }
 setState(() {});
 });

Generating Live Captions from a Camera Feed Chapter 5

[153]

Dispose of the controller instance by running the following code:4.

controller?.dispose();

Now that we have a basic knowledge of the camera plugin, let us build the live camera
preview for the application.

Creating a camera application
We will now start to build the mobile application to generate captions for objects at which
the camera is pointed. It will consist of a camera preview to capture images and a text view
to display the captions returned by the model.

The application can be broadly divided into two parts, as follows:

Building the camera preview1.
Integrating the model to fetch the captions2.

In the following section, we will talk about building a basic camera preview.

Building the camera preview
We will now build the camera preview for the application. We start by creating a new
file, generate_live_caption.dart, with a GenerateLiveCaption stateful widget.

Let us look at the following steps to create a live camera preview:

To add a live camera preview, we will be using the camera plugin. We begin by1.
adding the dependency to the pubspec.yaml file, as follows:

camera: ^0.5.7

Next, we need to add the dependency to the project by running flutter pub
get.

We now create a new file, generate_live_captions.dart, containing2.
a GenerateLiveCaptions stateful widget. All of the code described in the
further steps will be included in the _GenerateLiveCaptionState class.

Generating Live Captions from a Camera Feed Chapter 5

[154]

Import the camera library. We import it to generate_live_captions.dart, as3.
follows:

import 'package:camera/camera.dart';

We now need to detect all the cameras available on the device. Define4.
the detectCameras() function for the same, like this:

Future<void> detectCameras() async{
 cameras = await availableCameras();
}

cameras is a global list containing all the available cameras, and is declared
inside GenerateLiveCaptionState, as follows:

List<CameraDescription> cameras;

We now create an instance of CameraController, using5.
the initializeController() method, like this:

 void initializeController() {
 controller = CameraController(cameras[0],
ResolutionPreset.medium);
 controller.initialize().then((_) {
 if (!mounted) {
 return;
 }
 setState(() {});
 });
 }

In the application, we will be using the rear camera of the device, so we create
the CameraController instance using camera[0] and specify the resolution to
be medium, using ResolutionPreset.medium . Next, we initialize the
controller, using controller.initialize().

To display the camera feed on the screen of the application, we define6.
a buildCameraPreview() method, as follows:

 Widget _buildCameraPreview() {
 var size = MediaQuery.of(context).size.width;
 return Container(
 child: Column(
 children: <Widget>[
 Container(
 width: size,
 height: size,

Generating Live Captions from a Camera Feed Chapter 5

[155]

 child: CameraPreview(controller),
),
]
)
);
 }

In the preceding method, we use MediaQuery.of(context).size.width to get
the width of the container and store it in a size variable. Next, we create a
column of widgets, where the first element is a Container. The child of the
Container is simply a CameraPreview, to show the camera feed on the screen of
the application.

Now, we override initState so that all the cameras are detected as soon7.
as GenerateLiveCaption is initialized, as follows:

 @override
 void initState() {
 super.initState();
 detectCameras().then((_){
 initializeController();
 });
 }

In the preceding code snippet, we simply make a call to detectCameras() to
first detect all the available cameras and then call initializeController() to
initialize CameraController with the rear camera.

To generate captions from the camera feed, we will take pictures from the camera8.
feed and store them in the device locally. These clicked pictures will be later
retrieved from the image files to generate captions. Hence, we need a mechanism
to read and write files. We make use of the path_provider plugin here by
adding to the following dependency in the pubspec.yaml file:

path_provider: ^1.4.5

Next, we install the package by running flutter pub get in the terminal.

To use the path_provider plugin in the application, we need to import it9.
in generate_live_caption.dart by adding the import statement at the top
of the file, like this:

import 'package:path_provider/path_provider.dart';

Generating Live Captions from a Camera Feed Chapter 5

[156]

To save the image files to disk, we also need to import the dart:io library, as10.
follows:

import 'dart:io';

Now, let us define a method, captureImages(), to capture images from the11.
camera feed and store them in the device. These stored image files will be used
later to generate captions. The method is defined as follows:

capturePictures() async {
 String timestamp =
DateTime.now().millisecondsSinceEpoch.toString();
 final Directory extDir = await
getApplicationDocumentsDirectory();
 final String dirPath =
'${extDir.path}/Pictures/generate_caption_images';
 await Directory(dirPath).create(recursive: true);
 final String filePath = '$dirPath/${timestamp}.jpg';
 controller.takePicture(filePath).then((_){
 File imgFile = File(filePath);
 });
 }

In the preceding code snippet, we first find out the current time in milliseconds
using DateTime.now().millisecondsSinceEpoch(), and then convert it to
string and store it in the variable timestamp. The timestamp will be used to
provide unique names to the image files we will be storing further. Next, we get
the path to the directory that can be used to store the images
using getApplicationDocumentsDirectory(), and store it in extDir of
the Directory type. Now, we create a proper directory path by appending the
external directory with '/Pictures/generate_caption_images'. Then, we
create the final filePath by combining the directory path with the current
timestamp and giving it a .jpg format. The filePath for all the clicked images
will always be unique since the timestamp will always have different values.
Finally, we capture the image by calling takePicture(), using the current
camera controller instance, and passing in the filePath. We store the image file
created in imgFile that will be used later to generate proper captions.

As discussed earlier, to generate captions from a live camera feed, we capture12.
images at periodic intervals. To get this to work, we
modify initializeController() and add a timer, as follows :

void initializeController() {
 controller = CameraController(cameras[0],

Generating Live Captions from a Camera Feed Chapter 5

[157]

ResolutionPreset.medium);
 controller.initialize().then((_) {
 if (!mounted) {
 return;
 }
 setState(() {});
 const interval = const Duration(seconds:5);
 new Timer.periodic(interval, (Timer t) =>
capturePictures());
 });
 }

Inside initializeController(), once the camera controller is properly initialized and
mounted, we create a duration of 5 seconds using the Duration() class, and store it in the
interval. Now, we create a periodic timer using Timer.periodic and give it an interval of
5 seconds. The callback specified here is capturePictures(). It will be invoked
repeatedly in the specified interval.

At this point, we have created a live camera feed that is displayed on the screen and is able
to capture images at intervals of 5 seconds. In the next section, we will integrate the model
to generate captions for all the captured images.

Generating image captions from the camera
feed
Now that we have a clear idea about the image caption generator and have an application
with a camera feed, we are ready to generate captions for the images from the camera feed.
The logic to be followed is very simple. Images are captured from the live camera feed at a
specific time interval and are stored in the device's local storage. Next, the stored pictures
are retrieved and an HTTP POST request is created for the hosted model, passing in the
retrieved image to fetch the generated captions, parsing the response, and displaying it on
the screen.

Let's now look at the detailed steps, as follows:

We will first add an http dependency to the pubspec.yaml file to make http1.
requests, as follows:

http: ^0.12.0

Generating Live Captions from a Camera Feed Chapter 5

[158]

Install the dependency to the project using flutter pub get.

To use the http package in the application, we need to import it in2.
generate_live_caption.dart, like this:

import 'package:http/http.dart' as http;

Now, we define a method, fetchResponse(), that takes in an image file and3.
creates a post to the hosted model, using the image as follows:

Future<Map<String, dynamic>> fetchResponse(File image) async {
 final mimeTypeData =
 lookupMimeType(image.path, headerBytes: [0xFF,
0xD8]).split('/');
 final imageUploadRequest = http.MultipartRequest(
 'POST',
 Uri.parse(
"http://max-image-caption-generator-mytest865.apps.us-east-2.starte
r.openshift-online.com/model/predict"));
 final file = await http.MultipartFile.fromPath('image',
image.path,
 contentType: MediaType(mimeTypeData[0], mimeTypeData[1]));
 imageUploadRequest.fields['ext'] = mimeTypeData[1];
 imageUploadRequest.files.add(file);
 try {
 final streamedResponse = await imageUploadRequest.send();
 final response = await
http.Response.fromStream(streamedResponse);
 final Map<String, dynamic> responseData =
json.decode(response.body);
 parseResponse(responseData);
 return responseData;

 } catch (e) {
 print(e);
 return null;
 }
 }

Generating Live Captions from a Camera Feed Chapter 5

[159]

In the preceding method, we first find the mime type of the selected file by
looking at the header bytes of the file. Then, we initialize a multipart request, as
expected by the hosted API. We attach the file passed to the function as
the image post parameter. We explicitly pass the extension of the image with the
request body since image_picker has some bugs due to which it mixes up image
extensions with filenames such as filenamejpeg, which creates problems at the
server side to manage or verify the file extension. The response is in JSON format
and, therefore, we need to decode it using json.decode(), passing in the body
of the response using res.body. We now parse the response by making a call to
parseResponse(), defined in the next step. Additionally, we use catchError()
to detect and print any error that might have occurred while executing the
POSTrequest.

After successfully executing the POST request and getting the response from the4.
model with the generated captions for the image that was passed, we parse the
response inside the parseResponse() method, as follows:

void parseResponse(var response) {
 String resString = "";
 var predictions = response['predictions'];
 for(var prediction in predictions) {
 var caption = prediction['caption'];
 var probability = prediction['probability'];
 resString = resString + '${caption}: ${probability}\n\n';
 }
 setState(() {
 resultText = resString;
 });
 }

In the preceding method, we first store the list of all predictions present in
response['predictions'] and store it in the prediction variable. Now, we
iterate through each of the predictions inside the for each loop, using the
prediction variable. For every prediction, we take out the caption and
probability stored in prediction['caption'] and
prediction['probability'], respectively. We append them to a
resString string variable that will contain all the predicted captions along with
the probability. Finally, we set the state of resultText to the value stored in
resString. resultText is a global string variable here that will be used in the
next steps to display the predicted captions.

Generating Live Captions from a Camera Feed Chapter 5

[160]

Now, we modify capturePictures() so that the HTTP post request is made5.
every time a new image is captured, as follows:

capturePictures() async {

 controller.takePicture(filePath).then((_){
 File imgFile = File(filePath);
 fetchResponse(imgFile);
 });
 }

In the preceding code snippet, we add a call to fetchResponse(), passing in the
image file.

Now, let's modify buildCameraPreview() to display all the predictions, as6.
follows:

Widget buildCameraPreview() {

 return Container(
 child: Column(
 children: <Widget>[
 Container(

 child: CameraPreview(controller),
),
 Text(resultText),
]
)
);
 }

In the preceding code snippet, we simply add a Text with result.Text.
result.Text is a global string variable that will contain all the predictions as
described in Step 5 and is declared as follows:

String resultText = "Fetching Response..";

Finally, we override the build() method to create the final scaffold for the7.
application, as follows:

@override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Generate Image Caption'),),
 body:
(controller.value.isInitialized)?buildCameraPreview():new

Generating Live Captions from a Camera Feed Chapter 5

[161]

Container(),
);
 }

In the preceding code snippet, we return a scaffold with an appBar having the
title Generate Image Caption. The body is initially set to an empty container.
Once the camera controller is initialized, the body is updated to display the
camera feed along with the predicted captions.

Finally, we dispose of the camera controller as follows:8.

@override
 void dispose() {
 controller?.dispose();
 super.dispose();
 }

Now, we have successfully created a mechanism to display a live camera feed on the
screen. The live camera feed is captured at intervals of 5 seconds and is sent as an input to
the model. The predicted captions for all the captured images are then displayed on the
screen.

In the next section, let's now create the final material app to bring everything together.

Creating the material app
After making all the segments work properly, let's create the final material app. Inside
the main.dart file, we create a StatelessWidget and override the build() method, as
follows:

class MyApp extends StatelessWidget {
@override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: GenerateLiveCaption()
);
 }
}

Generating Live Captions from a Camera Feed Chapter 5

[162]

Finally, we execute the code as follows:

void main() => runApp(MyApp());

You should be able to have an app screen as shown in the following screenshot:

Notice the captions displayed in the image, as follows:

a laptop computer sitting on top of a desk.
an open laptop computer sitting on top of a desk.
an open laptop computer sitting on top of a wooden desk.

These captions are fairly accurate in their descriptions. However, they may not perform
very well at times due to the unavailability of relevant pictures in the training datasets.

Generating Live Captions from a Camera Feed Chapter 5

[163]

Summary
In this chapter, we saw how we can create an app that produces captions in real time for a
camera feed using deep CNNs and LSTMs. We also saw how we can quickly deploy some
machine learning/deep learning models present in the form of Docker images to Red Hat
OpenShift and easily obtain them in the form of callable APIs. This is very crucial from the
perspective of an application developer as, when working with a team of machine learning
developers, they will often provide you with Docker images of models to work with, such
that you are not required to perform any code or configuration on the system. Such
applications can be put to several uses, such as creating assistive technology for blind
people, generating transcripts of events happening at that moment, or—say—having a live
tutor for children to help them identify the objects in their environment. We covered how
you can apply the Flutter Camera plugin and perform deep learning on the frames.

In the next chapter, we will look at how we can develop a deep learning model for
performing application security.

6
Building an Artificial Intelligence

Authentication System
Authentication is one of the most prominent features of any application, regardless of it
being a native mobile software or a website, and has been an actively growing field since
the onset of the need to protect data, and the need for privacy in relation to sensitive data,
that is being shared on the internet. In this chapter, we will begin with a simple Firebase-
based login to an application, and then improvise step by step to include an artificial
intelligence (AI)-based authentication confidence metric, and ReCaptcha by Google. All
these authentication methods use deep learning at their core and present a state-of-the-art
method of implementing security in mobile apps.

In this chapter, we will cover the following topics:

A simple login application
Adding Firebase authentication
Understanding anomaly detection for authentication
A custom model for authenticating users
Implementing ReCaptcha for spam protection
Deploying the model in Flutter

Building an Artificial Intelligence Authentication System Chapter 6

[165]

Technical requirements
For a mobile application, Visual Studio Code with Flutter and the Dart plugin plus of
Firebase Console are required

GitHub URL: https:/ /github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/
tree/master/Chapter6

A simple login application
We will first create a simple authentication application that uses Firebase authentication to
authenticate users before allowing them to enter the main screen. The application will allow
the user to enter their email and password to create an account and then enable them to
sign in subsequently using this email and password.

The following screenshot shows the complete flow of the application:

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter6

Building an Artificial Intelligence Authentication System Chapter 6

[166]

The widget tree of the application is as follows:

Let's now discuss the implementation of each of the widgets in detail.

Creating the UI
Let's start by creating the login screen for the application. The user interface (UI) will
consist of two TextFormField to take in the user's email ID and password, RaisedButton to
sign up/in, and FlatButton to switch between sign-up and sign-in operations.

The following screenshot labels the widget that will be used for the first screen of the
application:

Building an Artificial Intelligence Authentication System Chapter 6

[167]

Let's now create the UI of the application as follows:

We begin by creating a new dart file called signup_signin_screen.dart. This1.
file contains a stateful widget – SignupSigninScreen.
The topmost widget in the first screen is TextField, for taking in the user's mail2.
ID. The _createUserMailInput() method helps us to build the widget:

 Widget _createUserMailInput() {
 return Padding(
 padding: const EdgeInsets.fromLTRB(0.0, 100.0, 0.0, 0.0),
 child: new TextFormField(
 maxLines: 1,
 keyboardType: TextInputType.emailAddress,
 autofocus: false,
 decoration: new InputDecoration(
 hintText: 'Email',
 icon: new Icon(
 Icons.mail,
 color: Colors.grey,
)),
 validator: (value) => value.isEmpty ? 'Email can\'t be
empty' : null,
 onSaved: (value) => _usermail = value.trim(),
),
);
 }

First of all, we provided padding to the widget using EdgeInsets.fromLTRB().
This helps us to create offsets in each of the four cardinal directions, namely, left,
top, right, and bottom, with different values. Next, we created TextFormField
with maxLines (the maximum number of lines for the input) that have a value of
1 as the child, which takes in the email address of the user. Also, we specified the
type of keyboard that will be used inside the property – keyboardType,
depending on the input type, which is TextInputType.emailAddress. We then
set autoFocus to false. Then, we used InputDecoration inside the decoration
property to provide hintText "Email" and an icon, Icons.mail. To make sure
that the user does not attempt to sign in without entering an email address or a
password, we add a validator. This shows a warning, "Email can't be empty",
when a login attempt is made with empty fields. Finally, we trimmed the value
entered by using trim() to remove all the trailing spaces, and then stored the
entered value inside the _usermail string variable.

Building an Artificial Intelligence Authentication System Chapter 6

[168]

Similar to TextField in Step 2, we define the next3.
method, _createPasswordInput(), to create a TextFormField() for entering
the password:

Widget _createPasswordInput() {
 return Padding(
 padding: const EdgeInsets.fromLTRB(0.0, 15.0, 0.0, 0.0),
 child: new TextFormField(
 maxLines: 1,
 obscureText: true,
 autofocus: false,
 decoration: new InputDecoration(
 hintText: 'Password',
 icon: new Icon(
 Icons.lock,
 color: Colors.grey,
)),
 validator: (value) => value.isEmpty ? 'Password can\'t be
empty' : null,
 onSaved: (value) => _userpassword = value.trim(),
),
);
 }

We start by providing padding in all four cardinal directions using
EdgeInsets.fromLTRB() to give an offset of 15.0 at the top. Next, we create a
TextFormField with maxLines as 1, and set obscureText to true and
autofocus to false. obscureText is used to hide the text that is being typed.
We use InputDecoration to provide the hintText password and a gray-
colored icon, Icons.lock. To make sure that the text field isn't left empty, a
validator is used that gives a warning, Password can't be empty, when a null
value is passed, that is, the user attempts to sign in/up without entering a
password. Finally, trim() is used to remove all trailing spaces and store the
password in a _userpassword string variable.

Next, we declare the FormMode enumeration outside4.
_SignupSigninScreenState that operates between two modes, SIGNIN and
SIGNUP, as seen in the following code snippet:

enum FormMode { SIGNIN, SIGNUP }

We will use this enumeration for the button that would let the user both sign in
and sign up. It will help us easily switch between the two modes. Enumeration is
a set of identifiers that is used for denoting constant values.

Building an Artificial Intelligence Authentication System Chapter 6

[169]

An enumerated type is declared using the enum keyword. Each of the
identifiers declared inside enum represents an integer value; for example,
the first identifier has the value 0, and the second identifier has the value
1. By default, the value of the first identifier is 0.

Let's define a _createSigninButton() method that returns the button widget5.
to let the user sign up and sign in:

 Widget _createSigninButton() {
 return new Padding(
 padding: EdgeInsets.fromLTRB(0.0, 45.0, 0.0, 0.0),
 child: SizedBox(
 height: 40.0,
 child: new RaisedButton(
 elevation: 5.0,
 shape: new RoundedRectangleBorder(borderRadius: new
BorderRadius.circular(30.0)),
 color: Colors.blue,
 child: _formMode == FormMode.SIGNIN
 ? new Text('SignIn',
 style: new TextStyle(fontSize: 20.0, color:
Colors.white))
 : new Text('Create account',
 style: new TextStyle(fontSize: 20.0, color:
Colors.white)),
 onPressed: _signinSignup,
),
));
 }

We start with Padding, giving the button offset of 45.0 at the top and
adding SizedBox with a height of 40.0 as the child that also
has RaisedButton as its child. The raised button is given a rounded rectangular
shape using RoundedRectangleBorder() with a border-radius of 30.0 and a
color blue. The text of the button that is added as the child depends on the
current value of _formMode. If the value of _formMode (an instance of
the FormMode enumeration) is FormMode.SIGNIN, the button shows SignIn,
otherwise Create account. The _signinSignup method will be called when the
button is pressed and is described in the later sections.

Building an Artificial Intelligence Authentication System Chapter 6

[170]

Now, we add the fourth button to the screen to let the user switch between the6.
SIGNIN and SIGNUP form modes. We define the
_createSigninSwitchButton() method that returns FlatButton as follows:

 Widget _createSigninSwitchButton() {
 return new FlatButton(
 child: _formMode == FormMode.SIGNIN
 ? new Text('Create an account',
 style: new TextStyle(fontSize: 18.0, fontWeight:
FontWeight.w300))
 : new Text('Have an account? Sign in',
 style:
 new TextStyle(fontSize: 18.0, fontWeight:
FontWeight.w300)),
 onPressed: _formMode == FormMode.SIGNIN
 ? _switchFormToSignUp
 : _switchFormToSignin,
);
 }

If the current value of _formMode is SIGNIN and the button is pressed, it should
change to SIGNUP and it should display Create an account. Otherwise, if
_formMode has SIGNUP as its current value and the button is pressed, the value
should be switched to SIGNIN denoted by the text Have an account? Sign
in. This logic of toggling between texts is added while creating the Text child of
the RaisedButton using a ternary operator. A very similar logic is used for
the onPressed property, which again checks the value of _formMode to switch
between modes and update the value of _formMode using the
_switchFormToSignUp and _switchFormToSignin methods. We will define
the, _switchFormToSignUp and _switchFormToSignin methods in Steps 7 and
8.

 Now, we define _switchFormToSignUp() as follows:7.

 void _switchFormToSignUp() {
 _formKey.currentState.reset();
 setState(() {
 _formMode = FormMode.SIGNUP;
 });
 }

Building an Artificial Intelligence Authentication System Chapter 6

[171]

This method resets the value of _formMode and updates it to FormMode.SIGNUP.
Changing the value inside setState() helps to notify the framework that the
internal state of the object has changed and that the UI may require an update.

We define _switchFormToSignin() in a very similar manner to8.
_switchFormToSignUp():

 void _switchFormToSignin() {
 _formKey.currentState.reset();
 setState(() {
 _formMode = FormMode.SIGNIN;
 });
 }

This method resets the value of _formMode and updates it to FormMode.SIGNIN.
Changing the value inside setState() helps to notify the framework that the
internal state of the object has changed and that the UI may require an update.

Now, let's bring all the screen widgets, Email TextField, Password9.
TextFied, SignIn Button, and FlatButton, to switch between sign up and
sign in inside a single container. For this, we define a method, createBody(), as
follows:

 Widget _createBody(){
 return new Container(
 padding: EdgeInsets.all(16.0),
 child: new Form(
 key: _formKey,
 child: new ListView(
 shrinkWrap: true,
 children: <Widget>[
 _createUserMailInput(),
 _createPasswordInput(),
 _createSigninButton(),
 _createSigninSwitchButton(),
 _createErrorMessage(),
],
),
)
);
 }

Building an Artificial Intelligence Authentication System Chapter 6

[172]

This method returns a new Container with Form as a child and provides it with
padding of 16.0. The form uses _formKey as its key and adds ListView as its
child. The elements of the ListView are the widgets that we had created in the
preceding methods to add TextFormFields and Buttons. shrinkWrap is set to
true to ensure that ListView occupies only the necessary space and does not
attempt to expand and fill the whole screen

The Form class is used to group and validate multiple FormFields
together. Here, we are using Form to wrap two TextFormFields, one
RaisedButton, and one FlatButton together.

One important thing to note here is that since authenticating, the user will10.
ultimately be a network operation, it might take some time to make the network
request. Adding a progress bar here prevents the deadlock of the UI while the
network operation is in progress. We declare a boolean flag _loading , which is
set to true when the network operation starts. Now, we define a
_createCircularProgress() method as follows:

 Widget _createCircularProgress(){
 if (_loading) {
 return Center(child: CircularProgressIndicator());
 } return Container(height: 0.0, width: 0.0,);
 }

The method returns CircularProgressIndicator() only if _loading is true
and a network operation is in progress.

Finally, let's add all the widgets inside the build() method:11.

 @override
 Widget build(BuildContext context) {
 return new Scaffold(
 appBar: new AppBar(
 title: new Text('Firebase Authentication'),
),
 body: Stack(
 children: <Widget>[
 _createBody(),
 _createCircularProgress(),
],
));
 }

Building an Artificial Intelligence Authentication System Chapter 6

[173]

From inside build(), we return a scaffold after adding the AppBar variable that contains
the title of the application. The body of the scaffold contains a stack with children as the
widgets returned by the, _createBody() and _createCircularProgress() function
calls.

We are now ready with the primary UI structure of our application.

The entire code of SignupSigninScreen can be found at https:/ /
github. com/ PacktPublishing/ -Mobile- Deep- Learning- Projects/ blob/
master/ Chapter6/ firebase_ authentication/ lib/ signup_ login_ screen.
dart.

In the next section, we will look at the steps involved in adding Firebase authentication to
the application.

Adding Firebase authentication
As discussed earlier, in the Simple login application section, we will be using the user's email
and password for authentication integrated through Firebase.

To create and configure a Firebase project on Firebase Console, refer to the
Appendix.

The following steps discuss in detail about how to set up the project on Firebase Console:

We begin by selecting the project on Firebase Console:1.

https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/signup_login_screen.dart

Building an Artificial Intelligence Authentication System Chapter 6

[174]

Next, we will click on the Authentication option from the Develop menu:2.

This will take us to the authentication screen.

Building an Artificial Intelligence Authentication System Chapter 6

[175]

Migrate to the sign-in tab and enable the Email/Password option under Sign-in3.
providers:

This is all that is required to set up Firebase Console.

Next, we will integrate Firebase in the code. This is done as follows:

Migrate to the project in your Flutter SDK and add firebase-auth to the app1.
level build.gradle file:

implementation 'com.google.firebase:firebase-auth:18.1.0'

To get FirebaseAuthentication working in the application, we will be using2.
a firebase_auth plugin here. Add the plugin dependency inside dependencies
in the pubspec.yaml file:

firebase_auth: 0.14.0+4

Be sure to run flutter pub get to install the dependency.

Now, let's write some code to provide the Firebase authentication functionality inside the
application.

Building an Artificial Intelligence Authentication System Chapter 6

[176]

Creating auth.dart
Now, we will create a Dart file, auth.dart. This file will act as a centralized point to access
the authentication methods provided by the firebase_auth plugin:

First, import the firebase_auth plugin:1.

import 'package:firebase_auth/firebase_auth.dart';

Now, create an abstract class, BaseAuth, which lists all the authentication2.
methods and acts a middle layer between the UI components and the
authentication methods:

abstract class BaseAuth {
 Future<String> signIn(String email, String password);
 Future<String> signUp(String email, String password);
 Future<String> getCurrentUser();
 Future<void> signOut();
}

As the name of the methods suggests, we will be using four primary features of
authentication:

signIn(): To sign in an already existing user using an email and
password
signUp(): To create an account for a new user using an email and
password
getCurrentUser(): To get the current signed-in user
signOut(): To sign out a signed-in user

One important thing to note here is that since this is a network operation,
all the methods operate asynchronously and return a Future value once
execution is complete.

 Create an Auth class that implements BaseAuth:3.

class Auth implements BaseAuth {
 //.
}

Building an Artificial Intelligence Authentication System Chapter 6

[177]

In the next steps, we will define all the methods declared in BaseAuth.

Create an instance of FirebaseAuth:4.

final FirebaseAuth _firebaseAuth = FirebaseAuth.instance;

The signIn() method is implemented as follows:5.

 Future<String> signIn(String email, String password) async {
 AuthResult result = await
_firebaseAuth.signInWithEmailAndPassword(email: email, password:
password);
 FirebaseUser user = result.user;
 return user.uid;
}

This method takes in a user's email and password and calls
signInWithEmailAndPassword(), passing in the email and password to sign in
an already existing user. Once the sign-in operation is complete, an AuthResult
instance is returned. We store it in result and also use result.user, which
returns FirebaseUser. It can be used to get the information relating to the user,
such as their uid, phoneNumber, and photoUrl. Here, we return user.uid,
which is a unique identification for each of the existing users. As stated
previously, since this is a network operation, it runs asynchronously and
returns Future once execution is complete.

Next, we will define the signUp() method to add new users:6.

Future<String> signUp(String email, String password) async {
 AuthResult result = await
_firebaseAuth.createUserWithEmailAndPassword(email: email,
password: password);
 FirebaseUser user = result.user;
 return user.uid;
 }

The preceding method takes in an email and password that was used during sign-
up and passes in the value in its call to createUserWithEmailAndPassword.
Similar to the one defined in the previous step, this call also returns
an AuthResult object, which is further used to extract FirebaseUser. Finally,
the signUp method returns the uid of the newly created user.

Building an Artificial Intelligence Authentication System Chapter 6

[178]

Now, we will define getCurrentUser():7.

 Future<String> getCurrentUser() async {
 FirebaseUser user = await _firebaseAuth.currentUser();
 return user.uid;
 }

In the function defined previously, we extract the information of the currently
signed-in user using _firebaseAuth.currentUser(). This method returns the
complete information wrapped up in a FirebaseUser object. We store this in the
user variable. Finally, we return the uid of the user by using user.uid.

Next, we execute signOut():8.

Future<void> signOut() async {
 return _firebaseAuth.signOut();
 }

This function simply calls signOut() on the current FirebaseAuth instance and
signs out the signed-in user.

At this point, we are done with all the basic coding for the implementation of
Firebase authentication.

The entire code inside auth.dart can be viewed at https:/ /github. com/
PacktPublishing/ - Mobile- Deep- Learning- Projects/ blob/ master/
Chapter6/ firebase_ authentication/ lib/ auth. dart.

Let's now see how we can bring authentication into effect inside the application.

Adding authentication in SignupSigninScreen
In this section, we will add Firebase authentication inside SignupSigninScreen.

We define a _signinSignup() method in the signup_signin_screen.dart file. The
method is called when the sign-in button is pressed. The body of the method appears as
follows:

 void _signinSignup() async {
 setState(() {
 _loading = true;
 });
 String userId = "";

https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/auth.dart

Building an Artificial Intelligence Authentication System Chapter 6

[179]

 if (_formMode == FormMode.SIGNIN) {
 userId = await widget.auth.signIn(_usermail, _userpassword);
 } else {
 userId = await widget.auth.signUp(_usermail, _userpassword);
 }
 setState(() {
 _loading = false;
 });
 if (userId.length > 0 && userId != null && _formMode ==
FormMode.SIGNIN) {
 widget.onSignedIn();
 }
}

In the preceding method, we begin by setting the value of _loading to true so that the
progress bars shows on the screen until the sign-in process is complete. Next, we create a
userId string that will store the value of userId once the sign-in/up operation is complete.
Now, we check the current value of _formMode. If it is equal to FormMode.SIGNIN, the
user wanted to sign in to an already existing account. Hence, we call the signIn() method
defined inside the Auth class using its instance that passed into the constructor of
SignupSigninScreen.

This is discussed in more detail in later sections. Otherwise, if the value of _formMode is
equal to FormMode.SIGNUP, the signUp() method of the Auth class is called, passing in
the user's mail and password to create a new account. The userId variable is used to store
the user's ID once signing in/up has been completed successfully. Once the entire process is
complete, _loading is set to false to remove the circular progress indicator from the
screen. Also, if userId has a valid value while the user was signing in to an existing
account, onSignedIn() is called, which directs the user to the home screen of the
application.

This method also passed into the constructor of SignupSigninScreen and is discussed in
the upcoming sections. Finally, we wrap the whole body inside a try-catch block so that
any exception occurring during sign-in can be caught without crashing the app and can be
displayed on the screen.

Building an Artificial Intelligence Authentication System Chapter 6

[180]

Creating the main screen
We would also need to determine the authentication status, that is, whether the user was
signed in when the application was launched and direct them to the home screen if already
signed in. If the user wasn't signed in, SignInSignupScreen should appear first and, after
completing the process, the home screen is launched. To implement this, we create a
stateful widget, MainScreen, inside a new dart file, main_screen.dart, and perform the
following steps:

We will begin by defining the enumeration, AuthStatus, which denotes the1.
current authentication status of the user, which can either be signed in or not
signed in:

enum AuthStatus {
 NOT_SIGNED_IN,
 SIGNED_IN,
}

Now, we create a variable of the enum type to store the current authentication2.
status whose initial value is set to NOT_SIGNED_IN:

AuthStatus authStatus = AuthStatus.NOT_SIGNED_IN;

As soon as the widget is initialized, we establish whether the user was logged in3.
by overriding the initState() method:

 @override
 void initState() {
 super.initState();
 widget.auth.getCurrentUser().then((user) {
 setState(() {
 if (user != null) {
 _userId = user;
 }
 authStatus =
 user == null ? AuthStatus.NOT_SIGNED_IN :
AuthStatus.SIGNED_IN;
 });
 });
 }

Building an Artificial Intelligence Authentication System Chapter 6

[181]

getCurrentUser() of the Auth class is called using the instance of the class that
was passed in the constructor. If the value returned by the method is not null, this
means that a user is already logged in. Therefore, the value of the _userId string
variable is set to the returned value. Also, authStatus is set to
AuthStatus.SIGNED_IN. Otherwise, if the value returned is null, this means
that no user was signed in, and so the value of authStatus is set to
AuthStatus.NOT_SIGNED_IN.

Now, we will define two other methods, onSignIn() and onSignOut(), to4.
ensure that the authentication status is stored correctly in the variable and the
user interface is updated accordingly:

void _onSignedIn() {
 widget.auth.getCurrentUser().then((user){
 setState(() {
 _userId = user;
 });
 });
 setState(() {
 authStatus = AuthStatus.SIGNED_IN;
 });
 }
 void _onSignedOut() {
 setState(() {
 authStatus = AuthStatus.NOT_SIGNED_IN;
 _userId = "";
 });
 }

The _onSignedIn() method checks whether a user was already signed in and
sets authStatus to AuthStatus.SIGNED_IN.. The _onSignedOut() method
checks whether the user was signed out and sets authStatus to
AuthStatus.SIGNED_OUT.

Building an Artificial Intelligence Authentication System Chapter 6

[182]

Finally, we override the build method to direct the user to the correct screen:5.

 @override
 Widget build(BuildContext context) {
 if(authStatus == AuthStatus.SIGNED_OUT) {
 return new SignupSigninScreen(
 auth: widget.auth,
 onSignedIn: _onSignedIn,
);
 } else {
 return new HomeScreen(
 userId: _userId,
 auth: widget.auth,
 onSignedOut: _onSignedOut,
);
 }
 }

If authStatus is AuthStatus.SIGNED_OUT, SignupSigninScreen is returned, passing
the auth instance and the _onSignedIn() method. Otherwise, HomeScreen is returned
directly, passing in the userId of the signed-in user, the Auth instance class, and
the _onSignedOut() method.

The entire code for main_screen.dart can be viewed here: https:/ /
github. com/ PacktPublishing/ -Mobile- Deep- Learning- Projects/ blob/
master/ Chapter6/ firebase_ authentication/ lib/ main_ screen. dart

In the next section, we will add a very simple home screen for the application.

Creating the home screen
Since we are more interested in the authentication part here, the home screen, that is, the
screen where the user is directed to after a successful sign-in, should be pretty simple. It
will just contain some text and an option to log out. As we have done for all the previous
screens and widgets, we begin by creating a home_screen.dart file and a stateful
HomeScreen widget.

https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main_screen.dart

Building an Artificial Intelligence Authentication System Chapter 6

[183]

The home screen will appear as follows:

The entire code here resides inside the overridden build() method:

 @override
 Widget build(BuildContext context) {
 return new Scaffold(
 appBar: new AppBar(
 title: new Text('Firebase Authentication'),
 actions: <Widget>[
 new FlatButton(
 child: new Text('Logout',
 style: new TextStyle(fontSize: 16.0, color:
Colors.white)),
 onPressed: _signOut
)
],
),
 body: Center(child: new Text('Hello User',
 style: new TextStyle(fontSize: 32.0))
),
);
 }

We return a Scaffold here, which contains an AppBar with the title Text Firebase
Authentication and a list of widgets for the actions property. actions is used to add a
list of widgets to the app bar alongside the title of the application. Here, it just contains a
FlatButton, Logout, that calls _signOut when pressed.

Building an Artificial Intelligence Authentication System Chapter 6

[184]

The _signOut() method appears as follows:

 _signOut() async {
 try {
 await widget.auth.signOut();
 widget.onSignedOut();
 } catch (e) {
 print(e);
 }
 }

The method primarily makes a call to the signOut() method defined in the Auth class to
sign the user out from the application. Recall the _onSignedOut() method of MainScreen
that was passed in to HomeScreen. The method is used here as widget.onSignedOut() to
change authStatus to SIGNED_OUT when the user signs out. Also, it is wrapped inside a
try-catch block to catch and print any exception that might have occurred here.

The entire code of home_screen.dart can be viewed here: https:/ /
github. com/ PacktPublishing/ -Mobile- Deep- Learning- Projects/ blob/
master/ Chapter6/ firebase_ authentication/ lib/ main. dart

At this point, the major components of the application are ready, so let's now create the
final material app.

Creating main.dart
Inside main.dart, we create Stateless Widget, App, and override the build() method
as follows:

 @override
 Widget build(BuildContext context) {
 return new MaterialApp(
 title: 'Firebase Authentication',
 debugShowCheckedModeBanner: false,
 theme: new ThemeData(
 primarySwatch: Colors.blue,
),
 home: new MainScreen(auth: new Auth()));
 }

The method returns MaterialApp, providing a title, a theme, and from home screen.

https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart

Building an Artificial Intelligence Authentication System Chapter 6

[185]

The main.dart file can be viewed here: https:/ / github. com/
PacktPublishing/ - Mobile- Deep- Learning- Projects/ blob/ master/
Chapter6/ firebase_ authentication/ lib/ main. dart

Understanding anomaly detection for
authentication
Anomaly detection is a much-studied branch of machine learning. The term is simplistic in
its meaning. Basically, it is a collection of methods for detecting anomalies. Imagine a bag of
apples. To identify and pick out the bad apples would be an act of anomaly detection.

Anomaly detection is performed in several ways:

By identifying data samples in the dataset that are very different from the rest of
the samples by using minimum-maximum ranges of columns
By plotting the data as a line graph and identifying sudden spikes in the graph
By plotting the data around a Gaussian curve and marking the points lying on
the extreme ends as outliers (anomalies)

Some of the commonly used methods are support vector machines, Bayesian networks, and
k-nearest neighbors. We will focus on anomaly detection in relation to security in this
section.

Imagine you generally log in to your account on your app from your home. It would be
very suspicious if you suddenly logged in to your account from a location thousands of
miles away or, in another instance, you had never used public computers previously to log
in to your account, but suddenly one day you do just that. Yet another suspicious case
could be the fact that you took 10-20 attempts at the password, getting the password wrong
every time before suddenly logging in successfully. All these cases are possibilities of
behavior when your account may be compromised. Hence, it is important to incorporate a
system that is able to determine your regular behavior and classify the
anomalous behavior. In other words, the attempts to compromise your account should be
marked as anomalies even when the hacker has the correct password.

https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart
https://github.com/PacktPublishing/-Mobile-Deep-Learning-Projects/blob/master/Chapter6/firebase_authentication/lib/main.dart

Building an Artificial Intelligence Authentication System Chapter 6

[186]

This brings us to an interesting point, that is, determining the regular behavior of the user.
How do we do this? What constitutes regular behavior? Is it specific to each user or a
general concept? The answer to the questions is that it is very user-specific. However, there
are aspects of behavior that can be the same for all users. An app may have multiple screens
from where it could initiate the login. A single user may prefer one or two of the methods.
This would lead to user-specific behavior that is regular to that user. However, if a login is
attempted from a screen that is not marked as a login screen by the developers, it is
certainly an anomaly, irrespective of which user tries it.

In our app, we will integrate one such system. To do so, we will be making a log of all login
attempts made by a number of users of our app over an extended period of time. We will
specifically be noting the screens from which they attempt a login and what sort of data
they pass to the system. Once we have collected a lot of these samples, we are able to
determine the confidence of the system regarding authentication in terms of any action
performed by the user. If, at any point, the system feels that the behavior exhibited by the
user differs widely from their customary behavior, this user will be unauthenticated and
asked to verify their account details.

Let's begin by creating a predictive model to determine whether the user authentication is
regular or anomalous.

A custom model for authenticating users
We will break this section down into two major sub-sections:

Building a model for an authentication validity check
Hosting the custom authentication validation model

Let's begin with the first section.

Building a model for an authentication validity
check
In this section, we will build the model that determines whether any user is performing a
regular or an anomalous login:

We begin by importing the requisite modules, as shown here:1.

import sys
import os

Building an Artificial Intelligence Authentication System Chapter 6

[187]

import json
import pandas
import numpy
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from collections import OrderedDict

Now, we will import the dataset into the project. The dataset can be found2.
at https:/ /github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/
blob/master/ Chapter6/ Model/ data/ data. csv:

csv_file = 'data.csv'

dataframe = pandas.read_csv(csv_file, engine='python',
quotechar='|', header=None)
count_frame = dataframe.groupby([1]).count()
print(count_frame)
total_req = count_frame[0][0] + count_frame[0][1]
num_malicious = count_frame[0][1]

print("Malicious request logs in dataset:
{:0.2f}%".format(float(num_malicious) / total_req * 100))

The preceding block of code loads the CSV dataset into the project. It also prints
some stats pertaining to the data, as shown here:

The data that we've loaded in the previous step is in an as yet unusable format3.
for performing deep learning. In this step, we split it apart into the feature
columns and the label column, as shown here:

X = dataset[:,0]
Y = dataset[:,1]

Next, we will drop some of the columns contained in the dataset since we do not4.
require all of them to build a simple model:

for index, item in enumerate(X):
 reqJson = json.loads(item, object_pairs_hook=OrderedDict)

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter6/Model/data/data.csv

Building an Artificial Intelligence Authentication System Chapter 6

[188]

 del reqJson['timestamp']
 del reqJson['headers']
 del reqJson['source']
 del reqJson['route']
 del reqJson['responsePayload']
 X[index] = json.dumps(reqJson, separators=(',', ':'))

Next, we will perform tokenization on the remaining request body. Tokenizing is5.
the method used to break large blocks of text into smaller ones, such as
paragraphs into sentences and sentences into words. We do this as follows:

tokenizer = Tokenizer(filters='\t\n', char_level=True)
tokenizer.fit_on_texts(X)

After tokenization, we convert the text in the request body into word vectors, as6.
shown in the next step. We split the dataset and DataFrame labels into two parts,
75%-25%, for training and testing:

num_words = len(tokenizer.word_index)+1
X = tokenizer.texts_to_sequences(X)

max_log_length = 1024
train_size = int(len(dataset) * .75)

X_processed = sequence.pad_sequences(X, maxlen=max_log_length)
X_train, X_test = X_processed[0:train_size],
X_processed[train_size:len(X_processed)]
Y_train, Y_test = Y[0:train_size], Y[train_size:len(Y)]

Next, we create a long short-term memory (LSTM)-based recurrent neural7.
network (RNN), which will learn to recognize regular user behavior. The word
embeddings are added to the layers to help maintain the relationship between
word vectors and the words:

model = Sequential()
model.add(Embedding(num_words, 32, input_length=max_log_length))
model.add(Dropout(0.5))
model.add(LSTM(64, recurrent_dropout=0.5))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

Our output is a single neuron that holds either a 0 in the case of a normal login or
1 if the login is anomalous.

Building an Artificial Intelligence Authentication System Chapter 6

[189]

Now, we compile the model with accuracy as the metric, while the loss is8.
calculated as the binary cross-entropy:

model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
print(model.summary())

Now, we are ready to proceed with the training of the model:9.

model.fit(X_train, Y_train, validation_split=0.25, epochs=3,
batch_size=128)

We will quickly check the accuracy achieved by the model. The current model10.
achieves an accuracy of over 96%:

score, acc = model.evaluate(X_test, Y_test, verbose=1,
batch_size=128)
print("Model Accuracy: {:0.2f}%".format(acc * 100))

The output of the preceding code block is shown in the following screenshot:

Now, we save the model weights and the model definition. We'll be loading11.
these into the API script later to validate the authentication of users:

model.save_weights('lstm-weights.h5')
model.save('lstm-model.h5')

We can now proceed toward hosting the authentication model as an API, which we will
demonstrate in the next section.

Building an Artificial Intelligence Authentication System Chapter 6

[190]

Hosting the custom authentication validation
model
In this section, we will create an API that is used to authenticate users when they submit
their login request to the model. The request headers will be parsed as a string and the
model will use it to predict whether the login is valid:

We begin by importing the modules needed to create the API server:1.

from sklearn.externals import joblib
from flask import Flask, request, jsonify
from string import digits

import sys
import os
import json
import pandas
import numpy
import optparse
from keras.models import Sequential, load_model
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from collections import OrderedDict

Now, we instantiate a Flask app object. We also load the saved model definition2.
and model weights from the previous section, Building a model for an
authentication validity check. Then, we recompile the model and use the
_make_predict_function() method to create its predict method, as shown
in the following steps:

app = Flask(__name__)

model = load_model('lstm-model.h5')
model.load_weights('lstm-weights.h5')
model.compile(loss = 'binary_crossentropy', optimizer = 'adam',
metrics = ['accuracy'])
model._make_predict_function()

Building an Artificial Intelligence Authentication System Chapter 6

[191]

We then create a remove_digits() function, which is used to strip all digits3.
from the input provided to it. This will be used to clean the request body text
before putting it into the model:

def remove_digits(s: str) -> str:
 remove_digits = str.maketrans('', '', digits)
 res = s.translate(remove_digits)
 return res

Next, we will create a /login route in the API server. This route is handled by4.
the login() method and responds to GET and POST request methods. As we did
with the training input, we drop non-essential components of the request
headers. This ensures that the model will make predictions on data similar to
what it was trained on:

@app.route('/login', methods=['GET, POST'])
def login():
 req = dict(request.headers)
 item = {}
 item["method"] = str(request.method)
 item["query"] = str(request.query_string)
 item["path"] = str(request.path)
 item["statusCode"] = 200
 item["requestPayload"] = []

 ## MORE CODE BELOW THIS LINE

 ## MORE CODE ABOVE THIS LINE

 response = {'result': float(prediction[0][0])}
 return jsonify(response)

Now, we will add code to the login() method that will tokenize the request5.
body and pass it to the model to perform prediction regarding the validity of the
login request, as shown here:

@app.route('/login', methods=['GET, POST'])
def login():
 ...
 ## MORE CODE BELOW THIS LINE
 X = numpy.array([json.dumps(item)])
 log_entry = "store"

 tokenizer = Tokenizer(filters='\t\n', char_level=True)
 tokenizer.fit_on_texts(X)
 seq = tokenizer.texts_to_sequences([log_entry])
 max_log_length = 1024

Building an Artificial Intelligence Authentication System Chapter 6

[192]

 log_entry_processed = sequence.pad_sequences(seq,
maxlen=max_log_length)

 prediction = model.predict(log_entry_processed)
 ## MORE CODE ABOVE THIS LINE
 ...

Finally, the app returns its confidence of the user being authenticated in the form
of a JSON string.

Finally, we use the run() method of app to start the server script:6.

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=8000)

Save this file as main.py. To begin server execution, open a new terminal and7.
use the following command:

python main.py

The server listens to all incoming IPs of the system it runs on. This is made possible by
running it on the 0.0.0.0 IP. This is required if we wish to deploy the script on a cloud-based
server later. Not specifying the 0.0.0.0 host would make it listen to 127.0.0.1 by default,
which is not suitable for deployment on public servers. You can read more about the
difference between these addresses here: https:/ / xprilion. com/ difference- between-
localhost-127.0. 0. 1-and- 0. 0. 0.0/

In the next section, we will see how we can integrate ReCaptcha into the application we've
built so far in this project. After that, we will integrate the API we've built in this section
into the app.

Implementing ReCaptcha for spam
protection
To add another layer of security to Firebase authentication, we will use ReCaptcha. This is a
test supported by Google that helps us to protect data from automated bots for the purpose
of spam and abuse. The test is simple and can be easily solved by humans, but obstructs
bots and malicious users.

https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/
https://xprilion.com/difference-between-localhost-127.0.0.1-and-0.0.0.0/

Building an Artificial Intelligence Authentication System Chapter 6

[193]

To read more about ReCaptcha and its uses, visit https:/ /support.
google. com/ recaptcha/ ? hl=en.

ReCAPTCHA v2
In this section, we will be integrating ReCaptcha Version 2 into our application. In this
version, the user is presented with a simple checkbox. If the tick turns green, the user has
been verified.

Additionally, the user can also be presented with a challenge to distinguish between a
human and a bot. This challenge can easily be solved by humans; all they need to do is
select a bunch of images according to the instructions. A traditional flow for authentication
using ReCaptcha appears as follows:

Once the user is able to verify their identity, they can log in successfully.

https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en
https://support.google.com/recaptcha/?hl=en

Building an Artificial Intelligence Authentication System Chapter 6

[194]

Obtaining the API key
To use ReCaptcha inside our application, we will need to register the application in the
reCAPTCHA admin console and get the site key and secret key. To this end, visit https:/ /
www.google.com/recaptcha/ admin and register the application. You will need to navigate
to the Register a new site section, as shown in the following screenshot:

We can obtain the API key by following two simple steps:

Start by providing a domain name. Here, we will be choosing reCAPTCHA1.
Android under reCAPTCHA v2.
After selecting the Android version, add the package name of the project. Once2.
all the information is filled in correctly, click on Register.

https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin
https://www.google.com/recaptcha/admin

Building an Artificial Intelligence Authentication System Chapter 6

[195]

This will direct you to the screen that displays the site key and secret key, as demonstrated
in the following screenshot:

Copy and save Site key and Secret key to a secure place. We will be using these while
coding the application.

Code integration
To include ReCaptcha v2 in our application, we will be using the Flutter
package, flutter_recaptcha_v2. Add the flutter_recaptcha_v2:0.1.0
dependency to the pubspec.yaml file, followed by running flutter packages get in
the terminal to get the required dependency. The following steps discuss the integration in
detail:

We will be adding the code to signup_signin_screen.dart. Start by1.
importing the dependency:

import 'package:flutter_recaptcha_v2/flutter_recaptcha_v2.dart';

Next, create a RecaptchaV2Controller instance:2.

RecaptchaV2Controller recaptchaV2Controller =
RecaptchaV2Controller();

Building an Artificial Intelligence Authentication System Chapter 6

[196]

The reCAPTCHA checkbox will be added as a widget. To start with, let's define a3.
_createRecaptcha() method that returns the widget:

 Widget _createRecaptcha() {
 return RecaptchaV2(
 apiKey: "Your Site Key here",
 apiSecret: "Your API Key here",
 controller: recaptchaV2Controller,
 onVerifiedError: (err){
 print(err);
 },
 onVerifiedSuccessfully: (success) {
 setState(() {
 if (success) {
 _signinSignup();
 } else {
 print('Failed to verify');
 }
 });
 },
);
 }

In the preceding method, we simply use the RecaptchaV2()
constructor, specifying the values for the specific properties. Add the site key and
secret key that you saved earlier while registering inside the apiKey and
apiSecret properties. We use the instance of the recaptcha
controller, recaptchaV2Controller, that we created earlier for the property
controller. If the user is verified successfully, the _signinSignup() method is
called to enable the user to sign in. If an error occurs during verification, we print
the error.

Now, since reCaptcha should appear while the user is attempting to sign in, we4.
modify the onPressed property of the sign-in raised button inside
createSigninButton() to recaptchaV2Controller:

Widget _createSigninButton() {

 return new Padding(

 child: new RaisedButton(

 //Modify the onPressed property
 onPressed: recaptchaV2Controller.show
)
)

Building an Artificial Intelligence Authentication System Chapter 6

[197]

}

Finally, we add _createRecaptcha() to the main body stack inside build():5.

 @override
 Widget build(BuildContext context) {

 return new Scaffold(

 body: Stack(
 children: <Widget>[
 _createBody(),
 _createCircularProgress(),

 //Add reCAPTCHA Widget
 _createRecaptcha()
],
));
 }

That's everything! Now we have another level of security above Firebase authentication to
protect the application's data from automated bots. Let's now look at how we can integrate
our custom model to detect malicious users.

Deploying the model in Flutter
At this point, we have our Firebase authentication application running along with
ReCaptcha protection. Now, let's add the final layer of security that won't allow any
malicious users to enter the application.

We already know that the model is hosted at the endpoint: http:/ /34.67. 126. 237:8000/
login. We will simply make an API call from within the application, passing in the email
and password provided by the user, and get the result value from the model. The value will
assist us in judging whether the login was malicious by using a threshold result value.

http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login
http://34.67.126.237:8000/login

Building an Artificial Intelligence Authentication System Chapter 6

[198]

If the value is less than 0.20, the login will be considered malicious and the following
message will be shown on the screen:

Let's now look at the steps to deploy the model in the Flutter application:

First of all, since we are fetching data and will be using network calls, that is,1.
HTTP requests, we need to add an http dependency to the pubspec.yaml file,
and import it as follows:

import 'package:http/http.dart' as http;

Start by adding the following function declaration in the BaseAuth abstract2.
class defined inside auth.dart:

 Future<double> isValidUser(String email, String password);

Now, let's define the isValidUser() function in the Auth class:3.

 Future<double> isValidUser(String email, String password) async{
 final response = await http.Client()
.get('http://34.67.160.232:8000/login?user=$email&password=$passwor
d');
 var jsonResponse = json.decode(response.body);

Building an Artificial Intelligence Authentication System Chapter 6

[199]

 var val = '${jsonResponse["result"]}';
 double result = double.parse(val);
 return result;
 }

This function takes in a user's email and password as parameters and appends
them to the request URL so that the output is generated for a specific user. The
get request response is stored in the variable response. Since the response is in
JSON format, we decode it using json.decode() and store the decoded
response in another variable response. Now, we access the value of the result in
jsonResponse using ‘${jsonResponse["result"]}', cast it into a double type
integer using double.parse(), and store it in a result. Finally, we return the
value of the result.

To activate malicious detection inside the code, we make a call to the4.
isValidUser() method from SigninSignupScreen. This method is called
when a user with an existing account chooses to sign in from inside the if-else
block:

if (_formMode == FormMode.SIGNIN) {

 var val = await widget.auth.isValidUser(_usermail,
_userpassword);

 } else {

 }

The value returned by isValidUser is stored in the val variable.

If the value is less than 0.20, this denotes that the login activity was malicious.5.
Hence, we throw an exception and catch it inside the catch block and display
the error message on the screen. This can be done by creating a custom exception
class, MalicousUserException, that returns an error message whenever it is
instantiated:

class MaliciousUserException implements Exception {
 String message() => 'Malicious login! Please try later.';
}

Building an Artificial Intelligence Authentication System Chapter 6

[200]

We will now add an if block after the call to isValidUser() to check whether6.
an exception needs to be thrown:

var val = await widget.auth.isValidUser(_usermail, _userpassword);
//Add the if block
if(val < 0.20) {
 throw new MaliciousUserException();
}

 The exception is now caught inside the catch block and the user is not allowed7.
to proceed with signing in. Additionally, we set _loading to false to denote
that no further network operation is required:

catch(MaliciousUserException) {
 setState(() {
 _loading = false;
 _errorMessage = 'Malicious user detected. Please try
again later.';
 });

That's everything! The Flutter application that we created earlier based on Firebase
authentication can now find malicious users with an intelligent model running in the
background.

Summary
In this chapter, we saw how we can build a cross-platform app using Flutter with an
authentication system powered by Firebase, while incorporating the benefits of deep
learning. We then understood how hacking attempts can be classified as anomalies in
general user behavior, and created a model to sort these anomalies out to prevent malicious
users from logging in. Finally, we used ReCaptcha by Google to remove spammy use of the
app, and hence make it more resilient in relation to automated spam or scripted hacking
attacks.

In the next chapter, we will explore a very interesting project – transcript generation of
music using deep learning on mobile apps.

7
Speech/Multimedia Processing

- Generating Music Using AI
Given the increasing number of applications of artificial intelligence (AI), the idea of using
AI with music has been around for a long time and is much researched. Since music is a
series of notes, it is a classic example of a time series dataset. Time series datasets have
proven very useful recently in a number of forecast areas – stock markets, weather patterns,
sales patterns, and other time-based datasets. Recurrent neural networks (RNNs) are one
of the most models for working with time series datasets. A popular enhancement made to
RNNs is called long short-term memory (LSTM) neurons. We'll be using LSTMs in this
chapter to work with the music notes.

Multimedia processing, too, isn't a new topic. Earlier in this project series, we covered
image processing in detail in multiple chapters. In this chapter, we will discuss and go
beyond image processing and provide an example of deep learning with audio. We will
train a Keras model to generate music samples, a new one every time. We will then use this
model with a Flutter app to deploy through an audio player on Android and iOS devices.

In this chapter, we will cover the following topics:

Designing the project's architecture
Understanding multimedia processing
Developing RNN-based models for music generation
Deploying an audio generation API on Android and iOS

Let's begin with an overview of this project's architecture.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[202]

Designing the project's architecture
This project has a slightly different architecture to a regular deep learning project deployed
as an app. We will have two different sets of samples of music. The first set of samples will
be used to train an LSTM model that can generate music. The other set of samples will be
used as a random input to the LSTM model, which will output the generated music
samples. The LSTM-based model that we'll be developing and using later will be deployed
on Google Cloud Platform (GCP). You can, however, deploy it on AWS or any other
hosting of your choice.

The interaction between the different components that will be used in this project have been
summarized in the following diagram:

The mobile application asks the model deployed on the server to generate a new music
sample. The model uses a random music sample as input to generate a new music sample
by passing it through the pretrained model. The new music sample is then fetched by the
mobile device and played to the user.

You may compare this architecture to the ones we have covered previously, in which there
would be a single set of samples of the data that would be used for training, and then the
model would be deployed either on the cloud or locally, and used to make predictions.

We could also change this project architecture to deploy the model locally in the presence
of midi file handling libraries written for the Dart language. However, as of the time of
writing, there are no such stable libraries compatible with the requirements of the Python
midi file library we've used while developing the model.

Let's begin by learning what multimedia processing means, and how we can use OpenCV
to process multimedia files.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[203]

Understanding multimedia processing
Multimedia is a collective term for nearly all forms of content that are visual, auditory, or
both. The term multimedia processing in itself is very vague. A more precise way of
discussing this term would be to break it down into two fundamental parts—visual or
auditory. Hence, we will be discussing multimedia processing in the terms it is composed
of—image processing and audio processing. A mixture of these terms gives rise to video
processing, which is just another form of multimedia.

In the following sections, we will begin by discussing them in their separate forms.

Image processing
Image processing, or computer vision, is one of the most researched branches of AI to date.
It has grown rapidly over the last few decades and has been instrumental in the
advancements of several technologies, including the following:

Image filters and editors
Facial recognition
Digital cartography
Autonomous vehicles

We discussed the basics of image processing in an earlier project. In this project, we will
discuss a very popular library for performing image processing—OpenCV. OpenCV is
short for Open Source Computer Vision. It was developed by Intel and taken forward by
Willow Garage and Itseez (which was later acquired by Intel). It is, without doubt, the
foremost choice of the majority of developers worldwide for performing image processing
due to its compatibility with all major machine learning frameworks, such as TensorFlow,
PyTorch, and Caffe. In addition to this, OpenCV works with several languages, such as
C++, Java, and Python.

To install OpenCV on your Python environment, you can use the following command:

pip install opencv-contrib-python

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[204]

The preceding command installs the main OpenCV module along with
the contrib module. You can find more modules to choose from
here: https://docs.opencv.org/master/. For more installation
instructions, if the preceding link does not meet your requirements, you
can follow the official documentation here: https:/ / docs. opencv. org/
master/ df/ d65/ tutorial_ table_ of_ content_ introduction. html.

Let's walk you through a very simple example of how to perform image processing with
OpenCV. Create a new Jupyter notebook and begin with the following steps:

To import OpenCV into the notebook, use the following line of code:1.

import cv2

Let's also import matplotlib into the notebook, because Jupyter Notebook crashes2.
if you try to use the native OpenCV image-showing function:

from matplotlib import pyplot as plt
%matplotlib inline

Let's create a substitute function for the OpenCV's native image-showing3.
function using matplotlib to facilitate the displaying of images in the notebook:

def showim(image):
 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 plt.imshow(image)
 plt.show()

Notice that we convert the color scheme of the image from Blue Green
Red (BGR) to RGB (Red Green Blue). This is due to the fact that OpenCV, by
default, uses the BGR color scheme. However, matplotlib uses the RGB scheme
while displaying the pictures, and without this conversion, our image would
appear oddly colored.

Now, let's read an image into the Jupyter notebook. Once done, we will be able to4.
see our loaded image:

image = cv2.imread("Image.jpeg")
showim(image)

The output of the preceding code depends on the image that you choose to load
into the notebook:

https://docs.opencv.org/master/
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html
https://docs.opencv.org/master/df/d65/tutorial_table_of_content_introduction.html

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[205]

In our example, we've loaded an image of citrus fruit slices, an amazing photo
taken by Isaac Quesada on Unsplash.

You can find the preceding image at https:/ /unsplash. com/photos/
6mw7bn9k9jw.

Let's make a simple manipulation of the preceding image by converting it to a5.
grayscale image. To do so, we simply use the conversion method as we did in the
showim() function we declared:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
showim(gray_image)

This produces the following output:

https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw
https://unsplash.com/photos/6mw7bn9k9jw

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[206]

Let's now execute another common manipulation, image blurring. Blurring is6.
often employed in image processing in order to remove unnecessary (at that
moment) detailing of information in the image. We use the Gaussian Blur filter,
which is one of the most common algorithms for creating a blur on the image:

blurred_image = cv2.GaussianBlur(image, (7, 7), 0)
showim(blurred_image)

This produces the following output:

Notice that the preceding image is less sharp than the original image. However, it
would easily serve the purpose of someone willing to count the number of objects
in this image.

In order to locate objects in an image, we first need to mark the edges in the7.
image. To do so, we can use the Canny() method, which is one among other
options available in OpenCV for finding edges in an image:

canny = cv2.Canny(blurred_image, 10, 50)
showim(canny)

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[207]

This produces the following output:

Notice the high number of edges found in the preceding image. While this
displays the detailing of the image, it wouldn't help if we were trying to count the
edges try to determine the number of objects in the image.

Let's try to count the number of distinct items in the image generated in the8.
previous step:

contours, hierarchy= cv2.findContours(canny, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
print("Number of objects found = ", len(contours))

The preceding code will produce the following output:

Number of objects found = 18

However, we know that there are not 18 objects in the preceding image. There are
just 9. Hence, we'll play around with the value of the threshold in the canny
method while finding edges.

Let's increase the threshold of edge finding in the canny method. This makes it9.
harder for edges to get detected, and hence keeps only the most noticeable edges
visible:

canny = cv2.Canny(blurred_image, 50, 150)
showim(canny)

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[208]

This produces the following output:

Notice the sharp reduction in the edges discovered within the body of the citrus
fruit, leaving only their outline prominently visible. We would expect this to yield
fewer objects when counted.

Let's we run the following block again:10.

contours, hierarchy= cv2.findContours(canny, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
print("Number of objects found = ", len(contours))

This produces the following output:

Number of objects found = 9

This is the expected value. However, it is only in special circumstances that this
value is as accurate.

Finally, let's try to outline the objects that we have detected. We do so by11.
drawing the contours identified in the previous step of the findContours()
method:

_ = cv2.drawContours(image, contours, -1, (0,255,0), 10)
showim(image)

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[209]

This produces the following output:

Notice that we have pretty accurately identified the nine slices of fruit in the original image
we took. We could extend this example further to find certain types of object in any image.

To find out more about OpenCV and find some ready examples to learn
from, visit the following repository: https:/ /github. com/ ayulockin/
myopenCVExperiments.

Let's now learn how to process audio files.

Audio processing
We have seen how images are processed and information can be extracted out of them. In
this section, we'll be covering the processing of audio files. Audio, or sound, is something
that engulfs the environment around you. On many occasions, you'll be able to predict
correctly the area or environment merely from an audio clip of that area, without actually
seeing any visual hints. Audio in vocal form or speech is a form of communication between
people. Audio in the form of well-arranged rhythmic patterns is called music and can be
produced by using musical instruments.

Some popular formats of audio files are as follows:

MP3: A very popular format used widely for sharing music files.
AAC: An improvement over the MP3 format, AAC is mostly used by Apple
devices.

https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments
https://github.com/ayulockin/myopenCVExperiments

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[210]

WAV: Created by Microsoft and IBM, this format is lossless compression and
might be very large even for small audio files.
MIDI: Musical Instrument Digital Interface files do not actually contain audio.
They contain notes of musical instruments, and hence are small and easy to work
with.

Audio processing is a requirement in the growth of the following technologies:

Speech processing for voice-based interfaces or assistants
Voice generation for virtual assistants
Music generation
Caption generation
Recommendation for similar music

A very popular tool for audio processing is Magenta, from the TensorFlow team.

You can visit the Magenta home page at https:/ / magenta. tensorflow.
org/. This tool allows for rapid generation of audio and transcription of
audio files.

Let's explore Magenta briefly.

Magenta
Magenta was developed as part of the research undertaken by the Google Brain team also
involved in TensorFlow. It was developed as a tool that would allow artists to enhance
their music or art generation pipelines with the help of deep learning and reinforcement
learning algorithms. Here is Magenta's logo:

https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[211]

Let's start with the following steps:

To install Magenta on your system, you can use the pip repository for Python: 1.

pip install magenta

If you are missing any dependencies, you can install them using the following2.
command:

!apt-get update -qq && apt-get install -qq libfluidsynth1 fluid-
soundfont-gm build-essential libasound2-dev libjack-dev

!pip install -qU pyfluidsynth pretty_midi

To import Magenta into your project, you can use the following command: 3.

import magenta

Or, by popular convention, to load just the music part of Magenta, you can use
the following command:

import magenta.music as mm

You will find a lot of samples online using the preceding import.

Let's create some music quickly. We'll be creating some drum roll sounds and then save the
same to a MIDI file:

We'll first need to create a NoteSequence object. In Magenta, all music is stored1.
in the format of note sequences, which is similar to how MIDI stores music:

from magenta.protobuf import music_pb2

drums = music_pb2.NoteSequence()

Once the NoteSequence object has been created, it is empty, so we need to add2.
some notes to it:

drums.notes.add(pitch=36, start_time=0, end_time=0.125,
is_drum=True, instrument=10, velocity=80)
drums.notes.add(pitch=38, start_time=0, end_time=0.125,
is_drum=True, instrument=10, velocity=80)
drums.notes.add(pitch=42, start_time=0, end_time=0.125,
is_drum=True, instrument=10, velocity=80)
drums.notes.add(pitch=46, start_time=0, end_time=0.125,
is_drum=True, instrument=10, velocity=80)
.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[212]

.

.
drums.notes.add(pitch=42, start_time=0.75, end_time=0.875,
is_drum=True, instrument=10, velocity=80)
drums.notes.add(pitch=45, start_time=0.75, end_time=0.875,
is_drum=True, instrument=10, velocity=80)

Notice in the preceding code that each note has a pitch and velocity. This is again
similar to the MIDI files.

Let's now add a tempo to the notes and set the total time for the music to play: 3.

drums.total_time = 1.375

drums.tempos.add(qpm=60)

With this done, we're now ready to export the MIDI file.

We first need to convert the Magenta NoteSequence object to the MIDI file:4.

mm.sequence_proto_to_midi_file(drums, 'drums_sample_output.mid')

The preceding code first converts the note sequence to MIDI and then writes them to the
drums_sample_output.mid file on the disk. You can now play the midi file with any
suitable music player.

Moving ahead, let's explore how we can process videos.

Video processing
Video processing is another important part of multimedia processing. Often, we require to
make sense of what's happening inside moving scenarios. For instance, if we're making a
self-driving vehicle, it would need to process a lot of video in real time to be able to drive
smoothly. Another instance of this can be a device that converts sign language to text in
order to help interact with speech-impaired people. Further, video processing is required to
create movies and motion effects.

We shall again be exploring OpenCV in this section. However, we'll be demonstrating how
to use a live camera feed with OpenCV to detect faces.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[213]

Create a new Python script and perform the following steps:

First, we need to make the necessary imports to the script. This will be1.
straightforward, as we only require the OpenCV module:

import cv2

Now, let's load a Haar cascade model into the script. A Haar cascade is an2.
algorithm that is used to detect objects in any given image. Since the video is
nothing but a stream of images, we'll be breaking it down into a series of frames
and detect faces in them:

faceCascade =
cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

You will have to grab the haarcascade_frontalface_default.xml file from
this location: https:/ /github. com/opencv/ opencv/ blob/ master/ data/
haarcascades/ haarcascade_ frontalface_ default. xml.

Haar cascades are a class of classifier algorithms that use cascading
functions to perform classification. They were introduced by Paul Viola
and Michael Jones, in their attempt to build an object detection algorithm
that was fast enough to run on low-end devices. Cascading functions pool
results from several smaller classifiers.

Haar cascade files are usually found in the format of Extensible Markup
Language (XML) and usually perform one specific function, such as face
detection, body posture detection, object detection, and others. You can
read more about Haar cascades here: http:/ /www. willberger. org/
cascade- haar- explained/ .

We'll now have to instantiate the camera for video capture. We can use the 3.
default laptop camera for this purpose:

video_capture = cv2.VideoCapture(0)

Let's now capture the frames from the video and display them:4.

while True:
 # Capture frames
 ret, frame = video_capture.read()

 ### We'll add code below in future steps

 ### We'll add code above in future steps

https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/
http://www.willberger.org/cascade-haar-explained/

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[214]

 # Display the resulting frame
 cv2.imshow('Webcam Capture', frame)

 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

This would allow you to show the live video feed on your screen. Before we run
this, we need to release the camera and close the windows properly.

To shut down the live capture properly, use the following commands:5.

video_capture.release()
cv2.destroyAllWindows()

Now, let's give your script a test run.

You should get a window containing the live capture of your face (if you're not
shy) visible on it.

Let's add face detection to this video feed. Since the Haar cascade for face6.
detection works better with grayscale images, we will first convert each frame to
gray and then perform the face detection on it. We need to add this code to the
while loop, as shown in the following code:

 ### We'll add code below in future steps

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.1,
 minNeighbors=5,
 minSize=(30, 30),
 flags=cv2.CASCADE_SCALE_IMAGE
)

 ### We'll add code above in future steps

With this, we have detected the faces, so let's mark them on the video feed!

We'll simply use the rectangle drawing function of OpenCV to mark the faces on7.
the screen:

 minNeighbors=5,
 minSize=(30, 30),
 flags=cv2.CASCADE_SCALE_IMAGE
)

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[215]

 for (x, y, w, h) in faces:
 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

 ### We'll add code above in future steps

Let's now again try to run the script.

Go to the terminal and use the following command to run the script:

python filename.py

Here, the filename is the name of your script file when you save it.

You should get an output similar to the following screenshot:

To quit the live webcam capture, use the Q key on your keyboard (we have set this in the
preceding code).

We have studied an overview of the three major forms of multimedia processing. Let's now
move ahead and build our LSTM-based model for generating audio.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[216]

Developing RNN-based models for music
generation
In this section, we'll be developing a music generation model. We'll be using RNNs for that,
and using the LSTM neuron model for the same. An RNN is different from a simple
artificial neural network (ANN) in a very significant way—it allows the reuse of input
between layers.

While, in an ANN, we expect input values that enter the neural network to move forward
and then produce error-based feedback to be incorporated into the network weights, RNNs
make the input come back to the previous layers in loops several times.

The following diagram represents an RNN neuron:

From the preceding diagram, we can see that the input after passing through the activation
function in the neuron splits into two parts. One part moves forward in the network toward
the next layer or output, while the other part is fed back into the network. In a time series
dataset, where each sample can be labeled relative to the time of a given sample at t, we
might expand the preceding diagram as shown here:

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[217]

However, due to repeated exposure of the values through the activation functions, an RNN
tends toward gradient vanishing in which the values of the RNN gradually turn negligibly
small (or large in the case of gradient explosion). To avoid this, the LSTM units were
introduced, which allowed the retaining of information for a longer period by storing it in
the units. Each LSTM unit is composed of three gates and a memory cell. The three
gates—the input, output, and forget gates—are responsible for deciding what values are
stored in the memory cell.

Thus, the LSTM units become independent from the update frequency of the rest of the
RNN, and each cell has its own time of remembering the values that it holds. This mimics
nature more closely in terms of us forgetting some random pieces of information much later
compared to other pieces.

You can find a detailed and easy to understand explanation of RNNs and
LSTMs at the following link: https:/ / skymind. ai/ wiki/ lstm.

Before we begin building the model for our project, we need to set up the project directory,
as shown in the following code:

├── app.py
├── MusicGenerate.ipynb
├── Output/
└── Samples/
 ├── 0.mid
 ├── 1.mid
 ├── 2.mid
 └── 3.mid

Notice that we have downloaded four samples of MIDI files in the Samples folder. We
then created the MusicGenerate.ipynb Jupyter notebook for working on. In the next few
steps, we'll be working solely on this Jupyter notebook. The app.py script is currently
empty and, in the future, we'll use it to host the model.

Let's now begin by creating the LSTM-based model for generating music.

https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm
https://skymind.ai/wiki/lstm

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[218]

Creating the LSTM-based model
In this section, we'll be working on the MusicGenerate.ipynb notebook inside the
Jupyter notebook environment:

We'll require quite a few module imports in this notebook. Use the following1.
code to import them:

import mido
from mido import MidiFile, MidiTrack, Message
from tensorflow.keras.layers import LSTM, Dense, Activation,
Dropout, Flatten
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from sklearn.preprocessing import MinMaxScaler
import numpy as np

We've used the mido library. If you do not have it installed on your system, you
can use the following command to install it:

pip install mido

Notice in the preceding code that we have also imported the Keras module and
subparts. The TensorFlow version used in this project is 2.0. In order to install the
same on your system or to upgrade the current TensorFlow installation, you can
use the following commands:

pip install --upgrade pip

pip install --upgrade tensorflow

Now, we'll move on to reading the sample files.

To read a MIDI file into the project notebook, use the following code: 2.

notes = []
for msg in MidiFile('Samples/0.mid') :
 try:
 if not msg.is_meta and msg.channel in [0, 1, 2, 3] and
msg.type == 'note_on':
 data = msg.bytes()
 notes.append(data[1])
 except:
 pass

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[219]

This loads all the opening notes of channel 0, 1, 2, and 3 in the notes list.

To understand more about notes, messages, and channels, use the
following documentation: https:/ /mido. readthedocs. io/ en/ latest/
messages. html

Since the notes are in a varying range that is larger than the 0–1 range, we'll scale3.
them to fit a common range, using the following code:

scaler = MinMaxScaler(feature_range=(0,1))
scaler.fit(np.array(notes).reshape(-1,1))
notes = list(scaler.transform(np.array(notes).reshape(-1,1)))

What we essentially have is a list of notes arranged over time. We need to4.
convert this to a time series dataset format. To do so, we use the following code
to convert the list:

notes = [list(note) for note in notes]

X = []
y = []

n_prev = 20
for i in range(len(notes)-n_prev):
 X.append(notes[i:i+n_prev])
 y.append(notes[i+n_prev])

We have converted it to a collection where each sample has the future 20 notes
along with it and, toward the end of the dataset, the past 20. This works in the
following way—if we have 5 samples, say M1, M2, M3, M4, and M5, then we
arrange them in, let's say, pairings of 2 (analogous to our 20) as shown here:

M1 M2
M2 M3

M3 M4 and so on

We shall now create the LSTM model using Keras, as shown in the following5.
code:

model = Sequential()
model.add(LSTM(256, input_shape=(n_prev, 1),
return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(128, input_shape=(n_prev, 1),

https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html
https://mido.readthedocs.io/en/latest/messages.html

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[220]

return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256, input_shape=(n_prev, 1),
return_sequences=False))
model.add(Dropout(0.3))
model.add(Dense(1))
model.add(Activation('linear'))
optimizer = Adam(lr=0.001)
model.compile(loss='mse', optimizer=optimizer)

Feel free to play around with the hyperparameters of this LSTM model.

Finally, we'll fit our training sample to the model and save the model file:6.

model.fit(np.array(X), np.array(y), 32, 25, verbose=1)
model.save("model.h5")

This would create the model.h5 file in our project directory. We'll be using this file with
other samples of music to generate a new piece randomly every time the user makes a
generation request from the app.

Now, let's deploy this model using a Flask server.

Deploying a model using Flask
For this part of the project, you may use your local system or deploy the script in app.py
elsewhere. We will be editing this file to create a Flask server that generates music and
allows the MIDI files that are generated to be downloaded.

Some of the code in this file will be similar to the Jupyter notebook, since the audio samples
will always require a similar treatment every time they're loaded and used with the model
we've generated:

We use the following code to make the required module imports to this script:1.

import mido
from mido import MidiFile, MidiTrack, Message
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import random
import time
from flask import send_file
import os

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[221]

from flask import Flask, jsonify

app = Flask(__name__)

Notice that the last four imports we've made are different from what we imported
previously in the Jupyter notebook. Also, we do not need to import the several
Keras components into this script since we'll be loading from an already prepared
model.

In the last line of code in the previous code block, we've instantiated a Flask object
named app.

In this step, we'll be creating the first part of a function that would generate new2.
music samples when the /generate route is called on the API:

@app.route('/generate', methods=['GET'])
def generate():

 songnum = random.randint(0, 3)

 ### More code below this

Once we've randomly decided which sample file to use during the music3.
generation, we need to make it undergo similar transformations as with the
training sample in the Jupyter notebook:

def generate():
 .
 .
 .
 notes = []

 for msg in MidiFile('Samples/%s.mid' % (songnum)):
 try:
 if not msg.is_meta and msg.channel in [0, 1, 2, 3] and
msg.type == 'note_on':
 data = msg.bytes()
 notes.append(data[1])
 except:
 pass

 scaler = MinMaxScaler(feature_range=(0, 1))
 scaler.fit(np.array(notes).reshape(-1, 1))
 notes = list(scaler.transform(np.array(notes).reshape(-1, 1)))

 ### More code below this

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[222]

In the preceding code block, we loaded the sample file and extracted its notes
from the same channels we used during training.

We will now scale the notes similarly as we did during training:4.

def generate():
 .
 .
 .
 notes = [list(note) for note in notes]

 X = []
 y = []

 n_prev = 20
 for i in range(len(notes) - n_prev):
 X.append(notes[i:i + n_prev])
 y.append(notes[i + n_prev])

 ### More code below this

We also transform this list of notes to a shape suitable for input into the model,
exactly as we did with the input during training.

Next, we'll have the following code to load the Keras model and create a new list5.
of notes from the model:

def generate():
 .
 .
 .
 model = load_model("model.h5")

 xlen = len(X)

 start = random.randint(0, 100)

 stop = start + 200

 prediction = model.predict(np.array(X[start:stop]))
 prediction = np.squeeze(prediction)
 prediction =
np.squeeze(scaler.inverse_transform(prediction.reshape(-1, 1)))
 prediction = [int(i) for i in prediction]

 ### More code below this

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[223]

Now, we can convert this list of notes to a MIDI sequence using the following6.
code:

def generate():
 .
 .
 .
 mid = MidiFile()
 track = MidiTrack()
 t = 0
 for note in prediction:
 vol = random.randint(50, 70)
 note = np.asarray([147, note, vol])
 bytes = note.astype(int)
 msg = Message.from_bytes(bytes[0:3])
 t += 1
 msg.time = t
 track.append(msg)
 mid.tracks.append(track)

 ### More code below this

We're now ready to save the file to disk. It contains randomly generated music7.
from the model:

def generate():
 .
 .
 .
 epoch_time = int(time.time())

 outputfile = 'output_%s.mid' % (epoch_time)
 mid.save("Output/" + outputfile)

 response = {'result': outputfile}

 return jsonify(response)

Thus, the /generate API returns the name of the generated file in a JSON
format. We can then download and play this file.

To download the files to the client, we need to use the following code:8.

@app.route('/download/<fname>', methods=['GET'])
def download(fname):
 return send_file("Output/"+fname, mimetype="audio/midi",
as_attachment=True)

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[224]

Notice that the preceding function works on the /download/filename route
where the filename is supplied by the client based on the output of the previous
generation API call. The file downloaded has a MIME type of audio/midi, which
tells the client that it is a MIDI file.

Finally, we can add the code that will execute this server:9.

if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8000)

This done, we can use the following command in the terminal to run the server:

python app.py

You'll get some debug information from the console if there are any warnings produced in
the code. With this done, we're ready to move toward building the Flutter app client for our
API in the next section.

Deploying an audio generation API on
Android and iOS
After successfully creating and deploying the model, let's now begin by building the mobile
application. The application will be used to fetch and play music generated by the model
created earlier.

It will have three buttons:

Generate Music: To generate a new audio file
Play: To play the newly generated file
Stop: To stop the music that is playing

Also, it will have some text at the bottom to show the current status of the application.

The application will appear as follows:

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[225]

The widget tree of the application would look as follows:

Let's now start building the UI of the application.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[226]

Creating the UI
We start by creating a new Dart file, play_music.dart, and a stateful widget, PlayMusic.
In this file, we will create the three buttons, as stated earlier, to perform the basic functions.
The following steps describe how to create the UI:

Define a buildGenerateButton() method to create the1.
RaisedButton variable that will be used to generate new music files:

 Widget buildGenerateButton() {
 return Padding(
 padding: EdgeInsets.only(left: 16, right: 16, top: 16),
 child: RaisedButton(
 child: Text("Generate Music"),
 color: Colors.blue,
 textColor: Colors.white,
),
);
 }

In the function defined previously, we create a RaisedButton with Generate
Music text added as a child. The Colors.blue value of the color property is
used to give the button a blue color. Also, we modify textColor to
Colors.white so that the text inside the button is white in color. The button is
given left, right, and top padding using EdgeInsets.only(). In a later section,
we will add the onPressed property to the button to fetch new music files from
the hosted model every time the button is pressed.

Define a buildPlayButton() method to play the newly generated audio file:2.

Widget buildPlayButton() {
 return Padding(
 padding: EdgeInsets.only(left: 16, right: 16, top: 16),
 child: RaisedButton(
 child: Text("Play"),
 onPressed: () {
 play();
 },
 color: Colors.blue,
 textColor: Colors.white,
),
);
 }

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[227]

In the function defined previously, we create a RaisedButton with "Play" text
added as a child. The Colors.blue value of the color property is used to give
the button a blue color. Also,we modify textColor to Colors.white so that the
text inside the button is white in color. The button is given left, right, and top
padding using EdgeInsets.only(). In a later section, we will add the
onPressed property to the button to play the newly generated music file every
time the button is pressed.

Define a buildStopButton() method to stop the audio that is playing3.
currently:

Widget buildStopButton() {
 return Padding(
 padding: EdgeInsets.only(left: 16, right: 16, top: 16),
 child: RaisedButton(
 child: Text("Stop"),
 onPressed: (){
 stop();
 },
 color: Colors.blue,
 textColor: Colors.white,
)
);
 }

In the function defined previously, we create a RaisedButton with "Stop" text
added as a child. The Colors.blue value of the color property is used to give
the button a blue color. Also, we modify textColor to Colors.white so that the
text inside the button is white in color. The button is given left, right, and top
padding using EdgeInsets.only(). In a later section, we will add the
onPressed property to the button to stop the currently playing audio when the
button is pressed.

Override the build() method inside PlayMusicState to create a Column of the4.
buttons created previously:

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("Generate Play Music"),
),
 body: Column(
 crossAxisAlignment: CrossAxisAlignment.stretch,
 children: <Widget>[

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[228]

 buildGenerateButton(),
 buildPlayButton(),
 buildStopButton(),
],
)
);
 }

In the preceding code snippet, we return a Scaffold. It contains an AppBar with
Generate Play Music as the title. The body of the Scaffold is a Column. The
children of the column are the buttons that we had created in the previous step.
The buttons are added to the column by making calls to the respective methods.
Additionally, the crossAxisAlignment property is set to
CrossAxisAlignment.stretch so that the buttons occupy the total width of the
parent container, that is, the column.

At this point, the app looks as follows:

In the next section, we will add a mechanism to play audio files in the application.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[229]

Adding Audio Player
After creating the UI of the application, we will now add Audio Player to the application to
play audio files. We will make use of the audioplayer plugin to add Audio Player as
follows:

We start by adding the dependency to the pubspec.yaml file:1.

audioplayers: 0.13.2

Now, get the packages by running flutter pub get.

Next, we import the plugin in play_music.dart.2.

import 'package:audioplayers/audioplayers.dart';

Then, create an instance of AudioPlayer inside PlayMusicState:3.

AudioPlayer audioPlayer = AudioPlayer();

Now, let's define a play() method to play a remotely available audio file as4.
follows:

play() async {
 var url =
‘http://34.70.80.18:8000/download/output_1573917221.mid’;
 int result = await audioPlayer.play(url);
 if (result == 1) {
 print('Success');
 }
 }

Initially, we will use a sample audio file stored in the url variable. The audio file
is played using audioPlayer.play() by passing in the value in url. Also, the
result is stored in a result variable whose value will be 1 if the audio file is
accessed and played successfully from the url variable.

Let's now add the onPressed property to the play button built inside5.
buildPlayButton so that the audio file is played whenever the button is
pressed:

Widget buildPlayButton() {
 return Padding(
 padding: EdgeInsets.only(left: 16, right: 16, top: 16),
 child: RaisedButton(

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[230]

 onPressed: () {
 play();
 },

),
);
 }

In the preceding code snippet,we add the onPressed property and call
the play() method so that the audio file is played whenever the button is
pressed.

We will now define stop() to stop the music that is already playing:6.

void stop() {
 audioPlayer.stop();
 }

Inside the stop() method, we simply call audioPlayer.stop() to stop the
music that is already playing.

Finally, we add the onPressed property for the stop button built inside7.
buildStopButton():

 Widget buildStopButton() {
 return Padding(
 padding: EdgeInsets.only(left: 16, right: 16, top: 16),
 child: RaisedButton(

 onPressed: (){
 stop();
 },

)
);
 }

In the preceding code snippet, we add a call to stop() inside onPressed so that the audio
is stopped as soon as the stop button is pressed.

Let's now start to deploy the model with the Flutter application.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[231]

Deploying the model
After successfully adding a basic play and stop functionality to the application, let's now
access the hosted model to generate, fetch, and play a new audio file every time. The
following steps discuss in detail how we can access the model inside the application:

First of all, we define the fetchResponse() method to generate and fetch new1.
audio files:

void fetchResponse() async {
 final response =
 await http.get('http://35.225.134.65:8000/generate');
 if (response.statusCode == 200) {
 var v = json.decode(response.body);
 fileName = v["result"] ;
 } else {
 throw Exception('Failed to load');
 }
 }

We begin by fetching the response from the API using http.get() and passing
in the URL where the model is hosted. The response from the get() method is
stored in the response variable. When the get() operation is complete, we
check the status code using response.statusCode. If the value of the status is
200, the fetch was successful. Next, we convert the body of the response from raw
JSON to Map<String,dynamic> using json.decode() so that the key-value
pairs contained in the response body can be accessed easily. We access the value
for the new audio file using v["result"] and store it inside the global
fileName variable. If the responseCode was not 200, we simply throw an error.

Let's now define load() to make proper calls to fetchResponse():2.

void load() {
 fetchResponse();
 }

In the preceding code lines, we simply define a load() method that is used to
call fetchResponse() to fetch the value for the newly generated audio file.

We will now modify the onPressed property inside buildGenerateButton()3.
to generate new audio files every time:

Widget buildGenerateButton() {
 return Padding(

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[232]

 child: RaisedButton(

 onPressed: () {
 load();
 },

),
);
 }

According to the functionality of the application, whenever the generate button is
pressed, a new audio file should be generated. This directly means that whenever
the generate button is pressed, we need to make a call to the API to get the name
of the newly generated audio file. Therefore, we modify
buildGenerateButton() to add the onPressed property so that whenever the
button is pressed, it makes a call to load() , which subsequently calls
fetchResponse() and stores the name of the new audio file in the output.

An audio file that is hosted has two parts, a baseUrl and a fileName. baseUrl4.
remains the same for all the calls. Therefore, we declare a global string variable
storing baseUrl:

String baseUrl = 'http://34.70.80.18:8000/download/';

Recall that we have already stored the name of the new audio file inside
fileName in step 1.

Now, let's modify play() to play the newly generated files:5.

play() async {
 var url = baseUrl + fileName;
 AudioPlayer.logEnabled = true;
 int result = await audioPlayer.play(url);
 if (result == 1) {
 print('Success');
 }
 }

In the preceding code snippet, we modify the play() method defined earlier. We
create a new URL by appending baseUrl and fileName so that the value inside
url always corresponds to the newly generated audio file. We pass the value of
the URL while making a call to audioPlayer.play(). This ensures that every
time the play button is pressed, the most recently generated audio file is played.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[233]

Also, we add a Text widget to reflect the file-generating status: 6.

 Widget buildLoadingText() {
 return Center(
 child: Padding(
 padding: EdgeInsets.only(top: 16),
 child: Text(loadText)
)
);
 }

In the function defined previously, we create a simple Text widget to reflect the
fact that the fetch operation is in operation and when it is complete. The Text
widget is given top padding and is aligned to the Center. The loadText value is
used to create the widget.

The variable is declared globally with an initial value of 'Generate Music':

String loadText = 'Generate Music';

 Update the build() method to add the new Text widget:7.

@override
 Widget build(BuildContext context) {
 return Scaffold(

 body: Column(

 children: <Widget>[
 buildGenerateButton(),

 buildLoadingText()
],
)
);
 }

Now, we update the build() method to add the newly created Text widget. The
widget is simply added as a child of the Column created earlier.

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[234]

We need to change the text when the user wants to generate a new text file and8.
while the fetch operation is in progress:

void load() {
 setState(() {
 loadText = 'Generating...';
 });
 fetchResponse();
 }

In the preceding code snippet, the loadText value is set to 'Generating...' to
reflect the fact that the get() operation is in progress.

Finally, we update the text when the fetch is complete:9.

void fetchResponse() async {
 final response =
 await
http.get('http://35.225.134.65:8000/generate').whenComplete((){
 setState(() {
 loadText = 'Generation Complete';
 });
 });

 }

Once the fetch is complete, we update the value of loadText to 'Generation
Complete'. This signifies that the application is now ready to play the newly generated
file.

The entire code for play_music.dart can be viewed here: https:/ /
github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/
master/ Chapter7/ flutter_ generate_ music/ lib/ play_ music. dart.

After making all the segments of the application work properly, let's now finally put
everything together by creating the final material app.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter7/flutter_generate_music/lib/play_music.dart

Speech/Multimedia Processing - Generating Music Using AI Chapter 7

[235]

Creating the final material app
Let's now create the main.dart file. The file contains a stateless widget, MyApp. We
override the build() method and set PlayMusic as its child:

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: PlayMusic(),
);
 }

Inside the overridden build() method, we simply create the MaterialApp with home as
PlayMusic().

The entire project can be viewed here: https:/ /github. com/
PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/ master/
Chapter7/ flutter_ generate_ music.

Summary
In this chapter, we covered the study of multimedia processing by breaking it into the core
components of image, audio, and video processing, and discussed some of the most
common tools for working on them. We saw how easy it becomes for us to perform image
or video processing using OpenCV. Also, we saw a quick example of generating drum
music using Magenta. In the later part of this chapter, we covered how LSTMs work with
time series data, and built an API that could generate instrumental music from sample files
provided. Finally, we used this API with a Flutter app, which is cross-platform and can be
deployed on Android, iOS, and the web simultaneously.

In the next chapter, we will be looking at how we can use deep reinforcement learning
(DRL) to create agents that can play board games such as chess.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter7/flutter_generate_music

8
Reinforced Neural Network-

Based Chess Engine
Games have been provided with an entire section of their own on several online application
stores and on almost every software store as well. The importance and craze of games
cannot be overlooked, which is why developers all over the world keep trying to come up
with better and more engrossing games.

In the world of popular board games, chess is one of the most competitive and complex
games that is played all over the world. There have been several attempts to come out with
strong automated programs for playing chess and competing against humans. This chapter
will discuss the approach that's used by the developers at DeepMind who created Alpha
Zero, a self-learning algorithm that taught itself to play chess so that it could beat the then
best chess AI on the market, Stockfish 8, with a one-sided score in just 24 hours of training.

In this chapter, we will introduce the concepts that you need to understand in order to
build such a deep reinforcement learning algorithm and then build a sample project. Note
that this project will require that you have good knowledge of Python and machine
learning.

We will cover the following topics in this chapter:

Introduction to reinforcement learning
Reinforcement learning in mobile games
Exploring Google's DeepMind
Alpha Zero-like AI for Connect 4
Underlying project architecture
Developing a GCP-hosted REST API for the chess engine
Creating a simple chess UI on Android
Integrating the chess engine API with a UI

Reinforced Neural Network-Based Chess Engine Chapter 8

[237]

Let's begin by discussing the usage and popularity of reinforcement learning agents in
mobile games.

Introduction to reinforcement learning
In the last few years, reinforcement learning has emerged to be a prominent field of study
among machine learning researchers. It has been increasingly used to build agents that
learn to perform better in any given environment, in search of a better reward to the actions
they have performed. This, in a nutshell, brings us to the definition of reinforcement
learning – in the field of artificial intelligence, this is when an algorithm aims to create
virtual agents that perform actions at any given state within an environment to achieve the
best possible reward after the sequence of actions has been performed.

Let's try to give this definition more structure by defining the variables associated with a
common reinforcement learning algorithm:

Agent: A virtual entity that performs actions. It is the entity that replaces the
designated user of the game/software.
Action (a): The possible actions that the agent can perform.
Environment (e): A set of scenarios available in the software/game.
State (S): A collection of all scenarios, along with the configurations available in
them.
Reward (R): A value that's returned for any action that's performed by the agent,
which the agent then tries to maximize.
Policy (π): The strategy that the agent uses to determine which actions have to be
performed next.
Value (V): R is a short-term per-action reward, whereas value is the total reward
expected at the end of a set of actions. Vπ(s) defines the expected total reward by
following policy π under the state, S.

The flow of this algorithm can be seen in the following diagram:

Reinforced Neural Network-Based Chess Engine Chapter 8

[238]

While we didn't mention the observer in the preceding list of definitions, it is a necessity to
have an observer or evaluator in order to produce rewards. Sometimes, the observer itself
could be a complex piece of software, but often, this is a simple evaluation function or
metric.

To get a more detailed idea of reinforcement learning, you can read the
Wikipedia article
at https://en.wikipedia.org/wiki/Reinforcement_learning. For a
quick sample of a reinforcement learning agent in action, read the
following DataCamp article: https:/ /www. datacamp. com/ community/
tutorials/ introduction- reinforcement- learning

In the next section, we will learn how reinforcement learning found its place in mobile
games.

https://en.wikipedia.org/wiki/Reinforcement_learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning
https://www.datacamp.com/community/tutorials/introduction-reinforcement-learning

Reinforced Neural Network-Based Chess Engine Chapter 8

[239]

Reinforcement learning in mobile games
Reinforcement learning has gained popularity among developers who wish to build game-
playing AIs for various reasons – to simply check the capabilities of the AI, to build a
training agent that helps professionals improve their game, and so on. From a researcher's
point of view, games offer the best testing environment for reinforcement learning agents
that can make decisions based on experience and learn to survive/achieve in any given
environment. This is due to the fact that games can be designed with simple and precise
rules, where the reaction of the environment to a certain action can be accurately predicted.
This makes it easier to evaluate the performance of the reinforcement learning agents, and
thereby facilitate a good training ground for the AI. With the breakthroughs in game-
playing AIs taken into consideration, it has also been voiced that we're moving faster
toward a general-purpose AI than what was expected. But how do reinforcement learning
concepts map to games?

Let's consider a simple game, such as tic-tac-toe. Alternatively, if you're feeling quirky, just
Google Tic-Tac-Toe and you'll be presented with a game right in your search results!

Consider you're playing Tic-Tac-Toe against the computer. The computer here is the agent.
What is the environment, in this case? You guessed correctly – the Tic-Tac-Toe board, along
with the set of rules that govern the game in the environment. The already placed markers
on the Tic-Tac-Toe board make the state the environment is in. The X or the O that the
agent can put on the board are the actions they can perform, where a loss, a win, or a tie or
advancing toward a loss, win, or a tie is the reward given back to the agent after they
perform any action. The strategy that's followed by the agent to win the game is the policy
it follows.

Hence, from this example, it is conclusive that reinforcement learning agents are highly
suitable for building AI that learns to play any game. This has led to a number of
developers coming up with game-playing AIs for several popular games besides chess,
such as Go, checkers, Counter-Strike, and others. Even games such as Chrome Dino have
found developers attempting to play them using AI.

In the next section, we will provide a brief overview of Google's DeepMind, one of the most
popular companies in the field of game-playing AI makers.

Reinforced Neural Network-Based Chess Engine Chapter 8

[240]

Exploring Google's DeepMind
DeepMind is probably one of the most prominent names that comes up when you talk
about the growth of self-learning artificial intelligence, owing to their groundbreaking
research and achievements in the field. Acquired by Google in 2014, DeepMind is currently
a wholly-owned subsidiary of Alphabet since the restructuring of Google in 2015. The most
notable works of DeepMind include AlphaGo and its successor, Alpha Zero. Let's discuss
these projects in greater depth and try to understand what makes them so important in the
present day.

AlphaGo
In 2015, AlphaGo became the first piece of computer software to defeat a professional Go
player, Lee Sedol, on a 19x19 board. The breakthrough was documented and released as a
documentary movie. The impact of the victory over Lee Sedol was so great that the Korea
Baduk Association granted an honorary 9-dan certificate, which essentially means a Go
player whose skill of the game borders on divinity. This was the first time ever in the
history of Go that an honorary 9-dan certificate had been provided, so the certificate that
was provided to AlphaGo was numbered 001. Its ELO rating then was 3,739.

The successor to AlphaGo – the AlphaGo Master – later defeated the then reigning world
champion of the game, Ke Jie, in a three-match game. In recognition of the feat, it was
awarded the 9-dan certification from the Chinese Weiqi Association. This piece of software
achieved an ELO rating of 4,858 at the time.

However, both pieces of software were overpowered by their successor, AlphaGo Zero,
which, in 3 days of self-taught learning, was able to defeat AlphaGo with a 100:0 game
score and AlphaGo Master with an 89:11 game score after 21 days of training. After 40 days,
it had exceeded the skill of all previous Go AIs, with an ELO rating of 5,185.

AlphaGo was based upon the Monte Carlo tree search algorithm and employed deep
learning performed over generated and human player game logs. The initial training for the
model was made from human games. Then, the computer would play against itself and try
to improve its game. The tree search would be capped to a set depth to avoid huge
computational overheads in which the computer would try to reach all possible moves to
get to the end of the game before making any move.

Reinforced Neural Network-Based Chess Engine Chapter 8

[241]

In summary, the following process was followed:

Initially, the model would be trained on human game logs.1.
Once trained on a baseline, the computer would play against itself using the2.
model it trained on in the previous step and used a capped Monte Carlo tree
search to ensure that moves were made without stalling the software for a long
time. Logs were generated for these games.
Training was then performed on the generated games, which improved the3.
overall model.

Now, let's discuss Alpha Zero.

Alpha Zero
A successor to AlphaGo Zero, Alpha Zero was an attempt at generalizing the algorithm so
that it could be used to play other board games as well. Alpha Zero was trained to play
chess, shogi (a Japanese game similar to chess), and Go and achieved performance on par
with the existing AIs of the respective games. After 34 hours of training, Alpha Zero for Go
was able to defeat AlphaGo Zero, which was trained over 3 days, with a score of 60:40. This
led to an ELO rating of 4,430.

Alpha Zero was able to defeat Stockfish 8, the 2016 winner of the TCEC contest, after about
9 hours of training. Thus, it remains the most powerful chess AI so far, though some claim
that the latest version of Stockfish will be able to defeat it.

The major differences between AlphaGo Zero and the Alpha Zero variant are as follows:

Possibility of a tie: While in Go, one player is guaranteed to win, the same is not
true for chess. Hence, Alpha Zero was modified so that tied games were allowed.
Symmetry: AlphaGo Zero took advantage of the symmetric nature of the board.
However, with chess not being an asymmetric game, Alpha Zero had to be
modified to work accordingly.
Hardcoded hyperparameter search: Alpha Zero had hardcoded rules for
hyperparameter searches.
The neural network keeps on updating in the case of Alpha Zero.

At this point, you might be wondering, "What is the Monte Carlo tree search?". Let's try to
answer that question!

Reinforced Neural Network-Based Chess Engine Chapter 8

[242]

Monte Carlo tree search
When we talk about games such as chess, Go, or Tic-Tac-Toe, which are games of strategy
based upon the current scenario, we're talking about a huge number of possible scenarios
and actions that can be performed in them at any given point. While, for smaller games
such as tic-tac-toe, the number of possible states and actions is within the reach of modern-
day computers to calculate, more complex games such as chess and Go exponentially
increase in terms of how many possible states of the game can be made.

The Monte Carlo tree search attempts to find the right series of actions required to win any
game or to achieve a better reward in a given environment. The reason it is called a tree
search is due to the fact that it creates a tree of all the possible states in the game, with all
the possible moves in it by creating a branch to each state, which are represented as the
nodes in the tree.

Let's consider the following simple game example. Say you are playing a game that asks
you to guess a three-digit number, where each guess has an associated reward with it. The
possible range of digits is 1 to 5, and the number of times you can guess is three. If you
make an exact guess, which would be to correctly guess the number at any given position,
you'll be rewarded with a score of 5. However, if you make a wrong guess, a score is
provided in a linear decrement on both sides of the correct number.

For instance, if the number to be guessed was 2, the following reward scores are possible:

If you guess 1, the score is 4
If you guess 2, the score is 5
If you guess 3, the score is 4
If you guess 4, the score is 3
If you guess 5, the score is 2

Hence, the optimal total score in the game is 15, that is, 5 points for each correct guess.
Given that, at each step, you can choose between any of the five options, the total number
of possible states in the game is 5 * 5 * 5 = 125, with just one state giving the optimal score.

Reinforced Neural Network-Based Chess Engine Chapter 8

[243]

Let's try to depict the preceding game in a tree. Say the number you're trying to guess is
413. In the first step, you'd have the following tree:

Upon making your choice, you'd be presented with the reward, and again you'd have five
options to choose from – in other words, five branches in each node to traverse. In optimal
gameplay, the following tree would be obtained:

Now, let's consider the fact that the game of Go has a total of 3361 possible states. It becomes
impractical to try and compute each possibility before the AI makes a move. This is where
the Monte Carlo tree search, combined with the Upper Confidence Bound algorithm, gains
an advantage over other methods since it can be terminated to any search depth, and can
yield results that tend toward an optimal score. Thus, it is not required for the algorithm to
traverse down each branch of the tree. The tree search algorithm, once it realizes that any
particular branch is performing poorly, can stop going down on that path and focus on the
better performing paths. Also, it can terminate any path early on and return the expected
reward at that point, making it possible to adjust the time taken by the AI to make any
move.

In more definite terms, the Monte Carlo tree search follows these steps:

Selection: The best rewarding branch is selected from the current node of the1.
tree. For instance, in the preceding gameplay tree, choosing any branch other
than 4 would yield a lower score, so 4 is selected.

Reinforced Neural Network-Based Chess Engine Chapter 8

[244]

Expanding: Once the best rewarding node has been selected, the tree under that2.
node is expanded further, creating nodes with all possible options (branches)
available at that node. This can be understood as laying out the future moves of
the AI from any point in the game.
Simulating: Now, since it is not known beforehand which future option that was3.
created during the expanding phase is the most rewarding, we simulate the game
with each option one by one using reinforcement learning and create a reward
score for each node. Note that, when combined with the Upper Confidence
Bound algorithm, it is not important to compute the game up until its
termination. A computation of rewards for any n steps is also a good way to
proceed.
Update: Finally, the reward scores of the nodes and the parent nodes are4.
updated. Though it is not possible to go back in the game, and since the value of
any node has decreased, the AI will not follow that path if a better alternative is
found at that stage in future games, thereby improving its gameplay over several
iterations.

Next, we'll build a system that works like Alpha Zero and attempts to learn to play the
Connect 4 game, which is more complex than the game of Tic-Tac-Toe and yet big enough
for us to explain the idea of how a similar chess engine can be built.

Alpha Zero-like AI for Connect 4
Before we begin working on the AI that plays Connect4, let's briefly understand the game
and its dynamics. Connect 4, also sometimes known as Four in a row, Four in a line, Four
up, and so on, is one of the most popular board games among children all over the world.
We can also understand it as a more advanced version of the Tic-Tac-Toe game, where you
have to place three markers of the same type either horizontally, vertically, or diagonally.
The board is generally a 6x7 grid, and two players play with a marker each.

The rules of Connect 4 can vary, so let's lay down some concrete rules for the version of the
rules that our AI will learn to play:

The game is simulated as being played on a vertical board that has seven hollow
columns and six rows. Each column has an opening on top of the board, which is
where pieces can be dropped in. Pieces that have been put into the board can be
viewed.
Both players have 21 pieces shaped like coins of a different color.
Placing a coin on the board constitutes a move.

Reinforced Neural Network-Based Chess Engine Chapter 8

[245]

Pieces drop from the opening on top to the last row or pile up on the last piece in
that column.
The first player to connect any four of their coins in any direction so that there
are no gaps or coins of the other player between them wins.

Now, let's break down the problem of building a Connect 4 playing, self-learning AI into
subproblems:

First, we'll need to create a virtual representation of the board.1.
Next, we'll have to create functions that allow moves according to the game's2.
rules.
Then, in order to save states of the game, we'll need a state managing system in3.
place.
Next, we'll have to facilitate gameplay, wherein the users will be prompted to4.
make moves and announce game termination.
After that, we'll have to create a script that can generate sample gameplays for5.
the system to learn from.
Then, we'll have to create training functions to train the system.6.
Next, we'll need a Monte Carlo tree search (MCTS) implementation.7.
Finally, we'll need an implementation of a neural network.8.
Besides the preceding concrete steps, we will also need to create a number of9.
driver scripts for the system to make it more usable.

Let's move sequentially over the preceding points, covering each part of the system one
step at a time. However, first, we'll quickly go through the directory structure and the files
present in this project, which are also available in this book's GitHub repository: https:/ /
github.com/PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/ master/ Chapter8/
connect4. Let's take a look:

command/:
__init__.py: This file makes it possible for us to use this folder as a
module.
arena.py: This file takes and parses the commands that are used to
run the game.
generate.py: This file takes and parses commands for the self-play
move generation system.
newmodel.py: This file is used for creating a new blank model for the
agent.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/connect4

Reinforced Neural Network-Based Chess Engine Chapter 8

[246]

train.py: This file is used for training the reinforcement learning-
based neural network on how to play the game.

util/:
__init__.py: This file makes it possible for us to use this folder as a
module.
arena.py: This file creates and maintains records of the matches that
have been played between the players and allows us to switch between
whose turn it is.
compat.py: This file is a handy utility for making the program
compatible with both Python 2 and Python 3. You may skip this file if
you're sure of the version you're developing on and expect to run on.
generate.py: This file plays out a number of games with random
moves combined with the MCTS move to generate a log of the games
that can be used for training purposes. The file stores the winner of
each game, along with the moves that were made by the players.
internal.py: This file creates a virtual representation of the board
and defines the functions associated with the board, such as putting
pieces on the board, finding a winner, or simply creating new boards.
keras_model.py: This file defines the model that acts as the brain of
the agent. We will discuss this file in greater depth later in this project.
mcts.py: This file provides the MCTS class, which is essentially an
implementation of the Monte Carlo tree search.
nn.py: This file provides the NN class, which is an implementation of a
neural network, along with the functions associated with the neural
network, such as Fit, predict, save, and others.
player.py: This file provides classes for two types of players – the
MCTS player and the human player. The MCTS player is the agent we
will be training to play the game.
state.py: This is a wrapper around the internal.py file that
provides a class for accessing the board and board-related functions.
trainer.py: This allows us to train the model. This is different from
the one provided in nn.py since it is more focused on covering the
training process in terms of the game, while the one in nn.py is mostly
a wrapper around this function.

Next, we'll dive into exploring some of the important parts of each of these files, while
following the steps we laid down previously to build the AI.

Reinforced Neural Network-Based Chess Engine Chapter 8

[247]

Creating a virtual representation of the board
How would you represent a Connect 4 board? There are two commonly used methods for
representing the Connect 4 board, along with the game state. Let's take a look:

Long, human-readable form: In this form, the rows and columns of the board are
displayed on the x and y axes and the markers of both the players are displayed
as x and o, respectively (or any other suitable characters). This may look as
follows:

 |1 2 3 4 5 6 7
--+--------------
 1|.
 2|.
 3|.
 4|. . . . o x .
 5|x o x . o o .
 6|o x x o x x o

This form is, however, a bit lengthy and not very computationally friendly.

Computationally efficient form: In this form, we store the board as a 2D NumPy
array:

array([[1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]], dtype=int8)

This array is created in such a manner that when it is flattened into a 1D array, the
board positions are sequentially arranged as if the array was actually a 1D array.
The first two positions are numbered 0 and 1, respectively, whereas the third one,
which is in the 5th row and 5th column, is numbered 32. This condition can be
understood easily by mapping the matrix in the previous code block with the
table given in the following diagram:

Reinforced Neural Network-Based Chess Engine Chapter 8

[248]

Such a form is suitable for putting into computation, but not suitable for the
player to view during gameplay, as it would be tough to decipher for the player.

Once we've decided on how to represent the board and its pieces, we can start
writing the code for this in the util/internal.py file, as shown here:

BOARD_SIZE_W = 7
BOARD_SIZE_H = 6
KEY_SIZE = BOARD_SIZE_W * BOARD_SIZE_H

The preceding lines set the constants for the board, which, in this case, are the
number of rows and columns on the board. We also calculate the number of keys
or positions on the board by multiplying them.

Now, let's prepare the code that generates the winning positions on the board, as
shown here:

LIST4 = []
LIST4 += [[(y, x), (y + 1, x + 1), (y + 2, x + 2), (y + 3, x + 3)]
for y in range(BOARD_SIZE_H - 3) for x in range(BOARD_SIZE_W - 3)]
LIST4 += [[(y, x + 3), (y + 1, x + 2), (y + 2, x + 1), (y + 3, x)]
for y in range(BOARD_SIZE_H - 3) for x in range(BOARD_SIZE_W - 3)]
LIST4 += [[(y, x), (y, x + 1), (y, x + 2), (y, x + 3)] for y in
range(BOARD_SIZE_H) for x in range(BOARD_SIZE_W - 3)]
NO_HORIZONTAL = len(LIST4)
LIST4 += [[(y, x), (y + 1, x), (y + 2, x), (y + 3, x)] for y in
range(BOARD_SIZE_H - 3) for x in range(BOARD_SIZE_W)]

The LIST4 variable stores the possible combinations that can be achieved if any player wins
the game.

Reinforced Neural Network-Based Chess Engine Chapter 8

[249]

We will not discuss the entirety of the code in this file; however, the following functions
and what they do are important to know:

get_start_board(): This function returns an empty 2D array representation of
the board in the form of a NumPy array.
clone_board(board): This function is used to clone the entire NumPy array of
the board element-wise.
get_action(board): This function returns the positions in the array that have
been modified by the players.
action_to_string(action): This function converts the internal numeric
representation of the actions performed by the players into a string that can be
displayed to the user in a human-comprehensible form; for
example, place_at(board, pos,.
player): Performs the action of placing a piece on the board for any given
player. It also updates the board.
def get_winner(board): This function determines whether the game at the
current state of the board has a winner. If yes, then it returns the winning player's
identifier, which will be 1 or -1.
def to_string(board): This function converts the NumPy array
representation of the board into a string, which is in a human-readable format.

Next, we'll take a look at how we've programmed the AI to make and accept only valid
moves according to the rules of the game.

Allowing moves according to the game's rules
To establish the validity of the moves made by the players, be it man or machine, we need
to have a mechanism in place that continuously either only generates valid moves, in the
case of the machine, or keeps validating any human player input. Let's get started:

One such instance can be found in the _selfplay(self, state, args)1.
function in the util/generator.py file, as shown in the following code:

turn = 0
hard_random_turn = args['hard_random'] if 'hard_random' in args
else 0
soft_random_turn = (args['soft_random'] if 'soft_random' in args
else 30) + hard_random_turn
history = []

Reinforced Neural Network-Based Chess Engine Chapter 8

[250]

First, we set the toggle for moves to 0, indicating that no moves have been made
at the start of the game. We also take in the amount of hard and soft random turns
a user wants in their AI's self-generated games. Then, we set the history of the
moves made to blank.

Now, we can begin generating the moves for the AI, as shown here:2.

while state.getWinner() == None:
 if turn < hard_random_turn:
 # random action
 action_list = state.getAction()
 index = np.random.choice(len(action_list))
 (action, key) = action_list[index]

The preceding code says that until there is no winner of the game, moves have to
be generated. In the preceding case, we can see that whenever the probability of
making a hard random turn is true, the AI chooses a completely random position
to place its piece in.

By adding an else block to the preceding if statement, we're telling the AI that3.
whenever it requires a soft turn, it can check for any random positions to place its
piece in, but only within the domain of moves proposed by the MCTS algorithm,
as shown here:

else:
 action_list = self.mcts.getActionInfo(state,
args['simulation'])
 if turn < soft_random_turn:
 # random action by visited count
 visited = [1.0 * a.visited for a in action_list]
 sum_visited = sum(visited)
 assert(sum_visited > 0)
 p = [v / sum_visited for v in visited]
 index = np.random.choice(len(action_list), p = p)
 else:
 # select most visited count
 index = np.argmax([a.visited for a in action_list])

Note that if neither a hard turn nor a soft turn is taking place, the agent makes the
most commonly made move at that point of the game, which is expected to take it
toward victory.

Reinforced Neural Network-Based Chess Engine Chapter 8

[251]

Thus, in the case of the non-human player, the agent is only able to choose
between a set of populated valid moves at any given stage. This is not true for a
human player, who, according to their creativity, has the possibility of trying to
make an invalid move. Hence, the moves need to be validated when the human
player makes them.

The method of validating human player moves can be found in4.
the getNextAction(self, state) function in the util/player.py file, as
shown here:

action = state.getAction()
available_x = []
for i in range(len(action)):
 a, k = action[i]
 x = a % util.BOARD_SIZE_W + 1
 y = a // util.BOARD_SIZE_W + 1
 print('{} - {},{}'.format(x, x, y))
 available_x.append(x)

First, we now calculate the possible legal moves for the human player and5.
display them to the user. Then, we prompt the user to enter a move until they
make a valid move, as shown here:

while True:
 try:
 x = int(compat_input('enter x: '))
 if x in available_x:
 for i in range(len(action)):
 if available_x[i] == x:
 select = i
 break
 break
 except ValueError:
 pass

Thus, we validate the moves made by the user against a populated set of valid moves. We
could also choose to display an error to the user.

Next, we'll look at the state management system of the program, which you must have
noticed being used throughout the code we've been looking at so far.

Reinforced Neural Network-Based Chess Engine Chapter 8

[252]

The state management system
The state management system of the game is one of the most important parts of the entire
program since it controls all the gameplay, along with facilitating gameplay during the self-
learning process of the AI. It makes sure that the players have a board presented to them
and are making valid moves. It also stores several state-related variables, which are useful
for the game to progress. Let's take a look:

Let's discuss the most important features and functions within the State class,1.
which is provided in the util/state.py file:

import .internal as util

This class uses the variables and functions defined in the util/internal.py file
with the name of util.

__init__(self, prototype = None): This class, when initiated, either2.
carries forward an existing state or creates a new one. The definition of this
function is as follows:

def __init__(self, prototype = None):
 if prototype == None:
 self.board = util.get_start_board()
 self.currentPlayer = 1
 self.winner = None
 else:
 self.board = util.clone_board(prototype.board)
 self.currentPlayer = prototype.currentPlayer
 self.winner = prototype.winner

Here, you can see that this class can be initiated with an existing state of the game
and passed as the parameter to the constructor of the class; otherwise, the class
creates a new game state.

getRepresentativeString(self): This function returns a well-formed string3.
representation of the game state that can be read by the human player. Its
definition is as follows:

def getRepresentativeString(self):
 return ('x|' if self.currentPlayer > 0 else 'o|') +
util.to_oneline(self.board)

Reinforced Neural Network-Based Chess Engine Chapter 8

[253]

A number of other important methods in the state class are as follows:

getCurrentPlayer(self): This method returns the current player of the game;
that is, the player who is supposed to make the move.
getWinner(self): This method returns the identifier of the winner of the game,
if the game has ended.
getAction(self): This method checks whether the game has ended. If it hasn't,
it returns a set of next possible moves at any given state.
getNextState(self, action): This method returns the next state of the
game; that is, it performs a switch from one state to another after placing the
currently moving piece on the board and evaluating whether the game has
ended.
getNnInput(self): This method returns the moves performed by the players
so far in the game, with a different marker for each player's moves.

Now, let's look at how we can facilitate the gameplay for the program.

Facilitating gameplay
The file that's responsible for governing the facilitation of gameplay in the program is the
util/arena.py file.

It defines the following two methods within the Arena class:

def fight(self, state, p1, p2, count):
 stats = [0, 0, 0]
 for i in range(count):
 print('==== EPS #{} ===='.format(i + 1))
 winner = self._fight(state, p1, p2)
 stats[winner + 1] += 1
 print('stats', stats[::-1])
 winner = self._fight(state, p2, p1)
 stats[winner * -1 + 1] += 1
 print('stats', stats[::-1])

The preceding fight() function manages the stats of victories/losses or ties for the players.
It ensures that in each round, two games are played, where each player gets to play first
only once.

Reinforced Neural Network-Based Chess Engine Chapter 8

[254]

The other _fight() function that was defined in this class is as follows:

def _fight(self, state, p1, p2):
 while state.getWinner() == None:
 print(state)
 if state.getCurrentPlayer() > 0:
 action = p1.getNextAction(state)
 else:
 action = p2.getNextAction(state)
 state = state.getNextState(action)
 print(state)
 return state.getWinner()

This function takes care of switching the players on the board until a winner is found.

Now, let's look at how we can generate random gameplays for the agent to self-learn on.

Generating sample gameplays
So far, we've talked about the util/gameplay.py file to demonstrate the code in the file
that pertains to move-making rules – specifically, the self-play function of the file. Now,
we'll take a look at how these self-plays can run in iteration to generate a complete
gameplay log. Let's get started:

Consider the code of the generate() method of the Generator class provided1.
by this file:

def generate(self, state, nn, cb, args):
 self.mcts = MCTS(nn)

 iterator = range(args['selfplay'])
 if args['progress']:
 from tqdm import tqdm
 iterator = tqdm(iterator, ncols = 50)

 # self play
 for pi in iterator:
 result = self._selfplay(state, args)
 if cb != None:
 cb(result)

Reinforced Neural Network-Based Chess Engine Chapter 8

[255]

Essentially, this function takes care of running the _selfplay() function of the
class and makes a decision regarding what has to be done once a self-play has
been completed. In most cases, you will be saving the output to a file, which
would then be used for training.

This has been defined in the command/generate.py file. This script can be run2.
as a command with the following signature:

usage: run.py generate [-h]
 [--model, default='latest.h5', help='model filename']
 [--number, default=1000000, help='number of generated
states']
 [--simulation, default=100, help='number of
simulations per move']
 [--hard, default=0, help='number of random moves']
 [--soft, default=1000, help='number of random moves
that depends on visited node count']
 [--progress, help='show progress bar']
 [--gpu, help='gpu memory fraction']
 [--file, help='save to a file']
 [--network, help='save to remote server']

A sample invocation of this command is as follows:3.

python run.py generate --model model.h5 --simulation 100 -n 5000 --
file selfplay.txt --progress

Now, let's take a look at the functions we have in place to train the model once the self-play
logs have been generated.

System training
To train the agent, we need to create the util/trainer.py file, which provides the
train() function. Let's take a look:

The signature is as follows:1.

train(state, nn, filename, args = {})

The function accepts a State class, a neural network class, and other arguments.
It also accepts a filename, which is the path of the file containing the generated
gameplays. After training, we have the option of saving the output to another
model file, as provided in the train() function of the command/train.py file.

Reinforced Neural Network-Based Chess Engine Chapter 8

[256]

This command has the following signature:2.

usage: run.py train [-h]
 [--progress, help='show progress bar']
 [--epoch EPOCH, help='training epochs']
 [--batch BATCH, help='batch size']
 [--block BLOCK, help='block size']
 [--gpu GPU, help='gpu memory fraction']
 history, help='history file'
 input, help='input model file name'
 output, help='output model file name'

The history argument is the file that stores the generated gameplays. The input
file is the currently saved model file, whereas the output file is the file where the
freshly trained model would be saved to.

A sample invocation of this command is as follows:3.

python run.py train selfplay.txt model.h5 newmodel.h5 --epoch 3 --
progress

Now that we've got a training system in place, we need to create MCTS and neural network
implementations.

Monte Carlo tree search implementation
A comprehensive MCTS algorithm implementation is present in the util/mcts.py file.
This file provides the MCTS class, which has the following important functions:

getMostVisitedAction: This function returns the action that is most visited
when a state is passed to it.
getActionInfo: This function returns the state information after any action has
been performed.
_simulation: This function performs a single game simulation and returns
information about the game that was played during the simulation.

Finally, we need to create a neural network implementation.

Reinforced Neural Network-Based Chess Engine Chapter 8

[257]

Implementing the neural network
In this final section, we shall understand the neural network we have created for the agent
to train with. We'll explore the util/nn.py file, which provides the NN class, along with
the following important methods:

__init__(self, filename): This function creates a new model using the
util/keras_model.py functions if none exist on the disk. Otherwise, it loads
the model file into the program.
The model defined in the util/keras_model.py file is a residual CNN, which,
in combination with MCTS and UCT, performs like a deep reinforcement
learning neural network. The model formed has the following configurations:

input_dim: (2, util.BOARD_SIZE_H, util.BOARD_SIZE_W),
policy_dim: util.KEY_SIZE,
res_layer_num: 5,
cnn_filter_num: 64,
cnn_filter_size: 5,
l2_reg: 1e-4,
learning_rate: 0.003,
momentum: 0.9

By default, the model has five residual convolutional layer blocks. We defined the
BOARD_SIZE_H, BOARD_SIZE_W, and KEY_SIZE constants in the util/internal.py file
previously:

save(self, filename): This function saves the model to the filename
 provided.
predict(self, x): Provided a board state, along with the moves already
made, this function outputs a single move that can be made next.
fit(self, x, policy, value, batch_size = 256, epochs = 1): This
function takes care of fitting new samples to the model and updating the
weights.

Besides these preceding scripts, we also need a few driver scripts in place. You can look
them up in this project's repository to understand their usage.

To run the completed project, you'll need to perform the following steps:

Create a new model using the following command:1.

python run.py newmodel model.h5

This will create a new model and print out its summary.

Reinforced Neural Network-Based Chess Engine Chapter 8

[258]

Generate a sample gameplay log:2.

python run.py generate --model model.h5 --simulation 100 -n 5000 --
file selfplay.txt --progress

The preceding line generates 5,000 sample gameplays with a depth of 100 for
MCTS during the simulation.

Train the model:3.

python run.py train selfplay.txt model.h5 newmodel.h5 --epoch 3 --
progress

The preceding command trains the model on the gameplay files for three epochs
and saves the trained model as newmodel.h5.

Play against the AI:4.

python run.py arena human mcts,newmodel.h5,100

The preceding command begins a game against the AI. Here, you'll be presented
with a board and gameplay options within the terminal, as shown here:

Reinforced Neural Network-Based Chess Engine Chapter 8

[259]

Now that we have successfully created an Alpha Zero-based program for learning to play a
board game, we are ready to extrapolate the idea to a chess AI. However, before we do so,
we will briefly lay out the project architecture.

Underlying project architecture
To create a chess engine, hosted on GCP as a REST API, we will be following the general
project architecture:

While the preceding diagram presents a very simplified overview of the project, it could be
used for much more complex systems that can produce better self-learning chess engines.

The model hosted on GCP will be put inside an EC2 VM instance and will be wrapped in a
Flask-based REST API.

Developing a GCP-hosted REST API for the
chess engine
Now that we have seen how we will be moving ahead with this project, we also need to
discuss how we're going to map the game of Connect 4 to chess and deploy a chess RL
engine as an API.

Reinforced Neural Network-Based Chess Engine Chapter 8

[260]

You can find the files we've created for this chess engine at https:/ /github. com/
PacktPublishing/Mobile- Deep- Learning- Projects/ tree/ master/ Chapter8/ chess. Let's
quickly understand some of the most important files before we map these files with those
in the Connect 4 project:

src/chess_zero/agent/:
player_chess.py: This file describes the ChessPlayer class, which
holds information about the players playing the game at any point in
time. It provides wrappers for the methods associated with searching
for new moves using the Monte Carlo tree search, changing the player
state, and other functions required during gameplay for each user.
model_chess.py: This file describes the residual CNN used in this
system.

src/chess_zero/config/:
mini.py: This file defines the configuration that the chess engine learns
or plays with. You will need to tweak these parameters here at times to
bring down the size of the batches or virtual RAM consumption during
training on a low-end computer.

src/chess_zero/env/:
chess_env.py: This file describes the setup of the chessboard, the
gameplay rules, and the functions required to perform the game
operations. It also contains methods for checking the state of the game
and validating moves.

src/chess_zero/worker/:
evaluate.py: This file is responsible for playing games against the
current best model and the next-generation model. If the next-
generation model performs better over 100 games, it replaces the
previous model.
optimize.py: This file loads the current best model and performs
more supervised learning-based training on it.
self.py: The engine plays against itself and learns new gameplay.
sl.py: An acronym for supervised learning, this file takes the PGN
files of games from other players as input and performs supervised
learning on them.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter8/chess

Reinforced Neural Network-Based Chess Engine Chapter 8

[261]

src/chess_zero/play_game/:
uci.py: This file provides a Universal Chess Interface (UCI) standard
environment for playing against the engine.
flask_server.py: The file creates a Flask server that communicates
with the engine using the UCI notation of chess gameplay.

Now that we know what each file does, let's establish the mapping of these files with the
files in the Connect 4 game.

Recall the steps we laid down while we were discussing the Connect 4 AI? Let's see
whether the project for chess also follows the same steps:

Create a virtual representation of the board. This is done in1.
the src/chess_zero/env/chess_env.py file.
Create functions that allow moves to be made according to the game's rules. This2.
is also done in the src/chess_zero/env/chess_env.py file.
A state managing system in place: This functionality is maintained over a3.
number of files, such as src/chess_zero/agent/player_chess.py
and src/chess_zero/env/chess_env.py.
Facilitate gameplay: This is done by the src/chess_zero/play_game/uci.py4.
file.
Create a script that can generate sample gameplays for the system to learn from.5.
While this system doesn't explicitly store the generated gameplay as files on the
disk, the task is performed by src/chess_zero/worker/self_play.py.
Create training functions to train the system. These training functions are located6.
at src/chess_zero/worker/sl.py and src/chess_zero/worker/self.py.
Now, we'll need an MCTS implementation. The MCTS implementation of this7.
project can be found within the move search method of the file
at src/chess_zero/agent/player_chess.py.
An implementation of a neural network: The project's neural network is defined8.
in src/chess_zero/agent/model_chess.py.

In addition to the preceding mappings, we need to discuss the Universal Chess Interface
and the Flask server script, both of which are required for gameplay and API deployment.

Reinforced Neural Network-Based Chess Engine Chapter 8

[262]

Understanding the Universal Chess Interface
The file present at /src/chess_zero/play_game/uci.py creates a universal chess
interface for the engine. But what is UCI exactly?

The UCI is a communication standard that was introduced by Rudolf Huber and Stefan
Meyer-Kahlen, which allows gameplay with chess engines from any console environment.
The standard uses a small set of commands to invoke chess engines to search and output
the best moves for any given position of the board.

The communication through the UCI happens with standard input/output and is platform-
agnostic. The commands that are available within the UCI script in our program are as
follows:

uci: This prints the details of the running engine.
isready: This enquires whether the engine is ready to be played against.
ucinewgame: This starts a new game with the engine.
position [fen | startpos] moves: This sets the position of the board. If the
user is starting from a non-starting position, the user needs to provide a FEN
string to set the board.
go: This asks the engine to search and suggest the best move.
quit: This ends the game and quits the interface.

The sample gameplay with the UCI engine is shown in the following code:

> uci
id name ChessZero
id author ChessZero
uciok

> isready
readyok

> ucinewgame

> position startpos moves e2e4

> go
bestmove e7e5

> position rnbqkbnr/pppp1ppp/8/4p3/4P3/8/PPPP1PPP/RNBQKBNR w KQkq - 0 1
moves g1f3

> go

Reinforced Neural Network-Based Chess Engine Chapter 8

[263]

bestmove b8c6

> quit

To quickly generate the FEN string for any board position, you can use the
board editor at https:/ /lichess. org/ editor/ .

Now, let's talk about the Flask server script and how to deploy it on a GCP instance.

Deployment on GCP
This chess engine program requires the presence of a GPU. Thus, we have to follow
additional steps before we can deploy the script on a GCP instance.

The rough workflow here is as follows:

Request for a quota increase on the GPU instances that are available to your1.
account.
Create a GPU-based compute engine instance.2.
Deploy the script.3.

We'll look at these steps in detail in the following sections.

Request for a quota increase on GPU instances
The first step will be to request a quota increase on GPU instances. By default, the number
of GPU instances you can have on your GCP account is 0. This limit is set by the quotas
configuration for your account, and you need to request an increase. To do so, follow these
steps:

Open your Google Cloud Platform console at https:/ /console. cloud. google.1.
com/.
On the left menu, click on IAM & Admin | Quotas, as shown in the following2.
screenshot:

https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://lichess.org/editor/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/
https://console.cloud.google.com/

Reinforced Neural Network-Based Chess Engine Chapter 8

[264]

Click on the Metrics filter and type in GPU to find the entry reading GPU (all3.
regions), as shown in the following screenshot:

Select the entry and click on Edit Quotas.4.
You'll be asked for your identification, including your phone number. Fill in the5.
details and click Next.
Enter the limit that you want to set your GPU quota to (preferably 1 in order to6.
avoid misuse). Also, provide a reason for your requests, such as academic
research, machine learning exploration, or anything that suits you!
Click on Submit.7.

After requesting, it should take around 10-15 minutes for your quota to be increased/set to
the number you specified. You will receive an email informing you about the update. Now,
you're ready to create a GPU instance.

Reinforced Neural Network-Based Chess Engine Chapter 8

[265]

Creating a GPU instance
The next step is to create a GPU instance. The process of creating a GPU instance is very
similar to that of creating a non-GPU instance but requires one additional step. Let's
quickly go through all these steps:

On your Google Cloud Platform dashboard, click on Compute Engine | VM1.
instances from the left navigation menu.
Click on Create Instance.2.
Click on CPU platform and GPU, right below the Machine type selection3.
section, as shown in the following screenshot:

Click on Add GPU (the large plus (+) button). Select the GPU type and number of4.
GPUs to be attached to this VM.
Change the Boot disk operating system to Ubuntu version 19.10.5.
In the Firewall section, check both HTTP and HTTPS traffic permissions, as6.
shown in the following screenshot:

Click on Create at the bottom of the form.7.

After a few seconds, your instance will be successfully created. If you face any errors, such
as zone resource limit exceeded, try changing the zone/region you're creating your instance
in. This is usually a temporary issue.

Now, we can deploy the Flask server script.

Reinforced Neural Network-Based Chess Engine Chapter 8

[266]

Deploying the script
Now, we will deploy the Flask server script. But before we do so, let's go through what this
script does:

The first few lines of the script import the necessary modules for the script to1.
work:

from flask import Flask, request, jsonify
import os
import sys
import multiprocessing as mp
from logging import getLogger

from chess_zero.agent.player_chess import ChessPlayer
from chess_zero.config import Config, PlayWithHumanConfig
from chess_zero.env.chess_env import ChessEnv

from chess_zero.agent.model_chess import ChessModel
from chess_zero.lib.model_helper import load_best_model_weight

logger = getLogger(__name__)

The rest of the code is put into the start() function, which is instantiated with a2.
config object:

def start(config: Config):
 ## rest of the code

The following lines create instances of the engine and human player and reset the3.
game environment when the script starts working:

def start(config: Config):
 ...
 PlayWithHumanConfig().update_play_config(config.play)

 me_player = None
 env = ChessEnv().reset()
 ...

Reinforced Neural Network-Based Chess Engine Chapter 8

[267]

The model is created and the best weights of the model are loaded into it with the4.
following code:

def start(config: Config):
 ...
 model = ChessModel(config)

 if not load_best_model_weight(model):
 raise RuntimeError("Best model not found!")
 player = ChessPlayer(config,
model.get_pipes(config.play.search_threads))
 ...

The last line in the preceding code creates an instance of the chess engine player5.
with the configurations specified and with the model's knowledge:

def start(config: Config):
 ...
 app = Flask(__name__)

 @app.route('/play', methods=["GET", "POST"])
 def play():
 data = request.get_json()
 print(data["position"])
 env.update(data["position"])
 env.step(data["moves"], False)
 bestmove = player.action(env, False)
 return jsonify(bestmove)
 ...

The preceding code creates an instance of a Flask server app. The /play route is
defined so that it accepts the position and moves parameters, which is the same as
the commands we used in the UCI gameplay we defined previously.

The game state is updated and the chess engine is asked to calculate the next best6.
move. This is returned to the user in JSON format:

def start(config: Config):
 ...
 app.run(host="0.0.0.0", port="8080")

The last line of the script starts the Flask server at host 0.0.0.0, which means
that the script listens to all open IPs of the device it is running on. The port
specified is 8080.

Reinforced Neural Network-Based Chess Engine Chapter 8

[268]

Finally, we will deploy the script to the VM instance we created. To do this,7.
perform the following steps:

Open the VM instances page of your GCP console.1.
Click on the SSH button upon entering the VM you created in the previous2.
section.
Once your SSH session is active, update the repositories on the system by3.
running the following command:

sudo apt update

Next, clone the repository using the following command:4.

git clone
https://github.com/PacktPublishing/Mobile-Deep-Learning-Project
s.git

Change the current working directory to the chess folder, as shown here:5.

cd Mobile-Deep-Learning-Projects/Chapter8/chess

Install PIP for Python3:6.

sudo apt install python3-pip

Install all the required modules for the project:7.

pip3 install -r requirements.txt

Provide a training PGN for the initial supervised learning. You can8.
download a sample PGN from https:/ /github. com/xprilion/ ficsdata.
The ficsgamesdb2017.pgn file contains 5,000 stored games. You need to
upload this file to the data/play_data/ folder.
Run the supervised learning command:9.

python3 src/chess_zero/run.py sl

Run the self-learning command:10.

python3 src/chess_zero/run.py self

When you're satisfied with the time you've given for the program to self-play,
stop the script using Ctrl + C/Z.

https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata
https://github.com/xprilion/ficsdata

Reinforced Neural Network-Based Chess Engine Chapter 8

[269]

Run the following command to start the server:11.

python3 src/chess_zero/run.py server

Now, you should be able to send positions and moves to the server and get responses. Let's
quickly test this. Using Postman, or any other tool for API testing, we will make a request
to the API with a FEN string to set a position and the move we're playing.

Say your VM instance is running on the public IP address (visible on the instance entry in
your VM instances dashboard) 1.2.3.4. Here, we send the following POST request:

endpoint: http://1.2.3.4:8080/play
Content-type: JSON
Request body:
{
 "position": "r1bqk2r/ppp2ppp/2np1n2/2b1p3/2B1P3/2N2N2/PPPPQPPP/R1B1K2R w
KQkq - 0 1",
 "moves": "f3g5"
}

The output of the preceding code is "h7h6". Let's understand this interaction visually. The
board, as defined in the FEN, looks as follows:

Reinforced Neural Network-Based Chess Engine Chapter 8

[270]

We told the server it was White's move, and the move that was made by the White player
was f3g5, which means to move the White Knight to position G5 on the board. The 'w' in
the FEN string of the board that we pass to the API indicates that the next turn will be
made by the White player.

The engine responds by moving the pawn at H7 to H6, threatening the advance of the
Knight, as shown in the following screenshot:

Now, we can integrate this API with the Flutter app!

Creating a simple chess UI on Android
Now that we understand reinforcement learning and how to use it to develop a chess
engine that can be deployed to GCP, let's create a Flutter application for the game. The
application will have two players – the user and the server. The user is the person playing
the game, while the server is the chess engine that we have hosted on GCP. First, the user
makes a move. This move is recorded and is sent to the chess engine in the form of a POST
request. The chess engine then responds with its own movement, which is then updated on
the screen.

Reinforced Neural Network-Based Chess Engine Chapter 8

[271]

We will create a simple single-screen application with a chessboard placed at the center, as
well as the chess pieces. The application would appear as follows:

The widget tree of the application will look as follows:

Reinforced Neural Network-Based Chess Engine Chapter 8

[272]

Let's start coding the application.

Adding dependencies to pubspec.yaml
We will start by adding the chess_vectors_flutter package to the pubspec.yaml file
in order to display actual chess pieces on the chessboard we will be building. Add the
following line to the dependencies section of pubspec.yaml:

chess_vectors_flutter: ">=1.0.6 <2.0.0"

Run flutter pub get to install the package.

Placing the chess pieces at the correct positions might be a bit tricky. Let's understand the
convention we will use to place all the pieces at the correct positions.

Understanding the mapping structure
We'll start by creating a new dart file called chess_game.dart. This will contain all the
game logic. Inside the file, let's declare a stateful widget called ChessGame:

To map pieces to the squares of the chessboard, we will use the same notation we1.
used to build the model so that each square is represented by a letter and a
number. We will create a list, squareList, inside ChessGameState so that we
can store all the indexed squares, as follows:

var squareList = [
 ["a8","b8","c8","d8","e8","f8","g8","h8"],
 ["a7","b7","c7","d7","e7","f7","g7","h7"],
 ["a6","b6","c6","d6","e6","f6","g6","h6"],
 ["a5","b5","c5","d5","e5","f5","g5","h5"],
 ["a4","b4","c4","d4","e4","f4","g4","h4"],
 ["a3","b3","c3","d3","e3","f3","g3","h3"],
 ["a2","b2","c2","d2","e2","f2","g2","h2"],
 ["a1","b1","c1","d1","e1","f1","g1","h1"],
];

To store the correct pieces in the correct squares and update them according to a2.
player's moves, we will create a HashMap called board:

HashMap board = new HashMap<String, String>();

Reinforced Neural Network-Based Chess Engine Chapter 8

[273]

The key of the HashMap will contain the indexes of the squares, while the value
will be the pieces that the square will hold. We will denote a particular piece
using a string that will contain a single letter according to the name of the piece.
For example, a K will represent a King and a B will represent a Bishop. We
distinguish between the White and Black pieces by using uppercase and
lowercase letters. The uppercase letters will represent the White pieces, while the
lowercase letters will represent the Black pieces. For example, a "K" will represent
a White King and a "b" will represent a Black Bishop. board['e7'] = "P"
would mean that the box with index 'e7' currently has a White Pawn.

Now, let's place the pieces in their initial positions. For this, we need to define3.
the initializeBoard() method, as follows:

 void initializeBoard() {
 setState(() {
 for(int i = 8; i >= 1; i--) {
 for(int j = 97; j <= 104; j++) {
 String ch = String.fromCharCode(j)+'$i';
 board[ch] = " ";
 }
 }

 //Placing White Pieces
 board['a1'] = board['h1']= "R";
 board['b1'] = board['g1'] = "N";
 board['c1'] = board['f1'] = "B";
 board['d1'] = "Q";
 board['e1'] = "K";
 board['a2'] = board['b2'] = board['c2'] = board['d2'] =
 board['e2'] = board['f2'] = board['g2'] = board['h2'] = "P";
 //Placing Black Pieces
 board['a8'] = board['h8']= "r";
 board['b8'] = board['g8'] = "n";
 board['c8'] = board['f8'] = "b";
 board['d8'] = "q";
 board['e8'] = "k";
 board['a7'] = board['b7'] = board['c7'] = board['d7'] =
 board['e7'] = board['f7'] = board['g7'] = board['h7'] = "p";
 });
 }

Reinforced Neural Network-Based Chess Engine Chapter 8

[274]

In the preceding method, we initialize all the indexes of the hashmap board with
blank strings by using a simple nested loop to go through all the rows starting
from a to h and all the columns starting from 1 to 8. Next, we place the chess
pieces on their initial positions, as described in step 2. To make sure that the UI is
redrawn when the board is initialized, we enclose the whole assignment inside
setState().

The board will be initialized as soon as the screen is launched. To ensure this, we4.
need to override initState() and call initializeBoard() from there:

 @override
 void initState() {
 super.initState();
 initializeBoard();
 }

Now that we have a better understanding of mapping the chess pieces, let's start
placing actual images of the chess pieces on the screen.

Placing the images of the actual pieces
After mapping the pieces to their initial positions, we can start placing actual image vectors:

We begin by defining a function called mapImages() that takes the index of the1.
square, that is, the key value of the hashmap board, and returns the image:

Widget mapImages(String squareName) {
 board.putIfAbsent(squareName, () => " ");
 String p = board[squareName];
 var size = 6.0;
 Widget imageToDisplay = Container();
 switch (p) {
 case "P":
 imageToDisplay = WhitePawn(size: size);
 break;
 case "R":
 imageToDisplay = WhiteRook(size: size);
 break;
 case "N":
 imageToDisplay = WhiteKnight(size: size);
 break;
 case "B":
 imageToDisplay = WhiteBishop(size: size);
 break;
 case "Q":

Reinforced Neural Network-Based Chess Engine Chapter 8

[275]

 imageToDisplay = WhiteQueen(size: size);
 break;
 case "K":
 imageToDisplay = WhiteKing(size: size);
 break;
 case "p":
 imageToDisplay = BlackPawn(size: size);
 break;
 case "r":
 imageToDisplay = BlackRook(size: size);
 break;
 case "n":
 imageToDisplay = BlackKnight(size: size);
 break;
 case "b":
 imageToDisplay = BlackBishop(size: size);
 break;
 case "q":
 imageToDisplay = BlackQueen(size: size);
 break;
 case "k":
 imageToDisplay = BlackKing(size: size);
 break;
 case "p":
 imageToDisplay = BlackPawn(size: size);
 break;
 }
 return imageToDisplay;
 }

In the preceding function, we build a switch case block corresponding to the piece
name contained in the square. We use the hashmap to find the piece in a
particular square and then return the corresponding image. For example, if a
value of a1 is passed into squareName and the hashmap board has the value "P"
corresponding to the key-value a1, the image of a White Pawn will be stored in
the imageToDisplay variable.

Note that out of 64 chessboard squares, only 32 of them will contain pieces; the
rest will be blank. Therefore, in the hashmap, board, there will be keys that don't
have a value. If a squareName does not have a piece, this is passed the
imageToDisplay variable, which will just have an empty container.

Reinforced Neural Network-Based Chess Engine Chapter 8

[276]

In the previous step, we built widgets – either an image or an empty container –2.
corresponding to each square on the chessboard. Now, let's arrange all of the
widgets into rows and columns. A particular element in squareName – for
example, [a1,b1,....,g1] – contains the squares that should be placed side by
side. Therefore, we will wrap them into a row and wrap each of these rows into
columns.

Let's start by defining the buildRow() method, which takes in a list. This is3.
essentially an element list from sqaureName and builds a complete row. This
method will look as follows:

 Widget buildRow(List<String> children) {
 return Expanded(
 flex: 1,
 child: Row(
 children: children.map((squareName) =>
getImage(squareName)).toList()
),
);
 }

In the preceding code snippet, we iterate through each of the elements of the list
that was passed using the map() method. This makes a call to getImage() to get
the appropriate image corresponding to a square. Then, we add all of these
returned images as the children of a row. The row added a child to an expanded
widget and returned it.

The getImage() method is defined as follows:4.

 Widget getImage(String squareName) {
 return Expanded(
 child: mapImages(squareName),
);
 }

This simply takes in the value of squareName and returns an expanded widget
that will contain the image returned by mapImages, which we defined earlier. We
will modify this method later to make sure each of the images can be dragged by
the player so that they can make a move on the chessboard.

Reinforced Neural Network-Based Chess Engine Chapter 8

[277]

Now, we need to build the columns that will comprise the rows that have been5.
built. For this, we need to define the buildChessBoard() method, as follows:

 Widget buildChessBoard() {
 return Container(
 height: 350,
 child: Column(
 children: widget.squareList.map((row) {
 return buildRow(row,);
 }).toList()
)
);
 }

In the preceding code, we iterated through each of the rows inside squareList,
which is represented as a list. We built the rows by calling buildRow() and
added them as children to a column. This column is added as a child to a
container and returned.

Now, let's put all the pieces together, along with an actual chessboard image, on6.
the screen. We will override the build() method to build a stack of widgets
consisting of an image of a chessboard and its pieces:

@override
 Widget build(BuildContext context) {
 return Container(
 child: Stack(
 children: <Widget>[
 Container(
 child: new Center(child:
Image.asset("assets/chess_board.png", fit: BoxFit.cover,)),
),
 Center(
 child: Container(
 child: buildChessBoard(),
),
)
],
)
);
 }

Reinforced Neural Network-Based Chess Engine Chapter 8

[278]

The preceding method builds a stack with a container that adds the image of a chessboard
that was stored in the assets folder. The next child of the stack is the centrally aligned
container with all the piece images that were added as widgets wrapped in rows and
columns through the call to buildChessBoard(). The whole stack is added as a child to a
container and returned so that it appears on the screen.

At this point, the application shows the chessboard, along with all the pieces placed at their
initial positions. This looks as follows:

Now, let's make the pieces movable so that we can play an actual game.

Making the pieces movable
In this section, we will wrap each piece with a draggable so that the user is able to drag the
chess pieces to their desired position. Let's look at the implementation in detail:

Recall that we declared a hashmap to store the positions of the pieces. A move1.
will consist of moving a piece from one box and placing it in another. Suppose
we have two variables, 'from' and 'to', that store the indexes of the boxes for
moving a piece. When a move is made, we pick up the piece that was at 'from'
and put it in 'to'. Due to this, the box at 'from' becomes empty. Following the
same logic, we'll define the refreshBoard() method, which is called every time
a move is made:

void refreshBoard(String from, String to) {
 setState(() {
 board[to] = board[from];
 board[from] = " ";
 });
 }

Reinforced Neural Network-Based Chess Engine Chapter 8

[279]

The from and to variables store the indexes of the source and destination
squares. These values are used as keys in the board HasMhap. When a move is
made, the piece at from goes to to. After this, the square at from should become
empty. This is enclosed inside setState() to make sure that the UI is updated
after each move.

Now, let's make the pieces draggable. For this, we'll attach a draggable to each2.
image widget of the board pieces that are returned by
the getPieceImage() method. We do this by modifying the method like so:

Widget getImage(String squareName) {
 return Expanded(
 child: DragTarget<List>(builder: (context, accepted, rejected)
{
 return Draggable<List>(
 child: mapImages(squareName),
 feedback: mapImages(squareName),
 onDragCompleted: () {},
 data: [
 squareName,
],
);
 }, onWillAccept: (willAccept) {
 return true;
 }, onAccept: (List moveInfo) {
 String from = moveInfo[0];
 String to = squareName;
 refreshBoard(from, to);
 })
);
 }

In the preceding function, we start by wrapping the image of a particular square in
Draggable. This class is used to sense and follow drag gestures on the screen. The child
property is used to specify the widget that is being dragged, while the widget inside
feedback is used to track the movement of the finger over the screen. When the dragging is
complete and the user lifts their finger, the target is given the opportunity to accept the data
carried. Since we are making moves between a source and a target, we will add Draggable
as a child of DragTarget so that the widget can be moved between the source and target.
onWillAccept is set to true so that all the movements are possible.

Reinforced Neural Network-Based Chess Engine Chapter 8

[280]

This property can be modified so that it holds a function that can distinguish between legal
chess moves and does not allow dragging for illegal movements. Once the piece has been
dropped and the drag is complete, onAccept is called. The moveInfo list holds
information about the source of the drag. Here, we make a call to refreshBoard() and
pass in the values of from and to so that the screen can reflect the movement. At this point,
we are done displaying an initial chessboard to the user and giving the pieces the ability to
move between boxes.

In the next section, we will add interactivity to the application by making API calls to the
hosted chess server. These will bring the game to life.

Integrating the chess engine API with a UI
The hosted chess server will be added to the application as an opponent player. The user
will be the white side, while the server will be the black side. The game logic to be
implemented here is very simple. The first move is given to the application user. When the
user makes a move, they change the state of the chessboard from state X to state Y. The
state of the board is represented by a FEN string. Also, they move a piece from a particular
square to a particular square, which contributes to their move. When the user has
completed a move, the FEN string for state X and their current move, which is obtained by
concatenating the from and to squares, is sent to the server in the form of a POST request.
The server, in return, responds with the next move from its side, which is then reflected on
the UI.

Let's look at the code for this logic:

First, we define a method called getPositionString() to generate a FEN1.
string for a particular state of the application:

String getPositionString(String move) {
 String s = "";
 for(int i = 8; i >= 1; i--) {
 int count = 0;
 for(int j = 97; j <= 104; j++) {
 String ch = String.fromCharCode(j)+'$i';
 if(board[ch] == " ") {
 count += 1;
 if(j == 104)
 s = s + "$count";
 } else {
 if(count > 0)
 s = s + "$count";
 s = s + board[ch];count = 0;

Reinforced Neural Network-Based Chess Engine Chapter 8

[281]

 }
 }
 s = s + "/";
 }
 String position = s.substring(0, s.length-1) + " w KQkq - 0 1";
 var json = jsonEncode({"position": position, "moves": move});
}

In the preceding method, we take in move as a parameter, which is a
concatenation of the from and to variables. Next, we create the FEN string for the
current state of the chessboard. The logic behind creating the FEN string is that
we iterate through each row of the board and create a string for the row. The
generated string is then concatenated to the final string.

Let's understand this in a better way with the help of an example. Consider a FEN
string of rnbqkbnr/pp1ppppp/8/1p6/8/3P4/PPP1PPPP/RNBQKBNR w KQkq -
0 1. Here, each row can be represented by eight or fewer characters. The state of
a particular row is separated from another one by the use of a deliminator, "/". For
a particular row, each piece is represented by its assigned notation, where "P"
means a White Pawn and b represents a Black Bishop. Each occupied square is
explicitly represented by the piece notation. For example, PpkB indicates that the
first four squares on the board are occupied by a White Pawn, Black Pawn, Black
King, and White Bishop. For the empty boxes, an integer number is used and the
number represents the count of contagious empty boxes. Notice the 8 in the
example FEN string. This indicates that all 8 squares of the row are empty. 3P4
means the first three squares are empty, the fourth box is occupied by a White
Pawn, and that four squares are empty.

In the getPositionString() method, we iterate through each of the rows,
counting down from 8 to 1, and generate a state string for each of them. For each
non-empty box, we simply add a character denoting the piece to the 's' variable.
For each empty box, we increment the value of count by 1 and concatenate it to
the 's' string either when a non-empty box is found or when we reach the end of
the row. After iterating through each row, we add "/" to separate two rows.
Finally, we generate the position string by concatenating the generated 's' string
with w KQkq - 0 1. Then, we generate the required JSON object by using
jsonEncode() with key-value pairs

Reinforced Neural Network-Based Chess Engine Chapter 8

[282]

We use the from and to variables from Step 1 of the Making the pieces movable2.
section to save the current move of the user. We can achieve this by adding two
lines to the refreshBoard() method:

void refreshBoard(String from, String to) {
 String move= from + to;
 getPositionString(move);

}

In the preceding code snippet, we concatenate the values of from and to and
store them in a string variable called move. Then, we make a call to
getPositionString() and pass the value of move to the parameter.

Next, we make a POST request to the server using JSON we generated in the3.
previous step inside the makePOSTRequest() method:

void makePOSTRequest(var json) async{
 var url = 'http://35.200.253.0:8080/play';
 var response = await http.post(url, headers: {"Content-Type":
"application/json"} ,body: json);
 String rsp = response.body;
 String from = rsp.substring(0,3);
 String to = rsp.substring(3);
}

We start by storing the IP address of the chess server in the url variable. Then,
we make an HTTP POST request using http.post() and pass the proper values
for the URL, headers, and body. The response from the POST request contains the
next move from the server-side and is stored in the variable response. We parse
the body of the response and store it in a string variable called rsp. The response
is basically a string, which is a concatenation of the source and destination
squares from the server-side. For example, a response string of f4a3 means that
the chess engine wants to move the piece at square f4 to square a3. We separate
the source and destination using substring() and store the value in the from
and to variables.

Reinforced Neural Network-Based Chess Engine Chapter 8

[283]

Now, we make the POST request from getPositionString() by adding the4.
call to makePOSTrequest():

String getPositionString(String move) {

 makePOSTRequest(json);
}

The call to makePOSTrequest() is added at the very end of the function after the
FEN string generates the given state of the board.

Finally, we refresh the board to reflect the server's move on the board with5.
the refreshBoardFromServer() method:

void refreshBoardFromServer(String from, String to) {
 setState(() {
 board[to] = board[from];
 board[from] = " ";
 });
}

The logic in the preceding method is very simple. First, we move the piece
mapped at the from indexed square to the to indexed square and then empty the
from indexed square.

Finally, we make calls to the appropriate methods to update the UI with the6.
latest moves:

void makePOSTRequest(var json) async{

 refreshBoardFromServer(from, to);
 buildChessBoard();
}

After the post request has completed successfully and we have the response from the
server, we make a call to refreshBoardFromServer() to update the mapping on the
board. Finally, we call buildChessBoard() to reflect the latest move that was made by the
chess engine on the app screen.

Reinforced Neural Network-Based Chess Engine Chapter 8

[284]

The following screenshot shows an updated UI after a move was made by the chess engine:

Notice that the black piece moved after the white piece. That is how the code works. First,
the user makes a move. This is sent to the server with the initial state of the board. The
server then responds with its move, which the UI is updated on. As an exercise, you can try
to implement some logic to differentiate between valid and invalid moves.

The code for this can be found at https:/ /github. com/ PacktPublishing/
Mobile- Deep- Learning- Projects/ blob/ master/ Chapter8/ flutter_
chess/ lib/ chess_ game. dart.

Now, let's wrap up the application by creating the material app.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/chess_game.dart

Reinforced Neural Network-Based Chess Engine Chapter 8

[285]

Creating the material app
Now, we're going to create the final material app inside main.dart. Let's start with the
following steps:

First, we create stateless widget, MyApp, and override its build() method, as1.
follows:

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Chess',
 theme: ThemeData(primarySwatch: Colors.blue,),
 home: MyHomePage(title: 'Chess'),
);
 }
}

We create a separate StatefulWidget called MyHomePage in order to place the2.
UI at the center of the screen. The build() method of MyHomePage will look as
follows:

@override
Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Chess'),),
 body: Center(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[ChessGame()
],
),
),
);
}

Finally, we execute the whole code by adding the following line in main.dart:3.

void main() => runApp(MyApp());

Reinforced Neural Network-Based Chess Engine Chapter 8

[286]

That's it! Now, we have an interactive chess game application that you can play with an
intelligent opponent. I hope you win!

The code for the entire file can be found at https:/ /github. com/
PacktPublishing/ Mobile- Deep- Learning- Projects/ blob/ master/
Chapter8/ flutter_ chess/ lib/ main. dart.

Summary
In this project, we covered the concepts of reinforcement learning and why they're popular
among developers for creating game-playing AIs. We discussed AlphaGo and its sibling
projects by Google DeepMind and studied their working algorithms in depth. Next, we
created a similar program for playing Connect 4 and then for chess. We deployed the AI-
powered chess engine to GCP on a GPU instance as an API and integrated it with a Flutter-
based app. We also learned about how UCI is used to facilitate stateless gameplay for chess.
After this project, you are expected to have a good understanding of how we can convert
games into reinforcement learning environments, how to define gameplay rules
programmatically, and how to create self-learning agents for playing these games.

In the next chapter, we will create an app that can make low-resolution images very high-
resolution images. We'll do this with the help of AI.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/blob/master/Chapter8/flutter_chess/lib/main.dart

9
Building an Image Super-

Resolution Application
Remember the last time you went on a trip with your loved ones and took some nice photos
to keep as memories, but when you went back home and swiped through them, you found
they were very blurry and low quality? Now, all you have remaining of those beautiful
moments are your own mental memories and those blurry photos. Wouldn't it be great if
your photos could be made crystal clear and you could see every detail in them?

Super-resolution is the process of converting low-resolution images into high-resolution
images based on the approximation of pixel information. While it may not be entirely
magical today, it will certainly be a life-saver in the future when the technology has
progressed enough to become a common AI application.

In this project, we will build an app that uses a deep learning model hosted on
DigitalOcean Droplet that compares both the low-resolution and high-resolution images
side by side to give us a good idea of how effective the technology is today. We shall be
using a Generative Adversarial Network (GAN) to generate the super-resolution images.

In this chapter, we will cover the following topics:

Basic project architecture
Understanding GANs
Understanding how image super-resolution works
Creating a TensorFlow model for super-resolution
Building the UI for the application
Getting pictures from the device's local storage
Hosting a TensorFlow model on DigitalOcean
Integrating a hosted custom model on Flutter
Creating the Material app

Building an Image Super-Resolution Application Chapter 9

[288]

Let's begin by understanding the project's architecture.

Basic project architecture
Let's start by understanding the project's architecture.

The project we'll be building in this chapter is mainly divided into two parts:

The Jupyter Notebook, which creates the model that performs super-resolution.
The Flutter app that uses the model, which, after being trained on the Jupyter
Notebook, is hosted on a Droplet in DigitalOcean.

From a bird's-eye view, the project can be described with the following diagram:

The low-resolution image is put into the model, which is fetched from the ML Kit instance
hosted on Firebase and put into the Flutter app. The output is generated and displayed to
the user as a high-resolution image. The model is cached on the device and only updates
when the model is updated by the developer, hence allowing for faster predictions by
cutting down on network latency.

Now, let's try understanding GANs in more depth.

Building an Image Super-Resolution Application Chapter 9

[289]

Understanding GANs
GANs, which were introduced by Ian Goodfellow, Yoshua Bengio, and others in NeurIPS
2014, took the world by storm. GANs, which can be applied to all sorts of domains,
generate new content or sequences based on the model's learned approximation of real-
world data samples. GANs have been used heavily for generating new samples of music
and art, such as the faces shown in the following image, none of which existed in the
training dataset:

Faces generated by GAN after 60 epochs of training. This image has been taken from https:/ / github. com/ gsurma/ face_ generator.

The amount of realism that's present in the preceding faces demonstrates the power of
GANs – they can pretty much learn to generate any sort of pattern when they've been given
a good training sample size.

The core concept of GANs revolves around the idea of two players playing a game. In this
game, one person says a random sentence and the other person points out whether it's a
fact or fake simply by considering the words used by the first person. The only knowledge
the second person can use is of the words (and how they're being used) that are commonly
used in fake and real sentences. This can be described as a two-player game being played
by a minimax algorithm where each player tries to counter the move that was made by the
other player to the best of their ability. In GANs, the first player is the generator (G) and
the second player is the discriminator (D). Both G and D are neural networks in regular
GANs. The generator learns from the samples given in the training dataset and generates a
new sample based on what it believes it can pass off as a real sample when viewed by an
observer.

The discriminator learns from the training samples (positive samples) and the samples
generated by the generator (negative samples) and attempts to classify which images are
present in the dataset and which are generated. It takes the generated images from G and
tries to classify them as real (present in the training samples) or generated (not present in
the database).

https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator
https://github.com/gsurma/face_generator

Building an Image Super-Resolution Application Chapter 9

[290]

Through backpropagation, the GAN tries to continuously reduce the number of times the
discriminator is able to classify the images that the generator generates correctly. After
some time, we hope to reach a stage where the discriminator starts performing poorly
when identifying the generated images. This is where the GAN stops learning, and the
generator can then be used to generate as many new samples as needed. Thus, training a
GAN means to train the generator to produce outputs from random inputs so that the
discriminator fails to identify them as generated images.

The discriminator classifies all the images that are passed to it into two categories:

Real images: Images that are present in the dataset or are otherwise taken using
a camera
Fake images: Images that have been generated using a piece of software

The better the generator gets at deceiving the discriminator, the more realistic the outputs it
produces will be when any random input sequence is provided to it.

Let's summarize the preceding discussion regarding how a GAN works as a diagram:

Building an Image Super-Resolution Application Chapter 9

[291]

GANs have many different variations, all of which depend on the task they are
performing. Some of them are as follows:

Progressive GANs: Presented in a paper at ICLR 2018, a progressive GAN is
where both the generator and discriminator start with low-resolution images and
are progressively trained with increasing layers of the image, enabling the
system to generate very high-resolution images quickly. For example, the image
generated in the first iteration is 10x10 pixels, in the second generation it becomes
20x20, and so on until a very high-resolution image is obtained. The generator
and the discriminator both grow in depth together.
Conditional GANs: Say you have a GAN that can generate samples of 10
different classes, but at some point, you wish it to generate a sample within a
given class or set of classes. This is when conditional GANs kick in. Conditional
GANs allow us to generate samples of any given label, among all the labels that
the GAN has been trained to generate. A very popular application of conditional
GANs has been done in the realm of image-to-image translation, where one
image is generated into another more realistic image of a similar or the same
domain. You can try doodling some cats and getting a photorealistic version of
your doodles by playing through the demos at https:/ / affinelayer. com/
pixsrv/.
Stacked GANs: The most popular application of stacked GANs is in generating
images based on text descriptions. In the first stage, the GAN generates an
outline of the described items and in the second stage, it adds colors, as per the
description. Then, the GAN in subsequent layers adds more details to the image
to produce a photorealistic version of the image, as provided in the description.
Stacked GANs can be differentiated from progressive GANs by observing that
the images in the first iteration of a stacked GAN are already in the dimensions
that the final output would be made in. However, similar to progressive GANs,
in the first iteration the details in the image are minimal and need further layers
before it can be fed to the discriminator.

In this project, we'll be discussing yet another variant of GANs called a Super-Resolution
GAN (SRGAN). We'll learn more about this variant in the next section.

https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/

Building an Image Super-Resolution Application Chapter 9

[292]

Understanding how image super-resolution
works
The pursuit and desire to be able to make low-resolution images more detailed and of a
higher resolution has been around for several decades. Super-resolution is a collection of
techniques that are used to convert low-resolution images into very high-resolution images
and is one of the most exciting fields of work for image processing engineers and
researchers. Several approaches and methods have been built to achieve super-resolution of
images, and they have all had varying levels of success toward their goal. However, in
recent times, with the development of SRGANs, there has been a significant improvement
regarding the amount of super-resolution that can be possible using any low-resolution
image.

But before we discuss SRGANs, let's learn about some concepts related to image super-
resolution.

Understanding image resolution
In qualitative terms, the resolution of an image is determined by its clarity. Resolution can
be classified as one of the following:

Pixel resolution
Spatial resolution
Temporal resolution
Spectral resolution
Radiometric resolution

Let's take a look at each.

Pixel resolution
One of the most popular formats for specifying resolution, pixel resolution most commonly
refers to the number of pixels involved in forming an image. A single pixel is the smallest
individual unit that can be displayed on any given viewing device. Several pixels can be
combined to form an image. Previously in this book, we talked about image processing and
referred to a pixel as an individual unit of color information stored in the matrix and that it
represents an image. The pixel resolution defines the total number of pixel elements
required to form a digital image, which may differ from the effective number of pixels
visible on the image.

Building an Image Super-Resolution Application Chapter 9

[293]

A very common notation of marking the pixel resolution of an image is to express it in
terms of megapixels. Given an image of NxM pixel resolution, its resolution can be written
as (NxM / 1000000) megapixels. Thus, an image that's 2,000x3,000 in dimension would have
6,000,000 pixels in it and its resolution can be expressed as 6 megapixels.

Spatial resolution
This is the measure of the degree to which lines that have been put closely together in an
image can be resolved by a person who is looking at the image. Here, the idea that the more
pixels an image has, the better it appears in terms of clarity, isn't strictly true. This is due to
the lower spatial resolution of the image with a higher number of pixels. Hence, a good
spatial resolution is necessary along with having a good pixel resolution for images to
render in good quality.

It can also be defined as the amount of distance one side of a pixel represents.

Temporal resolution
Resolution can also depend on time. For instance, images of the same region taken by a
satellite or using an Unmanned Aerial Vehicle (UAV) drone might differ through time.
The amount of time needed to recapture an image of the same region is called temporal
resolution.

Temporal resolution primarily depends on the device that is capturing the images. This
may be variant, as in the case of an image capture, which is performed when a specific
sensor is triggered, say, in a speed trap camera on the side of a road. It can also be constant;
for example, in a camera that's been configured to take photos at every x interval.

Spectral resolution
Spectral resolution refers to the number of bands that an image capturing device can
record. It can also be defined as the width of the bands or the range of the wavelengths of
each band. In terms of digital imaging, spectral resolution is analogous to the number of
channels in the image. Another way of understanding spectral resolution is the number of
distinguishable bands in any given image or recording of bands.

The number of bands in black and white images is 1, while the number of bands in a color
(RGB) image is 3. It is possible to capture the images of hundreds of bands, wherein the
other bands provide different kinds of information about the image.

Building an Image Super-Resolution Application Chapter 9

[294]

Radiometric resolution
Radiometric resolution is the ability of a capturing device to represent the intensity
received on any band/channel. The higher the radiometric resolution, the more accurately
the device can capture the intensities on its channels and the more realistic that image will
be.

Radiometric resolution is analogous to the bits per pixel of an image. While an 8-bit image
pixel can represent 256 different intensities, a 256-bit image pixel can represent 2^256
different intensities. A black and white image has a 1-bit radiometric resolution, which
means it can only have two different values in each pixel, namely 0 and 1.

Now, let's try to understand SRGANs.

Understanding SRGANs
SRGANs are a class of GANs that focuses on creating super-resolution images from low-
resolution images.

The functionality of an SRGAN algorithm is described as such: the algorithm picks a high-
resolution image from the dataset and samples it down to a low-resolution image. Then, the
generator neural network tries to produce a higher resolution image from the low-
resolution image. We will call this a super-resolution image from now on. The super-
resolution image is sent to the discriminator neural network, which has already been
trained on samples of high-resolution images and some basic super-resolution images so
that they can be classified.

The discriminator classifies the super-resolution image sent to it by the generator as either a
valid high-resolution image, a fake high-resolution image, or a super-resolution image. If
the image is classified as a super-resolution image, the GAN loss is backpropagated
through the generator network so that it produces a better fake next time. Over time, the
generator learns how to create better fakes and the discriminator begins failing to correctly
identify super-resolution images. The GAN stops learning here and is classed as trained.

This can be summarized with the following diagram:

Building an Image Super-Resolution Application Chapter 9

[295]

Now, let's start creating an SRGAN model for super-resolution.

Creating a TensorFlow model for super-
resolution
Now, we'll start building a GAN model that performs super-resolution on images. Before
we dive into the code, we need to understand how the project's directory will be organized.

Project directory structure
The following files and folders are present in this chapter:

api/:
model /:

__init __.py: This file indicates that the parent folder of this file
can be imported like a module.
common.py: This contains common functions that are required for
any GAN model.
srgan.py: This contains functions that are required for
developing the SRGAN model.

Building an Image Super-Resolution Application Chapter 9

[296]

weights/:
gan_generator.h5: A pre-trained weights file for the model. Feel
free to use this to quickly run and check out how the project
works.

data.py: Utility functions for downloading, extracting, and loading
the images in the DIV2K dataset.
flask_app.py: We will be using this file to create a server that will be
deployed on DigitalOcean.
train.py: The model training file. We will discuss this file in greater
depth in this section.

You can find the source code for this part of the project at https:/ /
github. com/ PacktPublishing/ Mobile- Deep- Learning- Projects/ tree/
master/ Chapter9/ api.

The Diverse 2K (DIV2K) dataset was introduced in the New Trends in Image Restoration
and Enhancement (NTIRE) 2017 Challenge on Single Image Super-Resolution and was also
used in the 2018 version of the challenge.

In the next section, we will work on building the SRGAN model script.

Creating an SRGAN model for super-resolution
First, we'll begin by working on the train.py file:

Let's start by importing the necessary modules into the project:1.

import os

from data import DIV2K
from model.srgan import generator, discriminator
from train import SrganTrainer, SrganGeneratorTrainer

The preceding imports bring in some ready-made classes, such as SrganTrainer,
SrganGeneratorTrainer, and so on. We will discuss each of them in detail after
we've finished working on this file.

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/api

Building an Image Super-Resolution Application Chapter 9

[297]

Now, let's create a directory for the weights. We shall use this directory to store2.
intermediate models as well:

weights_dir = 'weights'
weights_file = lambda filename: os.path.join(weights_dir, filename)

os.makedirs(weights_dir, exist_ok=True)

Next, we'll download and load images from the DIV2K dataset. We will3.
download the training and validation images separately. For both sets, the
images can be found in two pairs – high resolution and low resolution. However,
these are downloaded separately:

div2k_train = DIV2K(scale=4, subset='train', downgrade='bicubic')
div2k_valid = DIV2K(scale=4, subset='valid', downgrade='bicubic')

Once the dataset has been downloaded and loaded into the variables, we need to4.
transform both the train and validation images into TensorFlow dataset objects.
This step also clubs the high-resolution and low-resolution images together in
both datasets:

train_ds = div2k_train.dataset(batch_size=16,
random_transform=True)
valid_ds = div2k_valid.dataset(batch_size=16,
random_transform=True, repeat_count=1)

Now, recall the definition of a GAN we provided in the Understanding GANs5.
section. In order to make the generator start producing fakes that the
discriminator can evaluate, it needs to learn to create basic fakes. To do this, we
will quickly train a neural network so that it can generate basic super-resolution
images. We'll name it the pre-trainer. Then, we'll transfer the weights of the pre-
trainer to the actual SRGAN so that it can learn more by using the discriminator.
Let's build and run the pre-trainer:

pre_trainer = SrganGeneratorTrainer(model=generator(),
checkpoint_dir=f'.ckpt/pre_generator')
pre_trainer.train(train_ds,
 valid_ds.take(10),
 steps=1000000,
 evaluate_every=1000,
 save_best_only=False)

pre_trainer.model.save_weights(weights_file('pre_generator.h5'))

Building an Image Super-Resolution Application Chapter 9

[298]

Now, we've trained a basic model and saved its weights. We can always change
the SRGAN and restart from the basic training by loading its weights.

Now, let's load the pre-trainer weights into an SRGAN object and perform the6.
training iterations:

gan_generator = generator()
gan_generator.load_weights(weights_file('pre_generator.h5'))

gan_trainer = SrganTrainer(generator=gan_generator,
discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)

Note that the training operation in the preceding code might take a large amount
of time on an average machine with 8 GB RAM and an Intel i7 processor. It is
recommended that this training be performed in a cloud-based virtual machine
with Graphics Processing Units (GPUs) available.

Now, let's save the weights for the GAN generator and discriminator:7.

gan_trainer.generator.save_weights(weights_file('gan_generator.h5')
)
gan_trainer.discriminator.save_weights(weights_file('gan_discrimina
tor.h5'))

Now we are ready to move on to the next section, where we'll build the UI of the Flutter
app that will be using this model.

Building the UI for the application
Now that we understand the basic functionality of the image super-resolution model and
have created a model for it, let's do a deep dive into building the Flutter application. In this
section, we will build the UI of the app.

The UI of the app will be very simple: it will contain two image widgets and button
widgets. When the user clicks on the button widget, they will be able to pick an image from
the device's gallery. The same image will be sent as input to the server hosting the model.
The server will return an enhanced image. The two image widgets that will be placed on
the screen will be used to display the input to the server and the output from the server.

Building an Image Super-Resolution Application Chapter 9

[299]

The following images illustrate the basic structure and the final flow of the application:

The three primary widgets of the application can be simply arranged in a column. The
widget tree for the application will look as follows:

Building an Image Super-Resolution Application Chapter 9

[300]

Now, let's write the code to build the primary screen. The following steps discuss the
creation and placement of widgets for the app:

First of all, we create a new file named image_super_resolution.dart. This1.
will contain a stateless widget called ImageSuperResolution. This widget will
contain the code for the main screen of the application.
Next, we will define a function called buildImageInput() that returns a widget2.
that's responsible for displaying the image that was selected by the user:

Widget buildImage1() {
 return Expanded(
 child: Container(
 width: 200,
 height: 200,
 child: img1
)
);
 }

This function returns an Expanded widget with a Container as its child. The
width and height of the Container are 200. The child of the Container is
initially a placeholder image stored in the assets folder that can be accessed
through the img1 variable, as follows:

 var img1 = Image.asset('assets/place_holder_image.png');

We'll also add the path to the image inside the pubspec.yaml file, as follows:

flutter:
 assets:
 - assets/place_holder_image.png

 Now, we will create another function, buildImageOutput(), that returns a3.
widget that's responsible for displaying the enhanced image that's returned by
the model:

Widget buildImageOutput() {
 return Expanded(
 child: Container(
 width: 200,
 height: 200,
 child: imageOutput
)
);
 }

Building an Image Super-Resolution Application Chapter 9

[301]

This function returns an Expanded widget with a Container as its child. The
width and height of the Container are set to 200. The child of the Container is
a widget called imageOutput. Initially, imageOutput will also contain a
placeholder image, as follows:

Widget imageOutput = Image.asset('assets/place_holder_image.png');

We will update imageOutput after we've integrated the model into the
application.

Now, we will define our third function, buildPickImageButton(), which4.
returns a Widget that we can use to select an image from the device's gallery:

Widget buildPickImageButton() {
 return Container(
 margin: EdgeInsets.all(8),
 child: FloatingActionButton(
 elevation: 8,
 child: Icon(Icons.camera_alt),
 onPressed: () => {},
)
);
 }

This function returns a Container with a FloatingActionButton as its child.
The elevation property of the button controls the size of the shadow below it
and is set to 8. To reflect that the button is used to select an image, it has been
given an icon of a camera through the Icon class. Currently, we've set the
onPressed property of the button to blank. We will define a function in the next
section that will enable the user to choose an image from the device's gallery
when the button is pressed.

Finally, we'll override the build method to return the Scaffold for the app:5.

@override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Image Super Resolution')),
 body: Container(
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.center,
 children: <Widget>[
 buildImageInput(),
 buildImageOutput(),

Building an Image Super-Resolution Application Chapter 9

[302]

 buildPickImageButton()
]
)
)
);
 }

Scaffold contains an appBar with its title set to Image super Resolution. The
body of Scaffold is a Container with its child as a Column. The children of the
column are the three widgets that we built in the previous steps. Also, we set the
crossAxisAlignment property of Column to CrossAxisAlignment.center to
make sure that the column is placed at the center of the screen.

At this point, we have successfully built the initial state of the application. The
following screenshot shows how the app looks right now:

Although the screen looks perfect, it isn't functional right now. Next, we'll add functionality
to the app. We will add the ability to let the user choose an image from the gallery.

Getting pictures from the device's local
storage
In this section, we will add the functionality of FloatingActionButton to let the user
choose an image from the gallery of the device. This will eventually be sent to the server so
that we can receive a response.

Building an Image Super-Resolution Application Chapter 9

[303]

The following steps describe how to launch the gallery and let the user choose an image:

To allow the user to choose an image from the device's gallery, we will use the1.
image_picker library. This launches the gallery and stores the image file
selected by the user. We will start by adding a dependency in the pubspec.yaml
file:

image_picker: 0.4.12+1

Also, we fetch the library by running flutter pub get on the Terminal.

Next, we import the library inside the image_super_resolution.dart file:2.

import 'package:image_picker/image_picker.dart';

Now, let's define the pickImage() function, which lets the user choose an image3.
from the gallery:

void pickImage() async {
 File pickedImg = await ImagePicker.pickImage(source:
ImageSource.gallery);
 }

From inside the function, we simply make a call to ImagePicker.pickImage()4.
and specify source as ImageSource.gallery. The library itself handles the
complexity of launching the device's gallery. The image file chosen by the user is
eventually returned by the function. We store the file returned by the function in
the pickedImg variable, which is of the File type.
Next, we define the loadImage() function in order to display the image selected5.
by the user on the screen:

void loadImage(File file) {
 setState(() {
 img1 = Image.file(file);
 });
 }

This function takes in the image file selected by the user as input. Inside the
function, we set the value of the img1 variable we declared earlier to
Image.file(file), which returns an Image widget built from 'file'. Recall
that, initially, img1 was set to a placeholder image. To re-render the screen and
show the image that was chosen by the user, we enclose the new assignment of
img1 inside setState().

Building an Image Super-Resolution Application Chapter 9

[304]

Now, let's add pickImage() to the onPressed property6.
of FloatingActionButton inside builtPickImageButton():

 Widget buildPickImageButton() {
 return Container(

 child: FloatingActionButton(

 onPressed: () => pickImage(),
)
);
 }

The preceding addition makes sure that when the button is clicked, the gallery is
launched so that an image can be selected.

Finally, we'll add a call to loadImage() from pickImage():5.

void pickImage() async {

 loadImage(pickedImg);
 }

Inside loadImage(), we pass in the image selected by the user that's stored in the
pickedImage variable so that it can be viewed on the screen of the application.

After following all the preceding steps, the app will look as follows:

Building an Image Super-Resolution Application Chapter 9

[305]

At this point, we have structured the user interface of the application. We have also added
some functionality that lets the user choose an image from the device's gallery and show it
on the screen.

In the next section, we'll learn how to host the model we built in the Creating a TensorFlow
model for super-resolution section as an API so that we can use it to perform super-resolution.

Hosting a TensorFlow model on
DigitalOcean
DigitalOcean is an amazing, low-cost cloud solutions platform that is very easy to get
started with and offers nearly everything that an app developer might need for powering
the backend of their app out of the box. The interface is very simple to use, and
DigitalOcean boasts some of the most extensive documentation around getting started with
setting up different types of application servers on the cloud.

In this project, we shall be using DigitalOcean's Droplet to deploy our super-resolution API.
A Droplet in DigitalOcean is simply a virtual machine that usually runs on a shared
hardware space.

First, we'll create the flask_app.py file in the project directory and add the code required
for the server to work.

Creating a Flask server script
In this section, we shall work on the flask_app.py file, which will be running on the
cloud virtual machine as a server. Let's get started:

First, we'll make the necessary imports to the file:1.

from flask import Flask, request, jsonify, send_file
import os
import time

from matplotlib.image import imsave

from model.srgan import generator

from model import resolve_single

Building an Image Super-Resolution Application Chapter 9

[306]

Now, we'll define the weights directory and load the generator weights into the2.
file:

weights_dir = 'weights'
weights_file = lambda filename: os.path.join(weights_dir, filename)

gan_generator = generator()
gan_generator.load_weights(weights_file('gan_generator.h5'))

Next, we'll instantiate the Flask app using the following line of code:3.

app = Flask(__name__)

Now, we are ready to build the routes the server will listen to. First, we'll create4.
the /generate route, which takes an image as input, generates a super-
resolution version of it, and returns the filename of the generated high-resolution
image to the user:

@app.route('/generate', methods=["GET", "POST"])
def generate():

 global gan_generator
 imgData = request.get_data()
 with open("input.png", 'wb') as output:
 output.write(imgData)

 lr = load_image("input.png")
 gan_sr = resolve_single(gan_generator, lr)
 epoch_time = int(time.time())
 outputfile = 'output_%s.png' % (epoch_time)
 imsave(outputfile, gan_sr.numpy())
 response = {'result': outputfile}

 return jsonify(response)

Let's try to understand what's happening in the preceding code block. The
/generate route has been set to listen to only the GET and POST methods of
HTTP requests. First, the method fetches the image that was provided to it in the
API request, converts it into a NumPy array, and then feeds it into the SRGAN
model. The SRGAN model returns a super-resolution image, which is then
assigned a unique name and stored on the server. The user displays the name of
the file, using which they can call another endpoint to download the file. Let's
build this endpoint now.

Building an Image Super-Resolution Application Chapter 9

[307]

To create an endpoint in order to download the generated files, we can use the5.
following code:

@app.route('/download/<fname>', methods=['GET'])
def download(fname):
 return send_file(fname)

Here, we created an endpoint called /download that, when appended with a
filename, fetches it and sends it back to the user.

Finally, we can write the code that executes this script and sets up the server:6.

app.run(host="0.0.0.0", port="8080")

Save this file. Make sure to push your repository to a GitHub/GitLab repository at this
point.

Now, we are ready to deploy this script to a DigitalOcean Droplet.

Deploying the Flask script to DigitalOcean
Droplet
To deploy the Flask script to a DigitalOcean Droplet, you'll have to create a DigitalOcean
account and create a Droplet. Follow these steps to do so:

Head on over to digitalocean.com in your preferred web browser.1.

You can also go to https:/ /m.do. co/c/ ca4f8fcaa7e9 if you wish to
receive $100 credit upon adding your billing details. We'll do this later.

Fill in your details on the registration form of DigitalOcean and proceed to the2.
next step by submitting the form.
You will be asked to verify your email and add a billing method for your3.
DigitalOcean account.

https://digitalocean.com
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9
https://m.do.co/c/ca4f8fcaa7e9

Building an Image Super-Resolution Application Chapter 9

[308]

In the next step, you will be prompted to create your first project. Enter the4.
required details and submit the form to create your project:

Once your project has been created, you'll be taken to the DigitalOcean5.
dashboard. You will be able to see a prompt to Create a Droplet, as shown in the
following screenshot:

Building an Image Super-Resolution Application Chapter 9

[309]

Click on the prompt to bring up the Droplet creation form. Choose the options6.
described in the following table:

Field Description Value to use
Choose an
image

The operating system that your
Droplet will run on.

Ubuntu 18.04 (or the
latest available version)

Choose a plan Choose the configuration for your
Droplet. 4 GB RAM or higher

Add block
storage

Additional persistent, detachable
storage volume for your Droplet. Leave as the default

Choose a
datacenter
region

The region where your Droplet is
served from.

Choose any according to
your preference

Select
additional
options

Choose any additional features that
will work along with your Droplet. Leave as the default

Authentication Choose the method of authentication
for your VM. One-time password

Finalize and
create

Some additional settings and options
for your Droplet. Leave as the default

Building an Image Super-Resolution Application Chapter 9

[310]

Click on Create Droplet and wait for DigitalOcean to provision your Droplet.7.
Once your Droplet has been created, click on its name to bring up the Droplet8.
management console, which should look as follows:

Now, we can log in to the Droplet using the Access tab on the left navigation9.
menu of the Droplet console shown in the previous screenshot. Click on Access
and then Launch Console.
A new browser window will open up displaying a VNC view of your Droplet.10.
You'll be asked to enter the username and password for your Droplet. The
username you must use here is root. The password can be found in your
registered email's inbox.
When you log in for the first time, you'll be asked to change your Droplet11.
password. Make sure that you choose a strong password.

Building an Image Super-Resolution Application Chapter 9

[311]

Once you've logged into your Droplet, you'll see some Ubuntu welcome text on12.
the VNC Terminal, as shown in the following screenshot:

Now, carry out the steps to set up a deep learning environment on a cloud VM,13.
as provided in the Appendix of this book.
Next, clone the project repository to your Droplet and change your working14.
directory to the api folder of the repository using the following command:

git clone https://github.com/yourusername/yourrepo.git
cd yourrepo/api

Use the following command to run the server:15.

python3 flask_app.py

Besides some warning messages from TensorFlow, at the end of the Terminal's
output you should see the following lines indicating that the server has started
successfully:

Now, your server is live and running on the IP of the Droplet, as can be seen in your
Droplet console.

Building an Image Super-Resolution Application Chapter 9

[312]

In the next section, we will learn how to use the Flutter app to make a POST request to the
server and show the response of the server on the screen.

Integrating a hosted custom model on
Flutter
In this section, we will make a POST request to the hosted model and pass it in the image
selected by the user. The server will respond with a NetworkImage in PNG format. Then,
we'll update the image widget we added earlier to show the enhanced image that's
returned by the model.

Let's start integrating the hosted model into the application:

First of all, we will need two more external libraries to make a successful POST1.
request. Therefore, we'll add the following libraries as dependencies to
the pubspec.yaml file:

dependencies:
 flutter:
 http: 0.12.0+4
 mime: 0.9.6+3

The http dependency contains a set of classes and functions that make
consuming HTTP resources very convenient. The mime dependency is used for
processing streams of MIME multipart media types.

Now, we need to run flutter pub get to make sure all the dependencies have
been installed into our project properly.

Next, we import all the newly added dependencies into the2.
image_super_resolution.dart file:

import 'package:http/http.dart' as http;
import 'package:mime/mime.dart';

Now, we need to define fetchResponse(), which takes in the selected image3.
file and creates a POST request to the server:

void fetchResponse(File image) async {
 final mimeTypeData =
 lookupMimeType(image.path, headerBytes: [0xFF,
0xD8]).split('/');

Building an Image Super-Resolution Application Chapter 9

[313]

 final imageUploadRequest = http.MultipartRequest('POST',
Uri.parse("http://x.x.x.x:8080/generate"));

 final file = await http.MultipartFile.fromPath('image',
image.path,
 contentType: MediaType(mimeTypeData[0], mimeTypeData[1]));
 imageUploadRequest.fields['ext'] = mimeTypeData[1];
 imageUploadRequest.files.add(file);
 try {
 final streamedResponse = await imageUploadRequest.send();
 final response = await
http.Response.fromStream(streamedResponse);
 final Map<String, dynamic> responseData =
json.decode(response.body);
 String outputFile = responseData['result'];
 } catch (e) {
 print(e);
 return null;
 }
 }

In the preceding method, we find the MIME type of the selected file by using the
lookupMimeType function using the file's path and its headers. Then, we
initialize a multipart request, as expected by the server hosting the model. We do
this using HTTP. We use MultipartFile.fromPath and set the value of image
to the path that gets attached as the POST parameter. We explicitly pass the
extension of the image to the request body since image_picker has some bugs.
Due to this, it mixes up image extensions with filenames such as filenamejpeg,
which creates problems on the server side when it comes to managing or
verifying the file extension. The response from the server is then stored in the
response variable. The response is in JSON format, so we need to decode it
using json.decode(). The function takes in the body of the response, which can
be accessed using response.body. We store the decoded JSON in the
responseData variable. Finally, the output of the server is accessed using
responseDate['result'] and is stored in the outputFile variable.

 Next, we define the displayResponseImage() function, which takes in the4.
name of the PNG file that's returned by the server inside the outputFile
parameter:

void displayResponseImage(String outputFile) {
 print("Updating Image");
 outputFile = 'http://x.x.x.x:8080/download/' + outputFile;
 setState(() {
 imageOutput = Image(image: NetworkImage(outputFile));

Building an Image Super-Resolution Application Chapter 9

[314]

 });
 }

As per the customization of the server, we need to append a string before the
name of the file to display it on the screen. The string should contain the port
address where the server is running, followed by '/download/<outputFile>'.
Then, we set the value of the imageOutput widget to a NetworkImage using the
final value of outputFile as the url value. Also, we enclose it inside
setState() so that we can refresh the screen after the response is fetched
properly.

Next, we make a call to displayResponseImage() at the very end of5.
fetchResponse() and pass in the outputFile received from the hosted model:

void fetchResponse(File image) async {

 displayResponseImage(outputFile);
}

Finally, we add the call to fetchResponse() from pickImage() by passing in6.
the image that was initially selected by the user:

void pickImage() async {

 fetchResponse(pickedImg);
 }

In the preceding steps, we started by making a POST request to the server hosting
the model. Then, we decoded the response and added code to display it on the
screen. The addition of fetchResponse() at the end of pickImage() makes
sure that the POST request is made only after the user has chosen an image. Also,
to ensure that an attempt to display the response image has been made after
successfully decoding the output from the server, displayImageResponse() is
called at the end of fetchResponse(). The following screenshot shows the final
expected state of the screen:

Building an Image Super-Resolution Application Chapter 9

[315]

Thus, we've finished building the application so that we can display the output of the
model. We've kept the two images together on the screen so that we can see the difference
between them.

The code for the image_super_resolution.dart file can be accessed at
https:/ /github. com/ PacktPublishing/ Mobile- Deep- Learning-
Projects/ tree/ master/ Chapter9/ flutter_ image_ super_ resolution.

Creating the Material app
Now, we will add main.dart in order to create the final Material app. We'll create a
stateless widget called MyApp and override the build() method:

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Demo',
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: ImageSuperResolution(),
);
 }
}

https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution
https://github.com/PacktPublishing/Mobile-Deep-Learning-Projects/tree/master/Chapter9/flutter_image_super_resolution

Building an Image Super-Resolution Application Chapter 9

[316]

Finally, we execute the code, as follows:

void main() => runApp(MyApp());

With that, we've finished creating an application that lets the user choose an image and
modify its resolution.

Summary
In this chapter, we studied super-resolution images and how we can apply them using a
SRGAN. We also studied other types of GANs and how GANs work in general. Then, we
discussed how to create a Flutter application that can be integrated with an API hosted on a
DigitalOcean Droplet so that we can perform image super-resolution when an image has
been picked from the gallery. Next, we covered how to use DigitalOcean Droplets and how
it is a good choice for hosting the backends of applications due to its low cost and easy-to-
use interface.

In the next chapter, we will discuss some popular applications that have seen great
improvements by integrating deep learning into their functionality. We will also explore
some hot research areas in deep learning for mobile phones, and briefly discuss the latest
work that has been done on them.

10
Road Ahead

The most important part of a journey is knowing where to go next once it ends. We have
covered some unique and powerful deep learning (DL) applications related to Flutter apps
so far in this series of projects, but it is important for you to know where you can find more
such projects, inspiration, and knowledge to build your own cool projects. In this chapter,
we shall briefly cover the most popular applications using DL on mobile apps today, the
current trends, and what is expected to come in this field in the future.

In this chapter, we will cover the following topics:

Understanding recent trends in DL on mobile applications
Exploring the latest developments in DL on mobile devices
Exploring current research areas for DL in mobile apps

Let's begin by studying some of the trends in the world of DL mobile apps.

Understanding recent trends in DL on
mobile applications
DL specifically, and Artificial Intelligence (AI) more broadly, are becoming more and
more mobile with the latest technology and hardware advancements. Organizations have
been using intelligent algorithms to provide a personalized user experience and increase
app engagement. With technologies such as face detection, image processing, text
recognition, object recognition, and language translations, mobile applications have become
much more than just a medium to provide static information. They are capable of adapting
to the user's personal preferences and choices, as well as the present and past environment
situations, to provide a seamless user experience.

Let's look at some trending applications and the methods they deploy to provide a good
user experience, alongside increasing app engagement.

Road Ahead Chapter 10

[318]

Math solver
Launched by Microsoft on January 16, 2020, the Math solver application helps
students complete their mathematical assignments by simply clicking on pictures in
questions on their smartphones. The application provides support for both basic and
advanced mathematical problems, covering a wide range of topics, including elementary
arithmetic, quadratic equations, calculus, and statistics. The following screenshot shows
how the application works:

The user can click a picture of a handwritten or printed problem on their smartphone, or
directly scribble or type it on the device. The application makes use of AI to recognize the
problem and solve it accurately. Additionally, it is equipped to provide a step-by-step
explanation, with additional learning materials such as worksheets and video tutorials
relating to the problem.

Road Ahead Chapter 10

[319]

Netflix
Netflix's recommendation system is one of the biggest success stories of using DL on mobile
applications. Netflix utilizes a number of algorithms to understand users' preferences and
comes up with a list of recommendations they might be interested in. All content is tagged
with labels that provide an initial set of data from which the algorithms can learn. Further,
the system monitors over 100 million user profiles to analyze what people watch, what they
might watch later, what they have watched before, what they watched a year ago, and so
on. All of the data collected is brought together to learn the kind of content a user might be
interested in.

The data collected using the tags and user behavior is then brought together and fed into
complex ML algorithms. This data helps explain the factors that might hold the most
importance—for example, if a movie that a user watched a year ago should be counted
twice compared to a series they watched last week. The algorithms also learn from user
behavior, such as whether the user liked or disliked particular content, or the shows the
user binged on and watched in 2 nights. All of the factors are brought together and
analyzed carefully, resulting in a list of recommendations users might be interested in the
most.

Google Maps
Google Maps has helped commuters to travel to new places, explore new cities, and
monitor daily traffic. In early June 2019, Google Maps released a new feature to enable
users to monitor bus travel times in 10 major cities across India, as well as get live updates
from Indian Railways. The feature, live in Bengaluru, Chennai, Coimbatore, Delhi,
Hyderabad, Lucknow, Mumbai, Pune, and Surat, makes use of Google's live traffic data
and public bus schedules to calculate accurate travel times and delays. The algorithm
supporting the feature learns from the sequence of bus positions over time. This data is
further combined with the speed of cars on the bus's path at the time of the commute. The
data is also used to capture the unique properties of a specific street. Researchers have also
simulated the possibility of queries that pop up about an area, to make the model much
more robust and accurate.

Road Ahead Chapter 10

[320]

Tinder
The world's most popular application for meeting new people, Tinder deploys a number of
learning models to increase the number of people liking a particular profile. The Smart
Photos feature increases a user's probability to find a correct match. The feature randomly
orders the pictures of a particular user and shows them to others. The algorithm supporting
the feature analyzes the frequency of the pictures being swiped left or right. It uses the
knowledge to reorder the pictures according to their popularity. The algorithm's accuracy
has been constantly increasing with the collection of more and more data.

Snapchat
The filters used by Snapchat are design overlays added on top of pictures and videos, with
the capability of following face movements. These filters are made possible by computer
vision. The first step of the algorithm being used by the application is to detect the faces
present in an image. It outputs boxes bounding the detected faces. It then marks the facial
landmarks—such as eyes, nose, and lips—for each of the detected faces. The output here is
generally a two-dimensional point containing x-coordinates and y-coordinates. After the
faces and facial features have been detected properly, it uses image processing to correctly
place or apply filters on the whole face. The algorithm goes one step further to analyze the
key facial features, using the Active Shape Model. The model, after being trained by the
manual marking of the boundaries of key facial features, creates an average face that aligns
with a face appearing on the screen. The model creates a mesh to correctly place the filters
and track their movements.

Now, we'll take a look at the research areas in the field of DL.

Exploring the latest developments in DL on
mobile devices
With the complexities of DL and AI combining with mobile applications, software and
hardware optimizations are being constantly made to run the models efficiently on devices.
Let's look at some of them.

Road Ahead Chapter 10

[321]

Google's MobileNet
Google's MobileNet was launched in 2017. It is a set of mobile-first computer vision models
based on TensorFlow, very carefully optimized to run efficiently within a restrictive mobile
environment. It acts as a bridge between accuracy in complex neural network structures
and performance constraints on mobile runtimes. Since the models have the capability to
run locally on the device itself, MobileNet has the advantages of security, privacy, and
flexible accessibility. The two most important goals of MobileNet are reduced size and
minimal complexity when dealing with computer vision models. The first version of
MobileNet offered low-latency models capable of working smoothly with restrictive
resources. They can be used for classification, detection, embeddings, and segmentation,
supporting a wide range of use cases.

MobileNetV2, released in 2018, is a significant enhancement to the first version. It can be
used for semantic segmentation, object detection, and classification. MobileNetV2,
launched as a part of the TensorFlow-Slim image classification library, can be directly
accessed from Colaboratory. It can also be downloaded locally, explored using Jupyter, and
can be accessed from TF-Hub and GitHub. The two most important features added to the
architecture are linear bottlenecks between the layers and shortcut connections between the
bottlenecks. The bottlenecks encode intermediate inputs and outputs, and the inner layers
support the ability to convert from lower-level concepts to higher-level descriptors. The
traditional residual connections and shortcuts help to reduce training time and increase
accuracy. MobileNetV2 is faster, more accurate, and requires fewer operations and
parameters compared to the first version. It works very efficiently for object detection and
segmentation to extract features.

You can read more on this research work here: https:/ /arxiv. org/ abs/
1905. 02244.

Alibaba Mobile Neural Network
Alibaba Mobile Neural Network (MNN) is an open sourced lightweight DL inference
engine. Jia Yangqing, the Vice President of Engineering at Alibaba, says: "Compared with
general-purpose frameworks like TensorFlow and Caffe2 that cover both training and inference,
MNN focuses on the acceleration and optimization of inference and solves efficiency problems during
model deployment so that services behind models can be implemented more efficiently on the mobile
side. This is actually in line with ideas in server-side inference engines like TensorRT. In large-scale
machine learning applications, the number of computations for inference are usually 10+ times more
than that for training. Therefore, optimization for inference is especially important."

https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244

Road Ahead Chapter 10

[322]

The main focus areas of MNN are running and inference of Deep Neural Network (DNN)
models. It concentrates on the optimization, conversion, and inference of the models. MNN
has been adopted to run successfully in a number of mobile applications of Alibaba
Inc, such as Mobile Tmall, Mobile Taobao, Fliggy, UC, Qianniu, and Juhuasuan. It covers
search recommendation, short video capture, live broadcast, equity distribution, security
risk control, interactive marketing, product search by image, and many other real-life
scenarios. Internet of Things (IoT) devices such as Cainiao call cabinets are also making
greater use of technology. MNN has great stability and can run more than 100 million times
per day.

MNN is highly versatile and provides support for most of the popular frameworks in the
market such as TensorFlow, Caffe, and Open Neural Network Exchange (ONNX). It is
equally compatible with common neural networks such as Convolutional Neural
Networks (CNNs) and Relational Neural Networks (RNNs). MNN is lightweight and
highly optimized for mobile devices and has no dependencies. It can be easily deployed to
mobile devices and a variety of embedded devices. It also supports the major mobile
operating systems Android and iOS, along with embedded devices, with the Portable
Operating System Interface (POSIX). MNN, being independent of any external library,
delivers very high performance. Its core operations are implemented through large
volumes of handwritten assembly code to take maximum advantage of Advanced RISC
Machine (ARM) CPUs. With the efficient image processing module (IPM), speeding up
affine transform and color space transform without libyuv or OpenCV, MNN is easy to use.

While these products are under active development and research, let's now look at some of
the areas that are expected to grow in importance in the future.

Exploring current research areas for DL in
mobile apps
It is crucial for the healthy growth of any field of study that an active community of
researchers invests time and effort into it. Fortunately, the application of DL on mobile
devices has gathered strong attention from developers and researchers worldwide, with
many mobile handset manufacturers, such as Samsung, Apple, Realme, and Xiaomi,
integrating DL right into the system user interface (UI) they produce for all their devices.
This gives a huge boost to the speed at which the models run, and their accuracy is
regularly improved by system updates.

Let's look at some of the most popular research areas in the field and how they've been
progressing.

Road Ahead Chapter 10

[323]

Fashion images
In 2019, the DeepFashion2 dataset was presented by Yuying Ge, Ruimao Zhang, and others.
The dataset is an improvement on the DeepFashion dataset and includes 491,000 images
from both sellers and consumers. The dataset identifies 801,000 clothing items. Each item in
the dataset is marked with a scale, occlusion, zoom-in, viewpoint, category, style, a
bounding box, dense landmarks, and a per-pixel mask.

The dataset has 391,000 images in the training set, 34,000 images in the validation set, and
67,000 images in the test set. This dataset offers the possibility of coming up with better
models that are able to identify fashion clothing and different clothing items from images.
One could easily imagine the range of applications this dataset could lead to—including
online stores recommending products to buy according to what consumers often wear
together, complete with the preferred brands and expected price range of the products. It is
also likely to identify the profession any person may be involved in and their financial,
religious, and geographical details, simply by identifying the clothing items and brands
they wear.

You can read more about the DeepFashion2 dataset here: https:/ /arxiv.
org/abs/ 1901. 07973.

Self-Attention Generative Adversarial Networks
We discussed an application of Generative Adversarial Networks (GANs) in Chapter 9,
Building an Image Super-Resolution Application, where we generated high-resolution images
from low-resolution images. GANs do a fairly good job of learning to mimic art and
patterns. However, they fail to perform well where longer sequences need to be
remembered and in instances where there are multiple parts of the sequence that are
important toward making a generated output. Hence, we look toward Self-Attention
GANs (SAGANs), introduced by Ian Goodfellow and his team, which are GAN systems
that allow attention-driven, long-range dependency modeling for image-generation tasks.
This system has had better performance on the ImageNet dataset and is expected to be
adopted widely in the future.

https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973
https://arxiv.org/abs/1901.07973

Road Ahead Chapter 10

[324]

A derivate of the works done using SAGANs is the DeOldify project by Jason Antic. This
project aims to bring color into old images and videos, so that it seems that they never
lacked color in the first place. An example from the DeOldify project is shown in the
following screenshot:

Migrant Mother by Dorothea Lange (1936). Image taken from DeOldify GitHub repository
at https://github. com/ jantic/ DeOldify. The project is available for testing and demo
at https://deoldify. ai/ . You can read more about SAGANs at https:/ / arxiv. org/ abs/
1805.08318.

Image animation
Facebook, a popular social media platform with a dedicated app for several platforms, has
been working on creating tools that allow you to produce 3D images by using normal
cameras that would otherwise only produce 2D images. Image animation is a similar
technology that allows us to bring animation into static images. A very exciting usage of
this technology can be imagined as people taking selfies and then choosing from a library
of motions to animate their images as if they were making those motions themselves.

While yet at a very nascent stage, image animation is something that can become a popular
and fun application, considering similar applications featuring deepfake technologies have
made it into a successful business—for example, the Zao app in China.

You can read the image animation research paper here: https:/ /arxiv.
org/abs/ 2003. 00196v1.

https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://github.com/jantic/DeOldify
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://deoldify.ai/
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1
https://arxiv.org/abs/2003.00196v1

Road Ahead Chapter 10

[325]

Summary
In this chapter, we discussed some of the most popular mobile applications that are famous
for their cutting-edge usage of DL in their business products, and also about the way DL
has impacted their growth. We also discussed the current latest developments in the field of
DL for mobile applications. Finally, we discussed some exciting research areas for the field,
and how they could grow into potential popular apps in the future. We believe that by
now, you will have a very good idea about how DL can be deployed on mobile
applications, and how, using Flutter, you can build cross-platform mobile applications that
run on all popular mobile platforms.

We conclude this chapter with the hope that you'll make the best use of the ideas and
knowledge presented in this project series and build something awesome that brings about
a revolution in this space of technology.

Appendix
The world of computer science is exciting in the way that it allows several software
components to come together and work toward building something new. In this short
appendix, we've covered the tools, software, and online services that you'll need to set up
before you can embark on your journey of deep learning on mobile devices.

In this chapter, we will cover the following topics:

Setting up a deep learning environment on Cloud VM
Installing Dart SDK
Installing Flutter SDK
Configuring Firebase
Setting up Visual Studio (VS) Code

Setting up a deep learning environment on
Cloud VM
In this section, we will present a quick guide on how to set up an environment on a Google
Cloud Platform (GCP) Compute Engine Virtual Machine (VM) instance in order to
perform deep learning. You can easily extend the methods described here to other cloud
platforms as well.

We will begin with a quick guide on how to create your GCP account and enable billing on
it.

Appendix

[327]

Creating a GCP account and enabling billing
To create a GCP account, you will need a Google Account. If you have an email address
ending in @gmail.com or an account on G Suite, you already have a Google Account. If
not, you can create a Google Account by visiting https:/ /accounts. google. com/ sigNup.
Once you are logged in to a Google Account, perform the following steps:

Visit console.cloud.google.com on your browser.1.
Accept any terms and conditions that are presented to you in popups.2.
You will be able to view your GCP Console dashboard. You can get up to speed3.
with this dashboard by reading through the support document at https:/ /
support. google. com/ cloud/ answer/ 3465889.
On the left-hand navigation menu, click on Billing to open the billing4.
management dashboard. You will be prompted to add a billing account, as
shown in the following screenshot:

Click on Add billing account. You will be redirected to the GCP Free Trial5.
registration page if you're eligible for it. You can read more about the free trial
at https:/ / cloud. google. com/ free/docs/ gcp- free- tier. You should see a
screen similar to the one in the following screenshot:

https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://accounts.google.com/sigNup
https://console.cloud.google.com/
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://support.google.com/cloud/answer/3465889
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier

Appendix

[328]

Fill in the form as required. Once you've finished creating the billing, return to6.
the GCP Console dashboard.

You have successfully created your GCP account and enabled billing on it. Next, you'll be
able to create a project in your GCP console and allocate resources to the project. We will
demonstrate this in the upcoming section.

Creating a project and GCP Compute Engine
instance
In this section, you'll be creating a project on your GCP account. All resources in GCP are
encapsulated under projects. Projects may or may not belong to an organization. An
organization can have multiple projects under it, and a project may have multiple resources
inside it. Let's begin by creating the project, as shown in the following steps:

In the top left of the screen, click on the Select a project drop-down menu.1.
In the dialog box that appears, click on New project in the top right of the dialog2.
box.

Appendix

[329]

You'll be shown the new project creation form, as shown in the following3.
screenshot:

After filling in the requisite details, click on CREATE to finish creating your4.
project. Once you have created your project, you'll be taken to the project's
dashboard. Here, you'll be able to view some basic logging and monitoring
related to the currently selected project. You can read more about how GCP
resources are organized at https:/ /cloud. google. com/ docs/ overview.
On the left navigation pane, click on Compute Engine. You'll be prompted to5.
create a VM instance.
Click on CREATE to bring up the Compute Engine instance creation form. Fill in6.
the form as needed. We'll assume you've chosen the Ubuntu 18.04 LTS
distribution while creating the instance.
Make sure that you enable access for the HTTP and HTTPS connections to your7.
VM instance in the firewall settings, as shown in the following screenshot:

https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview
https://cloud.google.com/docs/overview

Appendix

[330]

Click on CREATE. GCP begins provisioning a VM instance for you. You'll be8.
taken to the VM instances management page. You should see your VM listed on
this page, as shown in the following screenshot:

You're now ready to start configuring this VM instance to perform deep learning. We will
cover this in the next section.

Configuring your VM instance to perform deep
learning
In this section, we'll guide you through how to install the packages and modules for
performing deep learning on the VM instance you have created. These instructions for the
installation of the packages and modules will be similar across any cloud service provider
of your choice.

You could also use similar commands on your local system as well, in
order to set up a local deep learning environment.

Let's begin by invoking the terminal of the VM:

Click on the SSH button on the VM instances page to start a terminal session to1.
your VM.

Appendix

[331]

You should see the terminal session start, with some general information relating2.
to the system and details of the last login, as shown in the following screenshot:

Now, let's perform an update on the package repositories of this newly created3.
instance:

sudo apt update

Next, we will install Anaconda on this VM. Anaconda is a popular collection of4.
packages for performing deep learning and data science-related tasks using
Python. It comes packaged with the conda package manager, which makes it
very easy to manage different versions of Python packages installed on the
system. To install it, we first need to get the Anaconda installer download link.
Head over to https:/ / www. anaconda. com/ distribution/ #download- section.
You will be taken to a page offering you a choice of which Anaconda version you
want to install, as shown in the following screenshot:

https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section

Appendix

[332]

It is recommended that you choose the Python 3.7 version. Right-click on the5.
Download button and find the option in the menu that allows you to copy the
link address.
Switch to the terminal session of your VM instance. Use the following command6.
to replace the placeholder text with the link you have copied by pasting it in the
command, as shown here:

curl -O <link_you_have_copied>

The preceding command will download the Anaconda installer to your current7.
user's home directory. To verify it, you can use the ls command. Now, to set this
file to be executable, we will use the following command:

chmod +x Anaconda*.sh

Now, the installer file can be executed by your system. To start its execution, use8.
the following command:

./Anaconda*.sh

Installation should begin. You should be presented with a prompt asking you9.
whether you accept the license agreement of the Anaconda software, as shown
here:

Hit Enter to continue reviewing the license. You'll be shown the license file.10.
Hit the down arrow key to read through the agreement. Enter yes to accept the11.
license.
You'll be asked to confirm the location of your Anaconda installation, as shown12.
in the following screenshot:

Appendix

[333]

Hit Enter to confirm the location. Package extraction and installation will begin.13.
Once this is complete, you'll be asked whether you want to initialize the
Anaconda environment; enter yes here, as follows:

Now, the installer will complete its tasks and exit. To activate the Anaconda14.
environment, use the following command:

source ~/.bashrc

You've successfully installed the Anaconda environment and activated it. To15.
check whether the installation has been successful, enter the following command
in the terminal:

python3

If the output of the following command includes the words Anaconda, Inc. on the second
line, your installation has been successful. You can see it in the following screenshot:

Now, you can start running deep learning scripts on this environment. However, you
might want to add more utility libraries to this environment in the future, such as PyTorch
or TensorFlow, or any other package. Since this book assumes familiarity with Python, we'll
not discuss the pip tool in much detail.

Let's now look at how you can install TensorFlow on your VM.

Installing TensorFlow on a VM
TensorFlow is a great framework to perform deep learning.

To install it, you can use the following commands:

TensorFlow 1 with CPU only support
python3 -m pip install tensorflow==1.15

TensorFlow 1 with GPU support

Appendix

[334]

python3 -m pip install tensorflow-gpu==1.15

TensorFlow 2 with CPU only support
python3 -m pip install tensorflow

Tensorflow 2 with GPU support
python3 -m pip install tensorflow-gpu

Another popular library in Python, which is often installed, is the Natural Language
Toolkit (NLTK) library. We will demonstrate its installation process in the upcoming
section.

Installing NLTK on a VM and downloading packages
To install NLTK on the VM and to download the data packages for it, perform the
following steps:

Install NLTK using pip:1.

python3 -m pip install nltk

There are several different data packages available for NLTK. In most use cases,2.
you won't need them all. To list all of the available data packages for NLTK, use
the following command:

python3 -m nltk.downloader

The output of the preceding command will allow you to interactively view all of
the available packages, select the ones you require, and then download them.

However, if you wish to download only one package, use the following3.
command:

python3 -m nltk.downloader stopwords

The preceding command will download the stopwords data package of NLTK. In very
rare circumstances, you might find yourself needing or using all of the data packages
available in NLTK.

With this amount of setup, you should be able to run most deep learning scripts on your
cloud VM.

In the next section, we will look at how to install Dart on your local system.

Appendix

[335]

Installing Dart SDK
Dart is an object-oriented language developed by Google. It is used for mobile and web
application development. Flutter is built with Dart. Dart has a Just In Time (JIT)-based
development cycle that is compatible with stateful hot reload and an ahead-of-time
compiler for fast startup and predictable performance, which makes it suitable for Flutter.

The following sections discuss how to install Dart on Windows, macOS, and Linux.

Windows
The easiest way to install Dart in Windows is by using Chocolatey. Simply run the
following command in the terminal:

 C:\> choco install dart-sdk

Next, we will look at how to install Dart on Mac systems.

macOS
To install Dart on macOS, perform the following steps:

Install Homebrew by running the following command in the Terminal:1.

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

Run the following command to install Dart:2.

$brew tap dart-lang/dart
$brew install dart

Next, we will look at how to install Dart on a Linux system.

Linux
Dart SDK can be installed in Linux as follows:

Perform the following one-time setup:1.

$sudo apt-get update
$sudo apt-get install apt-transport-https
$sudo sh -c 'wget -qO-
https://dl-ssl.google.com/linux/linux_signing_key.pub | apt-key add
-'

Appendix

[336]

$sudo sh -c 'wget -qO-
https://storage.googleapis.com/download.dartlang.org/linux/debian/d
art_stable.list > /etc/apt/sources.list.d/dart_stable.list'

Install the stable release:2.

$sudo apt-get update
$sudo apt-get install dart

Next, we'll look at how to install the Flutter SDK on our local machines.

Installing Flutter SDK
Flutter is a toolkit by Google used to build natively compiled Android, iOS, and web
applications with a single code base. Features such as fast development with hot reload, an
expressive UI that is simple to build, and native performance have all made Flutter a
preferable choice for application developers.

The following sections discuss how to install Flutter SDK on Windows, macOS, and Linux.

Windows
The following steps outline, in detail, how to install Flutter on Windows:

Download the latest stable release of Flutter SDK from https:/ / storage.1.
googleapis. com/ flutter_ infra/ releases/ stable/ windows/ flutter_ windows_
v1.9.1+hotfix. 6- stable. zip.
Extract the ZIP folder, and navigate to the directory where you want to install2.
Flutter SDK in order to place the flutter folder.

Avoid placing flutter in a directory that might require special privileges
such as C:\Program Files\.

Type env into the Start search bar and select Edit Environment Variables.3.
Append the full path to flutter/bin to Path under User Variables using ; as a4.
separator.

https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.9.1+hotfix.6-stable.zip

Appendix

[337]

If the Path entry is missing, simply create a new Path variable and
set path to flutter/bin as its value.

Run flutter doctor in the terminal.5.

flutter doctor analyzes the entire Flutter installation to check whether
more tools are needed to run Flutter successfully on the machine.

Next, we will look at how to install Flutter on a Mac system.

macOS
Flutter can be installed on macOS as follows:

Download the latest stable SDK from https:/ /storage. googleapis. com/1.
flutter_ infra/ releases/ stable/ macos/ flutter_ macos_ v1. 9.1+hotfix. 6-
stable.zip.
Extract the downloaded ZIP folder to a suitable location, like so:2.

$cd ~/
$unzip ~/Downloads/flutter_macos_v1.9.1+hotfix.6-stable.zip

Add the flutter tool to the path variable: $ export3.
PATH=`pwd`/flutter/bin:$PATH.
Open bash_profile to permanently update PATH:4.

$cd ~
$nano .bash_profile

Add the following line to bash_profile:5.

$export PATH=$HOME/flutter/bin:$PATH

Run flutter doctor.6.

https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_v1.9.1+hotfix.6-stable.zip

Appendix

[338]

Linux
The following steps outline how to install Flutter on Linux:

Download the latest stable version of the SDK from https:/ /storage.1.
googleapis. com/ flutter_ infra/ releases/ stable/ linux/ flutter_ linux_ v1. 9.
1+hotfix. 6- stable. tar. xz.
Extract the file to a suitable location:2.

 $cd ~/development
 $tar xf ~/Downloads/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz

Add flutter to the path variable:3.

$export PATH="$PATH:`pwd`/flutter/bin"

Run flutter doctor.4.

Next, we'll look at how to configure Firebase for serving ML Kit and custom models.

Configuring Firebase
Firebase offers tools that facilitate application development and helps in supporting a large
user base. Firebase can easily be used for Android, iOS, and web applications. The products
offered by Firebase, such as Cloud Firestore, ML Kit, Cloud Functions, Authentication,
Crashlytics, Performance Monitoring, Cloud Messaging, and Dynamic Links, help to build
apps, thus improving app quality in a growing business.

To integrate a Firebase project, you need to create a Firebase project and integrate it into
your Android or iOS application. The subsequent sections discuss how to create a Firebase
project and integrate it into your Android and iOS projects.

Creating a Firebase project
First of all, we need to create a Firebase project and link it to our Android and iOS projects.
This linkage helps us to utilize the functionalities provided by Firebase.

https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz
https://storage.googleapis.com/flutter_infra/releases/stable/linux/flutter_linux_v1.9.1+hotfix.6-stable.tar.xz

Appendix

[339]

To create a Firebase project, perform the following steps:

Visit the Firebase console at https:/ /console. firebase. google. com.1.
Click on Add project to add a new Firebase project:2.

Provide a name for your project:3.

Enable/disable Google Analytics as per your requirements. It is generally4.
recommended that you keep it enabled.

Google Analytics is a free and unlimited analytics solution that enables
targeting, reporting, and more in Firebase Crashlytics, Cloud Messaging,
In-App Messaging, Remote Config, A/B Testing, Predictions, and Cloud
Functions.

https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com
https://console.firebase.google.com

Appendix

[340]

If you choose Firebase Analytics, you will also need to select an account:4.

After creating the project on the Firebase console, you will need to configure it separately
for Android and iOS platforms.

Configuring the Android project
The following steps discuss how to configure your Android project to support Firebase:

Navigate to the app on the Firebase console. In the center of the project overview1.
page, click on the Android icon to launch the workflow setup:

Add the package name to register the app on the Firebase console. The package2.
name that is filled in here should match the package name of your application.
The package name provided here acts as a unique key for identification:

Additionally, you can provide a nickname and a debug signing certificate, SHA-1.

Appendix

[341]

Download the google-services.json file and place it inside the app folder:3.

The google-services.json file stores the developer credentials and
configuration settings and acts as a bridge between the Firebase project and the
Android project.

The Google services plugin for Gradle loads the google-services.json file4.
that you just downloaded. The project-level build.gradle
(<project>/build.gradle) should be modified, as follows, to use the plugin:

buildscript {
 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 }
 dependencies {
 ...
 // Add this line
 classpath 'com.google.gms:google-services:4.3.3'
 }
}

allprojects {
 ...

Appendix

[342]

 repositories {
 // Check that you have the following line (if not, add it):
 google() // Google's Maven repository
 ...
 }
}

Here is the app-level build.gradle (<project>/<app-5.
module>build.gradle):

apply plugin: 'com.android.application'
// Add this line
apply plugin: 'com.google.gms.google-services'

dependencies {
 // add SDKs for desired Firebase products
 //
https://firebase.google.com/docs/android/setup#available-libraries
}

Now, you are all set to use Firebase in your Android project.

Configuring the iOS project
The following steps demonstrate how to configure your iOS project to support Firebase:

Navigate to the app on the Firebase console. In the center of the project overview1.
page, click on the iOS icon to launch the workflow setup:

Appendix

[343]

Add the iOS bundle ID name to register the app on the Firebase console. You2.
can find your bundle identifier in the General tab for your app's primary target
in Xcode. It is used as a unique key for identification:

Additionally, you can provide a nickname and App Store ID.

Download the GoogleService-Info.plist file:3.

Move the GoogleService-Info.plist file that you just downloaded into the4.
root of your Xcode project and add it to all the targets.

Appendix

[344]

Google Services uses CocoaPods to install and manage dependencies.

Open a terminal window and navigate to the location of the Xcode project for5.
your app. In this folder, create a Podfile if you don't have one:

pod init

Open your Podfile and add the following:6.

add pods for desired Firebase products
https://firebase.google.com/docs/ios/setup#available-pods

Save the file and run it:7.

pod install

This creates a .xcworkspace file for your app. Use this file for all future
developments of your application.

To connect to Firebase when your app starts up, add the following initialization8.
code to your main AppDelegate class:

import UIKit
import Firebase

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 FirebaseApp.configure()
 return true
 }
}

Now, you are all set to use Firebase in your Android project.

Appendix

[345]

Setting up VS Code
Visual Studio (VS) Code is a lightweight code editor developed by Microsoft. Its simplicity
and expansive repository of plugins make it a convenient tool for developers. With its Dart
and Flutter plugins, along with app execution and debug support, Flutter applications are
very easy to develop.

In the upcoming sections, we will demonstrate how to set up VS Code to develop Flutter
applications. We will start by downloading the latest version of VS Code from https:/ /
code.visualstudio. com/ .

Installing the Flutter and Dart plugins
First of all, we need to install the Flutter and Dart plugins on VS Code.

This can be done as follows:

Load VS Code on your machine.1.
Navigate to View | Command Palette.2.
Start typing in install, and select Extensions: Install Extensions.3.
Type flutter into the Extensions search field, select Flutter from the list, and4.
then click on Install. This also installs the required Dart plugin.
Alternatively, you can navigate to the sidebar to install and search for5.
Extensions:

After successfully installing the Flutter and Dart extensions, we need to validate the setup.
This is described in the next section.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Appendix

[346]

Validating the setup with flutter doctor
It is generally recommended that you validate the setup to ensure that everything works
fine.

The Flutter installation can be validated as follows:

Navigate to View | Command Palette.1.
Type in doctor, and then select Flutter: Run Flutter Doctor.2.
Look at the output inside the OUTPUT pane. Any errors or missing libraries are3.
listed in the output.
Alternatively, you can run flutter doctor on the terminal to check whether4.
everything is working fine:

The preceding screenshot shows you that, while Flutter is good to go, some other related
configurations are missing. In such a situation, you might want to install all of the
supporting software and rerun flutter doctor to analyze the setup.

After successfully setting up Flutter on VS Code, we can proceed to create our first Flutter
app.

Creating the first Flutter app
Creating the first Flutter app is very simple. Perform the following steps:

Navigate to View | Command Palette.1.
Start typing in flutter, and select Flutter: New Project.2.

Appendix

[347]

Enter a project name, such as my_sample_app.3.
Click on Enter.4.
Create or select the parent directory for the new project folder.5.
Wait for project creation to complete and the main.dart file to appear.6.

For more details, you can refer to the documentation, at https:/ /
flutter. dev/ docs/ get- started/ test- drive.

In the next section, we will discuss how to run your first Flutter application.

Running the app
The creation of a new Flutter project comes with a template code that we can run
directly on mobile devices. After creating your first template application, you can try to run
it as follows:

Navigate to the VS Code status bar (that is, the blue bar at the bottom of the1.
window):

Select your preferable device from the device selector area:2.

If no device is available and you want to use a device simulator, click
on No Device and launch a simulator:

You can also try setting up a real device for debugging.

https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive
https://flutter.dev/docs/get-started/test-drive

Appendix

[348]

Click on the Settings button—a cog icon gear in the top-right corner (now3.
marked with a red or orange indicator) that is next to the DEBUG textbox that
reads No Configuration. Select Flutter and choose the debug configuration to
create your emulator if it is closed or to run the emulator or device that is now
connected.
Navigate to Debug | Start Debugging or press F5.4.
Wait for the app to launch—progress is printed in the DEBUG CONSOLE view:5.

Once the app build is complete, you should see the initialized app on your device:

In the next section, we will look at the hot reload feature of Flutter, which helps in fast
development.

Appendix

[349]

Trying hot reload
The fast development cycle offered by Flutter makes it suitable for time-optimized
development. It supports Stateful Hot Reload, which means that you can reload the code
of a live running application without having to restart or lose the app state. Hot reloading
can be described as a method by which you can make changes to your app source, tell your
command-line tool that you want to hot reload, and view the changes within seconds on
your device or emulator.

In VS Code, hot reloading can be performed as follows:

Open lib/main.dart.1.
Change the You have pushed the button this many times: string to You2.
have clicked the button this many times:. Do not stop your app. Let
your app run.

Save your changes: Invoke Save All, or click on Hot Reload.3.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning for Mobile
Revathi Gopalakrishnan, Avinash Venkateswarlu

ISBN: 978-1-78862-935-5

Learn how to clean your data and ready it for analysis

Build intelligent machine learning models that run on Android and iOS
Use machine learning toolkits such as Core ML, TensorFlow Lite, and more
Learn how to use Google Mobile Vision in your mobile apps
Build a spam message detection system using Linear SVM
Using Core ML to implement a regression model for iOS devices
Build image classification systems using TensorFlow Lite and Core ML

https://www.packtpub.com/big-data-and-business-intelligence/hands-data-science-and-python-machine-learning

Other Books You May Enjoy

[351]

Mobile Artificial Intelligence Projects
Karthikeyan NG, Arun Padmanabhan, Et al

ISBN: 978-1-78934-407-3

Explore the concepts and fundamentals of AI, deep learning, and neural
networks
Implement use cases for machine vision and natural language processing
Build an ML model to predict car damage using TensorFlow
Deploy TensorFlow on mobile to convert speech to text
Implement GAN to recognize hand-written digits
Develop end-to-end mobile applications that use AI principles
Work with popular libraries, such as TensorFlow Lite, CoreML, and PyTorch

Other Books You May Enjoy

[352]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Action
 about 60
 creating, on Google 60
 creating, on Google project 62, 63, 64
 creating, on Google release 69, 71
Advanced RISC Machine (ARM) 322
agent responses 55
AI chips, on mobile devices
 about 9
 advantages 9
AI support
 changes, in hardware 8
AI, integrating on Android and iOS
 about 26
 Caffe2 28
 Core ML 28
 Firebase ML Kit 27
 TensorFlow 29
AI-powered cameras 13
AI-powered mobile devices
 growth 7
Alibaba Mobile Neural Network (MNN) 321
Allo 16
Alpha Zero-like AI, for Connect 4 game
 about 244, 245, 246
 gameplay, facilitating 253, 254
 gameplays, generating 254, 255
 Monte Carlo tree search (MCTS), implementing

256

 moves, allowing according to game's rules 249,
250, 251

 neural network, implementing 257, 259
 state management system 252, 253
 system, training 255, 256
 virtual representation, creating of board 247,

248, 249
Alpha Zero
 about 241
 versus AlphaGo Zero 241
AlphaGo 240, 241
AlphaGo Zero
 versus Alpha Zero 241
American Standard Code for Information Exchange

(ASCII) 117
Android Package Kit (APK) 120
Android project
 configuring 340, 341, 342
Android
 audio generation API, deploying 224, 225
anomalous behavior 185
anomaly detection
 for authentication 185, 186
Artificial Intelligence (AI) 90, 317
artificial neural network (ANN) 23, 216
audio files
 formats 209
audio generation API
 Audio Player, adding 229, 230
 deploying, on Andriod 224, 225
 deploying, on iOS 224, 225
 final material app, creating 235
 hosted model, deploying 231, 232, 233, 234
 UI, creating 226, 227, 228
audio interactions, adding to application
 about 82
 mic button, adding 85, 86, 87
 plugin, adding 83
 SpeechRecognition, adding 84, 85
audio processing
 about 209
 Magenta 210, 211, 212
auth.dart

[354]

 reference link 178
authentication application
 creating 165, 166
 UI, creating 166, 167, 168, 169, 170, 171, 172,

173

B
backpropagation through time (BPTT) 24
Blue Green Red (BGR) 204
Bokeh effect 13

C
Caffe2 28
camera application
 camera preview, building 153, 154, 155, 156,

157

 creating 153
camera feed
 image caption, generating from 157, 159, 160,

161

camera plugin
 about 151
 coding 152, 153
 installing 151
 methods, adding for persistent storage 151
 methods, adding for proper execution 151
chatbots
 creating, with Dialogflow 53
 creating, with tools 52
 creating, with Wit.ai 53
ChatMessage
 creating 75, 76, 77, 78, 79
ChatScreen 72
 reference link 87
chess engine API
 integrating, with UI 280, 281, 282, 283, 284
chess engine
 GCP hosted REST API, developing for 259, 261
 GCP, deployment 263
 project architecture, underlying 259
 Universal Chess Interface 262, 263
chess game application
 material app, creating 285, 286
chess UI, creating on Android
 about 270, 271, 272

 dependencies, adding to pubspec.yaml 272
 images, placing of actual pieces 274, 275, 277,

278

 mapping structure 272, 273, 274
 pieces movable, creating 278, 279
click-deploy image caption generation model
 creating 145, 146, 147, 148, 149, 150
Cloud Functions
 webhook, deploying for Firebase 68, 69
Cloud Vision API
 about 93, 94, 95
 configuring, for image recognition 95
 enabling 96, 97
 key, creating 98, 99
 using 117, 118, 119
Cloud VM
 deep learning environment, setting up 326
computational photography 13
constructors 44
conversational application
 UI, creating for 71
Convolution Architecture for Fast Embedding

(Caffe) 28
Convolutional Neural Networks (CNNs) 20, 21, 22,

32, 89, 127, 322
Core ML 28
custom TensorFlow Lite model
 creating, for image recognition 102, 103, 104,

105, 106, 107, 108

D
Dart plugins
 installing 345
Dart SDK
 installing 335
 installing, on Linux 335
 installing, on macOS 335
 installing, on Windows 335
deep learning (DL)
 about 18
 on mobile applications 317
deep learning architectures
 about 20
 convolutional neural network (CNN) 20, 22
 Convolutional Neural Networks (CNNs) 21

[355]

 generative adversarial networks (GANs) 22
 Long Short-Term Memory (LSTM) 24
 Recurrent Neural Network (RNN) 23
deep learning environment
 setting up, on Cloud VM 326
Deep Neural Network (DNN) models 322
DeepFashion2 dataset 323
 reference link 323
DeOldify project 324
dependency 36
device's local storage
 pictures, obtaining 302, 303, 304, 305
device-independent pixel (dp) 39
Dialogflow account
 creating 55, 56
Dialogflow agent
 creating 56, 57
 integrating 80, 81, 82
Dialogflow Console
 about 57, 58
 grabbing entities, creating 58, 60
 intent, creating 58, 60
Dialogflow
 URL 53
 used, for creating chatbots 53
 using 53, 54, 55
DigitalOcean Droplet 311, 312
 Flask server script, deploying 307
DigitalOcean
 Flask server script, creating 305, 306, 307
 TensorFlow model, hosting 305
discriminator (D) 22, 289
Diverse 2K (DIV2K) 296
DL developments
 exploring, on mobile devices 320
DL research areas
 exploring, in mobile applications 322

E
English Language Speech Assistant (ELSA) 16
exploding gradients 24
exploitation 25
exploration 25

F
face detection application, first screen
 row title, building 39
 row with button widgets, building 40, 42
 whole user interface, creating 42, 43
face detection application, second screen
 detected faces, marking 46, 47
 final image, displaying on screen 48
 image file, obtaining 44
 image to detect faces, analyzing 44, 45, 46
face detection application
 building 37, 38
 developing, Flutter used 35, 36
 final MaterialApp, creating 49
 first screen, creating 38
 pub dependencies, adding 36, 37
 second screen, creating 43
Face ID 12
facial recognition 12
fake images 290
Firebase authentication, ReCaptcha Version 2
 API key, obtaining 194, 195
 code integration 195, 196, 197
Firebase authentication
 adding 173, 174, 175
 adding, in SignupSigninScreen 178
 auth.dart, creating 176, 177, 178
 home screen, creating 182, 183, 184
 main screen, creating 180, 181, 182
 main.dart, creating 184
 ReCaptcha Version 2, integrating 193
 ReCaptcha, implementing for spam protection

192

Firebase ML Kit 27
Firebase project
 creating 338, 339, 340
Firebase
 configuring 338
 webhook, deploying to Clound Functions for 68,

69

Flask app object 190
Flask server script
 creating 305, 306, 307
 deploying 266, 267, 268, 270
 deploying, to DigitalOcean Droplet 307, 311,

[356]

312

Flask
 used, for deploying RNN-based models 220,

221, 223, 224
Floating Action Button (FAB) 108
Flood Illuminator 12
Flutter application, second screen
 chosen image, displaying 114, 115, 116
 functionality, adding 113, 114
 user interface, creating 112, 113
Flutter application
 creating 108, 346
 hosted custom model, integrating 312, 313, 314,

315

 hot reload, trying 349
 predictive model, deploying 197, 198, 200
 running 347, 348
 second screen, creating 112
 selecting, between two different models 109,

110, 111
 UI, building 298, 299, 300, 301, 302
 URL 91
 used, for developing face detection application

35, 36
Flutter plugins
 installing 345
Flutter SDK
 download link 336
 installing 336
 installing, on Linux 338
 installing, on macOS 337
 installing, on Windows 336

G
GCP account
 billing, enabling 327, 328
 creating 327, 328
 GCP Compute Engine instance, creating 328,

329, 330
 project, creating 328, 329, 330
GCP Compute Engine instance
 creating 328, 329, 330
GCP hosted REST API
 developing, for chess engine 259, 261
generative adversarial networks (GANs)

 about 22, 289, 291, 323
 conditional GANs 291
 progressive GANs 291
 reference link 23
 stacked GANs 291
generator (G) 22, 289
GloVE embeddings
 reference link 131
Google Assistant
 integration, creating to 64, 65, 66
Google Cloud Platform (GCP)
 about 89, 202, 326
 deployment 263
Google Maps 319
Google project
 Actions, creating 62, 63, 64
Google release
 Actions, creating 69, 71
Google's Colaboratory
 about 100, 101
 URL 100
Google's DeepMind
 Alpha Zero 241
 AlphaGo 240, 241
 exploring 240
 Monte Carlo tree search (MCTS) 242, 243, 244
Google
 Action, creating 60
 Action, need for 61, 62
GPU instances
 creating 265
 quota increase, request on 263, 264
gradient vanishing 217
Graphics Processing Units (GPUs) 9, 91, 298

H
Haar cascades
 reference link 213
higher resolution (HR) 292
home_screen.dart
 reference link 184
hosted custom model
 integrating, on Flutter application 312, 313, 314,

315

hot reload

[357]

 trying 349

I
image animation 324
image caption generation model
 building 132
 caption dataset, initializing 133, 134
 caption dataset, preparing 135, 136
 testing 143, 144
 training 137, 138, 139, 140, 141, 142, 143
image caption generator 128, 129, 130, 131
image captioning model
 dataset, used for creating 131, 132
image captions
 generating, from camera feed 157, 159, 160,

161

image classification 90, 91
image processing 203, 204, 205, 206, 207, 209
image processing module (IPM) 322
image recognition
 Cloud Vision API, configuring 95
 custom TensorFlow Lite model, creating 102,

103, 104, 105, 106, 107, 108
 running 116
image super-resolution application
 about 292
 pixel resolution 292
 project architecture 288
 radiometric resolution 294
 spatial resolution 293
 spectral resolution 293
 SRGANs 294
 temporal resolution 293
 TensorFlow model, creating 295
 working 292
image_super_resolution.dart file
 reference link 315
images
 about 32, 33, 34
 grayscale conversion 35
 manipulating 34
 processing 32
 rotation 34
improved user experience, AI on mobile devices
 about 10

 AI-powered cameras 13
 facial recognition 11
 personalization 10
 predictive text 14
 virtual assistants 10, 11
intent
 creating 58, 60
Internet of Things (IoT) 322
iOS project
 configuring 342, 343, 344
iOS
 audio generation API, deploying 224, 225

K
kernel 20

L
Linux
 Dart SDK, installing 335
 Flutter SDK, installing 338
Long Short-Term Memory (LSTM)
 about 24, 127, 188
 reference link 217
low-resolution (LR) 292
LSTM-based model
 creating, for music generation 218, 219, 220

M
machine learning (ML) 17, 18, 91
macOS
 Flutter SDK, installing 337
Magenta
 about 210, 211, 212
 URL 210
main.dart
 reference link 184
main_screen.dart
 reference link 182
material app
 creating 286
MaterialApp
 creating 161, 162, 285
 reference link 87
Math solver 318
max pooling 22

[358]

messages documentation
 reference link 219
mobile applications, AI
 about 15
 Allo 16
 English Language Speech Assistant (ELSA) 16
 Netflix 15
 Seeing AI 15
 Socratic 16
mobile applications, DL research areas
 DeepFashion2 dataset 323
 image animation 324
 Self-Attention GANs (SAGANs) 323
mobile applications, DL
 Google Maps 319
 Math solver 318
 Netflix 319
 Snapchat 320
 Tinder 320
mobile devices, DL developments
 Alibaba Mobile Neural Network (MNN) 321
 MobileNet 321
mobile games
 reinforcement learning 239
MobileNet 321
Modified National Institute of Standards and

Technology (MNIST) 138
Monte Carlo tree search (MCTS)
 about 242, 243, 244, 245
 implementing 256
multimedia processing
 about 203
 audio processing 209
 image processing 203, 204, 205, 206, 207, 209
 video processing 212, 214, 215
music generation
 LSTM-based model, creating 218, 219, 220
 RNN-based models, developing 216, 217

N
Natural Language Processing (NLP) 26, 53, 128
Natural Language Understanding (NLU) 10, 11
Netflix 15, 319
neural engine 8
Neural Network Exchange (ONNX) 322

neural network
 about 18
 activation function 20
 hidden layers 19
 implementing 257, 259
 input layer 19
 output layer 19
New Trends in Image Restoration and

Enhancement (NTIRE) 296

O
on-device TensorFlow Lite model
 using 119, 120, 121, 122
OpenCV
 reference link 209
overfitting
 reference link 19

P
personalization 10
Photobooth mode 13
pixel resolution 292
play_music.dart
 reference link 234
Portable Operating System Interface (POSIX) 322
pre-trainer 297
predictive model
 authentication validation model, hosting 190,

191, 192
 building, for authentication validity check 186,

187, 188, 189
 creating, for users authentication 186
 deploying, in Flutter application 197, 198, 200
predictive text 14
project architecture
 about 91, 92, 93
 designing 128, 202
pubspec.yaml
 dependencies, adding 272

Q
Quick Type 14

[359]

R
radiometric resolution 294
real images 290
reCAPTCHA admin console
 reference link 194
ReCaptcha
 implementing, for spam protection 192
 reference link 192
recurrent neural network (RNN) 23, 188, 322
Red Green Blue (RGB) 104, 204
regular behavior 185
reinforcement learning 25
 about 237, 238
 in mobile games 239
 references 238
 variables 237
RNN-based models
 deploying, with Flask 220, 221, 223, 224
 developing, for music generation 216, 217

S
SDK/tools
 used, for building model 99, 100
Seeing AI 15
Self-Attention GANs (SAGANs) 323
Smart Compose 14
Smart Reply 14
Snapchat 320
Socratic 16
Software Development Kit (SDK) 27, 89, 152
spatial resolution 293
spectral resolution 293
super-resolution (SR) 292
Super-Resolution GAN (SRGAN) 291, 294

T
temporal resolution 293
Tensor Processing Unit (TPU) 91
TensorFlow Lite
 URL 91
TensorFlow model
 creating, for image super-resolution 295
 hosting, on DigitalOcean 305
 project directory structure 295

 SRGAN model, creating for image super-
resolution 296, 297

TensorFlow
 about 29, 30
 installing, on Virtual Machine (VM) 333
 URL 91
Text Controller
 creating 72, 73, 74
Tinder 320
tree search 242

U
underfitting
 reference link 19
Uniform Resource Locator (URL) 103
Universal Chess Interface (UCI) 261, 262, 263
Unmanned Aerial Vehicle (UAV) 293
user interface (UI)
 about 112, 322
 chess engine API, integrating with 280, 281,

282, 283, 284
 creating 166
 creating, for conversational application 71
 updating, with results 122, 123, 125

V
vanishing gradients 24
video processing 212, 213, 214, 215
virtual assistant 10, 11
Virtual Machine (VM)
 about 326
 data packages, downloading 334
 NLTK, installing 334
 TensorFlow, installing on 333
Visual Studio (VS) Code
 Dart plugins, installing 345
 Flutter plugins, installing 345
 setting up 345
 setup, validating with flutter doctor 346
VM instance
 configuring, to perform deep learning 330, 331,

332, 333

W
webhook
 deploying, to Cloud Functions for Firebase 68,

69

 implementing 67, 68

widgets 38
Windows
 Dart SDK, installing 335
 Flutter SDK, installing 336
Wit.ai
 used, for creating chatbots 53

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 01: Introduction to Deep Learning for Mobile
	Growth of AI-powered mobile devices
	Changes in hardware to support AI
	Why do mobile devices need to have AI chips?
	Improved user experience with AI on mobile devices
	Personalization
	Virtual assistants
	Facial recognition
	AI-powered cameras
	Predictive text

	Most popular mobile applications that use AI
	Netflix
	Seeing AI
	Allo
	English Language Speech Assistant
	Socratic

	Understanding machine learning and deep learning
	Understanding machine learning
	Understanding deep learning
	The input layer
	The hidden layers
	The output layer
	The activation function

	Introducing some common deep learning architectures
	Convolutional neural networks
	Generative adversarial networks
	Recurrent neural networks
	Long short-term memory

	Introducing reinforcement learning and NLP
	Reinforcement learning
	NLP

	Methods of integrating AI on Android and iOS
	Firebase ML Kit
	Core ML
	Caffe2
	TensorFlow

	Summary

	Chapter 02: Mobile Vision - Face Detection Using On-Device Models
	Technical requirements
	Introduction to image processing
	Understanding images
	Manipulating images
	Rotation
	Grayscale conversion

	Developing a face detection application using Flutter
	Adding the pub dependencies
	Building the application
	Creating the first screen
	Building the row title
	Building the row with button widgets
	Creating the whole user interface

	Creating the second screen
	Getting the image file
	Analyzing the image to detect faces
	Marking the detected faces
	Displaying the final image on the screen

	Creating the final MaterialApp

	Summary

	Chapter 03: Chatbot Using Actions on Google
	Technical requirements
	Understanding the tools available for creating chatbots
	Wit.ai
	Dialogflow
	How does Dialogflow work?

	Creating a Dialogflow account
	Creating a Dialogflow agent
	Understanding the Dialogflow Console
	Creating an Intent and grabbing entities

	Creating your first action on Google
	Why would you want to build an action on Google?

	Creating Actions on a Google project
	Creating an integration to the Google Assistant

	Implementing a Webhook
	Deploying a webhook to Cloud Functions for Firebase
	Creating an Action on Google release
	Creating the UI for the conversational application
	Creating the Text Controller
	Creating ChatMessage

	Integrating the Dialogflow agent
	Adding audio interactions with the assistant
	Adding the plugin
	Adding SpeechRecognition
	Adding the mic button

	Summary

	Chapter 04: Recognizing Plant Species
	Technical requirements
	Introducing image classification
	Understanding the project architecture
	Introducing the Cloud Vision API
	Configuring the Cloud Vision API for image recognition
	Enabling the Cloud Vision API
	Creating a Cloud Vision API key

	Using an SDK/tools to build a model
	Introducing Google's Colaboratory

	Creating a custom TensorFlow Lite model for image recognition
	Creating a Flutter application
	Choosing between two different models
	Creating the second screen
	Creating the user interface
	Adding the functionality
	Displaying the chosen image on the screen

	Running image recognition
	Using the Cloud Vision API
	Using an on-device TensorFlow Lite model
	Updating the UI with results

	Summary

	Chapter 05: Generating Live Captions from a Camera Feed
	Designing the project architecture
	Understanding an image caption generator
	Understanding the dataset
	Building an image caption generation model
	Initializing the caption dataset
	Preparing the caption dataset
	Training
	Testing

	Creating a simple click-deploy image caption generation model

	Understanding the camera plugin
	Installing the camera plugin
	Adding methods for persistent storage and proper execution
	Coding

	Creating a camera application
	Building the camera preview

	Generating image captions from the camera feed
	Creating the material app
	Summary

	Chapter 06: Building an Artificial Intelligence Authentication System
	Technical requirements
	A simple login application
	Creating the UI

	Adding Firebase authentication
	Creating auth.dart
	Adding authentication in SignupSigninScreen
	Creating the main screen
	Creating the home screen
	Creating main.dart

	Understanding anomaly detection for authentication
	A custom model for authenticating users
	Building a model for an authentication validity check
	Hosting the custom authentication validation model

	Implementing ReCaptcha for spam protection
	ReCAPTCHA v2
	Obtaining the API key
	Code integration

	Deploying the model in Flutter
	Summary

	Chapter 07: Speech/Multimedia Processing - Generating Music Using AI
	Designing the project's architecture
	Understanding multimedia processing
	Image processing
	Audio processing
	Magenta

	Video processing

	Developing RNN-based models for music generation
	Creating the LSTM-based model
	Deploying a model using Flask

	Deploying an audio generation API on Android and iOS
	Creating the UI
	Adding Audio Player
	Deploying the model
	Creating the final material app

	Summary

	Chapter 08: Reinforced Neural Network-Based Chess Engine
	Introduction to reinforcement learning
	Reinforcement learning in mobile games
	Exploring Google's DeepMind
	AlphaGo
	Alpha Zero
	Monte Carlo tree search

	Alpha Zero-like AI for Connect 4
	Creating a virtual representation of the board
	Allowing moves according to the game's rules
	The state management system
	Facilitating gameplay
	Generating sample gameplays
	System training
	Monte Carlo tree search implementation
	Implementing the neural network

	Underlying project architecture
	Developing a GCP-hosted REST API for the chess engine
	Understanding the Universal Chess Interface
	Deployment on GCP
	Request for a quota increase on GPU instances
	Creating a GPU instance
	Deploying the script

	Creating a simple chess UI on Android
	Adding dependencies to pubspec.yaml
	Understanding the mapping structure
	Placing the images of the actual pieces
	Making the pieces movable

	Integrating the chess engine API with a UI
	Creating the material app

	Summary

	Chapter 09: Building an Image Super-Resolution Application
	Basic project architecture
	Understanding GANs
	Understanding how image super-resolution works
	Understanding image resolution
	Pixel resolution
	Spatial resolution
	Temporal resolution
	Spectral resolution
	Radiometric resolution

	Understanding SRGANs

	Creating a TensorFlow model for super-resolution
	Project directory structure
	Creating an SRGAN model for super-resolution

	Building the UI for the application
	Getting pictures from the device's local storage
	Hosting a TensorFlow model on DigitalOcean
	Creating a Flask server script
	Deploying the Flask script to DigitalOcean Droplet

	Integrating a hosted custom model on Flutter
	Creating the Material app
	Summary

	Chapter 10: Road Ahead
	Understanding recent trends in DL on mobile applications
	Math solver
	Netflix
	Google Maps
	Tinder
	Snapchat

	Exploring the latest developments in DL on mobile devices
	Google's MobileNet
	Alibaba Mobile Neural Network

	Exploring current research areas for DL in mobile apps
	Fashion images
	Self-Attention Generative Adversarial Networks
	Image animation

	Summary

	Appendix
	Other Books You May Enjoy
	Index

